# Fully Quantum Measurement of the Electron Magnetic Moment

prepared by Maren Padeffke

(presented by N. Herrmann)

# Outline

- Motivation and History
- Experimental Methods
- Results
- Conclusion
- Sources

# Motivation and History

- Why measure the Electron Magnetic Moment
- Theoretical Prediction of the g Value
- History of g Value Measurements

#### Why measure the Electron Magnetic Moment

- Electron g basic property of simplest of elementary particles
- $\vec{\mu} = g\mu_B \vec{s}$   $\mu_B = \frac{e\hbar}{2m_e c} = 5.788381749(43) \cdot 10^{-11} \frac{MeV}{T}$
- Determine fine structure constant  $\alpha$ 
  - QED predicts a relationship between g and  $\alpha$
- Test QED
  - Comparing the measured electron g to the g calculated from QED using an independent  $\alpha$

#### Theoretical Prediction of the g Value



e,m

e.g. What is g for identical charge and mass distributions?

$$\mu = IA = \frac{e}{\left(\frac{2\pi\rho}{v}\right)} (\pi\rho^2) = \frac{ev\rho}{2} \frac{L}{mv\rho} = \frac{e}{2m}L = \frac{e\hbar}{2m}\frac{L}{\hbar}$$

$$\Rightarrow g = 1$$

$$\mu_B$$

# Feynman diagrams

Dirac particle: g=2



Figure 1.2: The second-order Feynman diagram (a), 2 of the 7 fourth-order diagrams (b,c), 2 of 72 sixth-order diagrams (d,e), and 2 of 891 eighth-order diagrams (f,g).

**QED** corrections

(added by NH)

#### Dirac+QED Relates Measured g



- $C_1 = 0.5$
- $C_2 = -0.328...$  (7 Feynman diagrams) analytical
- C<sub>3</sub>= 1.181... (72 Feynman diagrams) analytical
- $C_4 \sim -1.71$  (involving 891 four-loop Feynman diagrams) numerical



theoretical uncertainties





#### History of g Value Measurements

| U. Michigan                      | U.<br>Washington               | Harvard                              |                            |
|----------------------------------|--------------------------------|--------------------------------------|----------------------------|
| beam of<br>electrons             | one electron                   | one electron                         |                            |
| spins precess<br>with respect to | observe spin<br>flip           | quantum<br>cyclotron<br>motion       | 100 mK                     |
| motion                           | thermal<br>cyclotron<br>motion | resolve lowest<br>quantum levels     | self-excited<br>oscillator |
|                                  |                                | cavity-controlled<br>radiation field | inhibit spontan.           |
| Crane, Rich,                     | Dehmelt,<br>Van Dyck           | (cylindrical trap)                   | cavity shifts              |

#### History of the Measured Values



# **Experimental Methods**

- g Value Measurement Basics
- Single Quantum Spectroscopy and Sub-Kelvin
- Cyclotron Temperature
- Sub-Kelvin Axial Temperature
- Cylindrical Penning Trap
- Magnetic Field Stability
- Measurements

#### g Value Measurement: Basics

Quantum jump spectroscopy of lowest cyclotron and spin levels of an electron in a magnetic field



- Quantized motions of a single electron in a
- Penning Trap (without special relativity)
- since  $g \neq 2$ ,  $\boldsymbol{\omega}_{c}$  and  $\boldsymbol{\omega}_{s}$  are not equal  $\rightarrow$  non-zero anomaly shift  $\boldsymbol{\omega}_{a}$
- g could be determined by measurement of cyclotron and spin frequency:  $g/2 = \omega_s/\omega_c \approx 1$  $v_c = \frac{1}{2\pi} \frac{eB}{m}$   $v_s = \frac{g}{2} v_c$
- g-2 can be obtained directly from cyclotron and anomaly frequencies:  $\frac{g/2 - 1 = \omega_s/\omega_c \approx 1 \times 10^{-3}}{g/2 - 1 = (\omega_s - \omega_c)/\omega_c = \omega_a/\omega_c \approx 1 \times 10^{-3}}$  $n_c = 2$
- → g-2 experiments gain three orders of magnitude in precision over g experiments



## **Experimental key feature**

PHYSICAL REVIEW LETTERS



PRL 97, 030801 (2006)

FIG. 2. Cylindrical Penning trap cavity used to confine a single electron and inhibit spontaneous emission (a), and the cyclotron and spin levels of an electron confined within it (b).

would damp in ~0.1 s via synchrotron radiation in free space. This spontaneous emission is greatly inhibited in the trap cavity (to 6.7 or 1.4 s here) when **B** is tuned so  $\bar{\nu}_c$  is far from resonance with cavity radiation modes [7,15]. Blackbody photons that would excite the cyclotron ground state are eliminated by cooling the trap and vacuum enclosure below 100 mK with a dilution refrigerator [6]. (Thermal radiation through the microwave inlet makes <1 excitation/h.) The axial motion, damped by a resonant circuit, cools below 0.3 K (from 5 K) when the axial detection amplifier is off for crucial periods. The magnetron motion radius is minimized with axial sideband cooling [15].

