Statistical Methods in Particle Physics

October 24, 2011

Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de

Winter Semester 2011 / 12

This lecture:

- Short revision of:
 - Probability density function
 - Cumulative distribution function
- Functions of random variables
- Expectation values
- Covariance, correlation
- Error propagation

Next time:

Catalog of pdf's

Typical example: throwing two dices

- Result of each "experiment": {11, 12, 13, 14, 15, 16, 21, 22, ..., 63, 64, 65, 66}
- Random variable x = sum of dices

 \rightarrow possible values (discrete!): x_i = 2, 3, 4, ..., 11, 12

• Probability for each value x_i

One more example: age of a rented car (x)

Age (Years)	0-1	1-2	2-3	3-4	4-5	5-6	6-7
Probability	.10	.26	.28	.20	.11	.04	.01

The histogram of probabilities can be described by a function f

f(x) is called **probability density function**.

The domain of f is the whole range of values which x can take. We use it to calculate the probability of the given variable x to be in an interval [a,b]

Probability for the rental car to have age between 0 and 4 years:

Suppose outcome of experiment is **continuous** value x:

$$P(x \text{ found in } [x, x+dx]) = f(x)dx$$

\rightarrow f(x) = probability density function (pdf)

$$\int_{-\infty}^{\infty} f(x) dx = 1$$
 Normalization
(x must be somewhere)

Note:

With:

- f(x) ≥ 0
- f(x) is NOT a probability ! It has dimension 1/x !

1. For what constant k is $f(x)=ke^{-x}$ a probability density function on [0,1]?

If f is any non-negative function with domain some interval (a,b), then the process of choosing a suitable constant k to make $\int_{a}^{b} k f(x) dx = 1$ is called **normalizing** the function f

2. Suppose that you spin the dial shown in the figure so that it comes to rest at a random position. Model this with a suitable probability density function, and use it to find the probability that the dial will land somewhere between 5° and 300°.

The uniform density function on the interval [a,b] is the constant function defined by $f(x) = \frac{1}{b-a}$

A

Given a pdf f(x'), probability to have outcome less then or equal to x, is:

$$\int_{-\infty}^{x} f(x') dx' = F(x)$$

Cumulative distribution function

Cumulative distribution function (cdf)

- F(x) is a continuously non-decreasing function
- F(-∞)= 0, F(∞)=1
- For well behaved distributions:

pdf:
$$f(x) = \frac{\partial F(x)}{\partial x}$$

1. Given the probability density function:

$$f(x) = \begin{cases} |1-x| & \text{for } x \text{ in } [0,2] \\ 0 & \text{elsewhere} \end{cases}$$

- compute the cdf F(x)
- what is the probability to find x > 1.5?
- what is the probability to find x in [0.5,1]?

- T-Shirts The age (in years) of randomly chosen T-shirts in your wardrobe from last summer is distributed according to the density function f(x)=10/9x² with 1≤x≤10. Find the probability that a randomly chosen T-shirt is between 2 and 8 years old.
- The Doomsday Meteor The probability that a "doomsday meteor" will hit the earth in any given year and release a billion megatons or more of energy is on the order of 0.000 000 01. If X is the year in which a doomsday meteor hits the earth, then it may be modeled with an associated probability density function given by f(x)=ae^{-ax} with a=0000 000 01.

(a) What is the probability that the earth will be hit by a doomsday meteor at least once during the next 100 years? (Give the answer correct to 2 significant digits.)

(b) What is the probability that the earth has been hit by a doomsday meteor at least once since the appearance of life (about 4 billion years ago)?

The outcome of the experiment is characterized by more than 1 quantity, e.g. by x and y

$$P(A \cap B) = f(x, y) dx dy$$
Joint pdf

Normalization:

$$\iint f(x, y) dx dy = 1$$

$$\iint \dots \int f(x_{1}, x_{2,.} \dots x_{n}) dx_{1} dx$$

Let X and Y have the joint probability density function

$$f(x,y) = \frac{3}{2}x^2(1-y)$$
 for $-1 < x < 1, -1 < y < 1$

Let $A=\{(x,y): 0 \le x \le 1, 0 \le y \le x\}$ Find the probability that (X,Y) falls in A.

