Higgs Search at LEP 'Higgs Hunt'

Seminar: Key experiments in particle physics

Speaker:Yvonne C. PachmayerAdvisor:Professor Dr. J. Stachel

Contents

- Motivation
- Large Electron-Positron (LEP) Collider
- Indirect Higgs Search at LEP
- Direct Higgs Search at LEP
- Outlook: Direct Higgs Search at Large Hadron Collider (LHC)
- Summary
- References

Name Origin

Three independent papers in 1964:

- F. Englert and R. Brout: Broken Symmetry and the Mass of Gauge Vector Mesons; Phys. Rev. Lett. 13 (1964) 321
- Peter W. Higgs: Broken Symmetries and the Masses of Gauge Bosons; Phys. Rev. Lett. 13 (1964) 508
- G. S. Guralnik, C. R. Hagen, T. W. Kibble: Global Conservation Laws and Massless Particles; Phys. Rev. Lett. 13 (1964) 585

At a conference in 1966

Ben Lee introduced the name "Higgs"

Particle (PM) acquires mass from interaction with Higgs field

Higgs boson (rumour) is selfexcitation of the Higgs field

What about Massless Particles like the Photon?

Massless particles move at the speed of light (waiter fills cocktail glases – moving fast and without disturbance through the room)

Theoretical Framework

- Local gauge invariant Quantum Field Theory
 - Lagrange density
- Spontaneous Symmetry Breaking
- Weinberg-Salam-Modell
 - Implementation of the gauge boson masses
- Yukawaterm
 - Implementation of the fermion masses

→ Physical Higgs particle exists as excitations of the Higgs field
 → Higgs mass not predicted by theory - only constrained (Uniterity)
 → M_H < 710 GeV (*)
 → Js < 1.2 TeV
 → Higgs particle is expected to decay into the heaviest fermions

(*) L. Reina, TASI 2004 Lecture Notes on Higgs Boson Physics, arXiv:hep-ph/0512377v1 (2005)

Large Electron-Positron (LEP) Collider

Indirect Higgs Search at LEP:

Determination of the Higgs Mass Through Electroweak Radiative Corrections

$$G_F = \frac{\pi\alpha}{\sqrt{2}M_W^2 \sin^2(\theta_W)} \frac{1}{1 - \Delta r}$$

. .

$$\Delta r^{H} \propto \ln(\frac{M_{H}}{M_{W}})$$

 $\Delta r^{t} \propto M_{t}^{2}$

CDF Run 0/I 80.436 ± 0.081 D0 Run I 80.478 ± 0.083 **CDF Run II** 80.413 ± 0.048 Tevatron Run-0/I/II $\textbf{80.432} \pm \textbf{0.039}$ LEP2 average 80.376 ± 0.033 World average (prel.) 80.399 ± 0.025 D0 Run II (prel.) 80.401 ± 0.043 80.2 80.6 80 80.4 m_w (GeV)

Measurement:

Prediction: 80.377 GeV

Good agreement

The Electroweak World

3

The "Blue-Band-Plot"

Direct Higgs Search at LEP

Higgs decay branching ratios

BR(%)	Higgs 115 GeV	Z boson
qq		70
bb	74	15
CC	4	12
gg	6	0
$\ell^+\ell^-$		10
$ au^+ au^-$	7	3
$V\overline{V}$		20
W*W*	8	
Z*Z*	1	

Claude Monet - Haystack at the Sunset near Giverny (1891). Museum of Fine Arts, Boston, MA, USA.

Different Final State Topologies

Some Candidate Events

Yvonne C. Pachmayer

B-Tagging

B-Tag Performance/Modeling Checks

First Serious Candidate (14-Jun-2000, 206.7 GeV)

Mass Reconstruction -Further Signal Discrimination

Mass reconstruction of hypothetical Higgs

On

in s

- Width of Higgs boson negligible compared to measurement resolution
 - \rightarrow Higgs signal appears as peak
- **Distributions shown for different** selections with increasing signal purity (s/b = 0.5, 1.0, 2.0)
- Existence/non-existence of Higgs with mass M_{H} =115 GeV hard to conclude

Reconstructed Mass m_H [GeV/c²]

Higgs Probability Analysis

Combine all available data

- b_i expected number of background
- s_i(M_H) expected signal
- Global discriminating variable G: b-tagging, kinematic variables, ... that distinguish signal and background

