Lepton Flavour Violation Experiments

Niklaus Berger

Institute of Nuclear Physics, JGU Mainz

JGU

Cluster of Excellence Precision Physics, al Interactions and Structure of Matte

Heidelberg, 25.7.2016

Emmy Noether-Programm Deutsche

orschungsgemeinschaf DEG

Charged Lepton Flavour Violation

Lepton Flavour Violation!

Charged Lepton Flavour Violation?

Charged Lepton Flavour Violation?

Charged Lepton Flavour Violation?

LFV Muon Decays

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

Kinematics

 $\mu^+ \rightarrow e^+ e^- e^+$

- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$

Kinematics

- 2-body decay
- Monoenergetic e⁺, γ
- Back-to-back

Background

- Accidental background
- Radiative decay

Kinematics

 $\mu^{-}N \rightarrow e^{-}N$

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected Background
 - Decay in orbit
 - Antiprotons, pions, cosmics
 Accidental background

Kinematics

 $\mu^{+} \rightarrow$

3-body decay

 $e^+e^-e^+$

- Invariant mass constraint
- $\Sigma p_{i} = 0$ Background
 - Internal conversion decay

LFV Muon Decays: Experimental Situation

MEG (PSI) $B(\mu^+ \rightarrow e^+\gamma) < 4.2 \cdot 10^{-13}$ (2016) upgrading

SINDRUM II (PSI) $B(\mu^{-}Au \rightarrow e^{-}Au) < 7 \cdot 10^{-13}$ (2006) relative to nuclear capture SINDRUM (PSI) B($\mu^+ \rightarrow e^+e^-e^+$) < 1.0 \cdot 10⁻¹² (1988)

Why muons?

Easy to produce with intense proton beams: 10⁸ μ/s available > 10¹⁰ μ/s planned Polarized

Muons from PSI

Paul Scherrer Institute in Villigen, Switzerland

World's most intensive proton beam 2.2 mA at 590 MeV: 1.3 MW of beam power

Continuous beam 10⁸ µ/s available options for 10¹⁰ µ/s under study

Muons from Fermilab ...

- Re-use part of the Tevatron infrastructure
- Proton pulses every 1700 ns
- > $10^{10} \, \mu/s$

Project X

 (now Proton Improvement Plan-II)
 would give another
 2 orders of magnitude with a
 new powerful proton linac

... and J-PARC

 $10^{11} \mu$ /s from 8 GeV/c protons, pulsed

S. Nagamiya, Prog. Theor. Exp. Phys. (2012) 02B001

Very high intensity muon beams

A. Gaponenko, cLFV 2016

Instead of this

Do this

Solenoidal *B* field confines soft pions. Collect their muons. Mu2e: $> 10^{10} \mu^{-}$ /s from only 8 kW of protons!

Production target inside a solenoid

History of LFV experiments

(2008))

Searching for $\mu \rightarrow e\gamma$ with MEG

MEG Signal and background

- 2-body decay
- Monoenergetic e^+ , γ (53 MeV = $m_{\mu}/2$)
- Back-to-back
- Same time

MEG Signal and background

- 2-body decay
- $(53 \text{ MeV} = m_{_{\rm u}}/2)$
- Back-to-back
- Same time

- e⁺, γ energies somewhat off
- Monoenergetic e⁺, y
 Not exactly back-to-back

MEG Signal and background

- 2-body decay
- Monoenergetic e^+ , γ (53 MeV = $m_u/2$)
- Back-to-back
- Same time

- e^+ , γ energies somewhat off
- Not exactly back-to-back

- Not exactly in time
- Not exactly same vertex
- $e^{\scriptscriptstyle +}, \gamma$ energies somewhat off
- Not exactly back-to-back

The MEG Detector

J. Adam et al. EPJ C 73, 2365 (2013)

COBRA Magnet

Gradient field gives constant bending radius independent of

J. Adam et al. EPJ C 73, 2365 (2013)

How to know your detector works, if you (almost) never see a signal?
How to know your detector works, if you (almost) never see a signal?

Calibration

Table 1 The calibration tools of the MEG experiment.