Marginal pdf's

From a multivariate distribution f(x,y) dx dy(e.g. scatter plot) we might be in interested only in the pdf of ONE of the components (x or y, here)

→ projection of joint pdf onto individual axes Marginal pdf

$$f_{x}(x) = \int f(x,y)dy$$
$$f_{y}(y) = \int f(x,y)dx$$

Distribution of a single variable which is part of a multivariate distribution

10

R

0.1

0 L

2

х

Conditional pdf

Recall the conditional probability:

$$\mathsf{P}(\mathsf{B}|\mathsf{A}) = \frac{\mathsf{P}(\mathsf{A} \cap \mathsf{B})}{\mathsf{P}(\mathsf{A})} = \frac{\mathsf{f}(\mathsf{x},\mathsf{y}) \, \mathsf{d}\mathsf{x} \, \mathsf{d}\mathsf{y}}{\mathsf{f}_{\mathsf{x}}(\mathsf{x}) \mathsf{d}\mathsf{x}}$$

We define:

$$h(\mathbf{y}|\mathbf{x}) = \frac{f(\mathbf{x}, \mathbf{y})}{f_{\mathbf{x}}(\mathbf{x})}$$
$$g(\mathbf{x}|\mathbf{y}) = \frac{f(\mathbf{x}, \mathbf{y})}{f_{\mathbf{y}}(\mathbf{y})}$$

Conditional probability density functions

Bayes' theorem becomes:
$$g(x|y) = \frac{h(y|x) f_x(x)}{f_y(y)}$$

Recall: A, B independent if

Then: x, y independent if

$$f(x,y) = f_x(x) f_y(y)$$

 $P(A \cap B) = P(A)P(B)$

Example: joint pdf f(x,y) is used to find the conditional pdf's $h(y|x_1)$ and $h(y|x_2)$

Basically treat some of the random variables as constant, then divide the joint pdf by the marginal pdf of those variables being held constant \rightarrow so that what is left has the correct normalization $\int h(y|x) dy = 1$

A soda machine has a random amount Y_2 gallons of soda at the beginning of the day and dispenses Y_1 gallons over the course of the day (which must be less than or equal to Y_2). The two variables have the following joint density:

$$f(y_1, y_2) = \begin{cases} \frac{1}{2}, 0 \le y_1 \le y_2 \le 2\\ 0 \text{ elsewhere} \end{cases}$$

Find the conditional density of Y_1 given $Y_2=y_2$ and the probability that less than $\frac{1}{2}$ gallon will be sold if the machine has 1.5 gallon at the start of the day.

A function of a random variable is itself a random variable.

Suppose x follows a pdf f(x), consider a function a(x). What is the pdf g(a)?

$$g(a)da = \int_{dS} f(x)dx$$

dS = region of x space for which a is in [a, a+da].

For one-variable case with unique inverse this is simply:

$$g(a)da = \left| \int_{x(a)}^{x(a+da)} f(x')dx' \right| = \int_{x(a)}^{x(a)+\left|\frac{dx}{da}\right|^{da}} f(x')dx' \qquad g(a) = f(x(a)) \left|\frac{dx}{da}\right|^{da}$$

If inverse of a(x) not unique, include all dx intervals in dS which correspond to da:

Example:
$$a = x^2$$
, $x = \pm \sqrt{a}$, $dx = \pm \frac{da}{2\sqrt{a}}$

$$g(a)\,da = \int_{dS} f(x)\,dx$$

$$dS = \left[\sqrt{a}, \sqrt{a} + \frac{da}{2\sqrt{a}}\right] \cup \left[-\sqrt{a} - \frac{da}{2\sqrt{a}}, -\sqrt{a}\right]$$

$$g(a) = \frac{f(\sqrt{a})}{2\sqrt{a}} + \frac{f(-\sqrt{a})}{2\sqrt{a}}$$

Consider the random variables $\vec{x} = (x_{1,}x_{2,}...,x_{n})$

And the function $a(\vec{x})$

Its probability density function is:

$$g(a')da' = \int ... \int_{dS} f(x_{1,.}.., x_n) dx_{1.}.. dx_n$$

dS = region of \vec{x} space between (hyper)surfaces defined by:

$$a(\vec{x}) = a', a(\vec{x}) = a'+da'$$

Consider the random variables x, y>0, which follow the joint pdf f(x,y). Consider the function z=xy. What is its pdf g(z)?

Consider a random vector $\vec{x} = (x_{1,}...,x_{n})$ with joint pdf f(\vec{x}). Form n linearly independent functions $\vec{y}(\vec{x}) = (y_{1}(\vec{x}),...,y_{n}(\vec{x}))$ for which the inverse functions $x_{1}(\vec{y}),...,x_{n}(\vec{y})$ exist.

