

Rosenbluth Plot zur Separation des elektrischen und magnetischen Formfaktors

Achtung: um beim selben q² verschiedene Winkel zu messen, muss Strahlenergie geaendert werden

bei moderatem q² Proton elektrischer und magnetischer Formfaktor und Neutron magnetischer Formfaktor in etwa durch Dipolform beschrieben und $q_0^2 = 0.73 \text{ MeV}^2$ -> $r_{\text{rms}} = 0.85 \text{ fm}$

Proton magnetischer Formfaktor

bis $q^2 = 10 \text{ GeV}^2$ Beschreibung durch Dipolform recht gut

der **Proton elektrische Formfaktor** faellt etwas schneller mit q² -> Ladungsverteilung etwas ausgedehnter als Verteilung der Magnetisierung

Neutron elektrischer Formfaktor kombiniert aus verschiedenen Messungen nicht Null -> $< r_E^2$ (neutron)> = - 0.116 ±0.002 fm²

d.h. negative Ladung etwas weiter aussen als positive

<u>inelastische Elektron-Proton Streuung</u> als Funkton der invarianten Masse des hadronischen Endzustands für verschiedene Elektron-Energien E $d^2\sigma$

 $\overline{\mathrm{d}\Omega\mathrm{d}E'}$

mit E waechst bei konstantem Winkel q²

Resonanzen durch Formfaktor unterdrueckt und immer weniger ausgeprägt, aber Kontinuum bleibt mehr oder weniger konstant

<u>inelastische Elektron-Nukleon Streuung</u> jetzt bei festem q² als Funktion der Inelastizität für 2 verschiedene Werte von q² (gezeigt ist $F_2 = vW_2/M$)

2M

0

10⁰ $\mathrm{d}^2\sigma/(\mathrm{d}E'\mathrm{d}\Omega)$ 2 GeV 3 GeV $(\mathrm{d}\sigma/\mathrm{d}\Omega)_{Mott}$ = 3.5 GeVep inelastischer Wirkungs-10⁻¹ querschnitt relativ zum Mottquerschnitt in GeV⁻¹ für verschiedene W 10-2 Friedman, Kendall, Taylor et al., Phys. Rev. Lett. 23 (1969) 935 10-3

10-4

0

Fig. 6.14

$$Q^{2} (GeV/c)^{2}$$

Elastische Streuung

3

6

5

inelastische Streuung bei verschiedenen Streuwinkeln am Proton für W>2 GeV als Funktion von q²

Friedman and Kendall, Annu. Rev. Nucl. Part. Sci. 22 (1972) 203

gemessene Strukturfunktion F_2 aus tiefinelastischer Muonstreuung für verschiedene Inelastizität x als Funktion von q^2 kleine bis moderate 'scaling violations'

gemessenes Verhältnis $2xF_1/F_2$ aus tiefinelastischer Elektron-Proton Streuung bei SLAC

