Statistical Methods in Particle Physics

Lecture 5 November 12, 2012

Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de

Winter Semester 2012 / 13

Lecture in the program for the GSI summer students

http://hgs-hire.de/program/events/summer-program/2012/index.shtml

- The Quark-Gluon Plasma
- A few words about the LHC
- Heavy-ion collisions at the LHC
- ALICE:
 - The spectrometer
 - Vertexing and particle identification
 - Nuclear modification factor
 - From charged particles to heavy flavors
 - The highest temperature reached on hearth
- Outlook

Confinement

All matter we know, is confined:

l i

Quark-Gluon Plasma

Non-perturbative problems treated by discretization on a space-time lattice

Dense and hot nuclear matter: why?

Status of matter in:

• Neutron stars and corecollapse supernovae

 First instants of our universe (10⁻⁶ seconds)

Nature

The Big Bang

helium

lithium DI-9112020_03

He

Li

anti-quark

electron

1 thousand million years

300 thousand years

Quark-Gluon Nucleons Plasma Nuclei Today Atoms Big ۲ 000 Bang 8 10 ⁻⁶ sec 10 ⁻⁴ sec 3 min **15 billion** years **Experiment** 6000 degrees radiation positron (anti-electron) ē particles proton neutron W¹ **18 degrees** heavy particles carrying meson Z the weak force hydrogen D deuterium quark

MSIOREIN

Temperature Evolution of the Universe

1 MeV \approx 10 billion degrees = 10¹⁰ degrees

S.Masciocchi@gsi.de

QGP in the laboratory

Produced in the collisions of heavy ions at high energies

√s_{NN} from few GeV at the SPS up to 200 GeV at RHIC up to 2.76 TeV at LHC

UrQMD

The Large Hadron Collider (LHC)

- 27 km length
- 4 main experiments

Colliding systems:

 proton-proton up to √s=14 TeV
 2010-2011: 7 TeV + 2.76 TeV

 Pb-Pb up to √s_{NN}=5.5 TeV
 2010-2011: 2.76 TeV

Experiments at LHC

Physics at LHC

From proton-proton ...

- Generation of mass (Higgs)
- New elementary particles (supersymmetric)
- Matter dominance over antimatter (CP violation)
- Gravity unification (extra dimensions, black holes)
- Overall QCD aspects (multiplicities, charm, beauty ...)

The second second

... to lead-lead collisions

• Study matter within the first microseconds of the Universe life (ALICE, but also CMS, ATLAS)

LHC in Numbers

- 27 km long, 8 sectors
- **1232 dipole** magnets (15m, 30 tonnes each) to bend the beams
- Cooled with 120 tonnes of He at 1.9 K
- pp: 2808 bunches/ring, each 1.15x10¹¹ protons (8 min filling time)
 Design luminosity: 10³⁴ cm⁻²s⁻¹
- PbPb: 592 bunches/ring, each 7x10⁷ Pb ions
 Design luminosity: 10²⁷ cm⁻²s⁻¹
- Transverse r.m.s beam size: 16 µm, r.m.s. bunch length: 7.5 cm
- Beam kinetic energy: 362 MJ per beam (1 MJ melts 2 kg copper)
- Total stored electromagnetic energy: 8.5 GJ (dipole magnets only)

LHC runs

November 23, 2009

2 beams (at injection energy of 450 GeV) circulated simultaneously for the first time!

1 pilot bunch, low intensity

First collisions at √s = 900 GeV in all experiments!!

December 13, 2009 collisions at 2.36 TeV !!

• Proton-proton

LHC runs

- 0.9 TeV: Nov 2009, Mar 2010
- 2.76 TeV: Mar 2011
- 7 TeV: 2010, 2011
- 8 TeV: 2012 (now!)
- Pb-Pb
 - 2.76 TeV: 2010, 2011
- p-Pb
 - Beginning of 2013

- March October: pp collisions (~ 1400 hours of stable beams)
- November December: 4 weeks of PbPb collisions (~ 200 hours)

High energy heavy ions collide ...

