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Multivariate data analysis methods:

e Kernel density methods <«

—

. —— Material from lectures by Helge Voss

(May 2009)
e Decision trees: ~_——http://tmva.sourceforge.net/talks.shtml
e Boosting -«
e Bagging

e Toolkit for Multivariate Data Analysis: TMVA

. . . — > Nik!
e Framework for “all” MVA-techniques, available in ROOT

e Significance tests
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Reminder: multivariate analysis

Neyman-Pearson lemma: statistic test

_ P(x|s)
- P(x|B)

t(x) Likelihood ratio

But most of the times we do NOT have access to the “true probability
density”:
o Tryto estimate the PDF_(x) and PDF(x) using the Kernel Density

Estimators (in limited regions, from training events) — problem coming
from the dimensionality!

e Or neglect correlations and use 1-dimensional PDFs

e Or try other approaches to determine the hyperplanes in the feature
space, to separate S and B
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Probability density estimation (PDE)

Construct non-parametric estimators of the pdfs f()?‘HO),f(i‘Hl)
and use these to construct the likelihood ratio

—t >
X

H
tHX) = H°>
1

)

—t >
X

n-dimensional histogram is a brute force example of this.
More clever estimation techniques can get this to work for
(somewhat) higher dimension.

See e.g. K. Cranmer, Kernel Estimation in High Energy Physics, CPC 136 (2001) 198; hep-

ex/0011057; T. Carli and B. Koblitz, A multi-variate discrimination technique based on range-
searching, NIM A 501 (2003) 576; hep-ex/0211019
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Trying to estimate the probability density p(x) in D-dimensional space
The only thing at our disposal is our “training data”

Say we want to know p(x) at “this” point “x

One expects to find in a volume V around point “x” N*/p(x)dx events
from a dataset with N events

“events” distributed according to p(x)

Take X3

e K kernel density estimator of the
probability density
e h bandwidth, smoothing parameter >
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: “events” distributed according tdﬁp(x)
KDE: Parzen window N

e we choose as volume the square drawn
— rectangular kernel function
Parzen window

u, il,izl...D X4
=

= 1 .
= 0, otherwise

e ik("_}xﬂ ] with k(u) = {1‘

e Determine K from the training data with
signal and background mixed together

e Slow: need to sum over N terms
— take only k-Nearest Neighbours
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Kernel Density Estimator

" Parzen Window: “rectangular Kernel” - discontinuities at window edges
—> smoother model for p(x) when using smooth Kernel Fuctions: e.g. Gaussian

N 2
p(x) = 1 > : exp HX_X" . _ |
N (2 ﬂ;hl)”l 212 < probability density estimator
individual kernels averaged kernels

¥ place a “Gaussian” around each “training
data point” and sum up their contributions
at arbitrary points “X” = p(X)

¥ h: “size” of the Kernel - “smoothing
parameter”

¥ there is a large variety of possible Kernel
functions

Triangular

Uniform Epanechnikov




Kernel Density Estimator

Pl - o B .

p(x ) — — Z K}: (x - X ; ) . a general probability density estimator using kernel K
N n=1

*® h: “size” of the Kernel - “smoothing parameter” M o005

" chosen size of the “smoothing-parameter” - more
important than kernel function

" h too small: overtraining
" h too large: not sensitive to features in p(x)

for Gaussian kernels, the optimum in terms of e e —
MISE (mean integrated squared error) is given D[} 0.5 1
by: h,=(4/(3N))"® &,; with 6,=RMS in variable x. (Christopher M Bishop)

¥ a drawback of Kernel density estimators:
Evaluation for any test events involves ALL TRAINING DATA - typically very time consuming

— ® binary search trees (i.e. Kd-trees) are typically used in kNN methods to speed up searching Y



“Curse of dimensionality”

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due

to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies: s L
-: =
= 0
éu,s_
" in higher dimensional classification/regression cases 06

the idea of looking at “training events” in a reasonably
small “vicinity” of the space point to be classified
becomes difficult:

/’I —=D=1
//— D=5
=D=10

— D=2
D=3

_—

consider: total phase space volume V=1P
for a cube of a particular fraction of the volume:

edge length=(fraction of volume)"”

