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Outline

● Short reminders
● Error propagation
● Correlation between variables

● Monte Carlo methods
● Transformation method
● Integration

● Monte Carlo for particle / nuclear physics 
● Event generators
● Detector simulation
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Quick reminders

● Mean or expectation value

● Variance:

● Standard deviation: 

● Covariance 

● Correlation coefficient

E[x ] = ∫ x f xdx = 

V [x ] = E[x−E [x ]2] = E [x2]−2 = 2

=2

cov [x , y ] = E [x − x y − y]

xy = cov [x , y ]
x y

, −1≤xy≤1
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Accuracy and precision

The accuracy of a measurement system is the degree of closeness of 
measurements of a quantity to its true (actual) value. 

The precision of a measurement system, also called reproducibility or 
repeatability, is the degree to which repeated measurements under 
unchanged conditions show the same results.
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Accuracy and precision

A measurement system can be accurate but not precise, precise but not 
accurate. See the grouping of arrows on a target:
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Error propagation

Function of ONE variable:
● Variable x, with mean

● Function    y = f(x)
We want to determine the uncertainty on y

● Use the Taylor expansion:

    We ignore the higher order terms WHEN the measured values are        
    close to the average values and/or the derivative is constant in the        
    region of interest (see in 3 slides)

    Not always the case !!!! 

x , and uncertaintyx

f x = f x  x−x  df
dx


x
 higher order terms
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Error propagation: one variable

● It follows that: 

● Variance:

● Standard deviation

f x − f x = y − y ≈ x − x  df
dx


x

V [y ] = 〈y − y2 〉 = 〈x − x2 〉  df
dx


x

2

 y
2 =  df

dx

x

2

x
2

 y =  df
dx


x
x
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Error propagation: one variable
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Ignoring higher order terms
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Exercise
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Exercise
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Error propagation: two variables

a = f x , y

a = f x , y = f x ,y  df
dx

x − x  df
dy

y − y  ...

a
2 = a − a2 =  f x , y − f x ,y2 =

≈  df
dx


2

x − x2   df
dy


2

y − y2  2
df
dx

df
dy

x − xy − y

a
2 = 〈a − a2 〉 =

 df
dx


2

〈x − x2 〉   df
dy


2

〈y − y2 〉  2 df
dx

df
dy

〈x − xy − y〉 =
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Error propagation: two variables

a
2 =  df

dx

2

x
2   df

dy

2

y
2  2

df
dx

df
dy

cov [x , y ]
 xy

x  y

cov [x , y]
x y

=  = correlationcoefficient

● -1 ≤  ρ  ≤ +1
● ρ = 0 : variables are INDEPENDENT
● ρ ≠ 0 : variables are CORRELATED

● ρ > 0 : correlated
● ρ < 0 : anti-correlated
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Independent variables

 f
2 =  df

dx

2

x
2   df

dy

2

y
2

Important examples:
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Error propagation: SPECIAL  CASES

That is, if the x
i
 are uncorrelated:

Add errors quadratically for the sum (or difference),
Add relative errors quadratically for product (or ratio)

y = x1  x2  y
2 = 1

2  2
2  2cov [x1, x2]

y = x1 x2 
y

2

y2
=

1
2

x1
2


2
2

x2
2
 2

cov [x1, x2]
x1 x2

correlations can change this completely...
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Error propagation – MORE SPECIAL

Consider   y =  x
1
 - x

2
  with:

Now suppose  ρ=1 (full correlation). Then:

i.e. for 100% correlation, the error in the difference goes to 0 !!

1 = 2 = 10, 1 = 2 = 1,  =
cov [x1, x2]

12

= 0

V [y ] = 12  12 = 2  y = 1.4

V [y ] = 12  12 − 2 = 0   y = 0
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Exercise

We wish to calculate the average speed (displacement/time) of an object. 
Assume is displacement is measured as x = 22.2 ± 0.5 cm during the 
time interval t = 9.0 ± 0.1 s.

Calculate speed and error on the speed.
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Exercise

We wish to calculate the average speed (displacement/time) of an object. 
Assume is displacement is measured as x = 22.2 ± 0.5 cm during the 
time interval t = 9.0 ± 0.1 s.

