Entdeckung des T-Leptons ("Das Dritte")

Referat von Stephan Goerttler, Datum: 12.12.2014 Seminar "Schlüsselexperimente der Teilchenphysik"

Inhalt

- I. Theoretische Grundlagen des T-Lepton Zerfalls
- II. Das Schlüsselexperiment 1975
- III. Nachfolgende Experimente
- IV. Situation heute

Standardmodell der Teilchenphysik 1975

Eichbosonen

Standardmodell der Teilchenphysik 1975

Myonzerfall

Myonzerfall

Myonenzerfall

Möglicher Zerfall eines schweren Leptons

→ durch Analogie begründet

Möglicher Zerfall eines schweren Leptons

→ durch Analogie begründet

ee-Produktion bei e⁺e⁻-Annihilation

ee-Produktion bei e⁺e⁻-Annihilation

ee-Produktion bei e⁺e⁻-Annihilation

eµ-Produktion bei e⁺e⁻-Annihilation

- Ursprünglicher Mark I Detektor
- "Erster 4π Detektor"
- Beschleuniger SLAC
- e⁺e⁻ -Speicherring SPEAR
- Max Energie bei Beginn (1973): 4,8 GeV
- Durchgeführt durch
 Martin Lewis Perl

- Wire Chambers in B: Krümmung der Bahnen
 → Impulse
- Trigger Counters: Flugzeitmessung → Geschwindigkeit
- <u>Shower Counters</u>: Energiebestimmung der Elektronen, Myonen, Hadronen (,Photonen)
- <u>Muon Wire Chambers</u>: Detektiert Myonen
- Iron (20cm): Absorption der Nicht-Myonen

Bedingungen zur Detektion

- <u>Elektronen</u>: Signal in Shower Counter größer als Signal eines 0,5GeV-Elektron
 - \rightarrow kein Signal in MyonWC
- <u>Myonen</u>:

Signal in MyonWC
 Kleines Signal im
 Shower Counter

Hadronen: Alle anderen geladenen Teilchen

Ergebnisse des Experiments (1)

• "We have found 64 events of the form

 $e^+ + e^- - e^{\pm} + \mu^{\mp} + \ge 2$ undetected particles

for which we have <u>no conventional</u> <u>explanation</u>."

 "A possible explanation for these events is the production and decay of a <u>pair of new particles</u>, each having a mass in the range of 1.6 to 2.0 GeV/c²"

Ergebnisse des Experiments (2)

TABLE Distribution of 513 two-prong events, obtained at $E_{c.m.} = 4.8 \text{ GeV}$, which meet the criteria $|\vec{p}_1|$ > 0.65 GeV/c, $|\vec{p}_2| > 0.65 \text{ GeV/c}$, and $\theta_{\text{copl}} > 20^\circ$. Events are classified according to the number N_{γ} of photons detected, the total charge, and the nature of the particles. All particles not identified as e or μ are called h for hadron.

Pa	N_{γ} articles	0 Tota	1 l charg	>1 e = 0	0 Total	1 charg	>1 e = ±2
"z	e-e	40	111	55	0	1	0
	$e-\mu$	24	8	8	0	0	3
	$\mu - \mu$	16	15	6	0	0	0
	e-h	20	21	32	2	3	3
12	$\mu - h$	17	14	31	4	0	5
	h-h	14	10	30	10	4	6

• eµ-Hintergrund: (4,7±1,2) Ereignisse

Ergebnisse des Experiments (2)

TABLE Distribution of 513 two-prong events, obtained at $E_{c.m.} = 4.8 \text{ GeV}$, which meet the criteria $|\vec{p}_1|$ > 0.65 GeV/c, $|\vec{p}_2| > 0.65 \text{ GeV/c}$, and $\theta_{copl} > 20^\circ$. Events are classified according to the number N_{γ} of photons detected, the total charge, and the nature of the particles. All particles not identified as e or μ are called h for hadron.

