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Method of least squares

The method of least squares is a standard approach to the 
approximate solution of overdetermined systems, i.e., sets of 
equations in which there are more equations than unknowns. 
"Least squares" means that the overall solution minimizes the 
sum of the squares of the errors made in solving every single 
equation.

The most important application is in data fitting. The best fit in 
the least-squares sense minimizes the sum of squared residuals, 
a residual being the difference between an observed value and 
the fitted value provided by a model.

Least squares corresponds to the maximum likelihood criterion if the 
experimental errors have a normal distribution and can also be derived 
as a method of moments estimator.
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A bit of history

Carl Friedrich Gauss is credited with developing 
the fundamentals of the basis for least-squares 
analysis in 1795 at the age of eighteen. Legendre 
was the first to publish the method, however.

An early demonstration of the strength of Gauss's 
method came when it was used to predict the future 
location of the newly discovered asteroid Ceres. On 
January 1, 1801, the Italian astronomer Giuseppe 
Piazzi discovered Ceres and was able to track its 
path for 40 days before it was lost in the glare of the sun. Based on this 
data, astronomers desired to determine the location of Ceres after it 
emerged from behind the sun without solving the complicated Kepler's 
nonlinear equations of planetary motion. The only predictions that 
successfully allowed Hungarian astronomer Franz Xaver von Zach to 
relocate Ceres were those performed by the 24-year-old Gauss using 
least-squares analysis.
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Data fitting

The method of least squares is often 
used to fit a function through a set of 
points

by minimizing the distance between the 
points and the fitted function

by the least squares 

But we need to define well the conditions 
under which the method can be applied
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Connection with the ML - 1

In many situations a measured value y can be regarded as a Gaussian 
random variable centered about the quantity's true value λ. This follows 
from the central theorem as long as the total error (i.e. the deviation from 
the true value) is the sum of a large number of small contributions.

Extend to N measurements:

● N measurements y
i
 related to another variable x

i
, assumed to be known 

without error
● The  y

i
 are N independent Gaussian random variables

● Each value  y
i
 has a different unknown mean λ

i
 , and ...

● .. a different but known variance σ
i
2
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Connection with the ML - 2

The N measurements of  y
i
 can be equivalently regarded as a single 

measurement of an N-dimensional random vector, for which the joint pdf is 
the product of N Gaussians:

Suppose further that the true value is given as a function of x:

λ = λ(x;θ)
which depends on unknown parameters θ = (θ

1
,θ

2
, ..., θ

m
)

The aim of the method of least squares is to estimate the parameters θ. In 
addition, the method allows for a simple evaluation of the goodness-of-fit 
of the hypothesized function.

gy1 , .. , yN ;1 , .. ,N,1
2 ,.. ,N

2  = ∏
i=1

N
1

2 i
2

exp −yi−i
2

2 i
2 
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Connection with the ML - 3

Illustration:
● x

1
, .., x

N
 known

● Gaussian random variables y
i

● E[y
i
] = λ

i
 =  λ(x

i
;θ)

● V[y
i
] = σ

i
2 known

GOAL:
Estimate the parameters θ
→ fit the curve through the 
points
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Connection to the ML - 4

We take the logarithm of the joint pdf and drop the additive terms that do 
not depend on the parameters θ:
We get the log-likelihood function

This is maximized by finding the values of the parameters θ that minimize 
the quantity

Namely the quadratic sum of the differences between measured and 
hypothesized values, weighted by the inverse of the variances. This is 
the basis of the method of least squares.

log L  = −1
2
∑
i=1

N yi−x i;
2

 i
2

2 = ∑
i=1

N yi−x i ;
2

 i
2
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Definition of LS estimators

If the N measurements are not independent but described by an N-
dimensional Gaussian pdf with known covariance matrix V but unknown 
mean values, the joint pdf is:

The log-likelihood is obtained (again dropping terms not depending on 
the parameters) as
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Definition of LS estimators - 2

The log-likelihood is maximized by minimizing the quantity

which reduces to the case on page 8 if the covariance matrix (and hence 
its inverse) are diagonal (and the variables are independent)

The parameters which minimize the      are called the
least square (LS) estimators

The minimization is most often done numerically.
Example: program MINUIT (in ROOT)

2

1 , ... , m
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Example of a LS fit (polynomial)

Fit a polynomial of order p:

0th order: 1 parameter

1st order: 2 parameters

4th order: 5 parameters
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Linear least squares fit

LS has particularly simple properties of the      and of the LS estimators, 
for the case where λ(x;θ) is a linear function of the parameters θ

where the a
j
(x) are ANY linearly independent functions of x (they are just 

linearly independent from each other, i.e. one cannot be expressed as a 
linear combination of the others).