The joint pdf of the vector of functions is $g(\vec{y})$ is

$$g(\vec{y}) = |J|f(\vec{x})$$

where J is the Jacobian determinant:

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \cdots & \frac{\partial x_2}{\partial y_n} \\ \vdots & & \vdots \\ & & & \ddots & \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$

Consider a continuous random variable x with pdf f (x). Define **expectation (mean) value** as

$$\mathsf{E}[\mathsf{x}] = \int \mathsf{x} \mathsf{f}(\mathsf{x}) \mathsf{d} \mathsf{x}$$

E[x] is NOT a function of x, it is rather a parameter of f(x)

Notation (often):

$$E[x] = \mu$$
 ~ "centre of gravity" of pdf.

For a function y(x) with pdf g(y),

$$\mathsf{E}[\mathsf{y}] = \int \mathsf{y}\mathsf{g}(\mathsf{y})\mathsf{d}\mathsf{y} = \int \mathsf{y}(\mathsf{x})\mathsf{f}(\mathsf{x})\mathsf{d}\mathsf{x} \qquad \text{(equivalent)}$$

Variance and standard deviation

Variance:

$$V[x] = E[(x-E[x])^{2}] = E[x^{'}]-\mu^{'}$$

Notation:
$$V[x] = \sigma^2$$

Standard deviation: $\sigma = \sqrt{\sigma^2}$

Same dimension as x

• Find the mean of the random variable X that has probability density function f given by:

 $f(x) = x^2 / 3$ for -1 < x < 2

 Suppose that X has the power distribution with parameter a > 1, which has density:

$$f(x) = (a - 1)x^{-a}$$
 for x > 1

Show that:

$$E[x] = \begin{cases} \infty, \text{if } 1 < a \le 2\\ \frac{a-1}{a-2}, \text{if } a > 2 \end{cases}$$

• Let the random variable x have the probability density function $f(x) = \begin{cases} 3x^{2}, & \text{if } 0 \le x \le 1 \\ 0. & \text{elsewhere} \end{cases}$ Calculate its variance.

- 4--

Define **covariance** cov[x,y] (also use matrix notation V_{xy}) as:

$$cov[x,y] = E[(x - \mu_x)(y - \mu_y)]$$

Can be written as:

$$cov[x,y] = E[xy] - \mu_x \mu_y$$

Correlation coefficient (dimensionless) defined as:

$$\rho_{xy} = \frac{\operatorname{cov}[x, y]}{\sigma_x \sigma_y}, \qquad -1 \le \rho_{xy} \le +1$$

Correlation coefficient

у

10

у

s.masciocchi@gsi.de

Statistical Methods, Lecture 3, October 24, 2011

If x and y are independent, i.e. $f(x,y) = f_x(x) f_y(y)$, then:

$$\mathsf{E}[\mathsf{x}\mathsf{y}] = \iint \mathsf{x}\mathsf{y}\mathsf{f}(\mathsf{x},\mathsf{y}) \,\mathsf{d}\mathsf{x} \,\mathsf{d}\mathsf{y} = \mu_{\mathsf{x}}\mu_{\mathsf{y}}$$

Therefore: cov[x, y] = 0

x and y are 'uncorrelated'

Note!! The converse is NOT always true!!!

Let [x y] be an absolutely continuous random vector with domain:

$$R_{XY} = \{(x, y): 0 \le x \le y \le 2\}$$

i.e. R_{xy} is the set of all couples (x,y) such that $0 \le y \le 2$ and $0 \le x \le y$. Let the joint probability density function of [x y] be:

$$f(x,y) = \begin{cases} \frac{3}{8}y, if(x,y) \in R_{XY} \\ 0, otherwise \end{cases}$$

Compute the covariance between X and Y.

Suppose we measure a set of values $\vec{x} = (x_1, ..., x_n)$

which follow some joint pdf $f(\vec{x})$.

 $f(\vec{x})$ might be not fully known. But we have the covariances:

 $V_{ij} = cov[x_i, x_j]$, and the means $\vec{\mu} = E[\vec{x}]$ (in practice only estimates)

Now consider a function $y(\vec{x})$.

What is the variance of $y(\vec{x})$?

Hard way: use joint pdf $f(\vec{x})$ to find the pdf g(y),

Then from g(y) find

$$V[y] = E[y^2] - (E[y])^2$$

Often NOT practical. $f(\vec{x})$ may not even be fully known ...

