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Outline

Multivariate data analysis methods:
● Fisher discriminant (linear decision boundary)
● Neural networks
● Kernel density methods
● Support Vector Machines
● Decision trees:

● Boosting
● Bagging

● Toolkit for Multivariate Data Analysis: TMVA
● Framework for “all” MVA-techniques, available in ROOT

● Significance tests

Material from lectures by Helge Voss 
(May 2009)
http://tmva.sourceforge.net/talks.shtml

Nik !
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Reminder: multivariate analysis

Neyman-Pearson lemma: statistic test

But most of the times we do NOT have access to the “true probability 
density”:
● Try to estimate the PDFS(x) and PDFB(x) using the Kernel Density 

Estimators (in limited regions, from training events)  problem coming →
from the dimensionality!

● Or neglect correlations and use 1-dimensional PDFs
● Or try other approaches to determine the hyperplanes in the feature 

space, to separate S and B

t x =
Px∣S 

Px∣B 
 Likelihood ratio 
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Probability density estimation (PDE)

Construct non-parametric estimators of the pdfs
and use these to construct the likelihood ratio

n-dimensional histogram is a brute force example of this.
More clever estimation techniques can get this to work for
(somewhat) higher dimension.

See e.g. K. Cranmer, Kernel Estimation in High Energy Physics, CPC 136 (2001) 198; hep-
ex/0011057; T. Carli and B. Koblitz, A multi-variate discrimination technique based on range-
searching, NIM A 501 (2003) 576; hep-ex/0211019

f x∣H0 , f x∣H1

t x =

f x∣H0 

f x∣H1 
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Kernel Density Estimator (KDE) 

● Trying to estimate the probability density p(x) in D-dimensional space
● The only thing at our disposal is our “training data”
● Say we want to know p(x) at “this” point “x”
● One expects to find in a volume V around point “x”  N*∫p(x)dx events 

from a dataset with N events

● Take

● K kernel density estimator of the 
probability density

● h bandwidth, smoothing parameter

px =
1

NhD ∑
i=1

N

K x−xi

h 
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KDE: Parzen window

● we choose as volume the square drawn
→ rectangular kernel function
     Parzen window

● Determine K from the training data with 
signal and background mixed together

● Slow: need to sum over N terms
→ take only k-Nearest Neighbours
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Kernel Density Estimator
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Kernel Density Estimator
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“Curse of dimensionality”
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Correlation versus independence

In general a multivariate distribution p(x) does not factorize into a 
product of the marginal distributions for the individual variables:

Most importantly, the components of x will generally have non-zero 
covariances (i.e. they are CORRELATED):

px = ∏
i=1

N

pix i
Holds only if the 
components of x 
are independent

V ij = cov [xi , x j] = E [x ix j] − E[x i]E [x j] ≠0
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Decorrelation of input variables

But we can define a set of uncorrelated input variables by a linear 
transformation, i.e. find the matrix A such that for 
the covariances are

For the following suppose that the variables are “decorrelated” in this 
way for each of                                      separately (since in general their
correlations are different).

y = A x
cov [x i , x j] = 0

p x∣H0  ,p x∣H1 
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Decorrelation is not enough

But even with zero correlation, a multivariate pdf p(x) will in general have 
non-linearities and thus the decorrelated variables are still not 
independent

pdf with zero covariance 
but components still not 
independent.
In fact:

And therefore:

p x2∣x1≡
px1, x2

p1 x1
≠p2 x2

px1, x2 ≠ p1 x1 p2x2
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Naïve Bayes

But if the non-linearities are not too great, it is reasonable to first 
decorrelate the inputs, and take as our estimator for each pdf:

So this at least reduces the problem to one of finding estimates of one-
dimensional pdf's.

The resulting estimated likelihood ratio gives the naïve Bayes classifier 
(in HEP sometimes called the “likelihood method”).

px = ∏
i=1

n
pix i
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Decision trees
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Decision trees
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Decision trees

First: in a very simplified way:

● At each step: out of ALL the input variables, find the one for which with 
a single cut we obtain the best improvement in signal purity

where wi is the weight of the i'th event
● Iterate until stop criterion reached

based on e.g. purity reached, or minimum number of events in a node

● The set of cuts defines the decision boundary

P =
∑signal w i

∑signal w i  ∑background w i
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Decision trees
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Decision trees
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Decision trees
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Decision trees
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Decision trees: boosting

The terminal nodes (or leaves) are classified as signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold).