Use most powerful method to separate signal & background

- L_{b} : likelihood events are due to backgrounds
- L_{s+b} : likelihood event are due to background + Higgs signal with a given mass, m_H
- L includes information about many properties of the event

Likelihoods of s+b and b from Poisson probabilities of observing n_i data events in each bin:

ents

$$Q(m_{\rm H}) = \frac{L_{s+b}}{L_b} = \prod_i \frac{(s_i + b_i) \cdot e^{-it} \cdot m_{\rm H}}{b_i^{n_i} e^{-b_i}/n_i}$$

$$\ln Q(m_{\rm H}) = 2s_{\rm tot} - 2\sum_i n_i \ln \left(1 + \frac{s_i(m_{\rm H})}{b_i}\right)$$

 $I = (s_{i} + b_{i})^{n_{i}} e^{-(s_{i} + b_{i})/n_{i}}$

Sum is over all bins, channels (four jet, missing energy...), and experiments.

_?

Higgs Probability Analysis

- In the limit of high statistics -2lnQ approx. corresponds to Δχ²
- -2InQ > 0 more likely to be background only
- -2lnQ < 0 more likely to be background+signal
- Test mass M_H = 115 GeV
- Background hypotheses: 68% (1σ) and 95% (2σ) drawn
- Hint of a Higgs signal: minimum at M_H=115.6 GeV, but within 2σ of background likelihood

Higgs Probability Analysis individual experiments & different final states

Only ALEPH

- Signal-like deviation beyond 95% CL
- **Discriminating Power**
 - Distance B ar compared to
 - Decrease at HZ process
- No single exper power to disting hypotheses for
- Final state topo
 - Same discri

Lower Bound for the Higgs Boson Mass

Direct Higgs Search at the Large Hadron Collider

- World's largest and highest energy-particle accelerator
- Will collide opposing beams: 7 TeV protons
 - Using E=mc² we get 14TeV=>0.15g (a fly)
 - Total energy stored in each beam is 350MJ
- More details at http://lhc.web.cern.ch/lhc/
- LHC Experiments: ATLAS, CMS, ALICE, LHCb

Higgs Production at hadronic accelerators (pp)

Signal to Background at LHC

- Total production cross section
 9 orders of magnitude above Higgs production
- Efficient selection of higgs events from a large background

Higgs σ grows faster than total σ

Decay Channels

- bb dominates
- 2 taus, 2 gluons, etc
- Large QCD jet background
- Silver detection mode: H $\rightarrow \gamma\gamma$
 - Use small Higgs width
 - High resolution ECal

Intermediate Mass

Decay modes to WW and ZZ

■ High Mass m_H ≥ 250 GeV

- 'Golden Channel'
 - Decay to ZZ

Silver Channel: $H \rightarrow \gamma\gamma$

- Two photon invariant mass after accumulation of a 100 fb⁻¹ of data
- Higgs mass of 130 GeV/c² is assumed
- E deposit of photons measured in the ECAL

- high energy muons
- Z mass constraint(s)
- Background reduction due to vertex cut:
 - tt → Wb Wb → ^ln c^ln ln c^ln
 - Z bb → ll cln cln
- irreducible background: ZZ and Zγ production

Summary

Indirect Search at LEP

 Standard Modell picture shows good global consistency pointing to an expected Higgs mass M_H < 219 GeV

Direct Search at LEP

- Only ALEPH reports excess compatible to Standard Model Higgs at M_H=115 GeV
- All four experiments set a lower bound of 114.4 GeV on the mass of the SM Higgs

Direct Search at LHC

- A 45-year hunt might end
- Experimentum crucis
- Theories

References

- http://lepewwg.web.cern.ch/LEPEWWG
- http://lephiggs.web.cern.ch/LEPHIGGS/www/Welcome.html
- G. Abbiendi et al., Phys.Lett.B565 (2003) 61
- L. Reina, TASI 2004 Lecture Notes on Higgs Boson Physics, arXiv:hep-ph/0512377v1 (2005)
- M. Spira and P. Zerwas, Lect. Notes Phys.512 (1998) 161
- http://cms.cern.ch/iCMS/
- D. H. Perkins, Introduction to High Energy Physics 4th ed., Cambridge University Press 2000