
  

Deep Neural Networks

• Software and Material for our last Lecture on Deep Neural Networks

  - The zenon system  is setup for running various python3 based machine learning
    libraries using the anaconda3 framework. Anaconda3 is installed system wide and
    the setup is installed in /local/anaconda3 
    The environment setup for machine learning is called myML and uses python version 3.8
    with the following packages numpy matplotlib pandas iminuit scipy 
    scikit-learn tensorflow-gpu keras-gpu seaborn pytorch jupyter  
    There is a very small graphic card, a Quadro  P1000, which allows to use the machine
    learning library Tensorflow/Keras with GPU support.

    - In a terminal start conda and enable our machine learning environment by executing: 

      source /local/kurs/SetPathforZenonAnaconda.sh
   conda activate myML 
   conda info

   you can now execute python3 scripts in your shell or start jupyter to run notebooks
      in a web browser. 
   
   - Credits: The talk contains material of a tutorial at the 3rd IML workshop  2019 at 
     CERN by Yannik Rath  and the Train-the-Trainer Workshop "Deep Learning Basics" 
     in February 2023  

 



  

Introduction
• ChatGPTs opinion on the relation of Artificial Inteligence (AI) Machine Learning (ML)  
 and Deep Learning 

  AI (Artificial Intelligence) is a broad field that encompasses a range of techniques and
  approaches for developing intelligent systems. Machine Learning (ML) is a subset of AI that
  focuses on teaching machines to learn from data and make predictions or decisions without
  being explicitly programmed. Deep Learning (DL) is a subset of ML that uses artificial neural
  networks with many layers to learn increasingly abstract features from data, and has 
  achieved significant breakthroughs in areas such as computer vision, natural language
  processing, and robotics. Therefore, DL is a specific type of ML, and ML is a specific type
  of AI.
  Question: Where are you in this hirarchy?
  As an AI language model, I am built using various ML techniques, such as deep learning and
  natural language processing. Therefore, I am a subset of AI, specifically falling under the
  category of ML-based AI.

•  Stable Diffusion 
  is a latent text-to-image diffusion model 
  capable of generating photo-realistic 
  Images given any text input 
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Introduction to Deep Neural Networks

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

(Deep) Neural Network

• Deep learning
  - Part of a broader family of machine learning methods based on artificial neural networks 
    that use multiple layers to progressively extract higher level features from raw input 

• Deep neural network 
  - Network with an input layer, at least a hidden layer and  an output layer
  - Each layer performs specific types of sorting and ordering in a process that some refer to  
    as “feature hierarchy” 
  - Deal with unlabeled or unstructured data
  - Algorithms are called deep if the input data is passed through a series of hidden layers with
    nonlinearities (nonlinear transformations)  before it becomes output.

• Most Deep Learning frameworks (user interface) are based on Python   
                    →  TensorFlow and Keras are one of the most popular frameworks

Hidden Layer(s)

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a


  

Introduction to Deep Neural Networks
• Forward propagating perceptron

    

• Activation function
  - Introduce non linearities into the network  →  allows to approximate complex shapes 

∫

input
weight

sum
non linearity

output

activation.py

https://www.physi.uni-heidelberg.de/~marks/root_einf%C3%BChrung/Beispiele/activation.txt


  

Introduction to Deep Neural Networks
• Single layer neural network

    

• Deep neural network

input hidden output

2nd element hidden layer 1 :

x x… x x…

ith element hidden layer k :

input hidden output

ith output :



  

Introduction to Deep Neural Networks
• Single layer neural network

    

• Deep neural network

input hidden output

2nd element hidden layer 1 :

x x… x x…

ith element hidden layer k :

input hidden output

ith output :

● Have to apply activation functions 
on nodes in each hidden layer and
the final output layer 

Non-linear activation functions 
are really the key  



  

Introduction to Deep Neural Networks
• Input data usually has to be pre processed 

  - Needed for numerical stability

  - Want to have the mean around zero and the variance order of one 

     ○  gaussian like distributed data →  subtract mean and divide by standard deviation

     ○  data peaking at zero → apply  logarithm  and then  subtract mean and divide by
                                               standard deviation

• Example datasets in the  MNIST database (Modified National Institute of Standards and
 Technology database) used for machine learning and practicing techniques
 The data can be loaded directly in Tensorflow 

 - MNIST handwriting
   60000 images 
     
   display_HandWrt.py  
      

 - Fashion-MNIST dataset
   60000 images

   display_Clothing.py

28 x 28 array with greyscale 
values, 0 – 255
   → preprocessing:  divide by 255

use pixel array and label  

28 x 28 array with greyscale 
values, 0 – 255 and labels  

- Input data needs often reshaping 

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/display_HandWrt.txt
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/display_Clothing.txt


  

Introduction to Deep Neural Networks
• Metric

 Machine learning datasets contain truth information to allow an independent quality measure 
 of the neural network. Metrics are typically defined in terms of the neural network model's 
 predictions and the true labels.  They quantify how well the model is doing at its task.