N_{γ} Particles	0 Tota	1 1 charge	>1 e = 0	0 Total	1 charg	>1 e = ±2
e-e	40	111	55	0	1	0
e-µ	24	8	8	0	0	3
$\mu - \mu$	16	15	6	0	0	0
e-h	20	21	32	2	3	3
$\mu - h$	17	14	31	4	0	5
h-h	14	10	30	10	4	6

• eµ-Hintergrund: (4,7±1,2) Ereignisse

Koplanaritätswinkel θ

Koplanaritätswinkel θ

Ergebnisse des Experiments (3)

• Insgesamt 86 eµ Ereignisse, 22 Hintergrundereignisse \rightarrow 64 Ereignisse

Ergebnisse des Experiments (4)

- Signifikante e-µ-Ereignisse
- Quadrat der invarianten Masse aufgetragen gegen das Quadrat der fehlenden Masse

→ aus Diagramm
 kann geschlossen
 werden, dass mind. 2
 Teilchen unentdeckt
 bleiben

M_{inv}² und M_{miss}² bei einem unentdeckten Teilchen

Impulserhaltung:

Energieerhaltung:

Invariante Masse $e\mu$:

Fehlende Masse:

 $\vec{p}_e + \vec{p}_\mu + \vec{p}_\nu = \vec{p}_{qes} = 0$

 $E_e + E_\mu + E_\nu = E_{qes}$

$$M_{inv}^2 = (E_e + E_\mu)^2 - (\vec{p}_e + \vec{p}_\mu)^2$$

$$M_{miss}^2 = (E_{ges} - [E_e + E_\mu])^2 - (\vec{p}_{ges} - [\vec{p}_e + \vec{p}_\mu])^2 = E_\nu^2 - \vec{p}_\nu^2 = M_\nu^2$$

F ____

M² und M² bei zwei unentdeckten Teilchen

Impulserhaltung:

Energieerhaltung:

Invariante Masse $e\mu$:

Fehlende Masse:

 $\vec{p_e} + \vec{p_\mu} + \vec{p_{\nu_e}} + \vec{p_{\nu_\mu}} = \vec{p_{ges}} = 0$

 $E_e + E_\mu + E_{\nu_e} + E_{\nu_\mu} = E_{ges}$

$$M_{inv}^2 = (E_e + E_\mu)^2 - (\vec{p}_e + \vec{p}_\mu)^2$$

$$M_{miss}^{2} = (E_{ges} - [E_{e} + E_{\mu}])^{2} - (\vec{p}_{ges} - [\vec{p}_{e} + \vec{p}_{\mu}])^{2}$$

$$= (E_{\nu_{e}} + E_{\nu_{\mu}})^{2} - (\vec{p}_{\nu_{e}} + \vec{p}_{\nu_{\mu}})^{2}$$

$$= E_{\nu_{e}}^{2} + E_{\nu_{\mu}}^{2} + 2E_{\nu_{e}}E_{\nu_{\mu}} - \vec{p}_{\nu_{e}}^{2} - \vec{p}_{\nu_{\mu}}^{2} - 2\vec{p}_{\nu_{e}}\vec{p}_{\nu_{\mu}}$$

$$= M_{\nu_{e}}^{2} + M_{\nu_{\mu}}^{2} + E_{\nu_{e}}E_{\nu_{\mu}} - 2\vec{p}_{\nu_{e}}\vec{p}_{\nu_{\mu}}$$

M² und M² bei zwei unentdeckten Teilchen

Impulserhaltung:

Energieerhaltung:

Invariante Masse $e\mu$:

Fehlende Masse:

 $\vec{p_e} + \vec{p_\mu} + \vec{p_{\nu_e}} + \vec{p_{\nu_\mu}} = \vec{p_{ges}} = 0$

 $E_e + E_\mu + E_{\nu_e} + E_{\nu_\mu} = E_{ges}$

$$M_{inv}^2 = (E_e + E_\mu)^2 - (\vec{p}_e + \vec{p}_\mu)^2$$

$$\begin{split} M_{miss}^2 &= (E_{ges} - [E_e + E_\mu])^2 - (\vec{p}_{ges} - [\vec{p}_e + \vec{p}_\mu])^2 \\ &= (E_{\nu_e} + E_{\nu_\mu})^2 - (\vec{p}_{\nu_e} + \vec{p}_{\nu_\mu})^2 \\ &= E_{\nu_e}^2 + E_{\nu_\mu}^2 + 2E_{\nu_e}E_{\nu_\mu} - \vec{p}_{\nu_e}^2 - \vec{p}_{\nu_\mu}^2 - 2\vec{p}_{\nu_e}\vec{p}_{\nu_\mu} \\ &= M_{\nu_e}^2 + M_{\nu_\mu}^2 + E_{\nu_e}E_{\nu_\mu} - 2\vec{p}_{\nu_e}\vec{p}_{\nu_\mu} \end{split}$$