" In 10 dimensions: in order to capture 1% of the phase space
- 63% of range in each variable necessary

L L L L L L L P | L L L 1 L
1] 0.02 0.04 0.06 0.08

0.1

Volume fraction

- that’s not “local” anymore

.®
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Correlation versus independence

In general a multivariate distribution p(x) does Nnot factorize into a
product of the marginal distributions for the individual variables:

. N Holds only if the
p(Xx) = H pi(Xi) <+—— components of x
1=1 are independent

Most importantly, the components of x will generally have non-zero
covariances (i.e. they are CORRELATED):

Vij = cov[xi,xj] = E[xixj]—E[x
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Decorrelation of input variables

But we can define a set of uncorrelated input variables by a linear
transformation, i.e. find the matrix A such that for g'/ = A X

the covariances are COV[Xi’Xj] =0

G T T ! T

1 3 (5]
] - T T T T

a4 . a4 + .
2 F . 2 -
0 0 -
g 2 . B L -
il (@ 4 F © ]
E i i i i E | 1 i 1

i 4 2 ] 2 4 G -6 4 2 0 2 4 [

For the following suppose that the variables are “decorrelated” in this
way for each of p(X HO),p(i‘Hl) separately (since in general their

correlations are different).
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Decorrelation is not enough

But even with zero correlation, a multivariate pdf p(x) will in general have
non-linearities and thus the decorrelated variables are still not
independent

X2 - . . b pdf with zero covariance

but components still not
i e ., A independent.
i i In fact:

And therefore:

X) P(Xy X5) # Py(Xq) Py(Xy)

Statistical Methods, Lecture 9, December 5,
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But if the non-linearities are not too great, it is reasonable to first
decorrelate the inputs, and take as our estimator for each pdf:

p(X) = 1__![ ﬁi(xi)

So this at least reduces the problem to one of finding estimates of one-
dimensional pdf's.

The resulting estimated likelinood ratio gives the naive Bayes classifier
(in HEP sometimes called the “likelihood method”).

Statistical Methods, Lecture 9, December 5,
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Decision trees

Decision Tree: Sequential application of cuts splits
the data into nodes, where the final nodes (leafs)
classify an event as signal or background

“f
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Decision trees

Decision Tree: Sequential application of cuts splits the

data into nodes, where the final nodes (leafs) classify an
event as signal or background

used since a long time in general “data-mining” xi > cl xi < cl

applications, less known in HEP (although very i
similar to “simple Cuts”) ( e ( \
m N . . ; y \ J
easy to interpret, visualised . <
" independent of monotonous variable (% > e2] [xj <c2 (d>c3) (<e3
transformations, immune against outliers /.J{\ }L /,_.J{' >L
" weak variables are ignored (and don't '@ ( S ) '\ ) iﬁ S
(much) deteriorate performance) - L T
Disadvatage = very sensitive to statistical L}{Hptdl [Kk-{;jd-
fluctuations in training data T ] o
B L\ S )

Boosted Decision Trees (1996):
combine a whole forest of Decision Trees,

derived from the same sample, e.g. using . :
diff t Fweiaht - became popular in HEP since
merenteventwegne:: MiniBooNE, B.Roe et.a., NIM 543(2005)

® overcomes the stability problem



Decision trees

First: in a very simplified way:

e At each step: out of ALL the input variables, find the one for which with
a single cut we obtain the best improvement in signal purity

Z:signal Wi

P =
Z:signal Wi T Z:background Wi

where w. Is the weight of the I'th event

e |terate until stop criterion reached
based on e.g. purity reached, or minimum number of events in a node

e The set of cuts defines the decision boundary

Statistical Methods, Lecture 9, December 5,
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Growing a Decision Tree

= start with training sample at the root node [@
node

® split training sample at node into two, using a cut
in the variable that gives best separation gain

" continue splitting until:

" minimal #events per node 7
_ j:-ci J-a:d:?] _:-cj::-l:3] ¥j = C3
" maximum number of nodes
" maximum depth specified o 5 /S >gﬁ
= a split doesn't give a minimum separation gain : ;r( —
xk > c4] xk < cd]
" leaf-nodes classify S,B according to the e N
majority of events or give a S/B probability _’ _B_) )

= Why no multiple branches (splits) per node ?