 - accuracy:  number of correctly classified data points over the total number.
 - precision: ratio of true positive (TP) predictions to the total number of positive (TP + false
   positive) predictions.
 - recall: ratio of true positives to the sum of true positives and false negatives
 - F1 score: F1 score = 2 * (precision * recall) / (precision + recall)

• Splitting the dataset in 2 or 3 parts

  - Traing dataset – Do all the parameter determination (training) of the neural network. 

  - Validation dataset – Used to evaluate the model during training and to tune its
    hyperparameters ( e.g. handled by tensorflow during minimization)

  - Test dataset – Use it for evaluating the optimized parameters and the final performance 
    of the model after it has been fully trained. 

  Splitting:     Traing:Validation:Test      →   60%:20%:20% 

    



  

Introduction to Deep Neural Networks
• Quantifying quality/success of a neural network
  - Compare predicted output with the true output → loss function

    

- Empirical loss
  total loss over the entire dataset

- Cross entropy loss for models
  with output 

- Mean squared error loss for regression with continuous real  numbers

 predicted   true

 true           predicted                  true                    predicted

 true           predicted     
   

test minimizer in python:

intro.py

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/intro.txt


  

Introduction to Deep Neural Networks
• Find the network weights such that the loss function is minimal 
  

 - Initialize weights randomly
 - Loop until convergence:
   
   compute

   update weights 

 - return weights

 - derivative calculation with chain rule 
   
     

backpropagation



  

Introduction to Deep Neural Networks
• Find the network weights such that the loss function is minimal 
  

 - Initialize weights randomly
 - Loop until convergence:
   
   compute

   update weights 

 - return weights

 - derivative calculation with chain rule 

• Example: Minimizer usage in
 TensorFlow 
   
     

backpropagation

linearRegression.py

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/linearRegression.txt


  

Introduction to Deep Neural Networks
• Training strategies

  - Minimization: difficult to converge to a global minimum with large number of parameters.

  - Learning rate   
                                              
                                                                       is called learning rate
  

                                                                                          
       choosing the right learning rate is                            learning rate is too large
       important for convergence 

   - Adaptive moment estimation (Adam) uses adaptive learning rates which reduces α 
     during minimization for each parameter separately

                                                                                   β    change in W from previous step



  

Introduction to Deep Neural Networks
• Output to the last node(s)

  - The output function(s) of the neural network (nodes in the final layer) are determined by 
    activation functions. Their choice depends on the problem to be solved.

  - For binary classification problems the sigmoid function is used and interpreted as
    probability.

  - For regression problems a linear activation function or no activation function is used.

  - For multi-class classification problems the softmax function is mostly in use and gives 
    a probability distribution over the classes.
    Softmax assigns decimal probabilities to each class i of a multi class problem with its N  
    multiclass output values:

 - introduce learning rate



  

Examples - Deep Neural Networks
• We need start values for the network 

  - Initialize randomly, a range of values is needed, suitable values depend on the details of
    the network, like layer size and activation functions

  - In general:    
        var(input) ≈ var(output)    with    var ≈ 2 / (N

input nodes
 + N

output nodes
)  

        draw from gaussian or uniform distributions within a range  

• Usually input range differs largely

  - transform to mean 0 and variance 1 

  - perform de-correlation of input data

•  Simple example using TensorFlow (TF) 

  - Generate toy sample with 2 normalized gaussian distributions with mean (-1,-1) and (1,1)
  - Each sample gets a label and then they are combined to a training set
  - The data is plotted and colored according to their labels 
  - In TensorFlow ‘s a model is set up specifying the optimizer, loss function and metric 
  - Use AdamOptimizer to find the minimum and accuracy as metric
  - The data and labels are given to the fit method, also the training iterations and the 
    batch size. The model doesn't process the entire dataset at once, but rather in batches.
  - Loss and accuracy are plotted as number of iterations
  - Display classification results for sample points together with labeled data points  

tf_intro.py

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/tf_intro.txt


  

Examples - Deep Neural Networks
•  Using the handwriting MNIST example with TensorFlow (TF)

  - Read in the dataset with a pre defined function in TF. There are 10 categories.
  - Each sample has a label and the 28 x 28 pixel grey scale data array.
  - The data is normalized and reshaped to a 1D array.
  - In TensorFlow ‘s a model is set up specifying a first dense hidden layer with 512 nodes
    and a ReLU activation function. Dense means all nodes are fully connected. 
    A second layer also with 512 nodes and ReLU activation.
    The 3rd layer is the output layer with 10 nodes and Softmax is used as activation.
  - Use AdamOptimizer to find the minimum and accuracy as metric
  - The data and labels are given to the fit method, also the training iterations and the 
    batch size. The model doesn't process the entire dataset at once, but rather in batches.
  - Loss and Accuracy are plotted as number of iterations
    There is a difference between the training and the test data → Overtraining, the net learns
    features of the data which are not existing. To prevent this reduce the number of nodes
    or refine the model 
  - Test accuracy  =  0.98  
  - The data is plotted and true and predicted label are written       MLP_MNIST_digits_tf.py

https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/MLP_MNIST_digits_tf.txt


  

Convolutional Neural Networks
•  A Convolutional Neural Network (CNN) learns features directly from data without specifying 
  the features explicitly. CNNs are useful for pattern recognition in images and computer 
  vision, but also for classification tasks in audio data and signal processing.