For this case, when we calculate the variance, we obtain that       is 
quadratic in θ and it follows that

x ; = ∑
j=1

m
a jx  j

22

2

2  = 2  1 = min
2 1
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Variance of least squares estimators

2  = 2  1 = min
2 1

this yields the contours in parameter space whose tangents are at
            corresponding to a one standard deviation departure from the 
LS estimates

Example: polynomial fit, 0th order
1-parameter fit

Obtain the variance:

i±  i
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Two parameter LS fit 

1st order polynomial fit, 2 parameters
(line with non-zero slope)

Tangent lines → 
Angle of ellipse → correlation (same as for ML)

 0
, 1
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Confidence region

this yields the contours in parameter space whose tangents are at
            corresponding to a one standard deviation departure from the 
LS estimates

If the function  λ(x;θ) is NOT linear in the parameters, then the contour 
defined above is not in general elliptical, and one can no longer obtain 
the standard deviations from the tangents. It defines a region in 
parameter space, however, which can be interpreted as CONFIDENCE 
REGION, the size of which reflects the statistical uncertainty of the fitted 
parameters
→ Next lecture !!!

2  = 2  1 = min
2 1

i±  i

Reminder
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Five parameter LS fit 

4th order polynomial fit, 5 parameters

Curve goes through all points

Number of parameters = number
      of points

The value of            reflects the level of agreement between data and 
hypothesis
→  use as goodness-of-fit test statistics

min
2 = 0

min
2
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Goodness-of-fit with least squares

The value of the X2 at its minimum is a measure of the level of agreement 
between the data and the fitted curve:

It can therefore be employed as a goodness-of-fit statistic to test the 
hypothesized functional form λ(x;θ).

We can show that if the hypothesis is correct, then the statistic             
follows the chi-square pdf:

where the number of degrees of freedom is:
n

d
 = number of data points – number of fitted parameters

min
2 = ∑

i=1

N yi−x i ;
2

 i
2

t = min
2

f  t ;nd =
1

2nd /2 nd/2
tnd/2−1 e−t /2
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Goodness-of-fit with least squares - 2

The chi-square pdf has an expectation value equal to the number of 
degrees of freedom, so if                    or                        the fit is 'good'.
Or more precisely:

● If                       all is as expected

● If                          then the fit is better than expected given the size of 
the measurement errors. This is not bad in the sense of providing 
evidence against the hypothesis, but it is usually grounds to check that 
the errors σ

i
 have not been overestimated or are not correlated

● If                          then there is some reason to doubt the hypothesis 

min
2 ≈ nd min

2 /nd ≈ 1

min
2 /nd ≈ 1

min
2 /nd ≫ 1

min
2 /nd ≪ 1
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Goodness-of-fit with least squares - 3

The chi-square pdf has an expectation value equal to the number of 
degrees of freedom, so if                        the fit is 'good'.

More generally, find the p-value:

This is the probability of obtaining a           as high as the one we got, or 
higher, if the hypothesis is correct.

E.g. for the previous example with 1st order polynomial (straight line):

 That is: if the true function λ(x) were a straight line and if the experiment 
were repeated many times, each time yielding values for the 2 
parameters and the X2, then one would expect ...

min
2

min
2 ≈ nd

p = ∫min
2

∞
f t ;nd dt

min
2 = 3.99 nd = 5−2 = 3 p = 0.263
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Goodness-of-fit with least squares - 4

… the X2 values to be worse (i.e. higher) than the one actually obtained 
in 26.3% of the cases.

Whereas for the 0th order polynomial (horizontal line) 

This hypothesis can be safely ruled out !!!

min
2 = 45.5 nd = 5−1 = 4 p = 3.1x10−9
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Goodness-of-fit vs statistical errors

Keep in mind the distinction between having SMALL STATISTICAL 
ERRORS and having a GOOD (small) X2.

The statistical errors are related to the change in X2 when the parameters 
are varied away from their fitted values, and not to the absolute value of 
X2 itself.

The standard deviation      of an estimator     is a measure of how widely 
estimates would be distributed if the experiment were to be repeated 
many times. 
If the function form of the hypothesis is incorrect, however, then the 
estimate     can still differ significantly from the true value     . That is, if 
the form of the hypothesis is incorrect, then a small standard deviation is 
not sufficient to imply a small uncertainty in the estimate of the parameter.
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Goodness-of-fit vs statistical errors

Example: horizontal line fit 
First case: page 16

Now keep x and the errors, move the 
data points wrt previous example

New fit:

The variance is the same as before, but 
now the chi-square is good !!

