

Deep Neural Networks

• Software and Material for our last Lecture on Deep Neural Networks

 - The zenon system is setup for running various python3 based machine learning
 libraries using the anaconda3 framework. Anaconda3 is installed system wide and
 the setup is installed in /local/anaconda3
 The environment setup for machine learning is called myML and uses python version 3.8
 with the following packages numpy matplotlib pandas iminuit scipy
 scikit-learn tensorflow-gpu keras-gpu seaborn pytorch jupyter
 There is a very small graphic card, a Quadro P1000, which allows to use the machine
 learning library Tensorflow/Keras with GPU support.

 - In a terminal start conda and enable our machine learning environment by executing:

 source /local/kurs/SetPathforZenonAnaconda.sh
 conda activate myML
 conda info

 you can now execute python3 scripts in your shell or start jupyter to run notebooks
 in a web browser.

 - Credits: The talk contains material of a tutorial at the 3rd IML workshop 2019 at
 CERN by Yannik Rath and the Train-the-Trainer Workshop "Deep Learning Basics"
 in February 2023

Introduction
• ChatGPTs opinion on the relation of Artificial Inteligence (AI) Machine Learning (ML)
 and Deep Learning

 AI (Artificial Intelligence) is a broad field that encompasses a range of techniques and
 approaches for developing intelligent systems. Machine Learning (ML) is a subset of AI that
 focuses on teaching machines to learn from data and make predictions or decisions without
 being explicitly programmed. Deep Learning (DL) is a subset of ML that uses artificial neural
 networks with many layers to learn increasingly abstract features from data, and has
 achieved significant breakthroughs in areas such as computer vision, natural language
 processing, and robotics. Therefore, DL is a specific type of ML, and ML is a specific type
 of AI.
 Question: Where are you in this hirarchy?
 As an AI language model, I am built using various ML techniques, such as deep learning and
 natural language processing. Therefore, I am a subset of AI, specifically falling under the
 category of ML-based AI.

• Stable Diffusion
 is a latent text-to-image diffusion model
 capable of generating photo-realistic
 Images given any text input

Introduction Machine Learning

Johannes Erdmann, Train the Trainer workshop 2023

Introduction Machine Learning

Johannes Erdmann, Train the Trainer workshop 2023

Introduction to Deep Neural Networks

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

(Deep) Neural Network

• Deep learning
 - Part of a broader family of machine learning methods based on artificial neural networks
 that use multiple layers to progressively extract higher level features from raw input

• Deep neural network
 - Network with an input layer, at least a hidden layer and an output layer
 - Each layer performs specific types of sorting and ordering in a process that some refer to
 as “feature hierarchy”
 - Deal with unlabeled or unstructured data
 - Algorithms are called deep if the input data is passed through a series of hidden layers with
 nonlinearities (nonlinear transformations) before it becomes output.

• Most Deep Learning frameworks (user interface) are based on Python
 → TensorFlow and Keras are one of the most popular frameworks

Hidden Layer(s)

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Introduction to Deep Neural Networks
• Forward propagating perceptron

• Activation function
 - Introduce non linearities into the network → allows to approximate complex shapes

∫

input
weight

sum
non linearity

output

activation.py

https://www.physi.uni-heidelberg.de/~marks/root_einf%C3%BChrung/Beispiele/activation.txt

Introduction to Deep Neural Networks
• Single layer neural network

• Deep neural network

input hidden output

2nd element hidden layer 1 :

x x… x x…

ith element hidden layer k :

input hidden output

ith output :

Introduction to Deep Neural Networks
• Single layer neural network

• Deep neural network

input hidden output

2nd element hidden layer 1 :

x x… x x…

ith element hidden layer k :

input hidden output

ith output :

● Have to apply activation functions
on nodes in each hidden layer and
the final output layer

Non-linear activation functions
are really the key

Introduction to Deep Neural Networks
• Input data usually has to be pre processed

 - Needed for numerical stability

 - Want to have the mean around zero and the variance order of one

 ○ gaussian like distributed data → subtract mean and divide by standard deviation

 ○ data peaking at zero → apply logarithm and then subtract mean and divide by
 standard deviation

• Example datasets in the MNIST database (Modified National Institute of Standards and
 Technology database) used for machine learning and practicing techniques
 The data can be loaded directly in Tensorflow

 - MNIST handwriting
 60000 images

 display_HandWrt.py

 - Fashion-MNIST dataset
 60000 images

 display_Clothing.py

28 x 28 array with greyscale
values, 0 – 255
 → preprocessing: divide by 255

use pixel array and label

28 x 28 array with greyscale
values, 0 – 255 and labels

- Input data needs often reshaping

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/display_HandWrt.txt
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/display_Clothing.txt

Introduction to Deep Neural Networks
• Metric

 Machine learning datasets contain truth information to allow an independent quality measure
 of the neural network. Metrics are typically defined in terms of the neural network model's
 predictions and the true labels. They quantify how well the model is doing at its task.

