
Kirchhoff-Insitut für Physik Winter semester 2013-14
Physikalisches Insitut KIP CIP Pool (1.401)

Exercises for Statistical Methods in Particle Physics
http://www.physi.uni-heidelberg.de/~nberger/teaching/ws13/statistics/statistics.php

Dr. Niklaus Berger (nberger@physi.uni-heidelberg.de)
Dr. Oleg Brandt (obrandt@kip.uni-heidelberg.de)

Exercise 2: Pseudo random number generators
21. October 2013

Hand-in solutions by 14:00, 27. October 2013

“Is 2 a random number?” “Any one who considers arithmetical
methods of producing random digits is,
of course, in a state of sin.”

Donald E. Knuth John von Neumann

Like last time, please send your solutions to obrandt@kip.uni-heidelberg.de by 29.10.2013,
14:00. Make sure that you use SMIPP:Exercise02 as subject line. Please put each macro into one
separate .C or .py file, which can easily be tested (i.e. executable via e.g. root -l mycode.C).
Test macros and programs before sending them off...

Pseudo random numbers (i.e. sequences of numbers that appear random, but are fully deter-
ministic and can easily be reproduced), play a very important role in particle physics and are
the central ingredient for all Monte Carlo methods. Probably the definitive text on the subject
of pseudo random number generators is chapter 3 in Donald E. Knuths “The Art of Computer
Programming” (Volume II, pages 1-193). Read it, if you ever consider to write a generator of
your own (outside of this exercise).

1 Write your own pseudo random number generator

Write a programme that generates pseudo random numbers in [0, 1] in double precision. If you
have heard of linear congruent generators before, pretend you did not.
(Attach the .C or .py file)

2 Evaluating properties of pseudo random number generators

Use your programme above to generate 100,000 random numbers. Using root histograms with
an appropriate binning, perform the following tests on your random number sequence (do not
worry if your code fails some of them - writing good generators is hard...):

• Equidistribution: Test if your numbers are equally distributed in the inteval [0, 1];

• Serial test : Test that if you look at pairs of subsequent numbers, all pairs are equally likely
(you can produce 2D histograms in root with

TH2F("name","title",100,-0.5,99.5,100,-0.5,99.5) ;

Note that the Fill() function now takes two arguments;



• Serial test (expanded): Do the same for triplets of numbers using TH3F;

• Lower bit check : Repeat the serial test for just the lower bits of your numbers, which you
can access via fmod(number*scale,1), where you should take a power of 2 for the scale
variable.

• Up-Down test : Check how often the difference between two numbers in the sequence is
positive or negative.

(Attach the .C or .py file)

3 Evaluate standard ROOT pseudo random number generators

Show that the built-in default generator of root, TRandom, is a bad generator (hint: see above).
Collect some evidence that this is not the case for TRandom3.
(Attach the .C or .py file)

4 Monte Carlo Integration

Calculate the following integral ∫ 100

0
cos(2πx)dx (1)

• analytically;

• numerically by the approximation:∫ b

a
f(x)dx ≈

N∑
i=1

f(xi)∆x (2)

where the function f is evaluated N times with a constant step size ∆x = (b−a)/N, xi =
a+∆x · (i+1/2) (graph how the error changes as you increase N , you can either (ab)use
a hisogram for this (with SetBinContent() you can set bin contents to arbitrary values)
or use a TGraph);

• by Monte Carlo integration∫ b

a
f(x)dx ≈ b− a

N

N∑
j=1

f(xj) = (b− a) · ⟨f⟩ (3)

where the xj are random values in the interval from a to b, ⟨f⟩ is the mean of the function
value. The variance of the estimate of the integral is σ2

i = (b− a)2σ2
N /N , where σ2

N is the
sample variance

σ2
N =

1

N

N∑
j=1

(f(xj)− ⟨f⟩)2,

Again show the estimate (this time with its expected error) as a function of N (use either
SetBinError() in a histogram of a TGraphErrors). By the way, you can get 2π (in double
precision) via TMath::TwoPi().