Ergebnisse des Experiments (4)

- Signifikante e-µ-Ereignisse
- Quadrat der invarianten Masse aufgetragen gegen das Quadrat der fehlenden Masse

→ aus Diagramm
 kann geschlossen
 werden, dass mind. 2
 Teilchen unentdeckt
 bleiben

Ergebnisse des Experiments (5)

"Misidentification probabilities for 4.8 GeV sample"

Momentum range			
(GeV/c)	$\mathbf{P_{h \rightarrow e}}$	P _h →μ	P _{h→h}
0.6-0.9	$.130 \pm .005$	$.161 \pm .006$	$.709 \pm .012$
0.9-1.2	$.160 \pm .009$	$.213 \pm .011$	$.627 \pm .020$
1.2-1.6	$.206 \pm .016$	$.216 \pm .017$	$.578 \pm .029$
1.6-2.4	$.269 \pm .031$	$.211 \pm .027$	$.520 \pm .043$
Weighted average using			
hh, µh, and eµ events	$.183 \pm .007$	$.198 \pm .007$	$.619 \pm .012$

Zusammenfassung der Ergebnisse

- Signifikante eµ-Anomalie bei e⁺e⁻-Annihilation bei 4,8GeV
- Mögliche ee- und µµ-Anomalie wird noch weiter untersucht
- Mind. 2 Neutrinos unentdeckt
- Hohe Missidentifikation der Teilchen
- Dennoch:

→ Ergebnisse können dadurch erklärt werden, dass ein schweres Lepton mit m=1,6-2,0GeV/c² erzeugt wird und zerfällt

Nach dem Experiment: Einwände

- Sowohl Charm-Quark (Entdeckung 1974) als auch T-Lepton im selben Energie-Bereich gefunden
- Keine (theoretische) Notwendigkeit eines dritten geladenen Leptons
- Keine Hinweise auf eine dritte Teilchengeneration

Nach dem Experiment: weitere Ziele

- 1. Gefundene eµ-Anomalie bestätigen
- 2. Myonen besser detektieren: "Muon-Tower"
- 3. Weitere Zerfallskanäle beobachten (Hadronenzerfälle)

1. eµ-Anomalie

- 1976: weiteres Experiment am SPEAR bestätigt Anomalie (Cavalli-Sforza et al.)
- 1977: weitere Messungen mit dem Mark I Detektor (mit Muon-Tower) bestätigen Anomalie (Feldman et al.)
- 1977: Messungen am DORIS e⁺e⁻-Speicherring der PLUTO-Kollaboration bestätigen Anomalie (Burmester et al.)

2. "Muon-Tower" (1)

2. "Muon-Tower" (1)

Muon-Tower nur an einer Seite
 → eingeschränkte Statistik

"Muon-Tower" (2)

• "In summary, we have observed a large rate of anomalous muon production in twoprong events consistent with what is expected from heavy-lepton decays." (Feldman et al., 1977)

FIG. 3. (a) Anomalous muon-production cross section and (b) ratio of anomalous muons to candidates vs the number of observed charged prongs in the $E_{\rm c.m.}$ range from 5.8 to 7.8 GeV. Note that the two-prong cross section is not corrected for a coplanarity cut and is thus artificially suppressed relative to multiprong cross sections. In calculating the two-prong μ fraction, the number of candidates has been corrected to eliminate leptonic reactions.

