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Outline

This lecture:
● Short revision of:

● Probability density function
● Cumulative distribution function

● Functions of random variables
● Expectation values
● Covariance, correlation
● Error propagation

Next time:
● Catalog of pdf's
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Random variables

Typical example: throwing two dices
● Result of each “experiment”:

{11, 12, 13, 14, 15, 16, 21, 22, … , 63, 64, 65, 66}
● Random variable x = sum of dices

→ possible values (discrete!): x
i 
= 2, 3, 4, … , 11, 12

● Probability for each value  x
i

∑i
Px i=1

Cumulative distribution u(x): 
probability to observe x or smaller value
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Discrete and continuous

One more example: age of a rented car (x)

The histogram of probabilities can be described by a function f

f(x) is called probability density function.
The domain of f is the whole range of values which x can take.
We use it to calculate the probability of the given variable x to be in an 
interval [a,b]

f(x)

x x
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Discrete and continuous

Probability for the rental car to have age between 0 and 4 years:
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Probability density functions

Suppose outcome of experiment is continuous value x:

→ f(x) = probability density function (pdf)
With: 

Note:
● f(x) ≥ 0
● f(x) is NOT a probability ! It has dimension  1/x !

Px found in [x ,xdx ] = f x dx

∫−∞

∞
f xdx=1 Normalization

(x must be somewhere)
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Exercises

1. For what constant k is f(x)=ke−x a probability density function on [0,1]?

If f is any non-negative function with domain some interval 
(a,b), then the process of choosing a suitable constant k to 
make                               is called normalizing the function f

2. Suppose that you spin the dial shown in the figure so that it comes to 
rest at a random position. Model this with a suitable probability density 
function, and use it to find the probability that the dial will land 
somewhere between 5° and 300°. 

The  uniform density function on the interval [a,b] is the 
constant function defined by 

∫a

b
k f xdx = 1

f x  = 1
b−a
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Cumulative distribution function (cdf)

Given a pdf f(x'), probability to have outcome less then or equal to x, is:

∫−∞

x
f x 'dx ' = Fx Cumulative 

distribution function
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Cumulative distribution function (cdf)

∫
−∞

x
f x 'dx ' = Fx Cumulative distribution function

● F(x) is a continuously non-decreasing function
● F(-∞)= 0, F(∞)=1
● For well behaved distributions:

pdf : f x =
∂Fx
∂ x
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Exercise

1. Given the probability density function:

- compute the cdf F(x)
- what is the probability to find x > 1.5 ?
- what is the probability to find x in [0.5,1] ?

f x  = { |1-x|    for x in [0,2]
0         elsewhere

DONE
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Exercises

● T-Shirts The age (in years) of randomly chosen T-shirts in your 
wardrobe from last summer is distributed according to the density 
function f(x)=10/9x2 with 1≤x≤10. Find the probability that a randomly 
chosen T-shirt is between 2 and 8 years old. 

● The Doomsday Meteor The probability that a "doomsday 
meteor" will hit the earth in any given year and release a billion 
megatons or more of energy is on the order of 0.000 000 01. If X is the 
year in which a doomsday meteor hits the earth, then it may be 
modeled with an associated probability density function given by 
f(x)=ae−ax with a=0000 000 01.

(a) What is the probability that the earth will be hit by a doomsday meteor 
at least once during the next 100 years? (Give the answer correct to 2 
significant digits.) 

(b) What is the probability that the earth has been hit by a 
doomsday meteor at least once since the appearance of life (about 
4 billion years ago)? 
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Multivariate distributions

f(x,y)

The outcome of the experiment 
is characterized by more than 1 
quantity, e.g. by x and y 

Normalization:

PA∩B = f x , y dx dy

Joint pdf

∬ f x ,y dx dy = 1

∬ ...∫ f x1, x2,. .. xn dx1 dx2. ..dxn = 1
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Exercise

Let X and Y have the joint probability density function

Let A={(x,y): 0<x<1, 0<y<x}
Find the probability that (X,Y) falls in A.

f x ,y = 3
2

x21−y for−1x1, −1y1
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Marginal pdf's

From a multivariate distribution
f(x,y) dx dy

(e.g. scatter plot)
we might be in interested only in 
the pdf of ONE of the components 
(x or y, here)

→ projection of joint pdf onto 
individual axes

Marginal pdf

f x x  = ∫ f x , ydy

f y y = ∫ f x , ydx
Distribution of a single variable which is 
part of a multivariate distribution
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Conditional pdf 

