Exercises for Statistical Methods in Particle Physics

http://www.physi.uni-heidelberg.de/~nberger/teaching/ws13/statistics/statistics.php
Dr. Niklaus Berger (nberger@physi.uni-heidelberg.de)
Dr. Oleg Brandt (obrandt@kip.uni-heidelberg.de)

Exercise 2: Pseudo random number generators

21. October 2013

Hand-in solutions by 14:00, 27. October 2013
"Is 2 a random number?"

Donald E. Knuth

> "Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin." JoHN VON NEUMANN

Like last time, please send your solutions to obrandt@kip.uni-heidelberg.de by 29.10.2013, 14:00. Make sure that you use SMIPP:Exercise02 as subject line. Please put each macro into one separate .C or .py file, which can easily be tested (i.e. executable via e.g. root -l mycode.C). Test macros and programs before sending them off...

Pseudo random numbers (i.e. sequences of numbers that appear random, but are fully deterministic and can easily be reproduced), play a very important role in particle physics and are the central ingredient for all Monte Carlo methods. Probably the definitive text on the subject of pseudo random number generators is chapter 3 in Donald E. Knuths "The Art of Computer Programming" (Volume II, pages 1-193). Read it, if you ever consider to write a generator of your own (outside of this exercise).

1 Write your own pseudo random number generator

Write a programme that generates pseudo random numbers in $[0,1]$ in double precision. If you have heard of linear congruent generators before, pretend you did not.
(Attach the .C or .py file)

2 Evaluating properties of pseudo random number generators

Use your programme above to generate 100,000 random numbers. Using root histograms with an appropriate binning, perform the following tests on your random number sequence (do not worry if your code fails some of them - writing good generators is hard...):

- Equidistribution: Test if your numbers are equally distributed in the inteval [0, 1];
- Serial test: Test that if you look at pairs of subsequent numbers, all pairs are equally likely (you can produce 2D histograms in root with

```
TH2F("name","title",100,-0.5,99.5,100,-0.5,99.5) ;
```

Note that the Fill() function now takes two arguments;

- Serial test (expanded): Do the same for triplets of numbers using TH3F;
- Lower bit check: Repeat the serial test for just the lower bits of your numbers, which you can access via fmod (number*scale,1), where you should take a power of 2 for the scale variable.
- Up-Down test: Check how often the difference between two numbers in the sequence is positive or negative.
(Attach the .C or .py file)

3 Evaluate standard ROOT pseudo random number generators

Show that the built-in default generator of root, TRandom, is a bad generator (hint: see above). Collect some evidence that this is not the case for TRandom3.
(Attach the .C or .py file)

4 Monte Carlo Integration

Calculate the following integral

$$
\begin{equation*}
\int_{0}^{100} \cos (2 \pi x) \mathrm{d} x \tag{1}
\end{equation*}
$$

- analytically;
- numerically by the approximation:

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{i=1}^{N} f\left(x_{i}\right) \Delta x \tag{2}
\end{equation*}
$$

where the function f is evaluated N times with a constant step size $\Delta x=(b-a) / N, x_{i}=$ $a+\Delta x \cdot(i+1 / 2)$ (graph how the error changes as you increase N, you can either (ab)use a hisogram for this (with SetBinContent() you can set bin contents to arbitrary values) or use a TGraph);

- by Monte Carlo integration

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{b-a}{N} \sum_{j=1}^{N} f\left(x_{j}\right)=(b-a) \cdot\langle f\rangle \tag{3}
\end{equation*}
$$

where the x_{j} are random values in the interval from a to $b,\langle f\rangle$ is the mean of the function value. The variance of the estimate of the integral is $\sigma_{i}^{2}=(b-a)^{2} \sigma_{N}^{2} / N$, where σ_{N}^{2} is the sample variance

$$
\sigma_{N}^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(f\left(x_{j}\right)-\langle f\rangle\right)^{2},
$$

Again show the estimate (this time with its expected error) as a function of N (use either SetBinError () in a histogram of a TGraphErrors). By the way, you can get 2π (in double precision) via TMath: :TwoPi().

