
  

Deep Neural Networks

• Software and Material for our last Lecture on Deep Neural Networks

  - TensorFlow Presentation by Mona Piotter

  - Partly the examples shown in the following are based on a tutorial at the 3rd IML workshop 
     2019 at CERN by Yannik Rath

  - We use the Python based Packages TensorFlow and Keras

  - For the Installation of TensorFlow see the following notes

https://www.physi.uni-heidelberg.de/~marks/root_datenanalyse/Folien/tensorflow_install_manual.pdf


  

Introduction to Deep Neural Networks

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Deep Neural Network

• Deep learning
  - Part of a broader family of machine learning methods based on artificial neural networks 
    that use multiple layers to progressively extract higher level features from raw input 

• Deep neural network 
  - Network with an input layer, a hidden layer and  an output layer
  - Each layer performs specific types of sorting and ordering in a process that some refer to  
    as “feature hierarchy” 
  - Deal with unlabeled or unstructured data
  - Algorithms are called deep if the input data is passed through a series of nonlinearities or
    nonlinear transformations before it becomes output.

• Most Deep Learning frameworks are based on Python   
                    →  TensorFlow and Keras are the most popular frameworks

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a


  

Introduction to Deep Neural Networks
• Forward propagating perceptron

    

• Activation function
  - Introduce non linearities into the network  →  allows to approximate complex shapes 

∫

input
weight

sum
non linearity

output

activation.py

https://www.physi.uni-heidelberg.de/~marks/root_datenanalyse/Beispiele/activation.py


  

Introduction to Deep Neural Networks
• Single layer neural network

    

• Deep neural network

input hidden output
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Introduction to Deep Neural Networks
• Quantifying quality/success of a neural network
  - Compare predicted output with the true output → loss function

    

- Emperical loss
  total loss over the entire dataset

- Cross entropy loss for models
  with output 

- Mean squared error loss for regression with continous real  numbers

 predicted   true

 true           predicted                  true                    predicted

 true           predicted     
   

Test minimizer in python:
tutorial.py
intro.py

https://www.physi.uni-heidelberg.de/~marks/root_datenanalyse/Beispiele/tutorial.py
https://www.physi.uni-heidelberg.de/~marks/root_datenanalyse/Beispiele/intro.py


  

Introduction to Deep Neural Networks
• Find the network weights such that the loss function is minimal 
  

 - Initialize weights randomly
 - Loop until convergence:
   
   compute

   update weights 

 - return weights

 - derivative calculation with chain rule 
   
     

backpropagation



  

Introduction to Deep Neural Networks
• Find the network weights such that the loss function is minimal 
  

 - Initialize weights randomly
 - Loop until convergence:
   
   compute

   update weights 

 - return weights

 - derivative calculation with chain rule 

• Example: Minimizer usage in
 TensorFlow 
   
     

backpropagation

linearRegression.py

https://www.physi.uni-heidelberg.de/~marks/root_datenanalyse/Beispiele/linearRegression.py


  

Introduction to Deep Neural Networks
• We need start values for the network 

  - Initialize randomly, a range of values is needed, suitable values depend on the details of
    the network, like layer size and activation functions

  - In general:    
        var(input) ≈ var(output)    with    var ≈ 2 / (N

input nodes
 + N

output nodes
)  

        draw from gaussian or uniform distributions within a range  

• Usually input range differs largely

  - transform to mean 0 and variance 1 

  - perform decorrelation of input data

•  Simple example using TensorFlow 

  - Generate toy sample with 2 normalized gaussian distributions with mean (-1,-1) and (1,1)
  - Each sample gets a label and then they are combined to a training set
  - TensorFlow ‘s feature of datasets and iterators provides data handling
  - The data is given to dataset by placeholder 
  - We define 1 hidden layer with ReLU activation
  - The output layer uses softmax to get continuous values between [0,1]
  - Use AdamOptimizer to find the minimum
  - Use TensorFlow ‘s session concept to run the training loop
  - Display classification results for sample points together with labeled data points  

tf_intro.py

https://www.physi.uni-heidelberg.de/~marks/root_datenanalyse/Beispiele/tf_intro.py


  

Introduction to Deep Neural Networks
• Two extreme cases of training results 

  - If the model does not reflect the data content or the training is insufficient 
             → bad network performance  

  - If the model allows for to much complexity it learns features of the training data sample
             → network can be applied to other samples (overtraining effect) 
    test overtraining in our example by changing the number of nodes in the hidden layer 
     of our example ( n_hidden = 10 → n_hidden = 100 )

• Another classification example is discussed in the TensorFlow tutorial using keras
 https://www.tensorflow.org/tutorials/keras/basic_classification
 - uses the Fashion MNIST dataset of Zalando,  which contains 70,000 grayscale images in 
   10 categories each showing low resolution clothing pictures. 
 - 60k images are used for the classification training classification.py

https://www.tensorflow.org/tutorials/keras/basic_classification
https://www.physi.uni-heidelberg.de/~marks/root_datenanalyse/Beispiele/classification.py


  

Convolutional Neural Networks
• Structure of a typical CNN used in image classification 

  

  - Main idea is to extract particular localized features of data, eg. an image, using a filter
    mechanism
  - 3 building blocks: 
    I) convolutional layer, define a weight matrix which extracts certain features of the image
       by scanning over the image. The weight matrix behaves like a filter. The weight matrix is 
       determined by a loss function. Multiple convolutional layers extract with increasing depth
       more and more complex features 
    II) pooling layer, here several neighbouring pixel are pooled together by averaging or by 
       taking their maximum in order the reduce information  
    III) output layer is a fully connected layer to generate an output equal to the number of 
       classes we need. This needs a loss function which is then evaluated and determines 
       the output conditions by backpropagation. 

• As CNN example we use top tagging as discussed in the IML tutorial 
 

• If the model does not reflect the data content or the training is insufficient 
             → bad network performance  

  - If the model allows for to much complexity it learns features of the training data sample
             → network can be applied to other samples (overtraining effect) 
    test overtraining in our example by changing the number of nodes in the hidden layer 
     of our example ( n_hidden = 10 → n_hidden = 100 )

• Another classification example is discussed in the TensorFlow tutorial using keras
 https://www.tensorflow.org/tutorials/keras/basic_classification
 - uses the Fashion MNIST dataset of Zalando,  which contains 70,000 grayscale images in 
   10 categories each showing low resolution clothing pictures. 
 - 60k images are used for the classification training 

top_tagging.py

https://www.tensorflow.org/tutorials/keras/basic_classification
https://www.physi.uni-heidelberg.de/~marks/root_datenanalyse/Beispiele/top_tagging.py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