Process		Energy	Main Purpose	Frequency
Cosmic rays	μ^{\pm} from atmospheric showers	Wide spectrum <i>O</i> (GeV)	LXe-DCH relative position	annually
			DCH alignment	
			TC energy and time offset calibration	
			LXe purity	on demand
Charge exchange	$\begin{array}{c} \pi^{-} \mathbf{p} \to \pi^{0} \mathbf{n} \\ \pi^{0} \to \gamma \gamma \end{array}$	55, 83, 129 MeV photons	LXe energy scale/resolution	annually
Radiative μ -decay	$\mu^+ \to e^+ \gamma \nu \bar{\nu}$	photons > 40 MeV,	LXe-TC relative timing	continuously
		positrons > 45 MeV	Normalisation	
Normal µ−decay	$\mu^+ \rightarrow e^+ \nu \bar{\nu}$	52.83 MeV end-point positrons	DCH energy scale/resolution	continuously
			DCH and target alignment	
			Normalisation	
Mott positrons	e^+ target $\rightarrow e^+$ target	$\approx 50 \text{ MeV}$ positrons	DCH energy scale/resolution	annually
			DCH alignment	
Proton accelerator	$^{7}\mathrm{Li}(\mathrm{p},\gamma)^{8}\mathrm{Be}$	14.8, 17.6 MeV photons	LXe uniformity/purity	weekly
	11 B(p, γ) 12 C	4.4, 11.6, 16.1 MeV photons	TC interbar/ LXe-TC timing	weekly
Neutron generator	58 Ni $(n, \gamma)^{59}$ Ni	9 MeV photons	LXe energy scale	weekly
Radioactive source	$^{241}\mathrm{Am}(\alpha,\gamma)^{237}\mathrm{Np}$	5.5 MeV α 's, 56 keV photons	LXe PMT calibration/purity	weekly
Radioactive source	${}^{9}\text{Be}(\alpha_{241}\text{Am}, n){}^{12}\text{C}^{\star}$ ${}^{12}\text{C}^{\star}(\gamma){}^{12}\text{C}$	4.4 MeV photons	LXe energy scale	on demand
LED			LXe PMT calibration	continuously

Muon decay as calibration tool

- Sharp edge in positron spectrum
- Strong angle-energy correlations

Pions as a calibration tool

Nuclear Reactions

- Separate proton accelerator
- . $^{7}\text{Li}(p,\gamma)^{8}\text{Be gives 17.6 MeV photons}$
- ¹¹Be(p,γ₁)¹²C* and ¹²C* → ¹²C γ₂
 4.4 and 11.6 MeV photons
 for photon timing and photon separation

Results

Guess the largest systematic...

Target deformation

- Simple plastic piece
- Position important for photon positron angle

MEG Results

- 2009-2013 data
- Blue: Signal PDF, given by detector resolution
- No signal seen
- Upper limit at 90% CL:

 $BR(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$

A. M. Baldini et al. arXiv:1605.05081 [hep-ex]

10⁻¹³

0

100

200

300

Accumulated DAQ days

Ryu Sawada, SUSY 2014

LXe Calorimeter

Higher resolutions and efficiency with higher granularity.

Target Thinner target Active target option

> **Muon Beam** More than twice intense beam

Drift chamber

Higher tracking performance with long single tracking volume **Tin**

Timing Counter

Higher time resolution with highly segmented detector

Radiative Decay Counter

Identify muon radiative-decays

MEG Upgrade - Calorimeter

- ~4000 VUV sensitive SiliconPMs on entry face (new development with Hamamatsu)
- Better position and energy resolution
- Better efficiency

MEG Upgrade - Drift Chamber

- New single volume drift chamber
- Lower Z gas mixture
- More space points per track
- Better rate capability
- Less material in front of timing counters

MEG Upgrade - Timing Counter

- Many small scintillators
- Read-out by SiliconPMs
- On average eight counters hit by track
- 30 ps timing resolution per track

Support structure

Plastic scintillator plate

~12 cm

SiPM

PCB

Plastic scintillator

~5mm

Ê

Ĵ

MEG II sensitivity projection

5×10^{-14} sensitivity in 3 years data taking

Starting 2017

Sensitivity prospect

Searching for $\mu \rightarrow e$ conversion with DeeMee, Mu2e, COMET

Conversion Signal and Background

• Single 105 MeV/c electron observed

Backgrounds:

Anything that can produce a 105 MeV/c electron

- Primary proton beam
- Decay in Orbit (DIO)
- Nuclear capture
- Cosmics

Beam induced background

- Proton beam produces pions, photons, (antiprotons) etc.
- Wait until things become better...