- Fragments data too quickly; also: multiple splits per node = series of binary node splits

= What about multivariate splits?
-~ Time consuming

— other methods more adapted for such correlatios
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Separation Gain

" What do we mean by “best separation gain™?

" define a measure on how mixed S and B in a node are:

® Gini-index. (Corrado Gini 1912, typically used to measure income inequality)

p (1-p) : p=purity =
® Cross Entropy: s S S S P S ——
-(plnp + (1-p)in(1-p)) i y N
= Misidentification: = /) N
24 N
1-max(p,1-p) 3 y
0ol AL
- — cross entropy
= difference in the various indices are small, 0.1F — Gini index
most commonly used: Gini-index — misidentification
q}””ﬂ.lllllllﬂll 03 04 05 06 o7 lll.ﬂllllllﬂ””l

purity
separation gain: .9. Np,.n GiNipyent — Nigs” GiNleinoge — Nrignt” CiNlRighinode

" Choose amongst all possible variables and cut values the one that maximised the this.
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Decision Tree Pruning

® One can continue node splitting until all leaf nodes Rnﬂ
are basically pure (using the training sample) | node -

—)nbvinusly: that's overtraining —M e ﬁ =]

" Two possibilities: I_'
= stop growing earlier

: ; [xj:-cl] :-:1-::1:2] :q:-I:Bi .'-:j-a:l:B
generally not a good idea, useless splits
might open up subsequent usefull splits m >\ ('ﬁ \35\
= grow tree to the end and “cut back”, nodes
that seem statistically dominated:

=2 pruning
= ¢.g. Cost Complexity pruning: C(T,a)= D > |y(x)=Y(C)|+ &N noges
= assign to every sub-tree, T C(T,a): Eﬂs Sy B ;
" find subtree T with minmal C(T,x) for given o i i
® prune up to value of a that does not show Loss e o lEguiarSEe.
overtraining in the test sample cost parameter

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivanate Data Analysis and Machine Leaming 10



Decision Tree Pruning

" “Real life” example of an optimally pruned Decision Tree:

N=3000.000000
ENS+B)=0. 558
wardx-1.17

11111

Decision tree

Decision tree before pru nini; after pruning

® Pruning algorithms are developed and applied on individual trees
= optimally pruned single trees are not necessarily optimal in a forest |

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivanate Data Analysis and Machine Leaming 11



Decision trees: boosting

The terminal nodes (or leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in the input-variable space (or feature space)
as either signal or background

— A decision tree classifier, with discriminant function:

F(X) = 1 if xesignalregion
-1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in the
training sample!!

Methods such as boosting can be used to stabilize the tree.

Statistical Methods, Lecture 9, December 5,
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Decision trees: boosting

Boosting is a general method of creating a set of classifiers which can
be combined to achieve a new classifier that is more stable and has a
smaller error than any individual one

Suppose we have a training sample T consisting of N events with:

X, .-, X, event data vectors (each x multivariate)

Y, ..., Y, true class labels (+1 for signal, -1 for background)

W, ..., W, event weights

Now define a rule to create from this an ensemble of training samples
T1, T2, ...

Derive a classifier from each and average them

Statistical Methods, Lecture 9, December 5,
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Boosting

classifier
S — o, )

1 re-weight
) classifier
Weighted Sample em— o (%)
1 re-weight
2 classifier
Weighted Sample T C2)(x)
l re-weight - (i)
] classifier > y(X)= Z Wic (X)
Weighted Sample B — COI(x) I
l re-weight
.
: classifier
Weighted Sample Cim)(x)
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classifier
SRS — "oy, )

Adaptive Boosting (AdaBoost)

1 re-weight
_ classifier
Weighted Sample " (x)
1 re-weight
_ classifier
Weighted Sample o C@)(x)
1 re-weight
. classifier
Weighted Sample I COI(x)
1 re-weight
i
_ classifier
Weighted Sample Cim(x)

Helge Voss

= AdaBoost re-weights events

misclassified by previous classifier by:

ler yyith -
_ misclassified events

all events

= AdaBoost weights the classifiers also
using the error rate of the individual
classifier according to:

I em

Nogesger (4 £0)
y(X)= Z log =0 }:m(x)

Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivanate Data Analysis and Machine Leaming
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Bagging and Randomised Trees

other classifier combinations:

= Bagging:
" combine trees grown from “bootstrap” samples
(i.e re-sample training data with replacement)

® Randomised Trees: (Random Forest: trademark L.Breiman, A.Cutler)
" combine trees grown with:
" random subsets of the training data only
" consider at each node only a random subsets of variables for the split
" NO Pruning!

