
Object oriented analysis,
design and coding

Statistical Methods in Particle Physics / WS 11

Niklaus Berger
Physics Institute, University of Heidelberg

http://xkcd.com/844/

Niklaus Berger – SMIPP – November 2011 – Slide 3

Why•	
 use objects?

How•	
 to do that in C++?

Where•	
 can and will it go wrong?

How•	
 to avoid the most common pitfalls and
solve common problems?

O
ve

rv
ie

w

Niklaus Berger – SMIPP – November 2011 – Slide 4

For simple code, the challenge is in finding
clever algorithms

Has mostly been done before, in doubt •	
look it up in Knuth, “The Art of Computer
Programming”

For large projects, the challenge is getting
things to work and keeping them that way

Developer ≠ User•	

Many developers•	

Many environments•	

Code changes over time•	

There tends to be a lot of code•	

W
hy

 O
bj

ec
ts?

Niklaus Berger – SMIPP – November 2011 – Slide 5

Root:

12 core developers, •	
O(100) contributors

O(1 Million) lines of code•	

O(1200) classes •	

Geant4:

O(100) developers•	

O(1 Million) lines of code•	

O(2000) classes •	

Atlas codebase:

O(1000) developers•	

O(7 Million) lines of code•	

O(10’000) classes•	

So
m

e
nu

m
be

rs.
.. BES III partial wave analysis code:

1 core developer, O(3) contributors•	

O(35’000) lines of code•	

O(200) classes•	

Typical Ph.D. thesis in HEP:

1 core developer•	

O(10’000) lines of code•	

O(1-100) classes•	

Niklaus Berger – SMIPP – November 2011 – Slide 6

Objects are a way of dealing with
complexityW

hy
 O

bj
ec

ts?

There are myriad books on the topic, the
classic text is “Design Patterns: Elements of
Reusable Object-Oriented Software” by
Erich Gamma, Richard Helm, Ralph Johnson
and John Vlissides (usually referred to as the
“Gang of four”)

Niklaus Berger – SMIPP – November 2011 – Slide 7

Data abstraction •	

Encapsulation •	

Modularity •	

Polymorphism •	

Inheritance and •	
Composition

Co
re

 co
nc

ep
ts

of
 O

O

Niklaus Berger – SMIPP – November 2011 – Slide 8

Abstraction is what makes large programs
possible, many layers...

You need not know how a transistors •	
works, to store a 0 or a 1

You need not know how a number is •	
represented in binary to add 4 and 7

You need not know how your list of •	
numbers is stored if you have a function
returning the mean value

You need not know how tracks are •	
reconstructed if you can get the particle
momentum

Abstraction is hiding lower levels
from the user

Da
ta

 a
bs

tra
ct

io
n

Niklaus Berger – SMIPP – November 2011 – Slide 9

Encapsulation controls access to data and
functions

Allows you to control where in the •	
program data can be manipulated

Allows you to specify an interface to data •	
and methods that users have to stick to

Example: A list and an element counter, •	
interface to make sure that they are
always consistent

Separate interface and implementation•	

Interfaces allow collaboration between •	
developers

Encapsulation is restricting access

En
ca

ps
ul

at
io

n

Niklaus Berger – SMIPP – November 2011 – Slide 10

Modularity is breaking tasks down into
sub-tasks

Done anyway, but should be visible in •	
code structure

Concentrates everything needed for one •	
task in one location (a module)

Allows reuse of modules •	

Modularity is divide and
conquer

M
od

ul
ar

ity

Niklaus Berger – SMIPP – November 2011 – Slide 11

Polymorphism is sharing parts of the interface
between different data types

Allows unified treatment of different •	
objects

Example: Silicon hits and scintillator hits •	
in a detector - they share a position (and
related functionality) but not everything
(pixel number, light yield...) -
polymorphism allows to share position re-
lated functionality and unified treatment
in a e.g. a track fit

