Statistical Methods in Particle Physics

Lecture 3

October 24, 2011

Silvia Masciocchi, GSI Darmstadt
s.masciocchi@gsi.de

Winter Semester 2011 / 12

Outline

This lecture:

- Short revision of:
- Probability density function
- Cumulative distribution function
- Functions of random variables
- Expectation values
- Covariance, correlation
- Error propagation

Next time:

- Catalog of pdf's

Random variables

Typical example: throwing two dices

- Result of each "experiment":
$\{11,12,13,14,15,16,21,22, \ldots, 63,64,65,66\}$
- Random variable $x=$ sum of dices
\rightarrow possible values (discrete!): $x_{i}=2,3,4, \ldots, 11,12$
- Probability for each value x_{i}

$\sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=1$

Cumulative distribution $\mathrm{u}(\mathrm{x})$: probability to observe x or smaller value

Discrete and continuous

One more example: age of a rented car (x)

Age (Years)	$0-1$	$1-2$	$2-3$	$3-4$	$4-5$	$5-6$	$6-7$
Probability	.10	.26	.28	.20	.11	.04	.01

The histogram of probabilities can be described by a function f

$f(x)$ is called probability density function.
The domain of f is the whole range of values which x can take.
We use it to calculate the probability of the given variable x to be in an interval [a,b]

Discrete and continuous

Probability for the rental car to have age between 0 and 4 years:

Probability density functions

Suppose outcome of experiment is continuous value x :

$$
\begin{gathered}
P(x \text { found in }[x, x+d x])=f(x) d x \\
\rightarrow f(x)=\text { probability density function (pdf) }
\end{gathered}
$$

With:

$$
\begin{array}{ll}
\int_{-\infty}^{\infty} f(x) d x=1 & \begin{array}{l}
\text { Normalization } \\
\text { (x must be somewhere) }
\end{array}
\end{array}
$$

Note:

- $f(x) \geq 0$
- $f(x)$ is NOT a probability ! It has dimension $1 / x$!

Exercises

1. For what constant k is $f(x)=k e^{-x}$ a probability density function on $[0,1]$?

If f is any non-negative function with domain some interval (a, b), then the process of choosing a suitable constant k to make $\int_{a}^{b} k f(x) d x=1$ is called normalizing the function f
2. Suppose that you spin the dial shown in the figure so that it comes to rest at a random position. Model this with a suitable probability density function, and use it to find the probability that the dial will land somewhere between 5° and 300°.

The uniform density function on the interval $[a, b]$ is the constant function defined by $f(x)=\frac{1}{b-a}$

Cumulative distribution function (cdf)

Given a pdf $f\left(x^{\prime}\right)$, probability to have outcome less then or equal to x, is:

$$
\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}=F(x)
$$

Cumulative
distribution function

Cumulative distribution function (cdf)

$$
\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}=F(x)
$$
 Cumulative distribution function

- $F(x)$ is a continuously non-decreasing function
- $F(-\infty)=0, F(\infty)=1$
- For well behaved distributions:

$$
\operatorname{pdf}: \quad f(x)=\frac{\partial F(x)}{\partial x}
$$

Exercise

1. Given the probability density function:

$$
f(x)= \begin{cases}|1-x| & \text { for } x \text { in }[0,2] \\ 0 & \text { elsewhere }\end{cases}
$$

- compute the cdf $\mathrm{F}(\mathrm{x})$
- what is the probability to find $x>1.5$?
- what is the probability to find x in $[0.5,1]$?

DONE

- T-Shirts The age (in years) of randomly chosen T-shirts in your wardrobe from last summer is distributed according to the density function $f(x)=10 / 9 x^{2}$ with $1 \leq x \leq 10$. Find the probability that a randomly chosen T -shirt is between 2 and 8 years old.
- The Doomsday Meteor The probability that a "doomsday meteor" will hit the earth in any given year and release a billion megatons or more of energy is on the order of 0.00000001 . If X is the year in which a doomsday meteor hits the earth, then it may be modeled with an associated probability density function given by $f(x)=a e^{-a x}$ with $a=000000001$.
(a) What is the probability that the earth will be hit by a doomsday meteor at least once during the next 100 years? (Give the answer correct to 2 significant digits.)
(b) What is the probability that the earth has been hit by a doomsday meteor at least once since the appearance of life (about 4 billion years ago)?