Expand $y(\vec{x})$ to the first order in a Taylor series about $\vec{\mu}$

$$\mathbf{y}(\mathbf{\vec{x}}) \approx \mathbf{y}(\mathbf{\vec{\mu}}) + \sum_{i=1}^{n} \left[\frac{\partial \mathbf{y}}{\partial \mathbf{x}_{i}}\right]_{\mathbf{\vec{x}}=\mathbf{\vec{\mu}}} (\mathbf{x}_{i} - \mu_{i})$$

To find the variance V[y] we need $E[y^2]$ and E[y]:

$$E[y(\vec{x})] \approx y(\vec{\mu})$$
 since $E[x_i - \mu_i] = 0$

Error propagation - 3

$$E[y^{2}(\vec{x})] \approx y^{2}(\vec{\mu}) + 2y(\vec{\mu}) \sum_{i=1}^{n} \left[\frac{\partial y}{\partial x_{i}}\right] E[x_{i} - \mu_{i}]$$

$$+ E\left[\left(\sum_{i=1}^{n} \left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}} (x_{i} - \mu_{i})\right) \left(\sum_{j=1}^{n} \left[\frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} (x_{j} - \mu_{j})\right)\right]$$

$$= y^{2}(\vec{\mu}) + \sum_{i,j=1}^{n} \left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right] V_{ij}$$

Putting the ingredients together gives the variance of $y(\vec{x})$

$$\sigma_{y}^{2} \approx \sum_{i,j=1}^{n} \left[\frac{\partial y}{\partial x_{i}}\frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{ij}$$

s.masciocchi@gsi.de

If the x_i are uncorrelated, i.e. $V_{ij} = \sigma_i^2 \delta_{ij}$, then this becomes:

$$\sigma_{y}^{2} \approx \sum_{i=1}^{n} \left[\frac{\partial y}{\partial x_{i}}\right]^{2}_{\vec{x}=\vec{\mu}} \sigma_{i}^{2}$$

Similar for a set of m functions $\vec{y}(\vec{x}) = (y_1(\vec{x}), ..., y_m(\vec{x}))$

$$U_{kl} = cov[y_k, y_l] \approx \sum_{i,j=1}^{n} \left[\frac{\partial y_k}{\partial x_i} \frac{\partial y_l}{\partial x_j}\right]_{\vec{x}=\vec{\mu}} V_{ij}$$

Or in matrix notation
$$U = A V A^T$$
, where $A_{ij} = \left[\frac{\partial y_i}{\partial x_j}\right]_{\vec{x} = \vec{\mu}}$

These are the error propagation formulae: the covariances which summarize the "errors" in measurements of \vec{x} , are propagated to the new quantities $\vec{y}(\vec{x})$

LIMITATION:

Exact only if $\vec{y}(\vec{x})$ linear.

Approximation breaks down if function is nonlinear over a region comparable in size to the $\sigma_{\rm i}$

N.B. We said nothing about the pdf of the \boldsymbol{x}_{i} , e.g. it does not have to be Gaussian

Error propagation: SPECIAL CASES

$$y = x_1 + x_2 \rightarrow \sigma_y^2 = \sigma_1^2 + \sigma_2^2 + 2cov[x_1, x_2]$$

$$y = x_1 x_2 \rightarrow \frac{\sigma_y^2}{y^2} = \frac{\sigma_1^2}{x_1^2} + \frac{\sigma_2^2}{x_2^2} + 2\frac{\text{cov}[x_1, x_2]}{x_1 x_2}$$

That is, **if the x**, **are uncorrelated**:

Add errors quadratically for the sum (or difference), Add relative errors quadratically for product (or ratio)

correlations can change this completely...

Consider $y = x_1 - x_2$ with:

$$\mu_1 = \mu_2 = 10, \quad \sigma_1 = \sigma_2 = 1, \quad \rho = \frac{\text{cov}[x_{1,}x_2]}{\sigma_1 \sigma_2} = 0$$

 $V[y] = 1^2 + 1^2 = 2 \quad \rightarrow \quad \sigma_y = 1.4$

Now suppose $\rho=1$ (full correlation). Then:

$$V[y] = 1^2 + 1^2 - 2 = 0 \rightarrow \sigma_y = 0$$

i.e. for 100% correlation, the error in the difference goes to 0 !!

Wrapping up lecture 3

- Probability density functions. Described by:
 - Expectation values (mean, variance)
 - Covariance
 - Correlation
- Given a function of a random variable, we know how to find the variance of the function using error propagation

NEXT TIME:

- Examples of probability functions: binomial, multinomial, Poisson, uniform, exponential, Gaussian
 - Central limit theorem

Chi-square, Cauchy, Landau