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Outline

Interval estimation
e The standard deviation as statistical error

e (Classical confidence intervals
e For a parameter with a Gaussian distributed estimator
e For the mean of a Poisson distribution

e Limits near a physical boundary

Discussion:
e Statistical and systematic errors
e Blind analysis
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The standard deviation |

We have seen methods for estimating properties of probability
density functions (pdf's) and ways to obtain the variance of the
estimators.

Suppose the result of an experiment is an estimate of a certain parameter:
n observations of random variable x
Hypothesis for the pdf f(x;0), 8 unknown parameter
From x,, ..., x_ build the function 8(x. ,..,x,) e.g. max. likelihood

N

— Determine the estimator éobs (value actually observed) and its
standard deviation 7,

The variance (or equivalently its square root, the standard deviation) of the
estimator is a measure of how widely the estimates would be distributed if
the experiment were to be repeated many times with the same number of

observations per experiment

Standard deviation o — statistical error or standard error
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Statistical error .
)

In reporting the measurement of O as:

O ops = T
one means that repeated estimates all based on n observations of x
would be distributed according to a pdf g(0) centered around some true
value 6 and true standard deviation, which are estimated to be
0 and 0,

obs

e For most practical estimators, the sample pdf g becomes
approximately Gaussian in the large sample limit

e |f more than one parameter is estimated, the pdf becomes a
multidimensional Gaussian characterized by a covariance matrix V

e The standard deviation, and in case the covariance matrix, tell
everything how repeated estimates would be distributed
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Confidence interval .
)

If the form of the estimator pdf g (@) IS not Gaussian, then the 'standard
deviation' definition of statistical error bars does not hold!

In such cases, one usually reports confidence intervals

— an interval reflecting the statistical uncertainty of the parameter
(very often: asymmetric errors)

Such confidence intervals should:

e communicate objectively the result of the experiment;

e have a given probability of containing the true parameter;

e provide information needed to draw conclusions about the parameter
possibly incorporating stated prior beliefs.

Special case: estimate limits of parameters near a physically excluded
region (e.g. an observed event rate consistent with zero)
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A A

Consider the estimator € for a parameter 8, and an estimate 0,
The sampling distribution for 8 is g(0;0)

N\

1 | —

By means of e.g. an analytical ges)
calculation or a Monte Carlo G’
study, one knows g, which contains

the true value 6 as parameter.
That is, the real value of 6 is not 05

known, but for a given value of 6,
one knows what the pdf of 0
would be

[an}
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From 9(6;6) one can determine the > Ve U
value u_ such that there is a fixed /\
probability a to observe 0 > u, : 05 T : :
A B o
x = P(0=u_(0)) N e
o0 N N 0
— J.u[x(e) g(0;0)do 0 1 2 3 4

And the value Ve such that there is the probability 3 to observe 0 < Vg !

VB(Q) A A

B=PO<v,0)=["" g(6;0)do

— 00
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See how the functions u _(8) and 5

v,(0) can be as a function of the 0
true value of 6 4
The region between the two 3

curves is called the

confidence belt — 2

The probability for the estimator
to be inside the belt, regardless ] |
of the true value of 9, is: 0 1 5 3 4 5

P(v,(0) <0 <u,(0) = 1—a-5 0
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For the value of the estimator
actually found in the experiment 0, 5

find the points where that intersects 4
the confidence belt @

this determines the points aand b

The interval [a,b] is called a

confidence interval at a 0

confidence level (or coverage
probability) of 1—a-3
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The interval [a,b] is called a

confidence interval at a ;
confidence level of 1—-a- 0
Means that: ’
If the experiment were repeated many 3
times, the interval [a,b] would include

the true value of the parameter 0 in a 5

fraction 1 — a — 3 of the experiments

Also: 1 — a — 3 is the probability for the
interval to cover the true value of the

parameter

- +d
Quote as: 0.

where c =60 — a,

d=b -0 are usually displayed as error bars
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e Sometimes ONLY specify a OR
— ohe-sided confidence interval or limit

That is, the value a represents a lower limit on the parameter 68 such
that a < 8 with the probability 1 —a

Similarly, b represents an upper limit on 6 suchthat P(B<b)=1-3

e One often chooses a = 3 = y/2 giving a so-called central
confidence interval with probability 1 —vy
A central confidence interval does not necessarily mean that a and b

are equidistant from the estimated @ , but only that the probabilities «
and B are equal

In high energy physics, the error convention is to take the
(see later)
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Confidence intervals for a parameter 8 can be found by defining a test
of the hypothesized value 0 (do this for all 8):

e Specify values of the data that are 'disfavoured' by 8 (critical region)
such that:

P(data in critical region) <y
for a specified y, e.g. 0.05 or 0.1
e |nvert the test to define a confidence interval as:

set of O values that would NOT be rejected in a test of size y (the
confidence level is 1-y )

The interval will cover the true value of 8 with probability = 1 — .

