Einführung in die Datenanalyse mit dem C++ Toolkit ROOT

Jörg Marks, Physikalisches Institut, INF 226 marks@physi.uni-heidelberg.de

Programm Überblick

- Mikrowiederholung Linux und C++ Konzepte
- K Einführung in die Datenanalyse mit dem Analysewerkzeug ROOT

Organisatorisches

- 2 Leistungspunkte:
 - Anwesenheitspflicht mit Lösung der Übungsaufgaben
 - Vortrag
- 💢 Kurs web page

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/

Informationen zur Veranstaltung (1)

Ziele

- C++ Mikrowiederholung und Ergänzungen
 - Um die C++ Schnittstelle von ROOT effektiv nutzen zu können.
 - ROOT Quellcode ansehen zu können.
 - https://www.physi.uni-heidelberg.de/~marks/c++_einfuehrung/
 - Pythonintegration
- Einführung in die Datenanalyse unter Verwendung des ROOT Toolkits
 - Input / Output von Messungen und Resultaten
 - Graphische Darstellung von Messungen
 - Statistische Methoden der Datenauswertung
 - Datenanpassung zur Bestimmung von Modellparametern mit Minuit und rooFit
 - Multivariate Datenanalyse
 - Maschinelles Lernen
- Beispielorientiert Konzepte so erläutern, dass Sie mit den Erklärungen selbständig (kleine) Datenanalyseaufgaben lösen können.
 - Tutorial Stil
 - Grundlagen für das Erstellen problemorientierter Lösungen schaffen

Voraussetzungen

> C++ Vorkenntnisse notwendig, hohe Informationsdichte und Tempo

Informationen zur Veranstaltung (2)

Struktur des Kurses

- > Wechsel zwischen Vorlesung und Übungen
- Wechsel zwischen selbstständigem Üben und Übungen in Kleingruppen
- Erläutern und Diskutieren der Lösungsvorschläge
- Kurszeiten: Freitags 14:00 17:00 (4 stündige Veranstaltung)
- Kurs Web Page: http://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/
 - Vorlesungstransparente
 - Beispiel Code
 - Übungsaufgaben
 - Lösungsvorschläge

■ Voraussetzungen für einen Leistungsnachweis (2 LP)

- Anwesenheitsliste / mehr als 1 x Abwesenheit nur mit Attest
- Aktive Mitarbeit und kleine Übungen als Hausarbeit
- Die Klausur wird durch einen Seminarvortrag ersetzt
- Keine Benotung

Einleitung und Motivation

Daten

- Norm des internationalen Technologiestandards (ISO/IEC 2382-1, 1993) data: " a reinterpretable representation of information in a formalized manner, suitable for communication, interpretation, or processing "
 - > Informatik
 - Maschinenlesbare und -bearbeitbare, digitale Repräsentation von Information.
 - In Zeichen bzw. Zeichenketten kodiert, deren Aufbau Regeln (Syntax) folgt.
 - Um aus Daten wieder die Informationen zu abstrahieren, müssen sie in einem Bedeutungskontext interpretiert werden.
- Speicherung der Daten auf Festplatten, Magnetbändern, Flashspeicher, ...
 - Zahl der Internet Nutzer 2023: 5.4 ·109 [33% Welt-Bevölkerung offline]
 - Erwartete jährliche Datenmenge 2025: 175 ·10¹² GBytes (Faktor 6 zu 2018)
 - Globaler IP trafic 2022: 396 ·109 GBytes / Monat (Faktor 2.5 zu 2018)
 - Vorlesung: durch Messung / Beobachtung gewonnene Information in Form von Zahlen und Text mit folgenden Eigenschaften
 - die Menge der Daten ist typischer Weise groß, keine Durchsicht "von Hand"
 - die gemessenen Werte müssen in physikalische Information verwandelt werden
 - die Information liegt nicht in reiner Form vor, sondern ist in anderen Daten versteckt → Lerne Techniken zur Verarbeitung von Daten / Informationsextraktion

Einleitung und Motivation

Datenanalyse

- Individuelle Lösung durch Erstellen eines selbstgeschriebenen Computerprogramms zur Interpretation (Auswertung) der Daten
 - z. B. Mittelwerte, Zeitabhängigkeit, graphische Darstellung, Anpassung und Extraktion von Modellparametern, ...
 - → ok , aber nicht sehr effizient
- Verwende Toolkit, das möglichst viel von der Programmierarbeit vornimmt
 - vorgefertigte Programmbausteine
 - Beispiele: mathematica, matlab, origin,
 - Nachteil: proprietäre Software mit eigener Syntax (Programmierinterface), (obwohl häufig auch eine Anbindung an höhere Programmiersprachen existiert)
 - → Es lassen sich nur sehr schwer eigene Anpassungen vornehmen.
 - → Kein Zugang zu den verwendeten Algorithmen.
- Vorlesung: verwende Toolkit, das Public Domain Software ist und ein interpretiertes Sprachinterface zu C++ und Python und zum C++ Compiler hat.