Multivariate distributions

$\mathrm{f}(\mathrm{x}, \mathrm{y})$

The outcome of the experiment is characterized by more than 1 quantity, e.g. by x and y

$$
P(A \cap B)=f(x, y) d x d y
$$

Joint pdf

Normalization:

$$
\begin{aligned}
& \iint f(x, y) d x d y=1 \\
& \iint \ldots \int f\left(x_{1}, x_{2, .} . . x_{n}\right) d x_{1} d x_{2 . .} d x_{n}=1
\end{aligned}
$$

Exercise

Let X and Y have the joint probability density function

$$
\begin{aligned}
& \qquad f(x, y)=\frac{3}{2} x^{2}(1-y) \quad \text { for }-1<x<1,-1<y<1 \\
& \text { Let } A=\{(x, y) \text { : } 0<x<1,0<y<x\} \\
& \text { Find the probability that }(X, Y) \text { falls in } A \text {. }
\end{aligned}
$$

Marginal pdf's

From a multivariate distribution

$$
f(x, y) d x d y
$$

(e.g. scatter plot) we might be in interested only in the pdf of ONE of the components (x or y , here)
\rightarrow projection of joint pdf onto individual axes Marginal pdf

$$
\begin{aligned}
f_{x}(x) & =\int f(x, y) d y \\
f_{y}(y) & =\int f(x, y) d x
\end{aligned}
$$

Distribution of a single variable which is part of a multivariate distribution

Conditional pdf

Recall the conditional probability:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{f(x, y) d x d y}{f_{x}(x) d x}
$$

We define:

$$
\begin{aligned}
& h(y \mid x)=\frac{f(x, y)}{f_{x}(x)} \\
& g(x \mid y)=\frac{f(x, y)}{f_{y}(y)}
\end{aligned}
$$

Conditional probability density functions

Bayes' theorem becomes: $\quad g(x \mid y)=\frac{h(y \mid x) f_{x}(x)}{f_{y}(y)}$
Recall: A, B independent if

$$
P(A \cap B)=P(A) P(B)
$$

Then: x, y independent if $\quad f(x, y)=f_{x}(x) f_{y}(y)$

Conditional pdf (2)

Example: joint pdf $f(x, y)$ is used to find the conditional pdf's

$$
\mathrm{h}\left(\mathrm{y} \mid \mathrm{x}_{1}\right) \text { and } \mathrm{h}\left(\mathrm{y} \mid \mathrm{x}_{2}\right)
$$

Basically treat some of the random variables as constant, then divide the joint pdf by the marginal pdf of those variables being held constant \rightarrow so that what is left has the correct normalization $\int h(y \mid x) d y=1$

Exercise

A soda machine has a random amount Y_{2} gallons of soda at the beginning of the day and dispenses Y_{1} gallons over the course of the day (which must be less than or equal to Y_{2}). The two variables have the following joint density:

$$
f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{l}
\frac{1}{2}, 0 \leq y_{1} \leq y_{2} \leq 2 \\
0 \text { elsewhere }
\end{array}\right.
$$

Find the conditional density of Y_{1} given $\mathrm{Y}_{2}=\mathrm{y}_{2}$ and the probability that less than $1 / 2$ gallon will be sold if the machine has 1.5 gallon at the start of the day.

Functions of a random variable

A function of a random variable is itself a random variable.
Suppose x follows a pdf $f(x)$, consider a function $a(x)$.
What is the pdf $\mathrm{g}(\mathrm{a})$?

$$
g(a) d a=\int_{d S} f(x) d x
$$

dS = region of x space for which a is in [a, a+da].

For one-variable case with unique inverse this is simply:

$g(a) d a=\left|\int_{x(a)}^{x(a+d a)} f\left(x^{\prime}\right) d x^{\prime}\right|=\int_{x(a)}^{\left.x(a)+\frac{d x}{d a} \right\rvert\, d a} f\left(x^{\prime}\right) d x^{\prime} \quad g(a)=f(x(a))\left|\frac{d x}{d a}\right|$

Functions without unique inverse

If inverse of $a(x)$ not unique, include all dx intervals in dS which correspond to da:

Example: $a=x^{2}, \quad x= \pm \sqrt{a}, \quad d x= \pm \frac{d a}{2 \sqrt{a}}$

$g(a) d a=\int_{d S} f(x) d x$
$d S=\left[\sqrt{a}, \sqrt{a}+\frac{d a}{2 \sqrt{a}}\right] \cup\left[-\sqrt{a}-\frac{d a}{2 \sqrt{a}},-\sqrt{a}\right]$
$g(a)=\frac{f(\sqrt{a})}{2 \sqrt{a}}+\frac{f(-\sqrt{a})}{2 \sqrt{a}}$

Functions of more than one random variable

Consider the random variables $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
And the function $\quad a(\vec{x})$

Its probability density function is:

$$
g\left(a^{\prime}\right) d a^{\prime}=\int \ldots \int_{d S} f\left(x_{1, .} . ., x_{n}\right) d x_{1 .} . . d x_{n}
$$

$d S=$ region of $\quad \vec{x}$ space between (hyper)surfaces defined by:

$$
a(\vec{x})=a^{\prime}, a(\vec{x})=a^{\prime}+d a^{\prime}
$$

Example

Consider the random variables $x, y>0$, which follow the joint $p d f f(x, y)$. Consider the function $z=x y$. What is its pdf $g(z)$?

$$
\begin{aligned}
g(z) d z & =\int \ldots \int_{d S} f(x, y) d x d y \\
& =\int_{0}^{\infty} d x \int_{z / x}^{(z+d z) / x} f(x, y) d y \\
g(z) & =\int_{0}^{\infty} f\left(x, \frac{z}{x}\right) \frac{d x}{x} \\
& =\int_{0}^{\infty} f\left(\frac{z}{y}, y\right) \frac{d y}{y}
\end{aligned}
$$

Mellin convolution

More on transformation of variables

Consider a random vector $\vec{x}=\left(x_{1}, \cdots, x_{n}\right)$ with joint pdf $f(\vec{x})$.
Form n linearly independent functions $\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{n}(\vec{x})\right)$ for which the inverse functions $x_{1}(\vec{y}), \ldots, x_{n}(\vec{y})$ exist.

The joint pdf of the vector of functions is $g(\vec{y})$ Is

$$
g(\vec{y})=|J| f(\vec{x})
$$

where J is the Jacobian
determinant:

$$
J=\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{n}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdots & \frac{\partial x_{2}}{\partial y_{n}} \\
\vdots & & & \vdots \\
& & \cdots & \frac{\partial x_{n}}{\partial y_{n}}
\end{array}\right|
$$

Expectation value

Consider a continuous random variable x with pdf $f(x)$.
Define expectation (mean) value as

$$
E[x]=\int x f(x) d x
$$

$\mathrm{E}[\mathrm{x}]$ is NOT a function of x, it is rather a parameter of $f(x)$

Notation (often):

$$
\mathrm{E}[\mathrm{x}]=\mu \quad \sim \text { "centre of gravity" of pdf. }
$$

For a function $\mathrm{y}(\mathrm{x})$ with $\operatorname{pdf} \mathrm{g}(\mathrm{y})$,

$$
E[y]=\int y g(y) d y=\int y(x) f(x) d x
$$

(equivalent)

Variance and standard deviation

Variance:

$$
\mathrm{V}[\mathrm{x}]=\mathrm{E}\left[(\mathrm{x}-\mathrm{E}[\mathrm{x}])^{2}\right]=\mathrm{E}\left[\mathrm{x}^{\top}\right]-\mu^{\curlyvee}
$$

Notation: $\quad \mathrm{V}[\mathrm{x}]=\sigma^{2}$
Standard deviation: $\sigma=\sqrt{\sigma^{2}} \quad$ Same dimension as x

Exercises

- Find the mean of the random variable X that has probability density function f given by:
$f(x)=x^{2} / 3$ for $-1<x<2$
- Suppose that X has the power distribution with parameter $\mathrm{a}>1$, which has density:

$$
f(x)=(a-1) x^{-a} \quad \text { for } x>1
$$

Show that:

$$
E[x]=\left\{\begin{array}{l}
\infty, \text { if } 1<a \leq 2 \\
\frac{a-1}{a-2}, \text { if } a>2
\end{array}\right.
$$

- Let the random variable x have the probability density function $f(x)=\left\{\begin{array}{c}3 x^{2} \text { if } 0 \leq x \leq 1 \\ 0, \text { elsewhere }\end{array}\right.$

Calculate its variance.