 - accuracy: number of correctly classified data points over the total number.
 - precision: ratio of true positive (TP) predictions to the total number of positive (TP + false
 positive) predictions.
 - recall: ratio of true positives to the sum of true positives and false negatives
 - F1 score: F1 score = 2 * (precision * recall) / (precision + recall)

• Splitting the dataset in 2 or 3 parts

 - Traing dataset – Do all the parameter determination (training) of the neural network.

 - Validation dataset – Used to evaluate the model during training and to tune its
 hyperparameters (e.g. handled by tensorflow during minimization)

 - Test dataset – Use it for evaluating the optimized parameters and the final performance
 of the model after it has been fully trained.

 Splitting: Traing:Validation:Test → 60%:20%:20%

Introduction to Deep Neural Networks
• Quantifying quality/success of a neural network
 - Compare predicted output with the true output → loss function

- Empirical loss
 total loss over the entire dataset

- Cross entropy loss for models
 with output

- Mean squared error loss for regression with continuous real numbers

 predicted true

 true predicted true predicted

 true predicted

test minimizer in python:

intro.py

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/intro.txt

Introduction to Deep Neural Networks
• Find the network weights such that the loss function is minimal

 - Initialize weights randomly
 - Loop until convergence:

 compute

 update weights

 - return weights

 - derivative calculation with chain rule

backpropagation

Introduction to Deep Neural Networks
• Find the network weights such that the loss function is minimal

 - Initialize weights randomly
 - Loop until convergence:

 compute

 update weights

 - return weights

 - derivative calculation with chain rule

• Example: Minimizer usage in
 TensorFlow

backpropagation

linearRegression.py

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/linearRegression.txt

Introduction to Deep Neural Networks
• Training strategies

 - Minimization: difficult to converge to a global minimum with large number of parameters.

 - Learning rate

 is called learning rate

 choosing the right learning rate is learning rate is too large
 important for convergence

 - Adaptive moment estimation (Adam) uses adaptive learning rates which reduces α
 during minimization for each parameter separately

 β change in W from previous step

Introduction to Deep Neural Networks
• Output to the last node(s)

 - The output function(s) of the neural network (nodes in the final layer) are determined by
 activation functions. Their choice depends on the problem to be solved.

 - For binary classification problems the sigmoid function is used and interpreted as
 probability.

 - For regression problems a linear activation function or no activation function is used.

 - For multi-class classification problems the softmax function is mostly in use and gives
 a probability distribution over the classes.
 Softmax assigns decimal probabilities to each class i of a multi class problem with its N
 multiclass output values:

 - introduce learning rate

Examples - Deep Neural Networks
• We need start values for the network

 - Initialize randomly, a range of values is needed, suitable values depend on the details of
 the network, like layer size and activation functions

 - In general:
 var(input) ≈ var(output) with var ≈ 2 / (N

input nodes
 + N

output nodes
)

 draw from gaussian or uniform distributions within a range

• Usually input range differs largely

 - transform to mean 0 and variance 1

 - perform de-correlation of input data

• Simple example using TensorFlow (TF)

 - Generate toy sample with 2 normalized gaussian distributions with mean (-1,-1) and (1,1)
 - Each sample gets a label and then they are combined to a training set
 - The data is plotted and colored according to their labels
 - In TensorFlow ‘s a model is set up specifying the optimizer, loss function and metric
 - Use AdamOptimizer to find the minimum and accuracy as metric
 - The data and labels are given to the fit method, also the training iterations and the
 batch size. The model doesn't process the entire dataset at once, but rather in batches.
 - Loss and accuracy are plotted as number of iterations
 - Display classification results for sample points together with labeled data points

tf_intro.py

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/tf_intro.txt

Examples - Deep Neural Networks
• Using the handwriting MNIST example with TensorFlow (TF)

 - Read in the dataset with a pre defined function in TF. There are 10 categories.
 - Each sample has a label and the 28 x 28 pixel grey scale data array.
 - The data is normalized and reshaped to a 1D array.
 - In TensorFlow ‘s a model is set up specifying a first dense hidden layer with 512 nodes
 and a ReLU activation function. Dense means all nodes are fully connected.
 A second layer also with 512 nodes and ReLU activation.
 The 3rd layer is the output layer with 10 nodes and Softmax is used as activation.
 - Use AdamOptimizer to find the minimum and accuracy as metric
 - The data and labels are given to the fit method, also the training iterations and the
 batch size. The model doesn't process the entire dataset at once, but rather in batches.
 - Loss and Accuracy are plotted as number of iterations
 There is a difference between the training and the test data → Overtraining, the net learns
 features of the data which are not existing. To prevent this reduce the number of nodes
 or refine the model
 - Test accuracy = 0.98
 - The data is plotted and true and predicted label are written MLP_MNIST_digits_tf.py

