Exercise 4: A tracking detector

N. Berger (nberger@physi.uni-heidelberg.de)

$$
31.10 .2011
$$

Please send your solutions to nberger@physi.uni-heidelberg.de until 7. 11. 2011, 12:00. Put your answers in an email (subject line SMIPP:Exercise04). Test macros and programs before sending them off...

1. Simulating a tracking detector In this exercise, we are going to simulate a simple particle tracking detector in 2D. Particles start at $x=0, y=$ 0 and propagate towards positive x. There are n thin layers of tracking stations at 2 cm intervals. Prepare a setup with ajustable n (start with $n=5$) where you propagate the track from layer to layer and store the position of each intersection in a TGraph object (use the SetPoint () method. Also generate a detector resopnse (a hit) at the intersection and store it in a TGraphErrors (setting the error to 0 for now). After traversing all layers, draw the both the TGraphErrors (with option "A*") and the TGraph (with option "L"), then fit the hits with a straight line (create a TF1 object with "[0]+[1]*x" as the formula and call TGraphErrors: Fit (TF1*). You can get the fit results via TF1::GetParameter (int index). Make sure they are what you expect.
2. Finite resolution In a real detector, hit positions are always measured with a finite resolution. Take your code from above and smear every hit in the detector plane (y) with a normal distribution with a σ of 2 mm (you can use TRandom3::Gaus(double mean, double sigma) for this). Fill the results into the TGraphError with the σ of the normal distribution as the error in y (use SetPointError(). Fit the TGraphError as above.
3. Tracker resolution Now skip the drawing part of your code and generate 1000 tracks, and fill the fit parameters into a histogram. What do you get? How does this change if you increase n ?
4. Multiple scattering A real detector will be made of a finite amount of material, leading to multiple scattering of particles in the detector. The precise simulation of multiple scattering is a very difficult problem, but the core of the angular distribution is well approximated by a normal distribution with a σ of

$$
\begin{equation*}
\sigma_{M S}=\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{\frac{x}{X_{0}}}\left(1+0.038 \ln \frac{x}{X_{0}}\right) \tag{1}
\end{equation*}
$$

where β is the fraction of the speed of light c of the particle speed, p the particle momentum, z the magnitude of its charge and $\frac{x}{X_{0}}$ the thickness of the detctor in radiation lenghts. Assume that for the particles and detector under consideration, $\sigma_{M S}$ is 0.05 radian. Again propagate your
track, this time also dicing a multiple scattering angle at every detector plane. What does this do to your resolution? To the n dependence of the resolution? (Attach one .C or .py file for the whole exercise (maybe you implement the detector as a class) and a few representative plots.)