Deacy-in-orbit background

- Nuclear recoil allows for electron energies above $m_{\!\mu}^{}/2$
- Calculation by Czarnecki, Garcia i Tormo and Marciano, Phys. Rev. D84 (2011)
- Requires excellent momentum resolution

Experimental concept - DeeMee at J-PARC

Sensitivity - DeeMee

• Expect 2.1×10⁻¹⁴ single event sensitivity for one year running

Experimental layout - Mu2e at Fermilab

- Separate muon production and conversion target
- Not shown: cosmic ray veto and absorbers

Charge selection

Andrei Gaponenko, cLFV 2016

Mu2e Tracker

- Straw tubes in vacuum
- Outside of radius of Michel electrons

Mu2e CDR

Mu2e Cosmic Ray Background

 A cosmic muon track can look like a 105 MeV/c electron track A cosmic muon can decay, or knock out an electron from detector material

- 1 event per day without counter-measures
- Vetoing cosmic muons is crucial
- Aim for as much coverage as possible

Andrei Gaponenko, cLFV 2016

Mu2e Cosmic Ray Veto

Intense radiation field

- proton target
- O(10¹⁰) muon
 captures per
 second: n, γ, ...
- false vetoes (dead time)

- Optimized counter and shielding design using massive G4 and MARS simulations
- Four layers of scintillator counters
- Aluminum absorbers
- Veto will be applied offline

Experimental layout - COMET Phase I at J-PARC

Comet CDR

Curved solenoid

En

Y. Kuno

Drift chamber

0

Experimental layout - COMET Phase II

Conversion: Expected sensitivities

• Comet Phase I aims for ~ 3×10^{-15} start data taking 2018

Comet Phase II and Mu2e will start around 2020
 Sensitivities below 10⁻¹⁶

Other things to do...

Muonium-antimuonium oscillations

- Lepton flavour changes by two units...
- Need a controlled muonium beam

Cold muons from muonium

T. Mibe

Muonium production in aerogel

T. Mibe

1 Muonium in vacuum per 14 muon stops

```
3 GeV proton beam
( 333 uA)
Graphite target
(20 mm)
```

Surface muon beam (28 MeV/c, 4x10⁸/s)

1)

· Dold

Muonium Production (300 K ~ 25 meV⇒2.3 keV/c)

> Muon Linac (300 MeV/c)

Precision Magnet (3T, ~1 ppm local precision)

T. Mibe
J-PARC g-2 magnet

Development ongoing

Potential to match or exceed Fermilab precision

N. Saito

How to build a muonium oscillation experiment?

MACS at PSI

- Exciting times ahead in lepton flavour violation physics
- MEG aims for another order of magnitude for $\mu{\rightarrow}e\gamma$
- Comet I aims for two orders on $\mu \rightarrow e$ conversion
- Mu3e Phase I aims for two orders on $\mu \rightarrow eee$
- Mu2e/Comet II aim for < 10^{-16} for $\mu \rightarrow e$ conversion and Mu3e Phase II for < 10^{-16} for $\mu \rightarrow eee$
- Ideas for 10^{-18} are around

Backup Material

History of LFV experiments

(2008))

Lepton flavour violating T-decays

arXiv:1412.7515 [hep-ex], Y. Amhis et al., "Averages of b-hadron, c-hadron, and tau-lepton properties as of Summer 2014"

Belle II at Super KEKB

Expect 5 × 10¹⁰ T pairs - branching fractions of 10⁻⁹ observable

A general effective Lagrangian for $\mu \rightarrow eee$

(Y. Kuno, Y. Okada, Rev.Mod.Phys. 73 (2001) 151)

Comparison between $\mu^+ \rightarrow e^+\gamma$ and $\mu \rightarrow eee$

$$\sum_{\mathbf{x}} \mathbf{E}_{LFV} = \frac{\mathbf{m}_{\mu}}{(\mathbf{k}+1)\Lambda^{2}} \mathbf{A}_{R} \, \overline{\mathbf{\mu}}_{R} \, \sigma^{\mu\nu} \, \mathbf{e}_{L} \, \mathbf{F}_{\mu\nu} + \frac{\mathbf{K}}{(\mathbf{k}+1)\Lambda^{2}} (\overline{\mathbf{\mu}}_{L} \, \gamma^{\mu} \, \mathbf{e}_{L}) \, (\overline{\mathbf{e}}_{L} \, \gamma^{\mu} \, \mathbf{$$

10

10²

κ

mass scale A (TeV)

