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The usual start ...

Consider n independent observations of a random variable x:
               → sample of size n
Equivalently, take a single observation of an n-dimensional vector:

The x
i
 are independent  → the joint pdf for the sample is:

TASK: given a data sample, infer properties of f(x)
     → construct functions of the data to estimate various properties of f(x) 
         (like mean, variance)
Often, the form of f(x) is hypothesized: value of the parameter(s) is 
unknown!
     → given form of f(x;θ) and data sample, estimate θ

x = x1, ... , xn

fsample x = f x1 f x2 ... f xn
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Example of parameter(s) 

The parameters of a pdf are constants that characterize its shape.
For example: 

              Random variable              parameter  

Example: the exponential distribution 
describes the decay time of an unstable
particle measured in its rest frame:
θ = lifetime
      e.g.: neutron (udd)   881.5±1.5 s

              Λ (uds)    2.63±0.02 x 10-10 s
              Λ

c
 (udc)   2.00±0.02 x 10-13 s

f x ; = 1


e
−x /
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Parameter estimation

Suppose we have a  sample of observed values: 

We want to find some function of the data to estimate the parameter(s):
 
                                                                     Estimator written with a hat

We say: 
'Estimator'  for the function of                    . Statistic is used to estimate 
                  some property of a pdf. Notation: the hat
                             is a function of a (vector) random variable → it is itself         
                 a random variable, characterized by a pdf g(  ), mean variance …

'Estimate' for the value of the estimator with a particular data set.

x = x1, ... , xn

x1, ... , xn

 x

 x




Statistical Methods, Lecture 10, December 12, 2011         5

Estimators

How do we construct an estimator             ?

There is no golden rule on how 
to construct an estimator !! 

Construct estimators to satisfy (in general conflicting) criteria

First: require consistency:    

i.e. as size of sample increases, estimate converges to true value

 x

lim
n∞

 = 
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-

Properties of estimators

If we were to repeat the entire measurement, the estimates from each 
measurement would follow a pdf             :

We want small (or zero) bias (systematic error): 

  → average of repeated measurements should tend to true value 

And we want a small variance (statistical error):

  → small bias and variance are in general conflicting criteria

b = E[ ] − 

V [ ] =  
2

g  ;
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Properties of estimators - 2

For many estimators we will have:

Sometimes consider the mean squared error:

In general there is a trade-off between bias and variance.
Often require minimum variance among estimators with 0 bias.

  ∝ 1

n
b ∝ 1

n

MSE = V [ ]  b2
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Estimator for the mean (expectation value)

Parameter:
Sample: n measurements of x: 

Estimator:                                                        “sample mean”

Compute expectation value and variance of the estimator 

We find:

 = E[x ]

 = 1
n
∑
i=1

n

x i ≡ x

b = E [ ]− = 0

x1,... , xn

 DO !

  is an unbiased estimator for μ

if  = V [x ]  V [  ] =
2

n    =

n 
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Estimator for the variance

Parameter:

Estimator:                                                                      “sample variance”

We find:                                                                  factor n-1 makes this so

2 = V [x ]

2 = 1
n−1

∑
i=1

n

xi − x 2 ≡ s2

b = E [

2] − 2 = 0

V [2] = 1
n 4 − n−3

n−1
2

2
k = ∫ x−k f xdx

, where

No bias !
DO !

k-th central moment
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Example of estimator for mean
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Example of estimator for mean - 2
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The likelihood function

Suppose the entire result of an experiment (set of measurements) is a 
collection of numbers x, and suppose the joint pdf for the data x is a 
function that depends on a set of parameters θ:

Now evaluate this function with the data obtained and regard it as a 
function of the parameter(s). This is the 

likelihood function:

f x ;  

L    = f x ;   x constant

For θ close to true value, expect high probability of the data we got.
For θ far away from the true value, low probability to have observed 
what we did !
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Independent and identically distributed data

Consider n independent observations of x: 
where x follows f(x;θ). The joint pdf for the whole data sample is:

In this case the likelihood function is:

f x1 , ... , xn = ∏
i=1

n

f x i ;  

L  = ∏
i=1

n

f xi ;   x
i
 constant
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Maximum likelihood estimators

If the hypothesized θ is close to the true value, then we expect a high 
probability to get data like that which we actually found.

So we define the maximum likelihood (ML) estimator(s) to be the 
parameter value(s) for which the likelihood is maximum
       ML estimators not guaranteed to have any 'optimal' properties, but in 
       practice they are very good
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Maximum likelihood estimators

Define ML estimator       as the value of θ that maximizes L(θ).
We write the estimator as     with the hat, to distinguish from the true 
value θ, which may forever remain unknown.