Equivalent to a confidence belt construction. The confidence belt is
acceptance region of a test

Statistical Methods, Lecture 12, January 16, 2012 12



Equivalently we can consider a significance test for each hypothesized
value of 8, resulting in a p-value, p,

If p, <, then reject ©

The confidence interval at CL = 1 — y consists of those values of 6 which
are not rejected !

E.g. un upper limit on 8 is the greatest value for which p, 2y

In practice find by setting p,=y and solve for ©
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x = fu o g(0;6)dé = [. g(6;a)do
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NOTE !l the interval is random, the true 6 is an unknown constant

Often report interval [a,b] as

A A

9_+f where c=0—-a, d=b-0

So, what does 6 = 80.25"5]  mean?
e |t does NOT mean: P(80.00<8<80.56)=1-a-3

e But rather: repeat the experiment many times with the same sample
size, construct interval according to the same prescription each time,
in 1 —a — B of experiments, interval will cover 0
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Confidence interval for Gaussian

Consider a Gaussian distributed estimator:

A 1 —(0 — 0)°
g(6;0) = = exp >
with mean 8 and standard deviation 0
It has the cumulative distribution of 0 :
\ - é' - 9 2 A
G(0;6,0,) f = exp ( 2)d9'

This is a commonly occurring situation since, according to the central
limit theorem, any estimator that is a linear function of a sum of random
variables becomes Gaussian in the large sample limit.
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Confidence interval for Gaussian

To find the confidence interval for 6, solve for a and b:

. 0. —a
« = 1-G(0ya,0,) = 1— &= )
U,
. 0. —b
B = G(Oy:b,0,) = &=
oy

where G is the cumulative distribution for 8 and

X 1 —x"/2 - :
d(x) = f —— € dx' is the cumulative for the standard
P N2m Gaussian
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Confidence interval for Gaussian

Solving for a and b:

1 = quantile of standard Gaussian (inverse of cumulative distribution,
use ROOT)

— & '(1—«a),® '(1—B)  give how many standard deviations
a and b are from 6
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9(6:0)

Quantiles of the standard Gaussian

When we have a Gaussian estimator, to have a central confidence
interval or a one-sided limit, we need to know the quantiles shown here:

\ a=BN
(

E D_E E‘; UB T T T
S- a) S (b)
o (y2) @ (1—y2) @ (1-a)
04 5 j 4 04 i ]
02 - 2 V2 02 | o
U / 1 U | |
4 2 0 2 4 4 2 0 2 4
X X
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Quantiles of the standard Gaussian

Typically, take a round number for the quantile (NUMBER OF SIGMAS !i!)

central one-sided
11 —-7v/2) 1= |D27'1—-0a) 1—a
1 0.6827 1 0.8413
2 0.9544 2 0.9772
3 0.9973 3 0.9987

Or a round number for the coverage probability:

central one-sided
l—y ' 1—-7/2) |1 —a @71 —a)
0.90 1.645 0.90 1.282
0.95 1.960 0.95 1.645
0.99 2.076 0.99 2.326

Statistical Methods, Lecture 12, January 16, 2012 20



Gaussian estimator: summary

000000

For the conventional 68.3% central confidence interval, one has:

With
e (1 y/2) = 1

i.e. a1 o error bar.
This results in the simple prescription:

[a,b] —_ [éobS—O'é,é +O_é]

The final result of the measurement of 6 is then simply reported as:

eobs + O,
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Suppose n is Poisson distributed, the estimator; v = n
Estimate is Vops = Ngps

P(n;v)

I
|
D
>
|
o
-

Minor problem: for fixed a, B, the confidence belt does not exist for all v
Just solve: 1

foraandb
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Confidence interval for mean of Poisson distr

Use the trick:

D> —eV = 1-F.(2v;ny=2(ny, + 1))

obs

where F .. is the cumulative chi-square distribution for n, degrees of

freedom.
Find: 1 1,
a = > F..(c;ng =2n,,)
b = % F (1= B;ng=2(Nys + 1))

where F;g is the quantile of the chi-square distribution
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Confidence interval for mean of Poisson distr

An important case: n_ =0

0

bn —-b -
= Y B s e b= o
n=0 '

Calculate an upper limit at confidence level (1-B) = 95%

b = —1log(0.05) = 2996 ~ 3
Useful table:

lower limit a upper limit b
a=0.1 a=0.05 a=001|8=0.1 =005 8=0.01
0 - = - 2.30 3.00 461
0.105 0.051 0.010 3.89 4.74 6.64
0.532 0.355 0.149 5.32 6.30 8.41

1.74 1.37 0.823 7.99 9.15 11.60

1
2
3 1.10 (0.818 0.436 6.68 7.7 10.04
4
3

243 1.97 1.28 927  10.51 13.11



Often the purpose of an experiment is to search for a new effect, the
existence of which would imply that a certain parameter is not equal to
zero. For example, the existence of the Higgs.