For the first time, g is deduced from observed transitions between only the lowest of the spin  $(m_s = \pm 1/2)$  and cyclotron (n = 0, 1, 2, ...) energy levels [Fig. 2(b)],

$$E(n, m_s) = \frac{g}{2}h\nu_c m_s + \left(n + \frac{1}{2}\right)h\bar{\nu}_c - \frac{1}{2}h\delta\left(n + \frac{1}{2} + m_s\right)^2.$$



week ending

21 JULY 2006

FIG. 3. Sample  $\bar{\nu}_z$  shifts for a spin flip (a) and for a onequantum cyclotron excitation (b). Quantum jump spectroscopy line shapes for anomaly (c) and cyclotron (d) transitions, with a maximum likelihood fit to the calculated line shapes (solid). The bands indicate 68% confidence limits for distributions of measurements about the fit values.

circuit that is amplified and fed back to drive the oscillation. QND couplings of spin and cyclotron energies to  $\bar{\nu}_z$ [6] arise because saturated nickel rings [Fig. 2(a)] produce a small magnetic bottle,  $\Delta \mathbf{B} = \beta_2 [(z^2 - \rho^2/2)\hat{\mathbf{z}} - z\rho\hat{\mathbf{p}}]$ with  $\beta_2 = 1540 \text{ T/m}^2$ .

Anomaly transitions are induced by applying potentials oscillating at  $\bar{\nu}_a$  to electrodes, to drive an off-resonance axial motion through the bottle's  $z\rho$  gradient. The electron sees the oscillating magnetic field perpendicular to **B** as needed to flip its spin, with a gradient that allows a simultaneous cyclotron transition. Cyclotron transitions are induced by microwaves with a transverse electric field that

#### (added by NH)

#### Single Quantum Spectroscopy and Sub-Kelvin Cyclotron Temperature

- cooling trap cavity to sub-Kelvin temperatures ensures that cyclotron oscillator is always in ground state (no blackbody radiation)
- relativistic frequency shift between two lowest quantum states is precisely known



### Sub-Kelvin Axial Temperature

- Anomaly and cyclotron resonance acquire an inhomogeneous
- broadening proportional to the temperature Tz of the electron's
- axial motion
  - Occurs because a magnetic inhomogeneity is introduced to allow detection of spin and cyclotron transition
- cooling T<sub>z</sub> to sub-Kelvin narrows the cyclotron and anomaly line
- widths



anomaly (left) and cyclotron (right) with  $T_z = 5 \text{ K}$  (dashed) and  $T_z = 300 \text{ mK}$  (solid)

#### Cylindrical Penning Trap



David Hanneke G.Gabrielse

A.C.

## Measurement procedure

Anomaly transitions are induced by applying potentials oscillating at  $\bar{\nu}_a$  to electrodes, to drive an off-resonance axial motion through the bottle's  $z\rho$  gradient. The electron sees the oscillating magnetic field perpendicular to **B** as needed to flip its spin, with a gradient that allows a simultaneous cyclotron transition. Cyclotron transitions are induced by microwaves with a transverse electric field that are injected into and filtered by the cavity. The electron samples the same magnetic gradient while  $\bar{\nu}_a$  and  $\bar{f}_c$ transitions are driven, because both drives are kept on, with one detuned slightly so that only the other causes transitions.

A measurement starts with the SEO turned on to verify that the electron is in the upper of the two stable ground states,  $|n = 0, m_s = 1/2\rangle$ . Simultaneous  $\bar{\nu}_c - \delta/2$  and  $\bar{\nu}_a$ drives prepare this state as needed. The magnetron radius is reduced with 1.5 s of strong sideband cooling [15] at  $\bar{\nu}_z$  +  $\bar{\nu}_m$ , and the detection amplifier is turned off. After 1 s, either an  $\bar{f}_c$  drive, or a  $\bar{\nu}_a$  drive, is on for 2 s. The detection amplifier and the SEO are then switched on to check for a cyclotron excitation, or a spin flip (from an anomaly transition followed by a cyclotron decay). Inhibited spontaneous emission gives the time needed to observe a cyclotron excitation before an excited state decays. We step through each  $\bar{\nu}_c$  and  $\bar{\nu}_a$  drive frequency in turn, recording the number of quantum jumps per drive attempt. This measurement cycle is repeated during nighttimes, when electrical and magnetic noise are lower. A low drive strength keeps the transition probability below 20% to avoid saturation effects.