3. Untersuchung der Hadronenzerfälle (1)

 Vage theoretische Analyse liefert f
ür die Verzweigungsverh
ältnisse (branching fractions):

$$B(\tau^{-} \longrightarrow \nu_{\tau} + e^{-} + \overline{\nu_{e}}) \approx 20\%$$

$$B(\tau^{-} \longrightarrow \nu_{\tau} + \mu^{-} + \overline{\nu_{\mu}}) \approx 20\%$$

$$B(\tau^{-} \longrightarrow \nu_{\tau} + Hadronen) \approx 60\%$$

• (Die Ähnlichkeit des Zerfalls in Elektron oder Myon beruht auf der Leptonen-Universalität)

Mögliche Hadronenzerfälle

$$\begin{array}{l} \tau^{-} \to \pi^{-} + \pi^{0} + \nu_{\tau} & \text{d} \\ \tau^{-} \to \pi^{-} + \nu_{\tau} & \text{d} \\ \tau^{-} \to 2\pi^{-} + \pi^{+} + \nu_{\tau} & \text{e} \\ \tau^{-} \to \pi^{-} + 2\pi^{0} + \nu_{\tau} \\ \tau^{-} \to 2\pi^{-} + \pi^{+} + \pi^{0} + \nu_{\tau} \\ \tau^{-} \to 2\pi^{-} + \pi^{+} + \pi^{0} + \nu_{\tau} \\ \tau^{-} \to K^{*} (892)^{-} + \nu_{\tau} \\ \tau^{-} \to \pi^{-} + 3\pi^{0} + \nu_{\tau} \\ \tau^{-} \to \pi^{-} + \bar{K}^{0} + \nu_{\tau} \\ \tau^{-} \to K^{-} + \nu_{\tau} \end{array}$$

Man beobachtet Zerfälle der Form:

 $e^+e^- \rightarrow Hadronen(neg/pos) + e^\pm + Neutrinos$

Untersuchung der Hadronenzerfälle (2)

- Elektron/Positron muss genau bestimmt werden
- Notwendig: verbesserte elektronische Identifikation in den Detektoren
- Photonen müssen genauer bestimmt werden, da einige Teilchen (bspw. das π^0) in Photonen zerfallen

Review 1977 (Perl)

- 1. Alle Messwerte der anomalen eµ, ex, ee und µµ Ereignisse (produziert in ee-Annihilation) stimmt mit der Existenz eines geladenen Leptons (τ) der Masse 1,9±0,1 GeV/c² überein
- 2. Messwerte können nicht durch Zerfälle des Charm-Quarks erklärt werden
- Solution
 Viele erwartete Zerfälle wurden bereits gesehen. Noch nicht beobachtet:
 T⁻ → V₁ + π⁻

Zerfall des T-Leptons in Neutrino und Pion (2)

- $T^{-} \rightarrow V_{T} + \pi^{-}$
- Schwer zu unterscheiden vom Zerfall

 $T^{-} \rightarrow V_{T} + T^{-} + T^{0}$

 Bessere Photonendetektion ermöglicht eine Unterscheidung

 \rightarrow Verbesserung des Detektors Mark I und Bau neuer Teilchendetektoren wie Mark II

 Bessere Elektronvermessung: DELCO-Detektor am SPEAR (Direct Electron Production Measurement) (1977)

Mark I mit Bleiglas-Wänden

Mark I mit Bleiglas-Wänden

- Bleiglas ermöglicht bessere Photonendetektion
- Bleiglas ersetzt 3 Shower Counters
- π⁰ zerfällt in 2
 Photonen und kann identifiziert werden
- Detektion aller
 Photonen notwendig
 → 4π Detektor

Messungen mit dem Mark I Detektor

- 1977: Messungen mit dem verbesserten Mark I Detektor (Barbaro-Galtieri et al.)
- Gemessene Verzweigungsverhältnisse:

$$B(\tau^- \longrightarrow \nu_\tau + e^- + \overline{\nu_e}) = (22, 4 \pm 5, 5)\%$$

$$B(\tau^- \longrightarrow \nu_\tau + Hadronen) = (45 \pm 19)\%$$

Mark II Detektor am SLAC

DELCO-Detektor am SPEAR

DELCO-Detektor am SPEAR

CERENKOV

PHOTOTUBE

1 meter

HOUSING

COUNTER

 \rightarrow genaue Unterscheidung von Elektron und Pion möglich

Ergebnis DELCO-Kollaboration 1977

→ "A comparison of the events having only two visible prongs (of which only one is an electron) with the heavy lepton hypothesis shows no disagreement." (Kirkby)

