

Rosenbluth Plot zur Separation des elektrischen und magnetischen Formfaktors

Achtung: um beim selben q² verschiedene Winkel zu messen, muss Strahlenergie geaendert werden

bei moderatem q² Proton elektrischer und magnetischer Formfaktor und Neutron magnetischer Formfaktor in etwa durch Dipolform beschrieben und $q_0^2 = 0.73 \text{ GeV}^2$ -> $r_{ms} = 0.85 \text{ fm}$

Fig. 2-9

Proton magnetischer Formfaktor

bis $q^2 = 10 \text{ GeV}^2$ Beschreibung durch Dipolform recht gut

Neutron elektrischer Formfaktor kombiniert aus verschiedenen Messungen nicht Null -> $< r_E^2$ (neutron)> = - 0.116 ±0.002 fm²

d.h. negative Ladung etwas weiter aussen als positive

Fig. 2-11

inelastische Elektron-Proton Streuung bei DESY (Bartels 1968) als Funktion der Energie E' des gestreuten Elektrons oder ' der Masse des hadronischen Endzustands W,

Fig. 2-13

<u>inelastische Elektron-Nukleon Streuung</u> jetzt bei festem q² als Funktion der Inelastizität für 2 verschiedene Werte von q² (gezeigt ist $F_2 = vW_2/M$)

0

resonances

 $2M_1$

Elastic

inelastische Streuung bei verschiedenen Streuwinkeln am Proton für W>2 GeV als Funktion von q²

Friedman and Kendall, Annu. Rev. Nucl. Part. Sci. 22 (1972) 203

Impulsverteilung von Quarks und Antiquarks im Nukleon gemessen bei $q^2 = 10 \text{ GeV}^2$ aus Neutrino und Antineutrino-Streuung am Proton bei CERN und Fermilab

Fig. 2-16