Calculate speed and error on the speed.

We report the result as: 2.467 ± 0.062 cm/s.
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Combination of results

Important case: combine the results of independent experiments

Consider we have n independent experiments with results ai and errors 
σ

i 
 (i = 1, ..., n). We can combine the results from each experiment to 

form a more accurate result. For this, a weighted sum is performed 
where experiments with smaller errors contribute more to the combined 
result.

The statistically correct way to combine independent results is:
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Exercise

● For the measured gravitational acceleration data:
9.77±0.14, 9.82±0.10 and 9.86±0.20  m/s2

the combined result is:
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Exercise

● For the measured gravitational acceleration data:
9.77±0.14, 9.82±0.10 and 9.86±0.20  m/s2

the combined result is:       9.811 ± 0.075 m/s2
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Correlated variables

The covariance matrix and the correlation coefficient express to what 
extent 2 or more variables “co-vary” randomly, or whether, when one has 
a given variation, the second one varies by a corresponding quantity / 
way of behaviour.
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More correlation
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Example

Consider pairs of jets in one event:

From the total energy of
each jet, the di-jet 
invariant mass can be calculated
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Origin of correlation
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Error propagation: general case

Suppose we measure a set of values        = (x
1
, ..., x

n
)

which follow some joint pdf          .

          might be not fully known. But we have the covariances:

V
ij
 = cov[x

i
,x

j
],  and the means                         (in practice only estimates)

  

Now consider a function

What is the variance of           ?  

Hard way: use joint pdf             to find the pdf  g(y) ,

Then from g(y) find 

Often NOT practical.          may not even be fully known ...     

x

f x 
f x 

 = E[x ]

y x .
y x 

f x 

V [y ] = E [y2]−E [y ]2

f x 
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Error propagation - 2

Expand             to the first order in a Taylor series about   

To find the variance V[y] we need E[y2] and E[y]:

y x  

y x  ≈ y   ∑
i=1

n
[ ∂ y
∂ x i

]
x=

xi−i

E [y x ] ≈ y  since E [x i−i]=0
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Error propagation - 3

Putting the ingredients together gives the variance of 

E [y2x ] ≈ y2  2y  ∑
i=1

n
[ ∂ y
∂x i

]
x=

E [x i−i]

 E [  ∑
i=1

n
[ ∂ y
∂ x i

]
x=

xi−i   ∑
j=1

n
[ ∂ y
∂ x j

]
x=

x j− j  ]

= y2   ∑
i , j=1

n
[ ∂ y
∂ xi

∂ y
∂ x j

]
x=

V ij

y x 

 y
2 ≈ ∑

i , j=1

n
[ ∂ y
∂ x i

∂y
∂x j

]
x=

V ij
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Error propagation - 4

If the x
i
 are uncorrelated, i.e.  V

ij
 = σ2

i
δ

ij
, then this becomes:

Similar for a set of m functions 

Or in matrix notation  U = A V AT,   where  

 y
2 ≈ ∑

i=1

n
[ ∂ y
∂ xi

]
x=

2

 i
2

y x  = y1x  , ... , ymx

Ukl = cov [yk , yl] ≈ ∑
i , j=1

n
[
∂ yk

∂ xi

∂ yl

∂ x j

]
x=

V ij

A ij = [
∂ yi

∂ x j

]
x=
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Monte Carlo

Monte Carlo methods are a class of computational algorithms 
that rely on repeated random sampling to compute their 
results. 
Monte Carlo methods are often used in computer simulations 
of physical and mathematical systems. 
These methods are most suited to calculation by a computer 
and tend to be used when it is unfeasible to compute an exact 
result with a deterministic algorithm
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The name

The Monte Carlo method was coined 
in the 1940s by John von Neumann, 
Stanislaw Ulam and Nicholas 
Metropolis, while they were working 
on nuclear weapon projects 
(Manhattan Project) in the Los 
Alamos National Laboratory. It was 
named in homage to the Monte 
Carlo Casino, a famous casino, 
where Ulam's uncle would often 
gamble away his money

Random processes were used 
extensively for the first time to predict 
theoretically the interaction of 
neutrons with matter
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History - 1

An early variant of the Monte Carlo method can be seen in the 

Buffon's needle experiment (18th century)
in which π can be estimated by dropping needles on a floor made of 
parallel strips of wood. 