Recall the conditional probability:

We define:

Bayes' theorem becomes:

Recall: A, B independent if 

Then: x, y independent if         f(x,y) = f
x
(x) f

y
(y)  

PB∣A  =
PA∩B

PA
=

f x , y dx dy
f x x dx

hy∣x  =
f x ,y
f x x

gx∣y  = f x , y
f y y

Conditional probability 
density functions

gx∣y  =
h y∣x  f x x 

f y y

PA∩B = PAPB
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Conditional pdf (2)

Example: joint pdf  f(x,y) is used to find the conditional pdf's
h(y|x

1
) and h(y|x

2
)

Basically treat some of the random variables as constant, then divide the 
joint pdf by the marginal pdf of those variables being held constant
→ so that what is left has the correct normalization  ∫hy∣x  dy = 1
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Exercise
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Functions of a random variable

A function of a random variable is itself a random variable.
Suppose x follows a pdf  f(x), consider a function a(x).
What is the pdf g(a)?

dS = region of x space for 
which a is in [a, a+da].

For one-variable case with 
unique inverse this is simply:

gada = ∫
dS

f x dx

gada = ∣∫x a

x ada
f x 'dx '∣ = ∫x a

x a∣dx
da∣da

f x ' dx ' ga = f x a∣dx
da∣



Statistical Methods, Lecture 3, October 24, 2011s.masciocchi@gsi.de 19

Functions without unique inverse

If inverse of a(x) not unique, 
include all dx intervals in dS 
which correspond to da:



Statistical Methods, Lecture 3, October 24, 2011s.masciocchi@gsi.de 20

Functions of more than one random variable

Consider the random variables 

And the function 

Its probability density function is:

dS = region of         space between (hyper)surfaces defined by:

 

x = x1, x2, ... , xn

ax

ga 'da ' = ∫ ...∫dS
f x1,. .. , xn dx1. ..dxn

x

ax = a ' , ax = a 'da'
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Example

Consider the random variables x, y>0, which follow the joint pdf f(x,y).
Consider the function z=xy. What is its pdf g(z)?

gzdz = ∫ ...∫dS
f x , ydx dy

= ∫0

∞
dx∫z /x

zdz /x
f x , ydy

gz  = ∫0

∞
f x ,

z
x
 dx

x

= ∫0

∞
f  z

y
, y dy

y

Mellin convolution
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More on transformation of variables

Consider a random vector                                 with joint pdf  f(   ).

Form n linearly independent functions 

for which the inverse functions                               exist.

The joint pdf of the vector of functions is g(   ) Is

where J is the Jacobian

determinant: 

x = x1, ... , xn x
y x  = y1x  , ... , ynx 

x1y  , ... , xn y

y

gy = ∣J∣f x
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Expectation value

Consider a continuous random variable  x  with pdf  f (x).  

Define  expectation (mean) value as

Notation (often):                    
                                                                ~ “centre of gravity” of pdf. 

For a function y(x) with pdf g(y), 

E [x ] = ∫ x f xdx

E [x ] = 

E[x] is NOT a 
function of x, it 
is rather a  
parameter of f(x)

E [y ] = ∫ y gydy = ∫ y x  f xdx (equivalent)
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Variance and standard deviation

Variance:

Notation: 

Standard deviation:   

V [x ] = E [x−E [x ]2] = E[x2]−2

V [x ] = 2

=2

μ

Same dimension as x
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Exercises

● Find the mean of the random variable X that has probability density 
function f given by:
f(x) = x2 / 3     for    -1<x<2  

● Suppose that X has the power distribution with parameter a > 1, which 
has density:

       f(x) = (a - 1)x-a        for x > 1

Show that: 

● Let the random variable x have the probability density function

E [x ] = {∞ , if 1a≤2
a−1
a−2

, if a2

f x  = {3x2, if 0≤x≤1
0,elsewhere Calculate its variance.
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Covariance and correlation

Define covariance cov[x,y] (also use matrix notation  V
xy

) as:

Can be written as:

Correlation coefficient (dimensionless) defined as:

cov [x , y ] = E [x − x y − y]

cov [x , y ] = E [xy ]−xy

xy = cov [x , y ]
x y

, −1≤xy≤1
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Correlation coefficient
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Independent variables

If x and y are independent, i.e.  f(x,y) = f
x
(x) f

y
(y), then:

Therefore: 

x and y are 'uncorrelated'

Note!! The converse is NOT always true!!!

