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Exercise Sheet 6 – Particle Physics – SS 2016

hand in: Tue 31st May (after the lecture or at INF 226, 3.104 by 4 pm)

6.1 Elastic scattering (5 points)
In fixed-target electron-proton elastic scattering, where E1 and E3 are, respectively, initial and final en-
ergy of the electron:

Q2 = 2mp(E1−E3) = 2mpE1y and Q2 = 4E1E3 sin2(θ/2)

a) Use these relations to show that
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b) Assuming azimuthal symmetry and using
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c) Using the results of (a) and (b) show that the Rosenbluth equation,
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can be written in the Lorentz-invariant form
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6.2 Fixed-target inelastic scattering (5 points)
A fixed-target e−p scattering experiment consists of an electron beam of energy 20GeV and a fixed angle
spectrometer that can detect scattered electrons with energies greater than 5GeV.

a) What is the maximum energy an electron scattered at an angle of θ = 6◦ with respect to the
directon of the incoming electron beam can have?

b) Find the range of x that can be measured with the setup described in part a).
c) Find the energy resolution needed to measure x with a precision of 1% or better over the full

range from part b). Assume that the energy of the incoming electron beam as well as the angular
position of the spectrometer are known precisely.
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6.3 Form factors (5 points)
For a spherically symmetric charge distribution ρ(r), where

�
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show that the form factor can be expressed as
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where < R2 > is the mean square charge radius. Hence show that
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6.4 Form Factors (5 points)
Elastic e−p → e−p scattering via the exchange of a single photon can be described by the Rosenbluth
formula
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Here E1 and E3 are the energy of the incoming and outgoing electron, respectively; τ = Q2/4m2
p and

GE(Q2) (GM(Q2)) is the electric (magnetic) form factor of the proton.
a) Re-express the Rosenbluth formula in terms of
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�
0, which is the Mott scattering cross section
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b) The ratio of �
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is linear in tan2 (θ/2). Express the gradient and the intersect as functions of GE(Q2) and GM(Q2).
c) Obtain values for GE(0.292GeV2) and GM(0.292GeV2) from Figure 1.

Figure 1: Low energy e−p → e−p elastic scattering data.
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