Zerfall des T-Leptons in Neutrino und Pion (3)

- Bis 1978 wurde der Zerfall bei Experimenten an verschiedenen Detektoren beobachtet:
 - -PLUTO Detektor (am DESY)
 - -DELCO Detektor (am SLAC)
 - -Mark I Bleiglas-Wand Detektor (am SLAC)
 - -Mark II Detektor (am SLAC)

Vergleich der gemessenen Verzweigungsverhältnisse $B(T \rightarrow V_T + T^{-})$

Table From Feldman (1979), the various measured branching fraction $\setminus B$ in percent for $\tau - \rightarrow \pi^- v_{\tau}$ in late 1978.

Experiment	Mode	Events	Background	$B(\tau \rightarrow \pi \nu)$
SLAC-LBL	хπ	≈200	≈70	$9.3{\pm}1.0{\pm}3.8$
			10 S.S.S.S. 4	
PLUTO	хπ	32	9	$9.0\pm2.9\pm2.5$
	17 - 201 - S		at the set of an and the	
DELCO	еπ	18	7	$8.0 \pm 3.2 \pm 1.3$
		9 (C)		10 10 10 10 10 10 10
	xπ	142	46	$8.0 \pm 1.1 \pm 1.5$
Mark II				
	eπ	27	10	$8.2 \pm 2.0 \pm 1.5$
carry and and relation of a	10 ROM	i men		
Average				8.3 ± 1.4

• Heute: B=(10,83±0,06)%

Beobachtung und Messung des Zerfalls des Leptons in Neutrino und zwei Pionen

 Gemessen wurde erneut das Verzweigungsverhältnis:

 $\mathsf{B}(\mathsf{T}^{-} \to \mathsf{V}_{_{\mathsf{T}}} + \pi^{-} + \pi^{0})$

- DASP Kollaboration am DORIS: B=(24±9)%
- Mark II Kollaboration: B=(20,5±4,1)%
- Heute: B=(25,52±0,09)%

Weitere Entwicklung

 1979: "Alle bestätigten Messungen im Einklang mit der Hypothese, dass das r ein Lepton ist, produziert durch eine bekannte elektromagnetische Interaktion und dass es durch schwache Wechselwirkung zerfällt" (Perl)

 \rightarrow T-Lepton ist "verifiziert"

• 1995: Nobelpreis

т-Lepton: Heutige Werte

au

$$\begin{array}{l} \text{Mass } m = 1776.82 \pm 0.16 \ \text{MeV} \\ (m_{\tau^+} - m_{\tau^-})/m_{\text{average}} \ < \ 2.8 \times 10^{-4}, \ \text{CL} = 90\% \\ \text{Mean life } \tau = (290.3 \pm 0.5) \times 10^{-15} \ \text{s} \\ c\tau = 87.03 \ \mu\text{m} \\ \text{Magnetic moment anomaly} > -0.052 \ \text{and} \ < 0.013, \ \text{CL} = 95\% \\ \text{Re}(d_{\tau}) = -0.220 \ \text{to} \ 0.45 \times 10^{-16} \ \text{e\,cm}, \ \text{CL} = 95\% \end{array}$$

