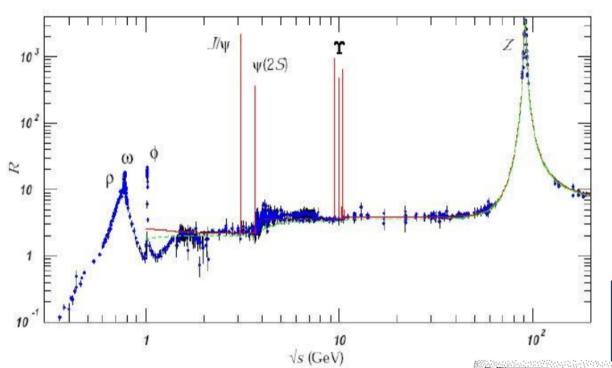
Evidence for 3 colors

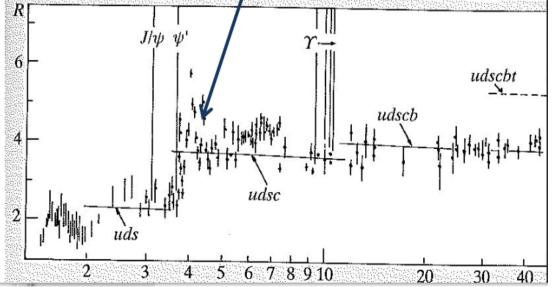


$$R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

$$= N_c \sum_i Z_i^2$$

 $\tau \overline{\tau}$ treshold, however not all τ decay into hadronic jets

q	Z _i ²	$R[\sqrt{s} \le 2m(q)]$
u	4/9 1/9	4/3
d	1/9	5/3
S	1/9	2
С	4/9	10/3
b	1/9	11/3
t	4/9	5



Relation of Gell-Mann matrices with quarks

Color SU(3): Quark states

$$R = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad G = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$T_{\pm} = 1/2(\lambda_1 \pm i\lambda_2)$$
 $r\bar{g}$,

$$r\bar{g}$$
, $g\bar{r}$

$$R \leftrightarrow G \quad \lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \frac{1}{\sqrt{2}} (r\bar{r} - g\bar{g})$$

$$\lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} (r\bar{r} - g\bar{g}$$

$$R \leftrightarrow B \quad \lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$

$$\lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$

$$V_{\pm} = 1/2(\lambda_4 \pm i\lambda_5)$$
 $r\bar{b}$, $b\bar{r}$

$$B \leftrightarrow G \quad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

$$\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

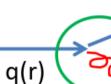
$$U_{\pm} = 1/2(\lambda_6 \pm i\lambda_7)$$
 $b\bar{g}, \ \bar{b}g$

$$b\bar{g}$$
, $\overline{b}g$

q(r)

$$\lambda_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

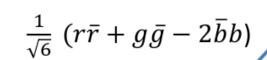
$$\frac{1}{\sqrt{6}} \; (r\bar{r} + g\bar{g} - 2\bar{b}b)$$



q(r)

q(b)

conservation of color at each vertex



q(b)

q(b)

q(b)

q(r)