For m parameters, usually find solution
by solving 

Sometimes L(θ) has more than one local maximum:
    → take the highest one

* no binning of data ('all information used')




1, ... ,
m

∂L
∂i

= 0 i=1,... ,m
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ML example: parameter of expenential pdf

Consider the exponential pdf:

And suppose we have i.i.d. data:

The likelihood function is

The value of τ for which L(τ) is maximum also gives the maximum value 
of its logarithm (the log-likelihood function):

f  t ; = 1


e
−t /

t1 , ... , tn

L  = ∏
i=1

n
1


e
−ti /

ln L = ∑
i=1

n

ln f  ti ; = ∑
i=1

n  ln
1

−

ti
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ML example: parameter of exponential pdf

Find its maximum by setting

Monte Carlo test:
     Generate 50 values
     using τ = 1:

We find the ML estimate:

∂ ln L
∂

= 0

  = 1
n
∑
i=1

n

ti

 = 1.062
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Functions of ML estimators

Suppose we had written the exponential pdf as 
i.e. we use                (decay constant).   What is the ML estimator for λ?

   For a function α(θ) of a parameter θ, it does not matter whether we        
   express L as a function of α or θ.

The ML estimator of a function α(θ) is simply

So for the decay constant we have: 

Caveat:      is biased, even though       is unbiased 
Can show:                                           (bias → 0, for n → ∞)

f  t ; =  e
−/ t

 = 1/

 =  

 = 1


=  1
n
∑
i=1

n

ti
−1

 

E [ ] =  n
n−1

SHOW
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ML example: parameters of Gaussian pdf 

Consider independent                     , with x
i
  ~  Gaussian  

The log likelihood function is:

x1, ... , xn
 ,2 unknown

f x ; ,2 = 1

22
e−x−2/22

lnL ,2 = ∑
i=1

n

ln f xi ; ,2

= ∑
i=1

n ln 1

2
 1

2
ln

1

2
−

x i−2

22 
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ML example: parameters of Gaussian pdf - 2

Set derivatives with respect to               to zero and solve:

We already know that the estimator for μ is unbiased (see slide 8).

But we find, however:                                              

so, the ML estimator for σ2 has a bias, but b → 0 for n → ∞.
Recall, however, that

is an unbiased estimator for the variance of ANY pdf. 

 ,2

 = 1
n
∑
i=1

n

x i

2 = 1

n
∑
i=1

n

xi−2

E [

2] = n−1

n
2

s2 = 1
n−1

∑
i=1

n

xi − 2
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Variance of estimator: analytic method

Having estimated our parameter we now need to report its “statistical 
error”, i.e. how widely distributed would estimates be if we were to repeat 
the entire measurement many times.

Recall the estimator for the mean of exponential: 
How wide is the pdf                   ?

The variance of       s n times smaller than the variance of t

 = 1
n
∑
i=1

n

ti
g  ; ,n
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Variance of estimator: analytic method

IMPORTANT :

                    are functions of the true (unknown) 
Estimate using:

Often given as STATISTICAL ERROR, e.g. 

Meaning: ML estimate for      is 1.062
               ML estimate for the σ of                    is 0.150 

If                  is Gaussian,                                  same as                       
“68% confidence interval” (more on this soon)

V [ ],   

  =

n

 ±   = 1.062 ± 0.150

g  ; ,n

g  ; ,n [  −   ,    ]
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Variance of estimators: Monte Carlo method

Sample variance of estimates gives:

Note distribution of estimates is roughly 
Gaussian (central limit theorem)  – 
(almost) always true for ML in large 
sample limit

  = 0.151

Often the form of                       not known explicitly.
→  simulate the entire experiment many times with a Monte Carlo program.

For the exponential example (slide 17), we had                 . Take it as “true”. 
Generate 1000 samples (experiments) of n=50 values. Compute     for each 
experiment and histogram:

 ,g  ; ,n

 = 1.062
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Variance of estimators from information 
inequality

A lower bound on the variance of ANY estimator (not just ML) is:

This is the Rao-Cramer-Frechet inequality (information inequality).
If equality is met,     is said to be efficient.

→ ML estimators are (almost always) efficient for large n,
Often assume this to be true and use RCF bound to estimate 

V [ ] ≥ 1  ∂b
∂ 

2
/E [−∂2 lnL

∂2 ]
Minimum Variance 
Bound (MVB)
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Variance of estimators from information 
inequality

Often the bias b is small, and equality either holds exactly or is a good 
approximation (e.g. large data sample limit). Then,

Estimate this using the 2nd derivative of lnL at its maximum (function of 
the true parameters):

V [ ] ≈ −1/E[ ∂2 lnL

∂2 ]

V [ ] = − ∂2 lnL

∂2 
−1

= 
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Variance of estimators: graphical method

Expand lnL(θ) about its maximum    :

First term is lnL
max

, second term is zero, third term use information 
inequality (assume equality):

→ to get         , change θ away from     until lnL decreases by 1/2

lnL  = lnL   [ ∂ lnL
∂ ]=

 −   1
2! [ ∂2 lnL

∂2 ]=
 − 2  ...

lnL  ≈ ln Lmax −
−2

2

2



i.e. lnL ±   ≈ lnLmax −
1
2
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n=50)

 = 1.062

 minus = 0.137

 plus = 0.165

  ≈  minus ≈  plus ≈ 0.15
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Wrapping up

● Estimators
● Estimators for mean, and variance

● The likelihood function
● Maximum likelihood estimators
● Examples: parameters of exponential and Gaussian pdfs

● Variance of ML estimators
● Difference methods:

● Analytic
● Monte Carlo
● The RCF bound
● Graphical method
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