Polymorphism is unifying/sharing
interfaces

Po
lym

or
ph

ism

Niklaus Berger – SMIPP – November 2011 – Slide 12

Inheritance is deriving specialized objects
from more general ones

Allows for the implementation of •	
polymorphism

Example: Derive all hits from space points•	

Implements a “is a” relationship•	

Composition is having objects inside other
objects

Also allows for some polymorphism•	

Example: A reconstructed particle con-•	
tains the reconstructed track and the calo-
rimeter cluster

Implements a “has a” relationship•	

Inheritance and Composition
represent object relationships

In
he

rit
an

ce
 a

nd
 C

om
po

sit
io

n

Niklaus Berger – SMIPP – November 2011 – Slide 13

In general

2 files for every class•	

a <Class>.h file with the interface: •	
Say what your class can do

a <Class>.C/.cpp file with the •	
implementation:
Say how your class does it

In the following: Focus on the interface - in
the implementation, tell the compiler what
class you have in mind, using the class name
and :: before function names

We will also be moving away from interactive
root...

An
d

no
w

 in
 C

++

Niklaus Berger – SMIPP – November 2011 – Slide 14

class keyword, class name

Most coding conventions
suggest capitalized class
names

Many old packages (Geant4,
root) mark classes through
prefix letters (G4, T). This is
obsolete - if you have prob-
lems with your class names,
use a namespace

class Tracker
An

at
om

y
of

 a
 cl

as
s

Niklaus Berger – SMIPP – November 2011 – Slide 15

class keyword, class name
access modifier:
Three variants:

public: Visible from outside
the class

private: Visible only within
the class

protected: Visible within the
class and derived classes

Only make public what you
need to make public

Everything else is protected

Use private only when you
know why

class Tracker{
public:

An
at

om
y

of
 a

 cl
as

s

Niklaus Berger – SMIPP – November 2011 – Slide 16

class keyword, class name
access modifier
Constructor
Method (functions in classes
are called methods) called
automatically upon creation
of an object of this class

Used to initialize whatever
needs to be initialised for
objects of this class

Constructor does not have
a return type and the same
name as the class

class Tracker{
public:
 Tracker();

An
at

om
y

of
 a

 cl
as

s

Niklaus Berger – SMIPP – November 2011 – Slide 17

class keyword, class name
access modifier
Constructor
Method (functions in classes
are called methods) called
automatically upon creation
of an object of this class

Used to initialize whatever
needs to be initialised for
objects of this class

Constructor does not have
a return type and the same
name as the class

Constructors can take
arguments

There can be more than one
constructor

class Tracker{
public:
 Tracker();
 Tracker(unsigned int nlayers);

An
at

om
y

of
 a

 cl
as

s

Niklaus Berger – SMIPP – November 2011 – Slide 18

class keyword, class name
access modifier
Constructor
Constructor
Destructor
Method to clean up when
the class goes out of scope

Same name as class, with a
tilde in front, no return value,
no arguments

For every “new” in the
constructor, there should be
a “delete” in the destructor

If you do not create con-
structors and destructors,
the compiler will add empty
ones for you

class Tracker{
public:
 Tracker();
 Tracker(unsigned int nlayers);
 ~Tracker();

An
at

om
y

of
 a

 cl
as

s

Niklaus Berger – SMIPP – November 2011 – Slide 19

class keyword, class name
access modifier
Constructor
Constructor
Destructor
Method
Any function inside the class
is called a method

They are not very different
from normal functions, but
will need an object of the
class to exist

Inside any member function,
there is a pointer called “this”
pointing to the calling class

class Tracker{
public:
 Tracker();
 Tracker(unsigned int nlayers);
 ~Tracker();
 void DoSomething();

An
at

om
y

of
 a

 cl
as

s

Niklaus Berger – SMIPP – November 2011 – Slide 20

class keyword, class name
access modifier
Constructor
Constructor
Destructor
Method
access modifier
data member
another data member
Variables inside a class are
called member variables or
simply members