0 = 2.84 ± 0.13

min
2 = 4.48

0 = 2.66 ± 0.13

min
2 = 45.5



          Statistical Methods, Lecture 10, December 17, 2012s.masciocchi@gsi.de 23

Least squares with binned data

Suppose we have n observations of a random variable x from which one 
makes a histogram with N bins. Let y

i
 be the number of entries in bin i, 

and f(x;θ) be a hypothesized pdf for which one would like to estimate the 
parameters θ = (θ

1
, .., θ

m
).

The number of entries predicted in bin i is:

where         and          are the bin limits and
p

i
(θ) is the probability to have an entry in 

bin i.      

i = E [yi] = n∫xi
min

xi
max

f x ;dx = npi

x i
min x i

max
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Least squares with binned data

The parameters θ are found by minimizing the quantity:

where σ
i
2=V[y

i
], here not known a priori.

When the mean number of entries in each bin is small compared to the 
total number of entries, the contents of each bin are approximately 
Poisson distributed. The variance is therefore equal to the mean.
In place of the true variance take either

MLS sometimes easier computationally, but           no longer follows the 
chi-square pdf (or is undefined) if some bins have few or no entries.

2  = ∑
i=1

N yi − i
2

 i
2

 i
2 = i LS method

 i
2 = yi Modified LS method

min
2



          Statistical Methods, Lecture 10, December 17, 2012s.masciocchi@gsi.de 25

LS with binned data: normalization

Appreciate the detail: f(x;θ) is a pdf and therefore normalized to 1. The 
function which is fitted to the histogram is λ

i
(θ).

Often, instead of using the observed total number of entries n to obtain λ
i
 

(see page 23), an additional adjustable parameter ν is introduced as 
normalization factor.
The predicted number of entries in the bin i then becomes:

ν is fitted along with θ.
This might lead to an incorrect estimate of the total number of entries.

i , = ∫x i
min

x i
max

f x ;dx = pi
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LS with binned data: normalization

     is a bad estimator for n!
Take the formula on the page before, take the derivative of X2 with 
respect to ν to 0, and we find:

Since one expects a contribution to X2 on the order of 1 per bin, the 
relative error in the number of entries is typically N/2n too high (LS) or 
N/n too low (MLS). If one takes as a rule of thumb that each bin should 
have at least five entries, one could have an (unnecessary) error in the 
normalization of 10-20%.

→ general preference of maximum likelihood for histogram fitting
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LS with binned data: normalization
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Using LS to combine measurements

Combine measurements of the same quantity:
Suppose that a quantity of unknown true value λ has been measured N 
times (e.g. in N independent experiments) yielding independent values y

i
 

and estimated errors (standard deviations) σ
i
 for i = 1, .., N.

Since the true value is the same for all the measurements, the value λ is 
a constant, i.e. the function λ(x) is a constant, and thus the variable x 
does not actually appear in the problem.
          y

i
 =  result of measurement i,   i = 1, .., N

          σ
i
 = V[y

i
], assume known

          λ = true value (plays role of θ)
For uncorrelated  y

i
, minimize:

2 = ∑
i=1

N yi−
2

 i
2
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Using LS to combine measurements

Set                      and solve to get the LS estimator for 

Variance:

The variance of the weighted average is smaller than any of the 
variances of the individual measurements. Furthermore, if one of the 
measured y

i
 has a much smaller variance than the rest, then this 

measurement will dominate both in the value and variance of the 
weighted average.

∂2

∂
= 0 

 =
∑i=1

N
yi / i

2

∑ j=1

N
1 / j

2
Weighted average

V [ ] = 1

∑i=1

N
1/ i

2
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Using LS to combine measurements

Generalization to the case where the measurements are not independent.
This would occur, for example, if they are based at least in part on the 
same data.
Covariance matrix: cov[y

i
, y

j
] = V

ij. 
Minimize:

LS        has zero bias, minimum variance (Gauss-Markov theorem)
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Example:  averaging two correlated measurements

Suppose we have y
1
 and y

2
, two measurements with the covariance 

matrix:

where                                  is the correlation coefficient.
The inverse covariance matrix is given by:

 = V12 /12

V−1 = 1

1−2  1 /1
2 −/12

−/12 1 /2
2 

V =  1
2 12

12 2
2 
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Example:  averaging two correlated measurements

Using the formulas on page 30, we determine the weighted average:

with

The variance is found to be:

 = w y1  1−w  y2

w =
2

2 − 12

1
2  2

2 −21 2

V [ ] =
1−21

22
2

1
2  2

2 − 212

= 2
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Example:  averaging two correlated measurements

The change in the inverse variance due to the second measurement y
2
 is

This is always greater than or equal to zero, which is to say that the 
second measurement always helps to decrease σ2, or at least it never 
hurts. 