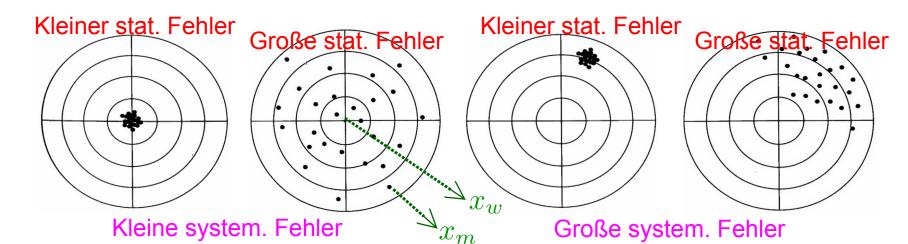
ROOT Toolkit, das zur Analyse der LHC Daten entwickelt wurde / wird.

Messungen und Messfehler

Messung

 x_m : gemessener (angezeigter) Wert der Messgrösse

 $x_m = x_w + \Delta x$ x_w : wahrer Wert der Messgrösse (nicht bekannt)


 Δx : Messabweichung (Messfehler)

Messfehler

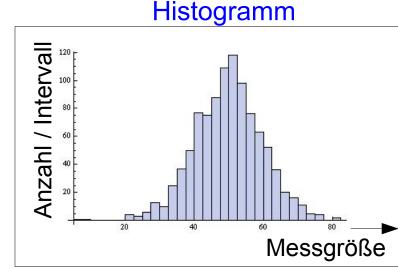
Eine Messung erfolgt immer nur mit endlicher Genauigkeit, 2 Beiträge:

- Systematische Fehler: Konstante, einseitg gerichtete Abweichung vom wahren Wert unter gleichen Messbedingungen.
- Zufällige oder statistische Fehler: Zufällige, nicht einseitig gerichtete Abweichungen vom wahren Wert (Mittelwert M und Messunsicherheit s).

Beispiel: Messergebnisse einer Sternposition

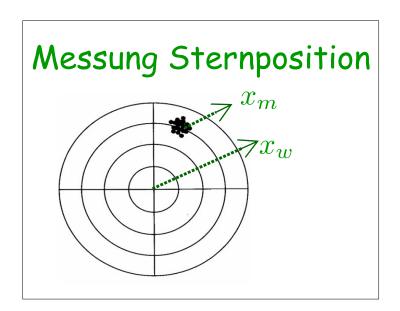
Fehlerrechnung

Quantitative Bestimmung

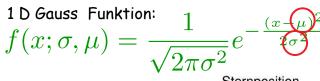

- Systematische Fehler: Schwierig! Genaue Analyse des Messaufbaues
- Zufällige oder statistische Fehler: Mehrfache Messung der selben Größe
- Schätzung des Messwertes bei mehrfacher Messung:

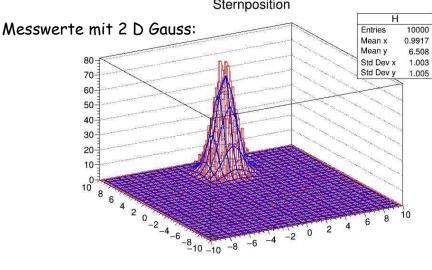
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 Arithmetrisches Mittel

Fehler einer Einzelmessung Eigenschaft des Arithmetischen Mittels $\sum_{i=1}^{\infty} (x_i - \bar{x})^2 = min$


$$\sigma_E = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}} \qquad \text{Standardabweichnung}$$

Mittlerer Fehler des Mittelwertes Mittelwert von n Messungen ist um \sqrt{n} genauer als die Einzelmessung


$$\sigma_M = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}}$$


Analyse der Messungen

Anforderungen an ein Computer-Programm zur Analyse von gemessenen Daten:

- \succ Messdaten einlesen, x_m
- ightharpoonup Kalibration / Berechnungen $x=\frac{1}{N}\sum_{i}^{N}x_{i}-x_{w}$
- Datenanpassung / Bestimmung von Modellparametern mit Fehlern
- Systematische Fehler analysieren
- > Graphische Darstellung
- Simulationsrechnungen / theoretische Beschreibung und Vergleich mit den Messungen
- > Ausgabe der Ergebnisse