They should always be
protected (abstraction and
encapsulation)

How to change them?

class Tracker{
public:
 Tracker();
 Tracker(unsigned int nlayers);
 ~Tracker();
 void DoSomething();
protected:
 unsigned int nlayers;
 double gasTemperature;

An
at

om
y

of
 a

 cl
as

s

Niklaus Berger – SMIPP – November 2011 – Slide 21

class keyword, class name
access modifier
Constructor
Constructor
Destructor
Method
Getter method
Setter method

access modifier
data member
another data member

Members are accessed
through getters and setters

They are often implemented
in the header (which is not
nice, but extremely common)

class Tracker{
public:
 Tracker();
 Tracker(unsigned int nlayers);
 ~Tracker();
 void DoSomething();
 double GetGasTemperature(){return gasTemperature;};
 void SetGasTemperature(double T)
 {gasTemperature =T;};
protected:
 unsigned int nlayers;
 double gasTemperature;
};

An
at

om
y

of
 a

 cl
as

s

Niklaus Berger – SMIPP – November 2011 – Slide 22

Your interface is a contract with the compiler
and the user about what your class is doing

You are restricting yourself on purpose•	

This is also where you put documentation •	
for the user

Especially if you make any assumptions on •	
inputs

Restrict yourself even further: Use “const” •	

Use the compiler to detect your errors be-
fore even running the program

Program defensively

Th
e

in
te

rfa
ce

 a
s a

 co
nt

ra
ct

Niklaus Berger – SMIPP – November 2011 – Slide 23

const has many uses, always
implies that something does
not change

DoSomething will not change
input
GetGasTemperature will not
change any class members
Changes a class member, so
no const

nlayers will not change

the integer stored at p1 will
not change
p2 will always point at the
same double (which can
change)

neither the pointer nor the
value will change

class Tracker{
public:
 Tracker();
 Tracker(unsigned int nlayers);
 ~Tracker();
 void DoSomething(vector<double> & const input);

 double GetGasTemperature() const
 {return gasTemperature;};
 void SetGasTemperature(double T)
 {gasTemperature =T;};
protected:
 const unsigned int nlayers;
 double gasTemperature;
 const double * p1;

 double * const p2;

 const double * const p3;
};

U
se

 co
ns

t!

Niklaus Berger – SMIPP – November 2011 – Slide 24

All const members have to be
initialized before any method
(including the constructor) is
run - do this just before the
constructor starts

In the .cpp file:

Tracker::Tracker(unsigned int _nlayers):
 nlayers(_nlayers){

 <Constructor Code>

}

U
se

 co
ns

t:
In

iti
ali

sa
tio

n

Niklaus Berger – SMIPP – November 2011 – Slide 25

At some point you will be
making assumptions - docu-
ment them and check them

If you know that nlayers has
to be positive, declare it as
unsigned

Allows the use of assert

Will stop the program and
print where this happened
if the condition evaluates to
false - not great error
handling, but much better
than a random crash

In the .h file
...
//Constructor: nlayers is the number of layers
// nlayers has to be larger than 2 and smaller than
// 100, otherwise some horrible things happen
Tracker(unsigned int nlayers);

In the .cpp file:
include <cassert>
...
Tracker::Tracker(unsigned int _nlayers):
 nlayers(_nlayers){

 assert(nlayers > 2 && nlayers < 100);

 <Constructor Code, where horrible things happen if
 nlayers has the wrong value>

}M
ak

in
g

an
d

ch
ec

kin
g

as
su

m
pt

io
ns

Niklaus Berger – SMIPP – November 2011 – Slide 26

Inheritance is basing one class on another; •	
Cow and Camel are Animals
TrackerHit and FibreHit are Spacepoints
etc.

Inheritance allows for easy code reuse•	

Inheritance allows for multiple •	
implementations of an interface

Inheritance breaks encapsulation•	

You can do a lot with inheritance, not all •	
of it is sensible...