Under extreme conditions of temperature and density, they produce a state of matter called **QUARK-GLUON PLASMA**

where quark and gluons are deconfined, followed by chemical freeze-out, and kinetic freeze-out

18

Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV

Compress a very large amount of energy in a very small volume

- \rightarrow "fireball" of hot matter
 - Temperature O(10¹² K)
 - ~10⁵ x T at the center of the sun
 - ~T of the early universe (µs after Big Bang)

- At LHC: very high temperature low baryochemical potential (~pressure in the water phase diagram)
- At FAIR: lower temperature high baryochemical potential

Time

Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV

Pb ions accelerated to ~290 TeV \rightarrow collision: 575 TeV !!!

S.Masciocchi@gsi.de

PbPb central collisions

	SPS	RHIC	LHC
E _{cm} [GeV]	17	200	5500
dN _{ch} /dy	500	700	3000 - 8000
E [Gev/fm ³] _{t0^{=1fm/c}}	≈2.5	≈3.5	15 - 40
t _{qgP} [fm/c]	<1	≈1	≈4.5-12
Fireball initial temperature		≈220 MeV	≈4-700 MeV

Significant increase in relevant parameters (ϵ , V, τ) Factor 10 from SPS to LHC

21

A Large Ion Collider Experiment

Dedicated experiment to study heavy-ion collisions

35 countries, 120 institutes, 1300 members

The ALICE Spectrometer

The Inner Tracking System

2010 JINST 5 P03003

Silicon vertex detector

- 3 technologies:
- 10 million pixels
- 133 k drift detector channels
- 2.6 million microstrips

S.Masciocchi@gsi.de

Excellent tracking and vertexing!

Alignment: results

ITS

ALICE Specialties

- Very low momentum cutoff (~0.1 GeV/c)
- p_{T} reach up to 100 GeV/c
- Excellent particle identification
- Efficient minimum bias trigger

• Excellent vertex capabilities

Event display of a pile-up event at 900 GeV

S.Masciocchi@gsi.de

Events become a real "mess".

Pile-up in pp

We need to learn to handle this in reconstruction and in analysis !!! (e.g. normalization to cross sections)

La Citation de la construction d

Z (cm)

Time Projection Chamber

- Optimized for dN/dŋ ≈ 8000
 - I = 5 m, Ø = 5.6m, 88 m3, 570 k channels,
 - up to 80 Mbytes/event (after 0 suppression)
- Features:
 - lightweight: 3% X₀ total material for perpendicular tracks
 - Drift gas:Ne (86) / CO₂ (9.5) / N₂(4.5)
 + ~1ppm O₂
 - novel digital electronics (ALTRO)
 - highly integrated, digital shaping; tail cancellation;0-suppression; Baseline restoration
 - Powerful laser calibration system

ALICE – TPC

The Time Projection Chamber **Track Momentum Resolution**

0.65

Particle identification

4

Transition Radiation Detector

- For electron/pion separation
- For trigger on electrons at medium/high p_{τ}

TRD in Numbers	
Supermodules	18
Stacks	5
Layers	6
Readout pads	1.2x106

Transition Radiation Detector

• For electron/pion separation • For trigger on electrons at medium/high p_T

Transition Radiation Detector

The ALICE Spectrometer

ALICE – TPC

ALICE – TPC and ITS

ALICE – TRD

From proton-proton ...

... to Pb-Pb collisions !!!

Stages of a high-energy nucleus-nucleus collision

- 1. initial collisions ($t \leq t_{coll} = 2R/\gamma_{cm}c$)
- 2. thermalization: equilibrium is established ($t \lesssim 1 \text{ fm/c}$)
- 3. expansion and cooling (t < 10-15 fm/c)
- 4. hadronization (quarks and gluons form hadrons)
- 5. chemical freeze-out: inelastic collisions cease; yields are frozen

6. kinetic freeze-out: elastic collisions cease; spectra are frozen (t+=3-5 fm/c) we measure at stages 5. and 6. want to know properties of 2.+3.

Hundreds of physics observables

ALICE steps into wonderland

- Particle multiplicities
- Transverse momentum spectra
- Identified particle spectra (π, K, p)
- π⁰ production
- Strangeness (K⁰_S, Λ, Σ, Ω …)
- Two-pion Bose Einstein correlations
- Photons (calorimetry and conversions)
- Dielectrons (ω, ρ, φ ...)
- Deuteron, tritium, He
- Hypernuclei
- Jets
- ... etc ...