PRL 97, 030801 (2006)

#### **Quantum jump spectroscopy**

Probablility to change state as function of detuning of drive frequency

(NH)

# Quantum nondemolition measurement



Figure 4.4: Cyclotron quantum jump spectroscopy proceeds through discrete interrogations of the lowest cyclotron transition in the spin-up ladder (a). A successful excitation appears as a shift in the axial frequency (b), a quantum nondemolition measurement technique. Multiple attempts at different frequencies may be binned into a histogram (c) to reveal the overall cyclotron line.

#### Advantages of a Cylindrical Penning Trap

- well-understood electromagnetic cavity mode structures
- reducing the difficulties of machining the electrodes
- cavity modes of cylindrical traps are expected to have higher Q values and a lower spectral density than those of hyperbolic traps
  - $\rightarrow$  allows better detuning of cyclotron oscillator, which causes an inhibition of cyclotron spontaneous emission
- frequency-shift systematics can be better controlled
  - → these shifts in the cyclotron frequency were the leading sources of uncertainty in the 1987 University of Washington g value measurements

#### Magnetic Field Stability

- in practice, measuring the cyclotron and anomaly frequencies
- takes several hours
- $\rightarrow$  temporal stability of magnetic field is very important
- trap center must not move significantly relative to the
- homogeneous region of the trapping field
- magnetism of the trap material themselves must be stable
- pressure and temperature must be well-regulated



#### Eliminate Nuclear Paramagnetism

- attempts to regulate the temperature and heat flows could not
- make sufficient precise for line widths an order of magnitude
- narrower
- → entire trap apparatus was rebuilt from materials with smaller nuclear paramagnetism





#### Measurements

- due to a coupling to the axial motion, the magnetron, cyclotron,
- and spin energy changes can be detected as shifts in the axial
- frequency



# Results

| U | Ince | erta | int | ies |
|---|------|------|-----|-----|
|   |      |      |     |     |

Nonparenthesized: corrections applied to obtain correct value for g,

#### parenthesized: uncertainties •

| source                      | $\Delta g/g 	imes 10^{12}$ at 146.8 GHz | $\Delta g/g 	imes 10^{12}$ at 149.0 GHz |
|-----------------------------|-----------------------------------------|-----------------------------------------|
| relativistic $\Delta \nu_c$ | -2.07 (0.00)                            | -2.10 (0.00)                            |
| ${ m misalignment}$         | 0.00 (0.00)                             | 0.00 (0.00)                             |
| $\nu_z$ anharmonicity       | 0.2 (0.3)                               | 0.00 (0.02)                             |
| anomaly power               | 0.0 (0.4)                               | 0.00 (0.14)                             |
| cyclotron power             | 0.0 (0.3)                               | 0.00 (0.12)                             |
| cavity shift                | 10.2 (6.0)                              | -0.07 (0.52)                            |
| total corrections           | 8.3 (6.0)                               | -2.17 (0.55)                            |

| -values                          | $ u_c$    | g/2 without cavity corrections               | g/2 with cavity corrections            |
|----------------------------------|-----------|----------------------------------------------|----------------------------------------|
| First                            | 146.8 GHz | $1.001 \ 159 \ 652 \ 171 \ 48 \ (12) \ (58)$ | 1.001 159 652 181 68 (12) (600)        |
| parenthesis<br>statistic, second | 149.0 GHz | $1.001 \ 159 \ 652 \ 180 \ 93 \ (15) \ (19)$ | $1.001\ 159\ 652\ 180\ 86\ (15)\ (55)$ |
| systematic<br>uncertainty        | wtd. mean |                                              | 1.001 159 652 180 87 (57)              |

g -values

systematic uncertainty

## From 2004 to 2008

$$g/2 = 1.001 \ 159 \ 652 \ 180 \ 86(57)$$
  
 $g/2 = 1.001 \ 159 \ 652 \ 180 \ 85(76)$   
 $g/2 = 1.001 \ 159 \ 652 \ 180 \ 73(28)$ 



# Conclusion

How Does One Measure g to some Parts in 10<sup>-12</sup> ?

 $\rightarrow$  Use New Methods

- One-electron quantum cyclotron
- One-electron quantum, y
  Resolve lowest cyclotron as well as spin states
  Quantum jump spectroscopy of lowest quantum states
  Cavity-controlled spontaneous emission
  Radiation field controlled by cylindrical trap cavity
  Cooling away of blackbody photons
  Synchronized electrons probe cavity radiation modes
  Trap without nuclear paramagnetism
  One-particle self-excited oscillator

# Sources

hussel.harvard.edu/~gabrielse/gabrielse/papers/2004/OdomThesis.pdf

http://hussle.harvard.edu/~hanneke/CV/2007/Hanneke-HarvardPhD\_Thesis.pdf

www.phys.uconn.edu/icap2008/invited/icap2008-gabrielse.pdf

vmsstreamer1.fnal.gov/VMS\_Site\_03/Lectures/Colloquium/presetatins/070124 Gabrielse.ppt