 $J = \frac{1}{2}$

 $Im(d_{\tau}) = -0.250$ to 0.0080×10^{-16} e cm, CL = 95%

т-Lepton: Zerfallsmoden

T DECAY MODES		Fraction	(Г _і /Г)	Confidence level		(MeV/c)
Modes with	on	e charge	ed part	icle		
particle ⁻ ≥ 0 neutrals $\geq 0K^0 \nu_{\tau}$		(85.35	±0.07)%	S=1.3	_
("1-prong")						
particle ⁻ ≥ 0 neutrals $\geq 0K_L^0 \nu_{\tau}$		(84.71	±0.08) %	S=1.3	-
$\mu^- \overline{\nu}_{\mu} \nu_{\tau}$	[g]	(17.41	±0.04)%	S=1.1	885
$\mu^- \overline{\nu}_\mu \nu_\tau \gamma$	[e]	(3.6	±0.4) × 10 ⁻³		885
$e^- \overline{\nu}_e \nu_\tau$	[g]	(17.83	±0.04)%		888
$e^-\overline{\nu}_e\nu_\tau\gamma$	[e]	(1.75	±0.18)%		888
$h^- \geq 0 K_I^0 \nu_\tau$		(12.06	±0.06)%	S=1.2	883
$h^- \nu_{\tau}$		(11.53	±0.06)%	S=1.2	883
$\pi^- \nu_{\tau}$	[g]	(10.83	±0.06)%	S=1.2	883
$K^- \nu_{\tau}$	[g]	(7.00	±0.10	$) \times 10^{-3}$	S=1.1	820
$h^- \geq 1$ neutrals ν_{τ}		(37.10	±0.10)%	S=1.2	-
$h^{-} \geq 1\pi^{0} \nu_{\tau} (\text{ex.} K^{0})$		(36.58	±0.10) %	S=1.2	-
$h^- \pi^0 \nu_{\tau}$		(25.95	±0.09)%	S=1.1	878
$\pi^{-}\pi^{0}\nu_{\tau}$	[g]	(25.52	±0.09)%	S=1.1	878
$\pi^{-}\pi^{0}$ non- $\rho(770)\nu_{\tau}$		(3.0	±3.2	$) \times 10^{-3}$		878
$K^- \pi^0 \nu_{\tau}$	[g]	(4.29	±0.15	$) \times 10^{-3}$		814
$h^- \ge 2\pi^0 \nu_{ au}$		(10.87	±0.11) %	S=1.2	-
$h^- 2\pi^0 \nu_{\tau}$		(9.52	±0.11)%	S=1.1	862
$h^{-}2\pi^{0}\nu_{\tau}(ex.K^{0})$		(9.36	±0.11) %	S=1.2	862
$\pi^{-}2\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$	[g]	(9.30	± 0.11)%	S=1.2	862
$\pi^- 2\pi^0 \nu_\tau (\text{ex.} K^0),$		< 9		$\times 10^{-3}$	CL=95%	862
$\pi^{-2\pi^{0}} \nu_{\tau} (\text{ex.} K^{0}),$		< 7		× 10 ⁻³	CL=95%	862
$K^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	[g]	(6.5	±2.3) × 10 ⁻⁴		796
$h^- \geq 3\pi^0 \nu_{ au}$		(1.35	±0.07) %	S=1.1	_
$h^{-} \geq 3\pi^{0} \nu_{\tau} (\text{ex. } K^{0})$		(1.26	±0.07)%	S=1.1	-
$h^- 3\pi^0 \nu_{\tau}$		(1.19	±0.07)%		836
$\pi^{-} 3 \pi^{0} \nu_{\tau} (\text{ex.} K^{0})$	[g]	(1.05	±0.07)%		836