Open and hidden heavy flavors

- J/ψ production
- Charm hadron production
 - D, D*, D_s, Λ_c
- Single electron/muon spectra
- $B \rightarrow J/\psi$
- ... etc ...

Today we look at

- Energy loss in the medium
 - Charged particles
 - Open heavy flavours (charm, D mesons)
 - J/ψ

• Direct photons, thermal radiation

Collision centrality from multiplicity distributions (e.g. VZERO scintillator hodoscopes) + Glauber fit:

Understand internal structure from the absorption and attenuation of radiation

Interaction of gluons, light and heavy quarks inside the medium \rightarrow energy loss, suppression

In-medium parton energy loss

- Energy loss by:
 - Medium-induced gluon radiation
 - Collisions with medium partons
- Depends on:
 - Colour coupling factor C_R (g>q)
 - Parton mass
- Predicted energy loss:

 $\Delta E_{gluon} > \Delta E_{q \approx c} > \Delta E_{b}$ "suppression": $\pi > D > B$ courtesy D.d'Enterria

q: colour triplet u,d,s: m~0, $C_R=4/3$ (difficult to tag at LHC) g: colour octet g: m=0, $C_R=3$ > E loss, dominant at LHC Q: colour triplet C: m~1.5 GeV, $C_R=4/3$ small m, tagged by D's b: m~5 GeV, $C_R=4/3$ large mass \rightarrow dead cone \rightarrow < E loss 'Quark Matter'

Is Pb-Pb different from N * (nucleon – nucleon) ?

$$R_{AA} = \frac{\text{Yield in } AA}{\text{Yield in } pp} \cdot \frac{1}{N_{\text{coll}}}$$

pp reference:

- Proton-proton data sample recorded at $\sqrt{s} = 2.76$ TeV
- If statistically limited \rightarrow scaled from results at $\sqrt{s} = 7$ TeV (NLO, FONLL,...)

Exclusive !!

Reconstructed

Separation charm / beauty

charm mesons

Results about:

- **Charged particles**
- Identified particles: pions, K_{s}^{0} , Λ
- Heavy-flavour hadrons
- Quarkonia

Charged particle spectra

Clear modification of the p_t spectrum shape !

Effect stronger with increasing centrality !

Charged particle R_{AA} – day 1

Charged particle R_{AA} (published)

arXiv:1208.2711v1 [hep-ex]

S.Masciocchi@gsi.de

Charged particle R_{AA}

GLV: dN,/dy = 400 SPS 17.3 GeV (PbPb) 2 GLV: dN,/dy = 1400 0-5% most central coll. π⁰ WA98 (0-7%) GLV: dN,/dy = 2000-4000 RHIC 200 GeV (AuAu) Minimum at p, YaJEM-D Π π⁰ PHENIX (0-10%) ~ 6-7 GeV/c ---- elastic, small P____ ☆ h[±] STAR (0-5%) 1.5 Then a slow increase --- elastic, large P LHC 2.76 TeV (PbPb) SPS for higher pt ---- YaJEM CMS (0-5%) Still a significant ASW B ≜ ALICE (0-5%) PQM: <q
p = 30 - 80 GeV²/fmsuppression at 100 GeV/c !! Medium so dense that pQCD still not restored 0.5 around 100 GeV/c !! RHIC Models! 0 234 100 200 20 10

p_{_} (GeV/c)

S.Masciocchi@gsi.de

Heavy flavours: probes of the medium

- Heavy flavors are produced mostly by gluon-gluon fusion ...
- … in the INITIAL partonic collisions → present from the early time of the medium, in the HIGHEST DENSITY phase
- Travel and interact in the medium
 → FULL collision history

Large production cross sections at LHC energies !!

Large production cross sections at LHC energies !!