E [xy ] = ∬ xy f x , y dx dy = xy

cov [x , y ] = 0
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Exercise

Let [x y]  be an  absolutely continuous random vector  with domain:

i.e. R
XY

 is the set of all couples (x,y) such that 0≤y≤2 and 0≤x≤y.

Let the joint probability density function of [x y]  be:

Compute the covariance between X  and Y. 

RXY = {x , y :0≤x≤y≤2}

f x ,y = {38 y , if x , y∈RXY

0 ,otherwise
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Error propagation

Suppose we measure a set of values        = (x
1
, ..., x

n
)

which follow some joint pdf          .

          might be not fully known. But we have the covariances:

V
ij
 = cov[x

i
,x

j
],  and the means                         (in practice only estimates)

  

Now consider a function

What is the variance of           ?  

Hard way: use joint pdf             to find the pdf  g(y) ,

Then from g(y) find 

Often NOT practical.          may not even be fully known ...     

x

f x 
f x 

 = E[x ]

y x .
y x 

f x 

V [y ] = E [y2]−E [y ]2

f x 
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Error propagation - 2

Expand             to the first order in a Taylor series about   

To find the variance V[y] we need E[y2] and E[y]:

y x  

y x  ≈ y   ∑
i=1

n
[ ∂ y
∂ x i

]
x=

xi−i

E [y x ] ≈ y  since E [x i−i]=0
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Error propagation - 3

Putting the ingredients together gives the variance of 

E [y2x ] ≈ y2  2y  ∑
i=1

n
[ ∂ y
∂x i

]
x=

E [x i−i]

 E [  ∑
i=1

n
[ ∂ y
∂ x i

]
x=

xi−i   ∑
j=1

n
[ ∂ y
∂ x j

]
x=

x j− j  ]

= y2   ∑
i , j=1

n
[ ∂ y
∂ xi

∂ y
∂ x j

]
x=

V ij

y x 

 y
2 ≈ ∑

i , j=1

n
[ ∂ y
∂ x i

∂y
∂x j

]
x=

V ij
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Error propagation - 4

If the x
i
 are uncorrelated, i.e.  V

ij
 = σ2

i
δ

ij
, then this becomes:

Similar for a set of m functions 

Or in matrix notation  U = A V AT,   where  

 y
2 ≈ ∑

i=1

n
[ ∂ y
∂ xi

]
x=

2

 i
2

y x  = y1x  , ... , ymx

Ukl = cov [yk , yl] ≈ ∑
i , j=1

n
[
∂ yk

∂ xi

∂ yl

∂ x j

]
x=

V ij

A ij = [
∂ yi

∂ x j

]
x=
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Error propagation - 5

These are the error propagation formulae: the 
covariances which summarize the “errors” in 
measurements of      , are propagated to the 
new quantities    

LIMITATION:

Exact only if           linear.

Approximation breaks down if function is 
nonlinear over a region comparable in size     
to the σ

i

N.B. We said nothing about the pdf of the x
i
 , 

e.g. it does not have to be Gaussian

x
y x 

y x 
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Error propagation: SPECIAL  CASES

That is, if the x
i
 are uncorrelated:

Add errors quadratically for the sum (or difference),
Add relative errors quadratically for product (or ratio)

y = x1  x2  y
2 = 1

2  2
2  2cov [x1, x2]

y = x1 x2 
y

2

y2
=

1
2

x1
2


2
2

x2
2
 2

cov [x1, x2]
x1 x2

correlations can change this completely...
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Error propagation – MORE SPECIAL

Consider   y =  x
1
 - x

2
  with:

Now suppose  ρ=1 (full correlation). Then:

i.e. for 100% correlation, the error in the difference goes to 0 !!

1 = 2 = 10, 1 = 2 = 1,  =
cov [x1, x2]

12

= 0

V [y ] = 12  12 = 2  y = 1.4

V [y ] = 12  12 − 2 = 0   y = 0
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Wrapping up lecture 3

● Probability density functions. Described by:
● Expectation values (mean, variance)
● Covariance
● Correlation

● Given a function of a random variable, we know how to find the 
variance of the function using error propagation

NEXT TIME:
● Examples of probability functions:

binomial, multinomial, Poisson, uniform, exponential, Gaussian 
● Central limit theorem

Chi-square, Cauchy, Landau
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