As always: Think before you do...•	

W
ha

t a
bo

ut
 in

he
rit

an
ce

?

Niklaus Berger – SMIPP – November 2011 – Slide 27

Declare a base class as usual...

Declare the derived class
Inheritance comes with an
access modifier - shoud the
Methods of BaseClass be
visible to the users of
DerivedClass?

I can assign a DerivedClass to
a BaseClass because derived
Class is a BaseClass Object.

class BaseClass{
public:
 Baseclass();
 ~Baseclass();
 SomeMethod();
protected:
 double someMember;
};

class DerivedClass: public BaseClass {
public:
 DerivedClass();
 ~DerivedClass();
};

In the main function:

BaseClass * myObject = new DerivedClass();
myObject->SomeMethod();

In
he

rit
an

ce
 in

 co
de

Niklaus Berger – SMIPP – November 2011 – Slide 28

Declare a base class as usual...

Declare the derived class
Inheritance comes with an
access modifier - shoud the
Methods of BaseClass be
visible to the users of
DerivedClass?

I can assign a DerivedClass to
a BaseClass because derived
Class is a BaseClass Object.
This will not work!

class BaseClass{
public:
 Baseclass();
 ~Baseclass();
 SomeMethod();
protected:
 double someMember;
};

class DerivedClass: public BaseClass {
public:
 DerivedClass();
 ~DerivedClass();
 AnotherMethod();
};

In the main function:

BaseClass * myObject = new DerivedClass();
myObject->SomeMethod();

myObject->AnotherMethod();

In
he

rit
an

ce
 in

 co
de

Niklaus Berger – SMIPP – November 2011 – Slide 29

A base class object

A derived object, pointer to A

A derived object; pointer to A

What is the output?

class A{
public:
 A();
 virtual ~A();
 virtual Do()
 {cout << A;};
};

class B: public A{
public:
 B();
 ~B();
 Do()
 {cout << B;};
};

class C: public A{
public:
 C();
 ~C();
 Do()
 {cout << C;};
};

Vi
rtu

al
fu

nc
tio

ns A * a = new A();

A * b = new B();

A * c = new C();

a->Do();

b->Do();

c->Do();

Use the virtual keyword
in the base class and
C++ will use the right
Do() function

If your class has virtual
functions, it should also
have a virtual destructor
(otherwise bad things
may happen down the
line)

Niklaus Berger – SMIPP – November 2011 – Slide 30

A base class object

A derived object, pointer to A

A derived object; pointer to A

What is the output?

The runtime knows which
function to call

This works via the “Virtual
Function Table”

What if I do not want to write
an implementation of Do() for
A?

class A{
public:
 A();
 virtual ~A();
 virtual Do()
 {cout << “A”;};
};

class B: public A{
public:
 B();
 ~B();
 Do()
 {cout << “B”;};
};

class C: public A{
public:
 C();
 ~C();
 Do()
 {cout << “C”;};
};

Vi
rtu

al
fu

nc
tio

ns A * a = new A();

A * b = new B();

A * c = new C();

a->Do();

b->Do();

c->Do();

> ABC

Use the virtual keyword
in the base class and
C++ will use the right
Do() function

If your class has virtual
functions, it should also
have a virtual destructor
(otherwise bad things
may happen down the
line)

Niklaus Berger – SMIPP – November 2011 – Slide 31

This will now fail - A is now an
“abstract base class”

This is a great tool for
specifying interfaces

We will use this in the
exercises...

class A{
public:
 A();
 virtual ~A();
 virtual Do()=0;
};

class B: public A{
public:
 B();
 ~B();
 Do()
 {cout << “B”;};
};

class C: public A{
public:
 C();
 ~C();
 Do()
 {cout << “C”;};
};

Vi
rtu

al
fu

nc
tio

ns A * a = new A();

A * b = new B();

A * c = new C();

b->Do();

c->Do();

> BC

No implementation of
Do() for A;
A::Do() is a purely virtual
function

Niklaus Berger – SMIPP – November 2011 – Slide 32

Assume the base class con-
structor requires an argument

We would like to feed that
through from the B
constructor - how to
implement?

