Statistical Methods in Particle Physics / WS 13

Lecture V

Parameter Estimation

Niklaus Berger
Physics Institute, University of Heidelberg

Part V:

Parameter Estimation

5.3. Averaging by the PDG

(See pages 13-16 of the current book)

- Find and select measurements to average:

Not too old, with uncertainty, not superseded, not questionable

- Perform weighted average, calculate x^{2}

If $x^{2} /(n-1)<1$: Use average as is, with standard variance
If $\mathrm{X}^{2} /(n-1) \gg 1$: Do not quote an average, measurements are inconsistent
If $x^{2} /(n-1)>1$, but not much greater: Scale uncertainty of average by
$S=\left(x^{2} /(n-1)\right)^{1 / 2}$
If uncertainties vary wildly, calculate S only from those with small uncertainties

$$
\text { If } x^{2} /(n-1)>1.25 \text {, show a graph }
$$

Reading the PDG Tables (p 457)

Illustrative Key to the Particle Listings

Reading the PDG Tables (p 457)

Name of particle. "Old" name used before 1986 renaming scheme also given if different. See the section "Naming Scheme for Hadrons" for details.
$I^{G}\left(J^{P C}\right)=1^{-}\left(0^{+}+\right) \longrightarrow \begin{aligned} & \text { Particle quantum numbers (where } \\ & \text { known). }\end{aligned}$
Indicates particle omitted from Particle Physics Summary Table, implying particle's existence is not confirmed.

General comments on particle.

Reading the PDG Tables (p 457)

Quantity tabulated below.
Top line gives our best value (and error) of quantity tabulated here, based on weighted average of measurements used. Could also be from fit, best limit, estimate, or other evaluation. See next page for details.

Footnote number linking measurement to text of footnote.

Reading the PDG Tables (p 457)

Number of events above background.

Measured value used in averages, fits, limits, etc.

Error in measured value (often statistical only; followed by systematic if separately known; the two are combined in quadrature for averaging and fitting.)
Measured value not used in averages, fits, limits, etc. See the Introductory Text for explanations.

Arrow points to weighted average.
Shaded pattern extends $\pm 1 \sigma$ (scaled by "scale factor" S) from weighted average.

Value and error for each experiment.

Scale factor >1 indicates possibly inconsistent data.
Reaction producing particle, or general comments.
"Change bar" indicates result added or changed since previous edition.

Charge(s) of particle(s) detected.
Ideogram to display possibly inconsistent data. Curve is sum of Gaussians, one for each experiment (area of Gaussian $=1$ /error; width of Gaus$\operatorname{sian}= \pm e r r o r)$. See Introductory Text for discussion.

Contribution of experiment to χ^{2} (if no entry present, experiment not used in calculating χ^{2} or scale factor because of very large error).

Reading the PDG Tables (p 457)

$a_{0}(1200)$ DECAY MODES

Scale factor/

Partial decay mode (labeled by Γ_{i}).	Mode		Fraction (Γ_{i} / Γ)		Confidence level
	Γ_{1}	3π	(65.2		$\mathrm{S}=1.7$
	2	$K K$	(34.8		$\mathrm{S}=1.7$
	Γ_{3}	$\eta \pi^{ \pm}$	< 4.9	$\times 10^{-4}$	CL=95\%

Our best value for branching fraction as determined from data averaging, fitting, evaluating, limit selection, etc. This list is basically a compact summary of results in the Branching Ratio section below.

Reading the PDG Tables (p 457)

Reading the PDG Tables (p 457)

PDG: Neutron lifetime

neutron mean life (s)

PDG: Neutron lifetime

5.4. Weighted averages with correlations

Example: Suppose we measure the length of a stick twice and would like to combine the measurements

- Measurements are

$$
\begin{aligned}
& x_{1}=10 \mathrm{~cm} \text { with an uncertainty } \sigma_{1} \text { of } 0.1 \mathrm{~cm} \\
& x_{2}=11 \mathrm{~cm} \text { with an uncertainty } \sigma_{2} \text { of } 0.5 \mathrm{~cm}
\end{aligned}
$$

- If the two measurements are uncorrelated, then

$$
x_{\text {mean }}=\left(x_{1} / \sigma_{1}^{2}+x_{2} / \sigma_{2}^{2}\right) /\left(1 / \sigma_{1}^{2}+1 / \sigma_{2}^{2}\right) \text {, the weighted mean }(10.038 \pm 0.098) \mathrm{cm}
$$

5.4. Weighted averages with correlations

Example: Suppose we measure the length of a stick twice and would like to combine the measurements

- Measurements are

$$
\begin{aligned}
& x_{1}=10 \mathrm{~cm} \text { with an uncertainty } \sigma_{1} \text { of } 0.1 \mathrm{~cm} \\
& x_{2}=11 \mathrm{~cm} \text { with an uncertainty } \sigma_{2} \text { of } 0.5 \mathrm{~cm}
\end{aligned}
$$

- If the two measurements are uncorrelated, then

$$
x_{\text {mean }}=\left(x_{1} / \sigma_{1}^{2}+x_{2} / \sigma_{2}^{2}\right) /\left(1 / \sigma_{1}^{2}+1 / \sigma_{2}^{2}\right) \text {, the weighted mean }(10.038 \pm 0.098) \mathrm{cm}
$$

- If not, then...
- Anything between 10 and 11 cm
- 10 cm , the better measurement
- 10.5 cm , the arithmetic mean
- Still the weighted mean 10.038 cm
- Something else entirely