In more mathematical terms:

Given a needle of length l dropped on a plane ruled with parallel 
lines t units apart, what is the probability that the needle will cross 
a line?
If l ≤ t then:

Use this to estimate π !  

P = 2l
t
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History - 2

● In the 1930s, Enrico Fermi first experimented with the Monte Carlo 
method while studying neutron diffusion, but did not publish anything 
on it

● In 1946, physicists at Los Alamos Scientific Laboratory were 
investigating radiation shielding and the distance that neutrons would 
likely travel through various materials. Despite having most of the 
necessary data, such as the average distance a neutron would travel 
in a substance before it collided with an atomic nucleus or how much 
energy the neutron was likely to give off following a collision, the 
problem could not be solved with analytical calculations. 
Stanisław Ulam had the idea of using random experiments.
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Monte Carlo and simulation

A bit subjective. Sawilowsky:
a simulation is a fictitious representation of reality, a Monte Carlo method 
is a technique that can be used to solve a mathematical or statistical 
problem, and a Monte Carlo simulation uses repeated sampling to 
determine the properties of some phenomenon (or behavior). Examples:

● Simulation: Drawing one pseudo-random uniform variable from the interval [0,1] can 
be used to simulate the tossing of a coin: If the value is less than or equal to 0.50 
designate the outcome as heads, but if the value is greater than 0.50 designate the 
outcome as tails. This is a simulation, but not a Monte Carlo simulation.

● Monte Carlo method: The area of an irregular figure inscribed in a unit square can be 
determined by throwing darts at the square and computing the ratio of hits within the 
irregular figure to the total number of darts thrown. This is a Monte Carlo method of 
determining area, but not a simulation.

● Monte Carlo simulation: Drawing a large number of pseudo-random uniform variables 
from the interval [0,1], and assigning values less than or equal to 0.50 as heads and 
greater than 0.50 as tails, is a Monte Carlo simulation of the behavior of repeatedly 
tossing a coin.

Not always so easy to distinguish
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The Monte Carlo method

A numerical technique for calculating probabilities and 
related quantities using sequences of random numbers
The usual steps:
● Generate sequence r

1
, r

2
, ..., r

m
 uniform in [0,1]

● Use this to produce another sequence  x
1
, x

2
, ..., x

m
               

distributed according to some pdf f(x) in which we are             
interested (x can be a vector)

● Use the x values to estimate some property of f(x)                                 
e.g., fraction of x values with a < x < b gives 

Applications:
● MC calculation for integration
● Simulation to test statistical procedures

∫a

b
f x dx



Statistical Methods, Lecture 4, November 5, 2012         37

Random numbers

● Extensively appreciated with Nik 
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Transformation method

● Random variable x
● Pdf f(x)
● cumulative distribution function

● Case of F(x) analitically invertible:

Fx = ∫−∞

x
f  t dt

x = F−1u

● If u
i
 uniform in [0,1], then                             follow pdf f(x)

Method is applicable if F(x) and F-1(u) are analytically solvable

x i = F−1 ui
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Example: exponential distribution

Consider random numbers according to:

Computation of the inverse pdf: 

And solve for x(r).
→ 

f x , = {e− x , x0
0 , x≤0

∫−∞

x
f t dt = ∫0

x
 e− t dt = [e− t ]0

x = 1−e− x = r x

x r  = −1/ ln1−r 
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Hit and miss method (von Neumann)

If F-1(u) is not computable, then use “hit and miss” method 
(also called acceptance-rejection method)

Enclose the pdf in a box:

● Generate a random number x, uniform
in [x

min
,x

max
], i.e. 

x=
xmin

+r
1
(x

max
 – x

min
)

r
1
 uniform in [0,1]

● Generate a second indipendent random number uniformly distributed 
between 0 and fmax, i.e. u=r