If the data yield a value of the parameter significantly different from zero,
then the new effect has been , and the parameter's value and
a confidence interval to reflect its error are given as the result.

If, on the other hand, the data result in a fitted value of the parameter that
is consistent with zero, then the result of the experiment is reported by
giving an upper limit on the parameter (a similar situation occurs when
absence of the new effect corresponds to a parameter being large or
infinite; one then places a lower limit).

The procedure to set limits is very delicate and can present serious
difficulties (estimators which can take on values in the excluded region,
negative mass of a particle, negative number of events, etc).
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Consider the case of finding n = n_+ n_events where
n, events from known processes (background)
n_events from a new process (signal)

are Poisson random variables with means s and b.
Therefore n = n_+n, Is also Poisson distributed, with mean s+b

Assume b is known.

Suppose we are searching for evidence of the signal process, but the
number of events found is roughly equal to the expected number of
background events, e.g. b = 4.6 and we observe n  _ =5 events.

The evidence for the presence of signal events is not statistically
significant
— set an upper limit on the parameter s
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Upper limit for Poisson parameter

Find the hypothetical value of s such that there is a given small
probability, say y=0.05 to find as few events as we did or less:

nobs n
sS+b _(s4
y = P(n<n,,s,b) = ), ( n!) e oY

n=0

Solve numerically fors ='s |
This gives an upper limit on s at a confidence level of (1-y)

Example (see page before):
Suppose b =0 and we findn_ = 0. For (1-y) =0.95,s =3
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To solve for s, S, We can exploit the relation to the X  distribution
(see page 22)

o 12
1 —1, . S
S|O —_ EFXQ ((X,2n>_b é::_ 10
1 2
— —1 . —
Spp = 7 Fl (1= 8;2(n+1)) = b ? .
L
° 4
For low fluctuation of n, this can 2
give negative result for s | ;

i.e. confidence interval is empty
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Suppose for example b = 2.5 and we observe n = 0.
If we choose CL = 0.9, we find from the formula for S

s,, =-0.197 (CL = 0.90)

Physicist:
We already knew s = 0 before we started; cannot use negative upper
limit to report a result!

Statistician:
The interval is designed to cover the true value only 90% of the time:
This was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a physical
boundary!
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Expected limit fors =0

Physicist: | should have used CL = 0.95 — then s = 0.496
Even “better”: for CL = 0.917923 we get s = 10*!

Reality check: with b = 2.5, typical —
Poisson fluctuation in n is at least

V2.5=1.6
How can the limit be so low? -

Look at the mean limit for the no-signal |
hypothesis (s=0) (sensitivity) B
Distribution of 95% CL limits with / i ”

b =2.5and s = 0. Mean upper limit '(']' | 5' | '1'[']1' ’ “1'5' |
is 4.44 Sup
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Approximate confidence intervals from InL or chi2

Recall the trick to estimate o, if In L(0) is parabolic:
INL(6 +N ;) = InL,, — —

CLAIM: this still works even if In L is not parabolic, as an approximation

for the confidence interval.
l.e. use A N>
InL(0"7) = InL__ — >

X678 = chi2,, + N?
where N = &'(1 - y/2)

is the quantile of the standard Gaussian corresponding to the CL 1-y.
Forexample: N=1 — 1-y=0.683
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Approximate confidence intervals from InL or chi2

Exponential example (see lecture 10): take interval where In L is within
1/2 of the maximum — approximation of 68.3% confidence interval

= | | | |

~ T-At 1 4 Al

o - +

8 4t . 1
...................%... |ﬂg L"m

-45

0.5 1 15 2

Statistical Methods, Lecture 12, January 16, 2012 32



For the non classical cases ...
)

In many practical applications, estimators are Gaussian distributed (at
least approximately). In this case the confidence interval can be
determined easily.

Similarly is for estimators with a Poisson distribution.

But even in the other cases, a simple approximate technigue can be
applied using the likelihood function (or equivalently the  function).
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Discussion

e Statistical and systematic uncertainties

e Blind analysis

9(6:6)

05
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