® These combined classifiers work surprisingly well, are very stable and almost
perfect “out of the box" classifiers
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AdaBoost: A simple demonstration

Fd

The example: (somewhat artificial..
« Data file with three "bumps”
- Weak classifier (i.e. one single simple “cut”

.but nice for demonstration) :

var(i) > x var (i) <= x

«— decision tree stumps )

Normalised

MNoermalised

UIC- o (5.BF (0.0, C.01% | 0.0, 000%

warQ

24
232
2
18
1.6
14
12
1
0.8
0.6
0.4
02
a

46 04 02 0 02 04 08 0.8

® ©

WC-Thow (5B (0.0, L0 J 0000, 0.0)%
=
T

TR
Eackground

wari

”-1” -05 Iﬂ I ﬂ.ﬁll ‘II ”‘I.E

warl)

Two reasonable cuts: a) Var0 > 0.5 2 g5,,,=66% &, = 0% misclassified events in total 16.5%

or

b) Var0 <-0.5 > ¢

signal

=33% £,y =

the training of a single decision tree stump will find “cut a)”

0% misclassified events in total 33%
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AdaBoost: A simple demonstration

The first "tree”, choosing cut a) will give an error fraction: err = 0.165
> before building the next “tree”. weight wrong classified training events by ( 1-errferr) ) =5

> the next “tree” sees essentially the following data sample:

3 Signal | T B S Signal] T
2 uﬂa:hgrnund ] re-weight E Ba-:uulnunﬂ 1 .. and hence will
E : ' E I {chose: “cutb)™
1.5;— } 55;’ {1Var0 <-0.5
b % ]
varQ
E 100 g gian:::l:;:;‘nunﬂ | | | | | _;
The combined classifier: Tree1 + Tree2 50 —
the (weighted) average of the response to &0 45
a test event from both trees is able to " g
separate signal from background as §
good as one would expect from the most  *° E
powerful classifier L =

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivanate Data Analysis and Machine Leamning



AdaBoost vs other Combined Classifiers

Sometimes people present “boosting” as nothing else then just “smearing” in order to make
the Decision Trees more stable w.r.t statistical fluctuations in the training.

—>clever “boosting” however can do more, than for example:

- Random Forests
- Bagging

| Background rejection versus Signal efficiency |

TMVA

=t

as in this case, pure statistical fluctuations are
not enough to enhance the 2" peak sufficiently

& b

n_lIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_

Background rejection
=
=

= .

.,-"'"'f
_.,:||||i||||i||||i||||i||||i|g=|=|=i:-|-|-l"l'i'l-l'l"l'

..ﬁ ...........................
however: a “fully grown decision tree” is e AN SR SN SUUNE S S 1
much more than a “weak classifier” VA Method: -~
. N ] i ] ) u I.I il BD‘T . AdaBmst . P .. R PO
- “stabilization” aspect is more important ——— BDT_RandomForest
Ll paady s v raa s sl er gl i ]
02 01 02 03 04 0.5 06 07 08 09

Signal efficlency

Surprisingly: Often using smaller trees (weaker classifiers) in AdaBoost and other clever boosting
algorithms (i.e. gradient boost) seems to give overall significantly better performance !
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Boosting at Work

boost monitoring (BDTG)

ral
-
=]
X!

—I‘III|IIII|IIII|IIIIIIIIIIIIIIII|IIII|IIII|III

= —

14l 1

f— ¥ Jr—

g

WY

e e e s

=
s

ROC inte
P
o
o

—
oo
=]

0.84

0.82

0.8 Oh, if | now only knew which curve

078 belonged to which “boosting type”...