Scale factor/

p

т-Lepton: Zerfallsmoden

T DECAY MODES		Fraction	(Г _і /Г)	Confidence level		(MeV/c)
Modes with	n on	e charge	ed part	icle		
particle ⁻ ≥ 0 neutrals $\geq 0K^0 \nu_{\tau}$ ("1-prong")		(85.35	±0.07)%	S=1.3	-
particle ⁻ ≥ 0 neutrals $\geq 0K_L^0 \nu_{\tau}$		(84.71	±0.08)%	S=1.3	-
$\mu^- \overline{\nu}_\mu \nu_\tau$	[g]	(17.41	± 0.04)%	S=1.1	885
$\mu^- \overline{\nu}_\mu \nu_\tau \gamma$	[e]	(3.6	±0.4) × 10 ⁻³		885
$e^- \overline{\nu}_e \nu_\tau$	[g]	(17.83	±0.04)%		888
$e^-\overline{\nu}_e\nu_\tau\gamma$	[e]	(1.75	±0.18)%		888
$h^- \geq 0 K_I^0 \nu_{\tau}$		(12.06	±0.06)%	S=1.2	883
$h^- \nu_{\tau}$		(11.53	±0.06)%	S=1.2	883
$\pi^- \nu_{\tau}$	[g]	(10.83	±0.06)%	S=1.2	883
$K^- \nu_{\tau}$	[g]	(7.00	± 0.10) × 10 ⁻³	S=1.1	820
$h^- \geq 1$ neutrals ν_{τ}		(37.10	±0.10)%	S=1.2	-
$h^{-} \geq 1\pi^{0} \nu_{\tau} (\text{ex.} K^{0})$		(36.58	±0.10) %	S=1.2	-
$h^- \pi^0 \nu_{\tau}$		(25.95	±0.09) %	S=1.1	878
$\pi^{-}\pi^{0}\nu_{\tau}$	[g]	(25.52	±0.09)%	S=1.1	878
$\pi^{-}\pi^{0}$ non- $\rho(770)\nu_{\tau}$		(3.0	±3.2	$) \times 10^{-3}$		878
$K^- \pi^0 \nu_{\tau}$	[g]	(4.29	±0.15	$) \times 10^{-3}$		814
$h^- \ge 2\pi^0 \nu_{ au}$		(10.87	±0.11)%	S=1.2	-
$h^- 2\pi^0 \nu_{\tau}$		(9.52	±0.11) %	S=1.1	862
$h^{-}2\pi^{0}\nu_{\tau}(ex.K^{0})$		(9.36	±0.11)%	S=1.2	862
$\pi^{-}2\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$	[g]	(9.30	± 0.11)%	S=1.2	862
$\pi^- 2\pi^0 \nu_\tau (\text{ex.} \mathcal{K}^0),$		< 9		× 10 ⁻³	CL=95%	862
$\pi^{-2}\pi^{0}\nu_{\tau}$ (ex. \mathcal{K}^{0}),		< 7		× 10 ⁻³	CL=95%	862
$K^- 2\pi^0 \nu_\tau (\text{ex.} K^0)$	[g]	(6.5	±2.3) × 10 ⁻⁴		796
$h^- \geq 3\pi^0 \nu_{ au}$		(1.35	± 0.07)%	S=1.1	-
$h^{-} \geq 3\pi^{0} \nu_{\tau}$ (ex. K^{0})		(1.26	±0.07) %	S=1.1	-
$h^- 3\pi^0 \nu_{\tau}$		(1.19	±0.07)%		836
$\pi^- 3\pi^0 \nu_\tau (\text{ex.} K^0)$	[g]	(1.05	±0.07)%		836

Scale factor/

D

Vierte Generation?

- Gilt als experimentell widerlegt (5.3 σ)
- Entdeckung des Higgs-Bosons bei 125GeV/c² schließt diese aus

→ Wechselwirkung mit vierter Generation hätte Auswirkungen auf die Masse

 Messungen der Breiten des Z-Bosons an CERN's Large Electron-Positron Collider

 \rightarrow "Leichte" Neutrinos mit m<45GeV/c² ausgeschlossen

Quellen (Literatur):

- Perl, M. L., 1975a, Proceedings of the Canadian Institute of Particle Physics, Summer School, edited by R. Heinzi and B. Margolis (McGill University, Montreal, 1975).
- Perl, M. L., et al., 1975b, Phys. Rev. Lett. 35, 1489.
- www.nobelprize.org/nobel_prizes/physics/laureates/1995/p erl-facts.html
- Feldman, G. J., et al., 1977, Phys. Rev. I.ett. 38, 117
- Kirkby et al, 1977, Direct Electron Production Measurements by DELCO at SPEAR
- http://en.wikipedia.org/wiki/Generation_(particle_physics)

Quellen (Bilder):

- de.wikipedia.org/wiki/Standardmodell
- www.nobelprize.org/nobel_prizes/physics/laure ates/1995/perl-facts.html
- www.catchwordbranding.com/static/uploads/20 08/08/slac-aerial-view_hr.jpg
- SLAC-PUB-4558LBL-26671 March 1989 (I/E)
- http://pdg.lbl.gov/2014/tables/rpp2014-sumleptons.pdf

Danke für die Aufmerksamkeit!