LARGE YIELDS compared to RHIC!

$$\sigma_{\text{LHC}}^{cc} \approx 25 \cdot \sigma_{\text{RHIC}}^{cc}$$

 $\sigma_{\text{LHC}}^{bb} \approx 100 \cdot \sigma_{\text{RHIC}}^{bb}$

Remember: some energy loss models predict:

$$\Delta E_{gluon} > \Delta E_{q \approx c} > \Delta E_{b}$$

"suppression": $\pi > D > B$

The heavy-flavour program

Mid rapidity:

Hadronic decays of charm hadrons:

 $\begin{array}{lll} D^0 \rightarrow K^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +} & D^{\star \scriptscriptstyle +} \rightarrow D^0 \pi^{\scriptscriptstyle +} \\ D^{\scriptscriptstyle +} \rightarrow K^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +} & \Lambda_{_c}^{\ \scriptscriptstyle +} \rightarrow p K^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +}, \ p K_{_S}^{\ \scriptscriptstyle 0} \end{array}$

$$D_{s}^{+} \rightarrow K^{+}K^{-}\pi^{+}$$

• Semi-electronic decays of charm and beauty hadrons $H_{c,b} \rightarrow e + X$

Forward rapidity:

- Semi-muonic decays of charm and beauty hadrons $H_{c,b} \rightarrow \mu + X$

Hadronic decays of charm hadrons

S.Masciocchi@gsi.de

D mesons in PbPb

60

arXiv:1203.2160

Charm meson R_{AA}

S.Masciocchi@gsi.de

Pions, charm and beauty

- Charged particles
- Pions
- D mesons (charm)
- $B \rightarrow J/\psi$ (beauty) CMS arXiv:1201.5069

- No evidence of mass effects yet
- Better precision needed
- Work for models!

- Understanding the mechanisms of energy loss of different particles in the medium will help tremendously to learn more about the medium itself!!
- ALICE at LHC do and will provide high precision measurements for many different particle species (light, strange, charm and beauty)
- ALICE vertexing capabilities allow to separate charm and beauty \rightarrow NEW !!!
- Lots of exciting results ahead!!

Quarkonium

Probes of the medium by excellence!

- Quarkonium state survival depends on the medium temperature (color-screening, in-medium dissociation)
- Test of hadronization models: production or regeneration component from deconfined charm quarks in the medium

J/ψ in ALICE

Inclusive production, $p_t > 0$

Comparison with PHENIX results (RHIC)

As a function of number of participants (≈ centrality). At LHC:

- Flat trend
- R_{AA} larger by factor 3 !!

Energy density !

arXiv:1202.1383v1

J/ψ production: models

 $R_{\rm AA}$ ALICE (Pb-Pb Vs_{NN} = 2.76 TeV), 2.5<y<4 global sys.=± 12.5% Stat. Hadronization Model 1.2 ransport Model I Transport Model II (Re-)generation of dσ_ /dy=0.25 mb 0.8 J/ψ from deconfined charm quarks in the 0.6 medium 0.4 do_ /dy=0.15 mb 0.2 0 50 100 150 250 300 350 n 200

1.4

Still missing ingredients to estimate quantitatively the final state effects:

- Cold Nuclear Matter effects: nuclear absorption likely to be negligible
- Shadowing
- Charm production cross section
- Beauty feed-down (order of $\sim 10\%$)

400

pA (2012)

(N

part

Definition: photons that are not produced by particle decays

Calculable with perturbative QCD in proton-proton collisions

- (a) Quark-gluon Compton scattering
- (b) Quark-Anti-quark annihilation
- (c) Fragmentation photons (bremsstrahlung)

Direct photons in Pb-Pb

An additional source of direct photons in Pb-Pb collisions is **THERMAL PHOTONS**:

Scattering of thermalized particles:

- QGP: $q \bar{q} \rightarrow g \gamma$, $qg \rightarrow q \gamma$ (+NLO)
- HHG (hot hadronic gas): hadronic interactions (e.g. $\pi^+ \pi^- \rightarrow \gamma \rho_0$)

Direct photons: results

Hottest temperature: in the news

http://qm2012.bnl.gov/pressCoverage.asp http://blogs.nature.com/news/2012/08/hot-stuff-cern-physicists-create-record-breaking-subatomic-soup.html

NATURE NEWS BLOG

Hot stuff: CERN physicists create record-breaking subatomic soup

13 Aug 2012 | 23:58 BST | Posted by Eric Hand | Category: Physics & Mathematics

38% hotter than RICH

ALICE physicists, presenting on Monday at Quark Matter 2012 in Washington DC, say that they have achieved a quark–gluon plasma 38% hotter than a record 4-trillion-degree plasma achieved in 2010 by a similar experiment at Brookhaven National Laboratory in New York, which had been anointed the Guinness record holder.

