Deep Neural Networks

• Software and Material for our last Lecture on Deep Neural Networks

- TensorFlow Presentation by Mona Piotter
- Partly the examples shown in the following are based on a tutorial at the 3rd IML workshop 2019 at CERN by Yannik Rath
- We use the Python based Packages TensorFlow and Keras
- For the Installation of TensorFlow see the following notes

• Deep learning

- Part of a broader family of machine learning methods based on artificial neural networks that use multiple layers to progressively extract higher level features from raw input

• Deep neural network

- Network with an input layer, a hidden layer and an output layer
- Each layer performs specific types of sorting and ordering in a process that some refer to as "feature hierarchy"
- Deal with unlabeled or unstructured data
- Algorithms are called deep if the input data is passed through a series of nonlinearities or nonlinear transformations before it becomes output.

Most Deep Learning frameworks are based on Python

 \rightarrow TensorFlow and Keras are the most popular frameworks

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Forward propagating perceptron

Activation function

- Introduce non linearities into the network \rightarrow allows to approximate complex shapes

ACTIVATION FUNCTION	EQUATION	RANGE
Linear Function	f(x) = x	(−∞,∞)
Step Function	$f(x) = \begin{cases} 0 \text{ for } x < 0\\ 1 \text{ for } x \ge 0 \end{cases}$	{0, 1}
Sigmoid Function	$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$	(0,1)
Hyperbolic Tanjant Function	$f(x) = \tanh(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$	(-1,1)
ReLU	$f(x) = \begin{cases} 0 \text{ for } x < 0 \\ x \text{ for } x \ge 0 \end{cases}$	[0,∞)
Leaky ReLU	$f(x) = \begin{cases} 0.01 \ for \ x < 0 \\ x \ for \ x \ge 0 \end{cases}$	(−∞,∞)
Swish Function	$f(x) = 2x\sigma(\beta x) = \begin{cases} \beta = 0 \text{ for } f(x) = x\\ \beta \to \infty \text{ for } f(x) = 2\max(0, x) \end{cases}$	(−∞,∞)

• Single layer neural network

• Deep neural network

2nd element hidden layer 1 : $z_2 = w_{0,2}^{(1)} + \sum_{j=1}^n x_j w_{j,2}^{(1)}$

ith output :

$$\hat{y}_i = g(w_{0,2}^{(2)} + \sum_{j=1}^{d1} z_j w_{i,j}^{(2)})$$

 $i^{\mbox{\tiny th}}$ element hidden layer k :

$$z_{k,i} = w_{0,i}^{(k)} + \sum_{j=1}^{d_{k-1}} g(z_{k-1,j}) w_{i,j}^{(k)}$$

- Quantifying quality/success of a neural network
 - Compare predicted output with the true output \rightarrow loss function

$$\mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
 predicted true

- Emperical loss total loss over the entire dataset

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$

- Cross entropy loss for models
with output
$$\in [0, 1]$$

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} log(f(x^{(i)}; W)) + (1 - y^{(i)}) log(1 - f(x^{(i)}; W))$$
true predicted true predicted

- Mean squared error loss for regression with continous real numbers

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}; W)))^2$$
 predicted

Test minimizer in python: tutorial.py intro.py

• Find the network weights such that the loss function is minimal

$$W_{min} = argminJ(W) = argmin\frac{1}{n}\sum_{i=1}^{n} \mathcal{L}(f(x^{(i)};W), y^{(i)})$$
Repeat until convergence
Initialize weights randomly
Loop until convergence:
compute $\frac{\partial J(W)}{\partial W}$
update weights
$$W \leftarrow W - \eta \cdot \frac{\partial J(W)}{\partial W}$$
return weights
$$J(w_0, w_1)$$

- derivative calculation with chain rule

• Find the network weights such that the loss function is minimal

$$W_{min} = \underset{w}{argminJ(W)} = argmin\frac{1}{n}\sum_{i=1}^{n} \mathcal{L}(f(x^{(i)};W), y^{(i)})$$

- Initialize weights randomly
- Loop until convergence:

compute $\frac{\partial J(W)}{\partial W}$ update weights $W \leftarrow W - \eta \cdot \frac{\partial J(W)}{\partial W}$

- return weights
- derivative calculation with chain rule
- Example: Minimizer usage in TensorFlow

linearRegression.py

• We need start values for the network

- Initialize randomly, a range of values is needed, suitable values depend on the details of the network, like layer size and activation functions
- In general:

var(input) \approx var(output) with var \approx 2 / (N_{input nodes} + N_{output nodes}) draw from gaussian or uniform distributions within a range $\pm \sqrt{3var}$

- Usually input range differs largely
 - transform to mean 0 and variance 1
 - perform decorrelation of input data

• Simple example using TensorFlow

- Generate toy sample with 2 normalized gaussian distributions with mean (-1,-1) and (1,1)
- Each sample gets a label and then they are combined to a training set
- TensorFlow 's feature of datasets and iterators provides data handling
- The data is given to dataset by placeholder
- We define 1 hidden layer with ReLU activation
- The output layer uses softmax to get continuous values between [0,1]
- Use AdamOptimizer to find the minimum
- Use TensorFlow 's session concept to run the training loop
- Display classification results for sample points together with labeled data points

tf_intro.py

• Two extreme cases of training results

- If the model does not reflect the data content or the training is insufficient
 - \rightarrow bad network performance
- If the model allows for to much complexity it learns features of the training data sample → network can be applied to other samples (overtraining effect)

test overtraining in our example by changing the number of nodes in the hidden layer of our example (<code>n_hidden = 10 \rightarrow n_hidden = 100</code>)

• Another classification example is discussed in the TensorFlow tutorial using keras

https://www.tensorflow.org/tutorials/keras/basic_classification

- uses the Fashion MNIST dataset of Zalando, which contains 70,000 grayscale images in 10 categories each showing low resolution clothing pictures.
- 60k images are used for the classification training

Convolutional Neural Networks

• Structure of a typical CNN used in image classification

- Main idea is to extract particular localized features of data, eg. an image, using a filter mechanism
- 3 building blocks:
 - convolutional layer, define a weight matrix which extracts certain features of the image by scanning over the image. The weight matrix behaves like a filter. The weight matrix is determined by a loss function. Multiple convolutional layers extract with increasing depth more and more complex features
 - II) pooling layer, here several neighbouring pixel are pooled together by averaging or by taking their maximum in order the reduce information
 - III) output layer is a fully connected layer to generate an output equal to the number of classes we need. This needs a loss function which is then evaluated and determines the output conditions by backpropagation.

• As CNN example we use top tagging as discussed in the IML tutorial top tagging.py