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/MLP_MNIST_digits_tf.txt

Convolutional Neural Networks
• A Convolutional Neural Network (CNN) learns features directly from data without specifying
 the features explicitly. CNNs are useful for pattern recognition in images and computer
 vision, but also for classification tasks in audio data and signal processing.

• Learning the features happens via convolution filter, which are activated by scanning over
 the pixel of an image. Edges or structure and color changes are transported to another
 filter layer. A Rectified Linear Unit (ReLU) is applied as activation function. Via a pooling
 technique the number of parameters is reduced from layer to layer.

• Convolution

 The function value of the weight function f at the position τ tells us how strong the contribution
 of g(x – τ) in f at the position x is.

• Discrete convolution

source Wikipedia

input distribution kernel or filter function

image kernel
Play with images and and various kernel for image processing: https://setosa.io/ev/image-kernels/

https://setosa.io/ev/image-kernels/

Convolutional Neural Networks
More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

• Structure of a typical CNN used in image classification

 - Main idea is to extract particular localized features of data, eg. an image, using a
 convolution as filter mechanism. The input is a data structure [xPix,yPix,3] of raw pixel
 values with three color channels R,G,B. Each color channel is treated independently.

 - There are 3 main building blocks:

 I) Convolutional layer
 ○ Obtain a weight matrix by computing the dot product of the weight matrix and a small
 sub region of the input data and scanning over the whole image. This results in a
 weight matrix which transports certain features of the image to further layers.
 ○ To the weights activation functions like ReLU are applied. The convolution operation
 (weight matrix ∙ sub input structure) behaves like a filter.
 ○ The weight matrix is determined by a loss function.
 ○ Multiple convolutional layers extract with increasing depth more and more complex
 features

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks
• Structure of a typical CNN used in image classification

 II) Pooling layer
 ○ Several neighbouring pixel are pooled together by averaging or by taking their
 maximum.

 ○ Max Pooling algorithm: Take a 4x4 input (W),
 step (S) with a 2x2 filter (F) over the input, take
 the maximum entry

 ○ Zero Padding: to the edges of the picture pixel
 are added (P) and filled with zeros

 ○ Output size OP :

More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

source Computer Science Wiki

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks
• Structure of a typical CNN used in image classification

 III) Output layer
 ○ The final stage is a fully connected layer which works as MLP to generate an output

 ○ The very last layer is equal to the number of output classes.
 In order to obtain probabilities for each class
 SoftMax is applied

 ○ A loss function determines all the weights

• As CNN example the MNIST handwriting dst is used
 which over comes overfitting

More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

Input Layer

Output Layer

Convolutional Layer

Convolution Stage

Activation Stage

Pooling Stage

CNN_MNIST_digits_tf.py

https://cs231n.github.io/convolutional-networks/
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/CNN_MNIST_digits_tf.txt

Examples - Deep Neural Networks
• Two extreme cases of training results

 - If the model does not reflect the data content or the training is insufficient
 → bad network performance

 - If the model allows for to much complexity it learns features of the training data sample
 → network can be applied to other samples (overtraining effect)
 test overtraining in the example clothing dataset by including the method Dropout in TF
 or changing the number of nodes in the hidden layer

• Other classification examples with Tensorflow and Keras
 - uses the Fashion MNIST dataset of Zalando, which contains 60,000 grey scale images in
 10 categories each showing low resolution clothing pictures.

 - sequential model with two dense layers → significant overtraining with test accuracy = 87.7%

 - sequential model with two dense layers adding Dropout and softmax activation
 → no overtraining with test accuracy = 88.2 %

 - CNN model with MaxPooling2D and 3x3 Filters and ReLu activation. The final output
 is 10 nodes with Softmax activation → overtraining with test accuracy = 90.6 %

 - CNN model where the input data is shaped to a 4D tensor of shape (samples, height,
 width, channels). MaxPooling2D and 3x3 Filters and ReLu activation and the Dropout
 feature is used → no overtraining with test accuracy = 91.4 %

clothingSequential.py

clothingCNN.py

clothingCNN_4D.py

clothingSequentialDropout.py

ttps://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/clothingSequential.txt
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/clothingCNN.txt
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/clothingCNN_4D.txt
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/clothingSequentialDropout.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