 10^{2} 10⁻²

10⁻¹

1

- One loop term and one contact term
- Ratio κ between them
- Common mass scale Λ
- Allows for sensitivity comparisons between $\mu \rightarrow eee and \mu \rightarrow e\gamma$
- In case of dominating dipole couplings ($\kappa = 0$):

$$\frac{B(\mu \rightarrow eee)}{B(\mu \rightarrow e\gamma)} = 0.006 \quad (essentially \alpha_{em})$$

Simulated Performance - Mu3e Phase II

- 3D multiple scattering track fit
- Simulation results:
 280 keV single track momentum
 520 keV total mass resolution

Simulated Performance - Mu3e Phase II

Z-dependence

Detector Design

Searching for $\mu^+ \rightarrow e^+e^-e^+$ with Mu3e

The signal

- $\mu^+ \rightarrow e^+ e^- e^+$
- Two positrons, one electron
- From same vertex
- Same time
- $\Sigma p_e = m_{\mu}$
- Maximum momentum: $\frac{1}{2} m_{\mu} = 53 \text{ MeV/c}$

Accidental Background

- Combination of positrons from ordinary muon decay with electrons from:
 - photon conversion,
 - Bhabha scattering,
 - Mis-reconstruction

 Need very good timing, vertex and momentum resolution

Internal conversion background

• Allowed radiative decay with internal conversion:

 $\mu^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} e^{\scriptscriptstyle +} \vee \overline{\nu}$

 Only distinguishing feature: Missing momentum carried by neutrinos

 Need excellent momentum resolution

2 Billion Muon Decays/s

50 ns, 1 Tesla field

Detector Technology

- High granularity (occupancy)
- Close to target (vertex resolution)
- 3D space points (reconstruction)
- Minimum material (momenta below 53 MeV/c)

Detector Technology

- High granularity (occupancy)
- Close to target (vertex resolution)
- 3D space points (reconstruction)
- Minimum material (momenta below 53 MeV/c)

• Conventional detectors cannot deal with rate or are too thick

High voltage monolithic active pixel sensors - Ivan Perić

 Use a high voltage commercial process (automotive industry)

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

- High voltage monolithic active pixel sensors - Ivan Perić
 - Use a high voltage commercial process (automotive industry)
 - collection via drift

 Implement logic directly in N-well in the pixel - smart diode array

(I.Perić, P. Fischer et al., NIM A 582 (2007) 876)

- High voltage monolithic active pixel sensors Ivan Perić
 - Use a high voltage commercial process (automotive industry)
 - Small active region, fast charge collection via drift

- Implement logic directly in N-well in the pixel - smart diode array
- Can be thinned down to < 50 μ m

Performance: efficiency

Mupix7, 735 mV threshold, HV = -85 V

Performance: efficiency and noise

Performance: time resolution

Trigger TimeStamp Difference Distribution for Single Events

- 50 µm silicon
- 25 µm Kapton[™] flexprint with aluminium traces
- 25 µm Kapton™ frame as support
- Less than 1‰ of a radiation length per layer

Cooling

- Add no material: Cool with gaseous Helium (low scattering, high mobility)
- ~ 300 mW/cm² total >2 kW
- Simulations: Need ~ several m/s flow

- Full scale heatable prototype built
- 36 cm active length
- Vibrations under control (Michelson interferometer)

Niklaus Berger – Heidelberg Pizza July 2016 – Slide 107

Momentum measurement

- 1 T magnetic field
- Resolution dominated by multiple scattering
- Momentum resolution to first order:

$$\sigma_{P/P} \sim \theta_{MS/\Omega}$$

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θ_{MS}

Timing measurements

Pixels: O(50 ns)

Scintillating fibres O(1 ns); Scintillating tiles O(100 ps)

Timing Detector: Scintillating Fibres

- 3 layers of 250 μ m scintillating fibres
- Read-out by silicon photomultipliers (SiPMs) and custom ASIC (STiC)
- Timing resolution O(1 ns) (measured with sodium source)

Niklaus Berger – Heidelberg Pizza July 2016 – Slide 123

Timing Detector: Scintillating tiles

Back

- Test beam with tiles, SiPMs and readout ASIC
- Timing resolution ~ 80 ps

Data Acquisition

Online filter farm

Online software filter farm

- PCs with FPGAs and Graphics Processing Units (GPUs)
- Online track and event reconstruction
- 10⁹ 3D track fits/s achieved
- Data reduction by factor ~1000
- Data to tape < 100 Mbyte/s