You can explicitly call the
constructor of the base class
just before the derived con-
structor starts

class A{
public:
 A(int n);
 virtual ~A();
 virtual Do()=0;
};

class B: public A{
public:
 B(int n);
 ~B();
 Do()
 {cout << “B”;};
};

B implementation:

B::B(int n):A(n){
 <whatever else needs to be done>
}

In
iti

ali
zin

g
th

e
ba

se
 cl

as
s

Niklaus Berger – SMIPP – November 2011 – Slide 33

Some care has to be taken whenever objects
are copied or assigned

Usually you do not actually need to copy •	
and assign them, hand around a pointer
instead

The compiler will per default copy/assign •	
all member variables (a shallow copy) -
this is fine if there are no pointers...

If you need to copy things that are •	
pointed to, you have to provide a deep
copy yourself...

This is fairly advanced stuff - no need to
know this by heart, but need to know it is
around...Co

py
in

g
an

d
as

sig
ni

ng
 o

bj
ec

ts

Niklaus Berger – SMIPP – November 2011 – Slide 34

A class with a pointer
member

Create an object of class A
Name it

Assign it...

Name the new object

What will be the output?

class A{
public:
 A();
 ~A();
 SetName(string x){*name = x};
 string GetName() const {return *name};
protected:
 string * name;
};

Use case:

A myA;
myA.SetName(“Alice”);

A myOtherA = myA;

myOtherA.SetName(“Bob”);

cout << myA.GetName() << endl;

W
hy

 co
py

 co
ns

tru
ct

or
s a

nd
 su

ch

Niklaus Berger – SMIPP – November 2011 – Slide 35

A class with a pointer
member

Create an object of class A
Name it

Assign it...

Name the new object

What will be the output?

Not necessarily what you
want...

class A{
public:
 A(){new string;};
 ~A();
 SetName(string x){*name = x};
 string GetName() const {return *name};
protected:
 string * name;
};

Use case:

A myA;
myA.SetName(“Alice”);

A myOtherA = myA;

myOtherA.SetName(“Bob”);

cout << myA.GetName() << endl;

> “Bob”

W
hy

 co
py

 co
ns

tru
ct

or
s a

nd
 su

ch

Niklaus Berger – SMIPP – November 2011 – Slide 36

A class with a pointer
member

Copy constructor
Assignment operator

Copy constructor - do things
you would also do in con-
structor, then copy...

Assignment operator
Check for self-assignment
Copy what needs to be
copied

class A{
public:
 A(){name = new string();};
 A(const A& copy_from_me);
 A& operator= (A const& assign_from_me);
 ~A();
 SetName(string x){*name = x};
 string GetName() const {return *name};
protected:
 string * name;
};

Implementation:
A::A(const A& copy_from_me){
 name = new string();
 *name = copy_from_me.GetName();
}
A& A::operator= (A const& assign_from_me){
 if (this == &f) return *this;
 *name = assign_from_me.GetName();
 return *this;
 }

Co
py

 co
ns

tru
ct

or
s a

nd
 su

ch

Niklaus Berger – SMIPP – November 2011 – Slide 37

You want to make sure there is only one in-
stance of the random number generator

Make it a singleton!•	

This is an useful and frequent use of a •	
design pattern

How?•	

Si
ng

le
to

ns

Niklaus Berger – SMIPP – November 2011 – Slide 38

There is no public
constructor
The instance method is static,
i.e. independent of an in-
stance of MySingleton

Private constructor
Private copy constructor
Private assignment operators

Static creates something once
per class (as opposed to
once per object)

Other use: count objects of a
specific class

class MySingleton{
public:
 static MySingleton& Instance()
 {
 static MySingleton singleton;
 return singleton;
 };

