

Modification of j^µ leads to modification of magnetic moment

Define:

$$a_e = \frac{1}{2}(g_e - 2)$$

"Anomaly"

Radiative corrections to g-2

Corrections are nowadays calculated to 4-loop level

Feynman Graphs		
Ο(α)		1
O(α²)		7
O(α ³)	analytically	72
O(α ⁴)	numerically	891
til O(α ⁴)		971

Most precise calculations: T. Kinoshita et al.

Larmor Frequency

Classical:

$$\Delta \ell = \ell \sin \theta \,\omega \Delta t$$

$$\frac{d\ell}{dt} = \omega \ell \sin \theta = \tau$$

$$= \mu B \sin \theta$$

$$\omega = \frac{\mu}{\ell} B$$
For Spin:
$$\ell = s$$

$$\mu = g_e \frac{e}{2m} s \quad \left\{ \begin{array}{c} \omega = g_e \frac{e}{2m} B \\ \omega = g_e \frac{e}{2m} B \end{array} \right\}$$

$$\omega = g_e \frac{e}{2m} B$$

$$(Larmor Frequency)$$

Cyclotron Frequency

Basic Idea for Measuring Anomaly

Polarization and polarization detection via Mott Scattering

[Wesley & Rich, Phys. Rev. A4, 1341]

Lamor frequency equal Cyclotron frequency:

Polarization stays constant

otherwise:

Polarization depends on number of turns

Measure Polarization! [Here using Møller Scattering]

Polarization and polarization detection via Mott Scattering

[Wesley & Rich, Phys. Rev. A4, 1341]

Brookhaven, Muon Storage Ring

Time Spectrum of single calorimeter

Puls hight