Hottest temperature: in the news

SHARE

f Like 📢 35

FOLLOW US If Like 424k

A soup of ultra-hot elementary particles could be the key to understanding what the universe was like just after its formation, scientists say.

Q +1 < 11

STweet 30

Over the past few years, physicists have created this soup inside two of the world's most powerful particle accelerators — the Large Hadron Collider (LHC) in Switzerland and the Relativistic Heavy Ion Collider (RHIC) in New York — by smashing

ALICE on the computing GRID

A Large Ion Collider Experiment

35 countries, 120 institutes, 1300 members 72 active computing sites

GSI TIER 2/3 in GRID

- PANDA DCSC KU LUNARC NDGF Poznan SAR/ Birmingham NIKHEF WUT Muenster RAL-Dortmund WMS Prague-CREAM Cyfronet GSI GRIF IRFU FZK CREAM GRIF IPNO Kosice Strasbourg IRES Bratislava CERN KFKI Subatech CREAMERN-CERN LSF IPNI Torino Clermont Legnaro CCIN2P3 CNAF Legnaro CCIN2P3 CREAM Grenoble ISS LCC CNAF-CESGA Intence CREAM Bari Madrid CyberSan Cagliari CyberSar Truille Cagliari CREAM Catania Athens TriGrid
- GSI: very important TIER2 center, central role in ALICE 20% of all TIER2s of ALICE
 - Data analysis, detector calibration, MC production, MC and real data storage
 - Excellent support to whole Germany
 - TIER2 continuously expands Relative growth +30%/y ! GSI GRID group

Extremely fast feedback at ALICE startup: *thanks to excellent computing at GSI*

High Performance Cluster

- 1500+6500 cores
- ~ 2.2+1.5 PB file system (lustre)
- 200 Gbit/sec I/O bandwidth
- Built and tuned over the last years
- GSI IT ALICE special collaboration

LHC approximate schedule:

- 2013 p-Pb collisions
- 2013-4 shutdown to bring the machine to operate safely at the design energy
- 2015 pp at 14 TeV PbPb at 5.5 TeV

Highest every reached energies !!!

... is hot and dense! (many open questions and mysteries) And these are extremely exciting times!!!

SPARES

78

Semileptonic decays of open charm and open beauty hadrons:

Phases of heavy ion collisions

- Before collision
- Compression and heating
- Thermalization: equilibrium is established (t < 1 fm/c)
- Expansion and cooling (t < 10-15 fm/c)
- Chemical freeze-out: inelastic collisions cease (number of particles frozen)
- Kinetic freeze-out: elastic collisions cease (particle momenta, spectra frozen)

MOTIVATION

- Measure the global characteristics of hadron collisions
- Interactions dominated by soft processes
 - Study QCD in non-perturbative regime
 - Constrain phenomenological models
 - Give input to event generators
 - Understand background to hard and rare processes

At LHC: scan over wide c.m. energy range and reach NOW!!! totally unexplored energy regimes !!

Multiplicity Measurement

Transverse Momentum Distribution

Identified Particle Spectra

Pseudo-rapidity Density

Con Con

ALICE measurements:

 $59.1\% \pm 0.4\%$ (stat) $^{+2.1}_{-1.8}\%$ (syst)

Increase (%)

Transverse Momentum Spectrum

- Bulk (multi)particle production remains a challenge for (nonperturbative) QCD
- Transverse momentum spectra for multiplicity classes and as a function of energy are crucial tests of soft QCD understanding
- pp data as reference for hot and dense QCD matter produced in Pb+Pb
- ...or dense QCD in pp? (collective flow in high-multiplicity events)

→ Track p_T spectrum !

CDF: Phys. Rev. D 79/2009, 112005

Transverse Momentum Spectrum

And comparison to models:

Identified Electrons

Transition Radiation Detector

- **Electron/pion discrimination**
- **Electron trigger** (high pT, particle ID)

From an inclusive electron spectrum (cocktail subtracted) we will measure the charm and beauty production cross sections