If 
→ the weighted average does not lie between y

1
 and y

2
 !!!??

Cannot happen is correlation due to common data. But possible for 
shared random effect. Very unreliable if e.g.                      incorrect 

1

2
− 1

1
2
= 1

1−2  1

− 1
2


2

1/ 2w  0 !! !

 , 1, 2
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Example

We measure the length of an object with 2 rulers made of different 
substances, so that the thermal expansion coefficients are different.
Suppose both rulers have been calibrated to give accurate results at a 
temperature T

0
, but at any other temperature, a corrected estimate y of 

the true (unknown) length λ must be obtained using:

i refers to ruler 1 or 2, L
i
 is the uncorrected measurement, c

i
 is the 

expansion coefficient, and T is the temperature, which must be 
measured.
We will treat the measured temperature as a random variable with 
standard deviation σ

T
, and we assume that T is the same for the 2 

measurements, i.e. they are carried out together. The uncorrected L
i
 are 

treated as random variables, with standard deviation σ
Li
. Assume that c

i
, 

σ
Li
 and σ

T
 are known.

yi = Li  ci T−T0
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Example - Formulas

Goal: determine the weighted average of y
1
 and y

2
.

We need their covariance matrix:
● Variances of the corrected measurements:

● Diagonal term: if the measurements are unbiased is:
                                                               true (unknown) temperature

Therefore:

 i
2 = V [yi ] = Li

2  ci
2T

2

E [yi] =  , E [T ] = T true

 E [Li ] =  −ci T true−T0
E [T2] = T

2  T true
2

E[Li ,L j] = ij Li

2

cov [y1, y2] = V12 = E[y1 y2] − 2

= c1c2T
2
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Example - Formulas

The correlation coefficient is:

The weighted average is thus:

● If σ
T
 is very small, then ρ goes to 0 and       will lie between y

1
 and y

2
.

● If σLi are very small and σ
T
 is large, the weight becomes negative!

● In the extreme of ρ=1, the weighted average becomes:

 =
V12

12

=
c1c2T

2

L1

2 c1
2T

2  L2

2 c2
2T

2 

 =
L2

2  c2
2 − c1c2 T

2  y1  L1

2  c1
2 − c1c2 T

2  y2

L1

2  L2

2  c1−c2
2 T

2



 =
−c1

c1 −c2

y1 
c2

c1 −c2

y2
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Example - Illustration

● The 2 diagonal bands represent the 
possible values of the corrected 
length y

i
, given measured lengths 

L
i
, as a function of the temperature

● Suppose L
i
 known very accurately, 

and yet y
1
 and y

2
 differ by quite a bit

● → THEN the only available 
explanation is that the true 
temperature must be different from 
the measured value T !!!!

● The weighted average     is thus 
pulled towards the point where the 
bands of y

1
(T) and y

2
(T) cross.
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Example - Comments

Always question the averaging of correlated quantities!
The correlation here stems from the fact that the individual 
measurements are based in part on a common measurement, here the 
temperature, which itself is a random quantity. Averages of highly 
correlated quantities should be treated with caution, since a small 
error in the covariance matrix for the individual measurements can lead 
to a large error in the average      , as well as an incorrect estimation of 
its variance.
This is particularly true if the magnitudes of correlated uncertainties are 
overestimated.

In the example, if the correction to the temperature
turns out to be large compared to σ

T
, then this means that our 

assumptions about the measurements are probably INCORRECT !
This is reflected in a high          value, and a small p-value.



T = T − T

min
2
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Example – More comments

Here we would have to revise the model, perhaps reevaluating all 
standard deviations, or the relation between the measured and the 
corrected lengths. The correct conclusion is this example, would be that 
because of the large X2 the two measurements y

1
 and y

2
 are 

incompatible, and the average is therefore not reliable.

→ Comments about under- and over-estimation of errors, PULLS 
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ALICE data analysis

January 14: ALICE “master class” at GSI

11:00 first arrival at GSI (registration at entrance)
     
          VISIT of GSI

12:00 lunch

13:00 introduction and analysis of ALICE data

Please send email to s.masciocchi@gsi.de
With subject 'SMIPP at GSI'
With your full name, personal ID number, and the arrival time

mailto:s.masciocchi@gsi.de
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The next lectures

January 7, 21, 28 + February 4

● Statistical errors, confidence intervals and limits
● Higgs case

● Statistical and systematic errors
● Unfolding of distributions

Don't forget to give me suggestions if you would like 
some topic to be discussed !!!!
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