0.76

|||"'|"'|."‘""|—L-'—.'_L

0 100 200 300 400 500 600 700 800 900 1000
# boosted Trees used
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Decision trees: summary

Advantage of boosted decision tree is it can handle a large number of
Inputs. Those that provide little/no separation are rarely used as tree
splitters and are effectively ignored.

Easy to deal with inputs of mixed types (real, integer, categorical, ...)

It a tree had only a few leaves it is easy to visualize (but rarely we use
only a single tree)

There are a number of boosting algorithms, which differ primarily in
the rule for updating the weights (¢-Boost, LogitBoost, ...)

Other ways of combining the weaker classifiers: Bagging (Bootstrap-
Aggregating) generates the ensemble of classifiers by random
sampling with replacement from the full training sample.

Statistical Methods, Lecture 9, December 5,
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Significance tests, goodness-of-fit

Suppose hypothesis H predicts pdf f(X|H) for a set of
observations X = (X ...,X)

We observe a single point in this space: iobs

What can we say about the validity of H in light of the
data?

T Tobs
J Z more
Decide what part of the 1 O compatible
data space represents less / st ar
compatibility with H than 7 less
does the point x compatible
(Not unique!) ~ °° with H
» Ly

Statistical Methods, Lecture 9, December 5,
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p-values @

Express 'goodness-of-fit' by giving the p-value for H:

p = probability, under assumption of H, to observe data with equal or
lesser compatibility with H relative to the data we got

NOTE! This is NOT the probability that H is true!

In frequentist statistics we don't talk about P(H) (unless H represents a
repeatable observation).

In Bayesian statistics we do. Use Bayes' theorem to obtain

.. P(XH)m(H)
P(HRK) = [ P(X|H) (H) dH

where 11(H) Is the prior probability for H.
For now stick with the frequentist approach.

Statistical Methods, Lecture 9, December 5,
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p-value example @

Testing whether a coin is “fair”
Probability to observe n heads in N coin tosses is binomial:

N! n —n
Nt (N—n)! P (1-p)

P(n;p,N) =

Hypothesis H: the coin is fair (p=0.5)
Suppose we toss the coin N=20 times and get n=17 heads.

Region of data space with equal or lesser compatibility with H relative to
n=17is:n=17, 18, 19, 20,0, 1, 2, 3

Adding up the probabilities for these values gives:
P(n=0, 1, 2, 3, 17, 18, 19, or 20) = 0.0026

l.e. p=0.0026 is the probability of obtaining such a bizarre result (or more
so) “by chance”, under the assumption of H
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Significance of an observed signal

Suppose we observe n events. These can consist of:
n, events from known processes (background)

n_events from a new process (signal)
|f n,n are Poisson random variables with means s, b, then n=n_+n_ IS
also Poisson, with mean s+b

(s+b)" | @ (s+b)

P(n;s,b) = -

Suppose b=0.5, and we observe nobs=5. Should we claim evidence for a
new discovery?

Statistical Methods, Lecture 9, December 5,
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Significance of an observed signal

Give p-value for hypothesis s=0:
p-value = P(n >5; b=0.5, s=0)
=1.7x10* #P(s=0) !l

Statistical Methods, Lecture 9, December 5,
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Significance from p-value @5
|L_ _:I/g /

Often define significance Z as the number of standard deviations that a
Gaussian variable would fluctuate in one direction to give the same

p-value
— \_N_-_ﬂl
7.0 %

o ]. _332,/2
P=/ —F€ dib'=1—‘I’(Z) 1 - TMath: :Freq

Z V2m

Z=3%"11-p) TMath: :NormQuantile

Statistical Methods, Lecture 9, December 5,
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The significance of a peak o

Suppose we measure a value
X for each event and find:

Y N

Each bin (observed) is a Poisson
r.v., means are given by the
dashed line

—— data

- - - expected background

il

1 -1

10 15

X

In the two bins with the peak, 11 entries found with b = 3.2

The p-value for the s=0 hypothesis is:

P(n>11; b=3.2,s=0) =5.0 x 10*

2

0
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The significance of a peak - 2

But ... did we know where to look for the peak?
— give P(n>11) in any 2 adjacent bins
Is the observed width consistent with the expected x resolution?
— take x window several times the expected resolution
How many bins x distributions have we looked at?
— look at a thousand of them, you'll find a 10 effect
Did we adjust the cuts to “enhance” the peak?
— freeze cuts, repeat analysis with new data
How about the bins to the sides of the peak ... (too low!)
Should we publish ??