•  Learning the features happens via convolution filter, which are activated by scanning over
  the pixel of an image. Edges or structure and color changes are transported to another 
  filter layer. A Rectified Linear Unit (ReLU) is applied as activation function. Via a pooling
  technique the number of parameters is reduced from layer to layer.

•  Convolution                                                                            

  

  The function value of the weight function f at the position τ tells us how strong the contribution
  of g(x – τ) in f at the position x is.

•  Discrete convolution 

source Wikipedia

input distribution                                        kernel or filter function               

image                   kernel      
Play with images and and various kernel for image processing:   https://setosa.io/ev/image-kernels/

https://setosa.io/ev/image-kernels/


  

Convolutional Neural Networks
More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

• Structure of a typical CNN used in image classification 

  

  - Main idea is to extract particular localized features of data, eg. an image, using a 
    convolution as filter mechanism. The input is a data structure [xPix,yPix,3] of raw pixel 
    values with three color channels R,G,B. Each color channel is treated independently.

  - There are 3 main building blocks: 

     I) Convolutional layer 
        ○ Obtain a weight matrix by computing the dot product of the weight matrix and a small 
           sub region of the input data and scanning over the whole image. This results in a 
           weight matrix which transports certain features of the image to further layers.
        ○ To the weights activation functions like ReLU are applied. The convolution operation  
            (weight matrix ∙ sub input structure) behaves like a filter. 
        ○ The weight matrix is determined by a loss function.
        ○ Multiple convolutional layers extract with increasing depth more and more complex 
           features 
    

https://cs231n.github.io/convolutional-networks/


  

Convolutional Neural Networks
• Structure of a typical CNN used in image classification 

  

    II) Pooling layer  
        ○ Several neighbouring pixel are pooled together by averaging or by taking their 
           maximum.

        ○ Max Pooling algorithm: Take a 4x4  input (W), 
           step (S) with a 2x2 filter (F)  over the input, take 
           the maximum entry  

        ○ Zero Padding: to the edges of the picture pixel
           are added (P) and filled  with zeros

        ○ Output size OP :
    

More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

source Computer Science Wiki

https://cs231n.github.io/convolutional-networks/


  

Convolutional Neural Networks
• Structure of a typical CNN used in image classification 

  

    III) Output layer 
        ○ The final stage is a fully connected layer which works as MLP to generate an output

        ○ The very last layer is equal to the number of output classes.
            In order to obtain probabilities for each class 
            SoftMax is applied 

        ○ A loss function determines all the weights

• As CNN example the MNIST handwriting dst is used 
 which over comes overfitting  
 

More information can be found in the Stanford course https://cs231n.github.io/convolutional-networks/

Input Layer

Output Layer

Convolutional Layer

Convolution Stage

Activation Stage

Pooling Stage

CNN_MNIST_digits_tf.py

https://cs231n.github.io/convolutional-networks/
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/CNN_MNIST_digits_tf.txt


  

Examples - Deep Neural Networks
• Two extreme cases of training results 

  - If the model does not reflect the data content or the training is insufficient 
             → bad network performance  

  - If the model allows for to much complexity it learns features of the training data sample
             → network can be applied to other samples (overtraining effect) 
    test overtraining in the example clothing dataset by including the method Dropout in TF  
    or changing the number of nodes in the hidden layer 

• Other classification examples with Tensorflow and Keras
 - uses the Fashion MNIST dataset of Zalando,  which contains 60,000 grey scale images in 
   10 categories each showing low resolution clothing pictures. 

 - sequential model with two dense layers → significant overtraining with test accuracy = 87.7%

 - sequential model with two dense layers adding Dropout and softmax activation 
         → no overtraining  with  test accuracy = 88.2 %

 - CNN  model with MaxPooling2D and 3x3 Filters and ReLu activation. The final output 
   is 10 nodes with Softmax activation    →  overtraining  with  test accuracy = 90.6 %

 - CNN  model where the input data is shaped to a 4D tensor of shape (samples, height, 
   width, channels). MaxPooling2D and 3x3 Filters and ReLu activation and the Dropout
   feature is used  → no overtraining  with  test accuracy = 91.4 %

clothingSequential.py

clothingCNN.py

clothingCNN_4D.py

clothingSequentialDropout.py

ttps://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/clothingSequential.txt
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/clothingCNN.txt
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/clothingCNN_4D.txt
https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Beispiele/clothingSequentialDropout.txt
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