// Other non-static member functions

private:
 MySingleton() {};
 CMySingleton(const CMySingleton&);
 CMySingleton& operator=(const CMySingleton&);

};Si
ng

le
to

n
im

pl
em

en
ta

tio
n

Niklaus Berger – SMIPP – November 2011 – Slide 39

Assume you create some
vector or matrix classes...

and you want to calculate

r = A v

is ok, but it would of course
be nicer, if you could write

You can, as C++ allows for
operator overloading, i.e de-
fining your own versions of +,
-, *, /, << etc. - we have
already seen the example for
=

Vector3 v;
Vector3 r;
Matrix3x3 b;

r = A.multiply(v);

r = A*v;

O
pe

ra
to

r o
ve

rlo
ad

in
g

Niklaus Berger – SMIPP – November 2011 – Slide 40

class Vector3{
public:
 Vector3;
 ~Vector3;
 Vector3& operator+=(const Vector3& rhs);
...
};

Start with the compound
assignment operators +=, -=,
*=, /=

Compound addition -
implementation will be similar
to the assignment operator
(with the addition added...)

O
pe

ra
to

r o
ve

rlo
ad

in
g:

 A
rit

hm
et

ic

Niklaus Berger – SMIPP – November 2011 – Slide 41

class Vector3{
public:
 Vector3;
 ~Vector3;
 Vector3 & operator+=(const Vector3& rhs);
 const Vector3 operator+(const Vector3& other);
...
};

Implementation:

const Vector3 Vector3::operator+(const Vector3
 &other) const {
 return Vector3(*this) += other;
}

Start with the compound
assignment operators +=, -=,
*=, /=

Now add the addition

Implementation then can
make use of the += operator

Exercise: What happens
here?

O
pe

ra
to

r o
ve

rlo
ad

in
g:

 A
rit

hm
et

ic

Niklaus Berger – SMIPP – November 2011 – Slide 42

The C++ standard library provides very well
written classes/templates for standard tasks
Use them!

Containers:•	

Vector (dynamic array) -
List (doubly linked list) -
Map (associative array) -
Set -
Queue and Stack -

Strings•	

Numerics•	

Complex numbers -
Valarrays (vector with math) -

Algorithms: Do things with containers, e.g. •	
for_each, sorting, searching...

U
se

 th
e

sta
nd

ar
d

lib
ra

ry
!

Niklaus Berger – SMIPP – November 2011 – Slide 43

Laws of nature also apply to code

2•	 nd Law of Thermodynamics:
Your code will get messier over time, if
you do nothing about it

Murphy’s Law: •	
If you can do it wrong, you will do it
wrong

Hofstadter’s Law: •	
It will take longer than you think, even if
you take into account Hofstadter’s Law

Fu
nd

am
en

ta
l L

aw
s

Niklaus Berger – SMIPP – November 2011 – Slide 44

The best code is the one you newer •	
write

The compiler is your friend•	

Program defensively•	

If you do not test it, it will not work•	G
en

er
ali

tie
s

I find that when someone’s taking time to do something right in the present,
they’re a perfectionist with no ability to prioritize, whereas when someone
took time to do something right in the past, they’re a master artisan of great
foresight. (http://www.xkcd.com/974/)

Make your code readable•	

Your time is the most expensive resource •	
(besides my time)

Doing it right will save you time in the •	
long run

Niklaus Berger – SMIPP – November 2011 – Slide 45

When collaborating:

Use clean, small interfaces•	

Do change them only in emergencies•	

Document what you do, this includes:•	

Documenting your interface - tell the user what your methods -
do - there are nice tools like Doxygen, that create nice docu-
ments from code
Documenting your assumptions -
Documenting your code such that a reader knows what your -
intentions where and why you do what you do

Use a source control system (we all like git, but this is often fixed •	
by the collaboration to cvs, svn etc.) - this is also very
useful for e.g. your thesis

Talk with your collaborators, do code reviews•	

Co
lla

bo
ra

tin
g

Niklaus Berger – SMIPP – November 2011 – Slide 46

You only become a better programmer by
actually programming

Write code•	

Get it to work•	

Have a thorough look at it - what would •	
you have done differently?

