Numerical Calculations

Arithmetic with Mathematica

```
x^y power -x minus x/y divide x y z \text{ or } x^y z^z multiply x+y+z add
```

In[1]:= 2^100

control grouping by explicitly using parentheses

Exact and Approximate Results

```
Out [1] = 1267650600228229401496703205376  In[2] := 2^100 /N  return an approximate num. result  Out[2] = 1.26765 \times 10^{30}   In[3] := 1/3 + 2/7
```

return an exact result

This is taken to be an exact rational number, and reduced to its lowest terms.

```
In[5]:= 452/62
Out[5]= 31
```

Out[3] = $\overline{21}$

In[4] := 1/3 + 2/7 //N

Out [4] = 0.619048

Whenever you give a number with an explicit decimal point, Mathematica produces an approximate numerical result.

```
In[6] := 452.3/62
Out[6] = 7.29032
```

Mathematical Functions

Mathematica includes a very large collection of mathematical functions, here are just a few examples: Help with ?Function

Sqrt[x] square root (\sqrt{x}) Exp[x] exponential (ε^x)

Log[x] natural logarithm $\binom{\log_e x}{x}$ Log[b, x] logarithm to base $\binom{\log_b x}{x}$

Sin[x], Cos[x], Tan[x] trigonometric functions (with arguments in radians)

ArcSin[x], ArcCos[x], ArcTan[x] inverse trigonometric functions n! factorial (product of integers 1,2,...,n)

Abs[x] absolute value Round[x] closest integer to x

Mod[n, m] $n \mod m$ (remainder on division of $n \bowtie m$) Random[] pseudorandom number between 0 and 1

Max[x, y, ...], Min[x, y, ...] maximum, minimum of x, y, ...

FactorInteger[n] prime factors of n

The arguments of all Mathematica functions are enclosed in square brackets.

The names of built-in Mathematica functions begin with capital letter and correspond to the English term.

Some common mathematical constants:

Pi π≈3.14159

E e≈2.71828 (normally output as e)

Degree $\pi/18C$: degrees-to-radians conversion factor (normally output as °)

I $i=\sqrt{-1}$ (normally output as \dot{z})

Infinity ∞

Get numerical results in Mathematica to any degree of precision:

expr//N or N[expr] approximate numerical value of expr

N[expr, n] numerical value of expr calculated with n-digit precision

In[1]:= N[Pi, 40]
Out[1]= 3.141592653589793238462643383279502884197

Complex Numbers

x + Iy the complex number x+iy

 $\begin{array}{ll} Re[z] & real \ part \\ Im[z] & imaginary \ part \end{array}$

Conjugate[z] complex conjugate z^* or \bar{z} Abs[z] absolute value |z|

Arg[z] absolute value $|z|^{|z|}$ the argument φ in $|z|^{|z|}$

Mathematica does calculations with complex numbers

In[1]:=
$$(4 + 3 I) / (2 - I)$$

Out[1]= $1 + 2 \dot{n}$