2
 f

max

● If u < f(x), then accept x
if not, reject x and repeat
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Example
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Improve efficiency of hit and miss
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Monte Carlo integration

Check accuracy of the method:
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Accuracy of Monte Carlo integration

For high enough d (d>4), MC always wins
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Monte Carlo: statistical experiments

Often an analytical treatment of physical problems is either 
difficult or impossible. Therefore we do either an approximation 
or use a statistical description (via Monte Carlo)

APPLICATIONS:
● High energy and nuclear physics
● Numerical calculations (integration, 

differentiation)
● Coding/encoding (e.g. secure

connections, like ssh)
● Reliability tests
● Investment banking
● Earth sciences 

METHODS:
● Find a statistic model
● Produce random numbers 

properly
● Calculate estimators from 

random quantities
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Monte Carlo: statistical experiments

Qualitatively:

Scattering experiment:
Measure the angular distribution of particles scattered from protons in a 
fixed target
Ingredients:
● Magnitude and direction of the momentum vector of the incident 

particles
● Probability that a particle will collide with a proton in the target
● Resulting momentum vectors of the scattered particles
All are described in terms of probability distributions !
The final experimental result can be treated in terms of a multiple 
integration over all these probability distributions !!
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In “our” real life

Several stages:

● Event generator:
● Simulation of the PHYSICS process
● Colliding particles
● Cross section, processes involved, fragmentation ...

● Detector simulation:
● Interaction of the produced particles with the material
● Realistic description of the experimental apparatus 

● efficiencies 
● defects (dead channels, etc)
● misalignment
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Event generators

● e+e- → hadrons

● e+e- → WW

● pp → hadrons

● PbPb → hadrons

● JETSET (PYTHIA)
● HERWIG
● ARIADNE

● KORALW
● EXCALIBUR
● ERATO

● ISAJET
● PYTHIA
● HERWIG

● HIJING
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Event generators

The output are so-called “events”, namely for each collision the programs 
give a list of final state particles, with their momentum vectors, types, 
angular distribution, etc
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Detector simulation

INPUT: particle list (with their species and momenta) from the event 
generator

Simulate the detector response taking into account:
● Multiple Coulomb scattering (generate scattering angle)
● Particle decays (generate lifetime), nuclear knock-out
● Ionization energy loss (generate Δ, Landau)
● Bremsstrahlung
● Electromagnetic / hadronic showers
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Detector simulation

● First version ~ 1974
● Till GEANT 3.21, in FORTRAN
● Since ~ 2000, FORTRAN version no longer developed, bug fixes

● Geant4: in C++, with a modern object-oriented design

● Next … Geant 5
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Detector simulation

The detector simulation takes into account many more things:

● Production of the signals (electronics response)
● Addition of detector noise

● Description of the detection efficiency for each detector component 
(experiment specific)

● Position and energy resolution of each detector component 
(experiment specific)

The output is a list of digitized signals from all detector 
components, exactly like real data!! (or data format input for the 
reconstruction)



Statistical Methods, Lecture 4, November 5, 2012         53

Use of simulations

● Develop reconstruction algorithms
(particle trajectories in the tracking detectors, showers in the 
calorimeters)

● Optimize trigger selection

● Identify the best signal signature

● Compute efficiency of selections in real data analysis

● During design of an experiment: define the detector acceptance, etc

Simulation is absolutely crucial in the planning phase of 
experiments, for preparation of data taking, to optmize 
analyses, to evaluate the significance of the results
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Geant – other applications

Proton beam eye therapy 

unit at the Laboratori 

Nazionali del Sud (INFN) in 

Catania (left) and a display 

from the Geant4 advanced 

example for the simulation 

of the same beam line (right).

Geant4 simulated dose 
contours in a human brain 
with a proton beam.
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ALICE (TPC) simulation: proton-proton
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ALICE (TPC) simulation: Pb-Pb
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ALICE simulation: Pb-Pb

dN/dy ~ 8000
Particles per 
unit rapidity
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ALICE simulation: Pb-Pb

TOF

HMPID

PHOS

TRD

ITS

TPC 2 degree slice 
ONLY!!

(~ 500 tracks)

(a bit old ...)
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