Do it differently!•	

This is the all important step: The technical
term is refactoring and it means making your
code nicer without changing the functionality

We all should do this much more often•	

You will get a feeling of when it is •	
needed... - this is called “code smell”

Pr
ac

tic
e

an
d

re
fa

ct
or

Niklaus Berger – SMIPP – November 2011 – Slide 47

Duplicated code: identical or very similar code exists in more than one location.•	

Long method: a method, function, or procedure that has grown too large.•	

Large class: a class that has grown too large. See God object.•	

Too many parameters: a long list of parameters in a procedure or function •	
make readability and code quality worse.

Feature envy: a class that uses methods of another class excessively.•	

Inappropriate intimacy: a class that has dependencies on implementation de-•	
tails of another class.

Refused bequest: a class that overrides a method of a base class in such a way •	
that the contract of the base class is not honored by the derived class.

Lazy class / Freeloader: a class that does too little.•	

Contrived complexity: forced usage of overly complicated design patterns •	
where simpler design would suffice.

Co
de

 S
m

el
l (

fro
m

 W
iki

pe
di

a)

Niklaus Berger – SMIPP – November 2011 – Slide 48

Co
de

 S
m

el
l (

fro
m

 W
iki

pe
di

a)
 co

nt
. Excessively long identifiers: in particular, the use of naming conventions to pro-•	

vide disambiguation that should be implicit in the software architecture.

Excessively short identifiers: the name of a variable should reflect its function •	
unless it’s obvious.

Excessive use of literals: these should be coded as named constants, to improve •	
readability and to avoid programming errors. Additionally, literals can and
should be externalized into resource files/scripts where possible, to facilitate
localization of software if it is intended to be deployed in different regions.

Niklaus Berger – SMIPP – November 2011 – Slide 49

More signs for a need to refactor:

You copy and paste blocks of code •	
longer than three lines

Relationships between classes stop •	
making semantic sense
(a histogram “is” a font)

Your class inheritance hierarchy does •	
hinder instead of help you

You need run-time type ID•	

You have to make too many assumptions•	

Using your code becomes awkward•	

Sy
m

pt
om

s f
or

 th
e

ne
ed

 to
 re

fa
ct

or

Niklaus Berger – SMIPP – November 2011 – Slide 50

Techniques that allow for more abstraction•	

 Encapsulate Field – force code to access the field with getter and setter methods -
Generalize Type – create more general types to allow for more code sharing -
Replace type-checking code -
Replace conditional with polymorphism -

Techniques for breaking code apart into more logical pieces•	

Extract Method, to turn part of a larger method into a new method. By breaking -
down code in smaller pieces, it is more easily understandable. This is also applicable
to functions.
Extract Class moves part of the code from an existing class into a new class. -

 Techniques for improving names and location of code•	

Move Method or Move Field – move to a more appropriate Class or source file -
Rename Method or Rename Field – changing the name into a new one that better -
reveals its purpose
Pull Up – move to a superclass -
Push Down – in OOP, move to a subclass -

Re
fa

ct
or

in
g

te
ch

ni
qu

es
 (W

iki
pe

di
a)

Niklaus Berger – SMIPP – November 2011 – Slide 51

Coding is a craft as many others

Knowing some basics helps•	

But only practice makes perfect •	

Producing working software in large
collaborations is an extremely difficult
problem

There is no one safe method•	

But we do it all the time in HEP•	

Most of us were never properly trained•	

Our software shows this •	
(but most commercial stuff is no better)

Try to be better! Code! Learn!

 And have some fun in the process...

N
o

Su
m

m
ar

y

http://xkcd.com/303/