This classifies every point in the input-variable space (or feature space) 
as either signal or background

 → A decision tree classifier, with discriminant function:

Decision trees tend to be very sensitive to statistical fluctuations in the 
training sample!!
Methods such as boosting can be used to stabilize the tree.

f x  = { 1 if x∈signalregion
−1 otherwise
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Decision trees: boosting

Boosting is a general method of creating a set of classifiers which can 
be combined to achieve a new classifier that is more stable and has a 
smaller error than any individual one

Suppose we have a training sample T consisting of N events with:
x1, ..., xN    event data vectors (each x multivariate)

y1, …, yN   true class labels (+1 for signal, -1 for background)

w1, ..., wN  event weights

Now define a rule to create from this an ensemble of training samples 
T1, T2, …
Derive a classifier from each and average them



Statistical Methods, Lecture 9, December 5, 
2011

         24

Decision trees
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Decision trees
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Decision trees
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Decision trees
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Decision trees
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Decision trees
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Decision trees
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Decision trees: summary

● Advantage of boosted decision tree is it can handle a large number of 
inputs. Those that provide little/no separation are rarely used as tree 
splitters and are effectively ignored.

● Easy to deal with inputs of mixed types (real, integer, categorical, …)
● It a tree had only a few leaves it is easy to visualize (but rarely we use 

only a single tree)
● There are a number of boosting algorithms, which differ primarily in 

the rule for updating the weights (ε-Boost, LogitBoost, …)
● Other ways of combining the weaker classifiers: Bagging (Bootstrap-

Aggregating) generates the ensemble of classifiers by random 
sampling with replacement from the full training sample.
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Decision trees
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Significance tests, goodness-of-fit

Suppose hypothesis H predicts pdf                for a set of 
observations

We observe a single point in this space:            

What can we say about the validity of H in light of the 
data?

Decide what part of the
data space represents less
compatibility with H than
does the point 
(Not unique!)

f x∣H 

xobs

x = x1, ... , xn

xobs
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p-values

Express 'goodness-of-fit' by giving the p-value for H:
      p = probability, under assumption of H, to observe data with equal or  
             lesser compatibility with H relative to the data we got 

NOTE! This is NOT the probability that H is true!

In frequentist statistics we don't talk about P(H) (unless H represents a 
repeatable observation). 
In Bayesian statistics we do. Use Bayes' theorem to obtain

where π(H) is the prior probability for H.
For now stick with the frequentist approach. 

PH∣x  =
Px∣H   H

∫Px∣H   H dH
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p-value example

Testing whether a coin is “fair”
Probability to observe n heads in N coin tosses is binomial:

Hypothesis H: the coin is fair (p=0.5)
Suppose we toss the coin N=20 times and get n=17 heads.

Region of data space with equal or lesser compatibility with H relative to 
n=17 is: n= 17, 18, 19, 20, 0, 1, 2, 3
Adding up the probabilities for these values gives:
P(n=0, 1, 2, 3, 17, 18, 19, or 20) = 0.0026

i.e. p=0.0026 is the probability of obtaining such a bizarre result (or more 
so) “by chance”, under the assumption of H

Pn;p ,N =
N!

n! N−n !
pn 1−pN−n
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Significance of an observed signal

Suppose we observe n events. These can consist of:
     nb events from known processes (background)

     ns events from a new process (signal)

If ns, nb are Poisson random variables with means s, b, then n=ns+nb is 
also Poisson, with mean s+b

Suppose b=0.5, and we observe nobs=5. Should we claim evidence for a 
new discovery?

Pn;s ,b =
sbn

n
! e−sb
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Significance of an observed signal

Suppose we observe n events. These can consist of:
     nb events from known processes (background)

     ns events from a new process (signal)

If ns, nb are Poisson random variables with means s, b, then n=ns+nb is 
also Poisson, with mean s+b

Suppose b=0.5, and we observe nobs=5. Should we claim evidence for a 
new discovery?
Give p-value for hypothesis s=0:
p-value = P( n  5 ; b=0.5, s=0)≥
             = 1.7 x 10-4   P(s=0) !!≠

Pn;s ,b =
sbn

n
! e−sb
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Significance from p-value

Often define significance Z as the number of standard deviations that a 
Gaussian variable would fluctuate in one direction to give the same        
p-value
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The significance of a peak

Suppose we measure a value 
x for each event and find:

Each bin (observed) is a Poisson
r.v., means are given by the
dashed line

In the two bins with the peak, 11 entries found with b = 3.2
The p-value for the s=0 hypothesis is:

P( n ≥ 11; b=3.2, s=0) = 5.0 x 10-4
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The significance of a peak - 2

But … did we know where to look for the peak?
    → give P(n 11) in any 2 adjacent bins≥
Is the observed width consistent with the expected x resolution?
    → take x window several times the expected resolution
How many bins x distributions have we looked at?
    → look at a thousand of them, you'll find a 10-3 effect
Did we adjust the cuts to “enhance” the peak?
    → freeze cuts, repeat analysis with new data
How about the bins to the sides of the peak … (too low!)
Should we publish ??
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When to publish

HEP folklore is to claim discovery when p= 2.9 x 10-7, corresponding to a 
significance Z=5.
This is very subjective and really should depend on the prior probability 
of the phenomenon in question, e.g.

                         Phenomenon              Reasonable p-value for discovery

D0D0 mixing                 ~0.05
          Higgs                     ~10-7 (?)

Life on Mars                 ~10-10

Astrology                     ~10-20

One should also consider the degree to which the data are compatible 
with the new phenomenon, not only the level of disagreement with the 
null-hypothesis: p-value is only the first step !!!
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Distribution of the p-value

The p-value is a function of the data, and is thus itself a random variable 
with a given distribution. Suppose the p-value of H is found from a test 
statistic t(x) as:

The pdf of pH under assumption of H is:

In general for continuous data, under 
assumption of H, pH ~ uniform in [0,1]

And is concentrated toward zero for
some (broad) class of alternatives

pH = ∫t
∞

f  t '∣H  dt '

gpH∣H  =
f  t∣H

∣∂pH /∂ t∣
=

f  t∣H

f  t∣H
= 1 0≤pH≤1
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Using a p-value to define test of H0

The probability to find the p-value of H0, p0, less than  α is

We started by defining critical region in the original data
space (x), then reformulated this in terms of a scalar test
statistic t(x).
We can take this one step further and define the critical region
of a test of H0 with size  α as the set of data space where p0  ≤α.

Formally the p-value relates only to H0, but the resulting test will
have a given power with respect to a given alternative H1.

Pp0≤∣H0 = 
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Pearson's Χ2 statistics

Test statistic for comparing observed data 
(ni independent) to predicted mean values 

      = sum of squares of the deviations of the I'th measurement from the 
I'th prediction, using σ i as the 'yardstick' for comparison

For ni ~ Poisson (νi) we have V[ni] = νi, so this becomes:

n = n1, ...,nN

 = 1, ... ,N

2 = ∑
i=1

N ni− i
2

 i
2

, where  i
2 = V [ni]

Pearson's 
statistic

2

2

2 = ∑
i=1

N ni− i
2

 i
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Pearson's Χ2 test

If ni are Gaussian with mean νi and standard deviation σ i, namely

ni ~ N(νi,  σ i
2), then Pearson's Χ2 will follow the Χ2  pdf (here for Χ2 =z)

If the ni are Poisson with νi >> 1 (in practice OK for νi > 5)  then the 
Poisson distribution becomes Gaussian and therefore Pearson's  Χ2  
statistic here as well follows the  Χ2  pdf.

The  Χ2  value obtained from the data then gives the p-value:

f X 2z;N =
1

2N/2 N /2
zN/2−1 e−z /2

p = ∫
X 2
∞

f
X 2z ;Ndz
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The Χ2 per degree of freedom

 Χ2 
Recall that for the chi-square pdf for N degrees of freedom
         
                            E[z] = N,    V[z] = 2N

This makes sense; if the hypothesized νi  are right, the rms deviation of 
ni from νi  is σ i, so each term in the sum contributes ~ 1.

One often sees χ2/N reported as a measure of goodness-of-fit.
BUT! Better to give the χ2 and N separately. Consider e.g.:

Χ2 = 15, N=10          p-value = 0.13→
Χ2 = 150, N=100          p-value = 9.0 x 10→ -4

i.e. for N large, even a Χ2 per dof only a bit greater than one can imply a 
small p-value, i.e., poor goodness-of-fit
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Summary of p-value

● Introduction to significance tests:
● p-value expresses the level of agreement between data and 

hypothesis
● p-value is NOT the probability of the hypothesis!

● P-value can be used to define a critical region, i.e. region of data 
space where p<α

● Widely used Χ2 test:
● Statistic = sum of (data – prediction)2 / variance
● Often Χ2  chi-square pdf  use to get p-value→
● Otherwise may need to use MC