Covariance and correlation

Define covariance $\operatorname{cov}[x, y]$ (also use matrix notation $V_{x y}$) as:

$$
\operatorname{cov}[\mathrm{x}, \mathrm{y}]=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)\right]
$$

Can be written as:

$$
\operatorname{cov}[\mathrm{x}, \mathrm{y}]=\mathrm{E}[\mathrm{xy}]-\mu_{\mathrm{x}} \mu_{\mathrm{y}}
$$

Correlation coefficient (dimensionless) defined as:

$$
\rho_{\mathrm{xy}}=\frac{\operatorname{cov}[\mathrm{x}, \mathrm{y}]}{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}, \quad-1 \leq \rho_{\mathrm{xy}} \leq+1
$$

Correlation coefficient

$\rho=0.75$

$$
\rho=-0.75
$$

$$
\rho=0.25
$$

Independent variables

If x and y are independent, i.e. $f(x, y)=f_{x}(x) f_{y}(y)$, then:

$$
E[x y]=\iint x y f(x, y) d x d y=\mu_{x} \mu_{y}
$$

Therefore:

$$
\operatorname{cov}[x, y]=0
$$

x and y are 'uncorrelated'

Note!! The converse is NOT always true!!!

Exercise

Let $[\mathrm{xy}$] be an absolutely continuous random vector with domain:

$$
R_{X Y}=\{(x, y): 0 \leq x \leq y \leq 2\}
$$

i.e. $R_{x y}$ is the set of all couples (x, y) such that $0 \leq y \leq 2$ and $0 \leq x \leq y$. Let the joint probability density function of $[x y]$ be:

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{3}{8} y, & \text { if }(x, y) \in R_{X Y} \\
0 & , \text { otherwise }
\end{array}\right.
$$

Compute the covariance between X and Y .

Error propagation

Suppose we measure a set of values $\overrightarrow{\mathrm{x}}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
which follow some joint pdf $f(\vec{x})$.
$f(\vec{x})$ might be not fully known. But we have the covariances:
$\mathrm{V}_{\mathrm{ij}}=\operatorname{cov}\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right]$, and the means $\vec{\mu}=\mathrm{E}[\overrightarrow{\mathrm{x}}] \quad$ (in practice only estimates)

Now consider a function $\mathrm{y}(\overrightarrow{\mathrm{x}})$.
What is the variance of $y(\vec{x})$?
Hard way: use joint pdf $f(\vec{x})$ to find the pdf $g(y)$,
Then from $g(y)$ find

$$
V[y]=E\left[y^{2}\right]-(E[y])^{2}
$$

Often NOT practical. $f(\vec{x})$ may not even be fully known ...

Error propagation - 2

Expand $\mathbf{y}(\overrightarrow{\mathrm{x}})$ to the first order in a Taylor series about $\vec{\mu}$

$$
\mathrm{y}(\overrightarrow{\mathrm{x}}) \approx \mathrm{y}(\vec{\mu})+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{i}}}\right]_{\overrightarrow{\mathrm{x}}=\vec{\mu}}\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)
$$

To find the variance $V[y]$ we need $E\left[y^{2}\right]$ and $E[y]$:

$$
\mathrm{E}[\mathrm{y}(\overrightarrow{\mathrm{x}})] \approx \mathrm{y}(\vec{\mu}) \quad \text { since } \quad \mathrm{E}\left[\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right]=0
$$

Error propagation - 3

$$
\begin{gathered}
\mathrm{E}\left[\mathrm{y}^{2}(\overrightarrow{\mathrm{x}})\right] \approx \mathrm{y}^{2}(\vec{\mu})+2 \mathrm{y}(\vec{\mu}) \sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{i}}}\right]_{\overrightarrow{\mathrm{x}}=\vec{\mu}} \mathrm{E}\left[\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right] \\
+\mathrm{E}\left[\left(\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\partial \mathrm{y}^{2}}{\partial \mathrm{x}_{\mathrm{i}}}\right]_{\overrightarrow{\mathrm{x}}=\vec{\mu}}\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)\right)\left(\sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{j}}}\right]_{\overrightarrow{\mathrm{x}}=\vec{\mu}}\left(\mathrm{x}_{\mathrm{j}}-\mu_{\mathrm{j}}\right)\right)\right] \\
=\mathrm{y}^{2}(\vec{\mu})+\sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}}\left[\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{i}}} \frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{j}}}\right]_{\overrightarrow{\mathrm{x}}=\vec{\mu}} V_{\mathrm{ij}}
\end{gathered}
$$