Statistical Methods, Lecture 9, December 5, 40



When to publish

HEP folklore is to claim discovery when p= 2.9 x 107, corresponding to a
significance Z=5.

This is very subjective and really should depend on the prior probability
of the phenomenon in question, e.g.

Phenomenon Reasonable p-value for discovery
D°D° mixing ~0.05
Higgs ~107 (?)
Life on Mars ~10-1°
Astrology ~100

One should also consider the degree to which the data are compatible
with the new phenomenon, not only the level of disagreement with the
null-hypothesis: p-value is only the first step !!!

Statistical Methods, Lecture 9, December 5,
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Distribution of the p-value o,

The p-value is a function of the data, and is thus itself a random variable
with a given distribution. Suppose the p-value of H is found from a test

statistic t(x) as:
Py = ft f(t'[H) dt’

The pdf of p,, under assumption of H is:
f(tH)  _ f(tH)
H) = — —
g(pH‘ ) |apH/at| f(tH)

In general for continuous data, under
assumption of H, p, ~ uniform in [0,1]

And is concentrated toward zero for
some (broad) class of alternatives

Statistical Methods, Lecture 9, Dece 0



Using a p-value to define test of H,

The probability to find the p-value of Ho, po, less than a is
P(poﬁu‘Ho) = «

We started by defining critical region in the original data

space (X), then reformulated this in terms of a scalar test
statistic t(x).

We can take this one step further and define the critical region
of a test of Howith size a as the set of data space where po < a.

Formally the p-value relates only to Ho, but the resulting test will
have a given power with respect to a given alternative Hai.

Statistical Methods, Lecture 9, December 5,
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Pearson's X< statistics

Test statistic for comparing observed data
(n. iIndependent) to predicted mean values

TR T!
||

S
L e
2 5
Z

¢ (MY )2 .
Z , where 0.2 = V[n_] Pea!’S(.)n S X
i=1 ! | statistic

X2 = sum of squares of the deviations of the I'th measurement from the
I'th prediction, using o. as the "yardstick' for comparison

For n. ~ Poisson (v) we have V[n] = v, so this becomes:

N (= v,)°
= 2
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Pearson's X< test

If n. are Gaussian with mean v, and standard deviation o, namely
n.~ N(v, o?), then Pearson's X* will follow the X* pdf (here for X* =z)

1 N/2—1 _—z7/2
f .(z:N) = Z e
w(ZiN) V2T (N/2)

If the n_are Poisson with v.>> 1 (in practice OK for v. > 5) then the

Poisson distribution becomes Gaussian and therefore Pearson's X?
statistic here as well follows the X2 pdf.

The X2 value obtained from the data then gives the p-value:

p = 2 sz(z;N)dz

Statistical Methods, Lecture 9, December 5,
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The X2 per degree of freedom

Recall that for the chi-square pdf for N degrees of freedom
X2

E[z] =N, V][z]=2N

This makes sense; if the hypothesized v. are right, the rms deviation of
n fromv. is o, so each term in the sum contributes ~ 1.

One often sees x*/N reported as a measure of goodness-of-fit.
BUT! Better to give the x* and N separately. Consider e.g.:

X?=15,N=10 - p-value=0.13
X?2=150,N=100 - p-value =9.0x 10*

l.e. for N large, even a X2 per dof only a bit greater than one can imply a
small p-value, i.e., poor goodness-of-fit

Statistical Methods, Lecture 9, December 5,



Summary of p-value

e Introduction to significance tests:

e p-value expresses the level of agreement between data and
hypothesis

e p-value is NOT the probability of the hypothesis!

e P-value can be used to define a critical region, i.e. region of data
space where p<a

e Widely used X?test:
e Statistic = sum of (data — prediction)2 / variance
e Often X2 chi-square pdf — use to get p-value
e Otherwise may need to use MC
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