Putting the ingredients together gives the variance of $y(\vec{x})$

$$
\sigma_{y}^{2} \approx \sum_{i, j=1}^{\mathrm{n}}\left[\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{i}}} \frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{j}}}\right]_{\overrightarrow{\mathrm{x}}=\vec{\mu}} \mathrm{V}_{\mathrm{ij}}
$$

Error propagation - 4

If the x_{i} are uncorrelated, i.e. $\mathrm{V}_{\mathrm{ij}}=\sigma_{i}^{2} \delta_{\mathrm{ij}}$, then this becomes:

$$
\sigma_{\mathrm{y}}^{2} \approx \sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{i}}}\right]_{\overrightarrow{\mathrm{x}}=\vec{\mu}}^{2} \sigma_{\mathrm{i}}^{2}
$$

Similar for a set of m functions $\quad \vec{y}(\vec{x})=\left(y_{1}(\vec{x}), \ldots, y_{m}(\vec{x})\right)$

$$
\mathrm{U}_{\mathrm{kl}}=\operatorname{cov}\left[\mathrm{y}_{\mathrm{k}}, \mathrm{y}_{1}\right] \approx \sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}}\left[\frac{\partial \mathrm{y}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{i}}} \frac{\partial \mathrm{y}_{\mathrm{l}}}{\partial \mathrm{x}_{\mathrm{j}}}\right] \mathrm{V}_{\mathrm{x}=\vec{\mu}} \mathrm{V}_{\mathrm{ij}}
$$

Or in matrix notation $U=A \vee A^{\top}$, where $A_{i j}=\left[\frac{\partial y_{i}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}$

Error propagation - 5

These are the error propagation formulae: the covariances which summarize the "errors" in measurements of \vec{x}, are propagated to the new quantities $\overrightarrow{\mathrm{y}}(\overrightarrow{\mathrm{x}})$

LIMITATION:

Exact only if $\vec{y}(\vec{x})$ linear.
Approximation breaks down if function is nonlinear over a region comparable in size to the σ_{i}
N.B. We said nothing about the pdf of the x_{i},

e.g. it does not have to be Gaussian

Error propagation: SPECIAL CASES

$$
\begin{aligned}
& \mathrm{y}=\mathrm{x}_{1}+\mathrm{x}_{2} \rightarrow \sigma_{\mathrm{y}}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+2 \operatorname{cov}\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \\
& \mathrm{y}=\mathrm{x}_{1} \mathrm{x}_{2} \rightarrow \frac{\sigma_{\mathrm{y}}^{2}}{\mathrm{y}^{2}}=\frac{\sigma_{1}^{2}}{\mathrm{x}_{1}^{2}}+\frac{\sigma_{2}^{2}}{\mathrm{x}_{2}^{2}}+2 \frac{\operatorname{cov}\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]}{\mathrm{x}_{1} \mathrm{x}_{2}}
\end{aligned}
$$

That is, if the x_{i} are uncorrelated:
Add errors quadratically for the sum (or difference), Add relative errors quadratically for product (or ratio)
correlations can change this completely...

Error propagation - MORE SPECIAL

Consider $\mathrm{y}=\mathrm{x}_{1}-\mathrm{x}_{2}$ with:

$$
\begin{gathered}
\mu_{1}=\mu_{2}=10, \quad \sigma_{1}=\sigma_{2}=1, \quad \rho=\frac{\operatorname{cov}\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]}{\sigma_{1} \sigma_{2}}=0 \\
\mathrm{~V}[\mathrm{y}]=1^{2}+1^{2}=2 \rightarrow \sigma_{\mathrm{y}}=1.4
\end{gathered}
$$

Now suppose $\rho=1$ (full correlation). Then:

$$
\mathrm{V}[\mathrm{y}]=1^{2}+1^{2}-2=0 \rightarrow \sigma_{y}=0
$$

i.e. for 100% correlation, the error in the difference goes to 0 !!

Wrapping up lecture 3

- Probability density functions. Described by:
- Expectation values (mean, variance)
- Covariance
- Correlation
- Given a function of a random variable, we know how to find the variance of the function using error propagation

NEXT TIME:

- Examples of probability functions:
binomial, multinomial, Poisson, uniform, exponential, Gaussian
- Central limit theorem

Chi-square, Cauchy, Landau

