Fermion–Fermion and Boson–Boson Interaction at very low temperatures

Fabienne Haupert

Supervisor:

Prof. Dr. M. Oberthaler

1. Interactions at very low temperatures:

1.1 Possible interactions

1. Interactions at very low temperatures:

1.1 Possible interactions

1.2 Theoretical description

1. Interactions at very low temperatures:

1.1 Possible interactions

1.2 Theoretical description

2. Feshbach Resonances

Interactions at very low temperatures:

 Possible interactions
 Theoretical description

 Feshbach Resonances

 The channel method

1. Interactions at very low temperatures:

- **1.1 Possible interactions**
- **1.2 Theoretical description**
- 2. Feshbach Resonances
 - 2.1 The channel method
 - **2.2 Expectations for the experiments**

1. Interactions at very low temperatures: 1.1 Possible interactions **1.2 Theoretical description** 2. Feshbach Resonances 2.1 The channel method **2.2 Expectations for the experiments 3. Experimental Observations**

1. Interactions at very low temperatures: 1.1 Possible interactions 1.2 Theoretical description 2. Feshbach Resonances 2.1 The channel method **2.2 Expectations for the experiments 3. Experimental Observations 3.1 Feshbach Resonances**

1. Interactions at very low temperatures: 1.1 Possible interactions 1.2 Theoretical description 2. Feshbach Resonances 2.1 The channel method **2.2 Expectations for the experiments 3. Experimental Observations 3.1 Feshbach Resonances 3.2 Creation of a molecular condensate**

Interactions at low T:

1. Good collisions (elastic):

Interactions at low T:

1. Good collisions (elastic):

Scattering potential mainly determined by interatomic distances

(> contribution of different electro-magnetic forces)

Interactions at low T:

1. Good collisions (elastic):

Scattering potential mainly determined by interatomic distances

(> contribution of different electro-magnetic forces)

2. Bad collisions (inelastic 2- and 3-body)

Interactions at low T:

1. Good collisions (elastic):

Scattering potential mainly determined by interatomic distances

(> contribution of different electro-magnetic forces)

2. Bad collisions (inelastic 2- and 3-body)

Loss of internal energy +

gain in kinetic energy

3-body-recombination

Interactions at low T:

1. Good collisions (elastic):

Scattering potential mainly determined by interatomic distances

(> contribution of different electro-magnetic forces)

2. Bad collisions (inelastic 2- and 3-body)

1.1 Possible interactions

1. Interactions at very low temperatures:

1.1 Possible interactions

1.2 Theoretical description

1.2
Scattering
Stationary SGL:
$$\left(-\frac{\hbar^2}{2m_r}\vec{\nabla}^2 + V(\vec{r})\right)\Psi_{\vec{k}}(\vec{r}) = E_k\Psi_{\vec{k}}(\vec{r})$$

with: $\lim_{r\to\infty}\Psi_{\vec{k}}(\vec{r}) \propto e^{i\vec{k}\vec{r}} + f(k)\frac{e^{ikr}}{r}$ für $E_k \ll \frac{\hbar^2}{2m_rL^2}$

1.2
Scattering
$$\int \sum_{r \to \infty} \sum_{k=1}^{q} \sum_{k=1}^{q}$$

Scattering length qualitatively:

1.2

1. Interactions at very low temperatures:

1.1 Possible interactions

1.2 Theoretical description

2. Feshbach Resonances

Interactions at very low temperatures:

 Possible interactions
 Theoretical description

 Feshbach Resonances

 The channel method

2.1

Feshbach Resonance

using the Coupled-Channels Method:

Channels $|\mathcal{P}
angle$, $|\mathcal{Q}
angle$:

FMMI Semina

2.1

using the Coupled-Channels Method:

Channels $|\mathcal{P}\rangle$, $|\mathcal{Q}\rangle$: energy eigenstates of uncoupled system: $\mathcal{H}_0 |\mathcal{P}\rangle = E_Q |\mathcal{P}\rangle$

FMMI Semina

using the Coupled-Channels Method:

Channels $|\mathcal{P}\rangle$, $|\mathcal{Q}\rangle$: energy eigenstates of uncoupled system: $\mathcal{H}_0 |\mathcal{P}\rangle = E_Q |\mathcal{P}\rangle$, $\mathcal{H}_0 |\mathcal{Q}\rangle = E_P |\mathcal{Q}\rangle$

2.1

Feshbach Resonance

Theoretical Solution to this Resonance phenomena:

Project solution of stationary SGL onto two disjoint subspaces:

 $\mathcal{H} = \mathcal{H}_{\mathcal{P}} + \mathcal{H}_{\mathcal{Q}}$ All open channels

(unbound states)

All closed channels (bound states)

Theoretical Solution to this Resonance phenomena:

Project solution of stationary SGL onto two disjoint subspaces:

 $\mathcal{H} = \mathcal{H}_{\mathcal{P}} + \mathcal{H}_{\mathcal{Q}}$

All open channels (unbound states)

All closed channels (bound states)

2 coupled differential equations that provide:

with:
$$\mathcal{H}_{\mathcal{PP}} = \mathcal{PHP}$$
 etc.

Theoretical Solution to this Resonance phenomena:

Project solution of stationary SGL onto two disjoint subspaces:

 $\mathcal{H} = \mathcal{H}_{\mathcal{P}} + \mathcal{H}_{\mathcal{O}}$

All open channels (unbound states)

All closed channels (bound states)

2 coupled differential equations that provide: $\left(\mathcal{H}_{\mathcal{P}\mathcal{P}} + \mathcal{H}_{\mathcal{P}\mathcal{Q}} \frac{1}{E^+ - \mathcal{H}_{\mathcal{Q}\mathcal{Q}}} \mathcal{H}_{\mathcal{Q}\mathcal{P}}\right) |\psi_P\rangle = E |\psi_P\rangle$

Feshbach Resonance

Feshbach Resonance

Theoretical Solution to this Resonance phenomena:

Transition amplitude scattering matrix scattering

length:

Theoretical Solution to this Resonance phenomena:

Transition amplitude 📥 scattering matrix 📥 scattering

length:

FMMI Semina

$$a(B) = a_{nr} \left(1 - \frac{\Delta B}{B - B_0} \right)$$

 $a_{nr} \equiv a \text{ not resonant}$ $\Delta B \equiv \text{width of the resonance}$ $B_0 \equiv B \text{ at resonance}$ $B = B_0$

2.1

Interactions at very low temperatures:

 Possible interactions
 Theoretical description

 Feshbach Resonances

 The channel method

1. Interactions at very low temperatures:

- **1.1 Possible interactions**
- **1.2 Theoretical description**
- 2. Feshbach Resonances
 - 2.1 The channel method
 - **2.2 Expectations for the experiments**

N. Nygaard, B. I. Schneider, P. S. Julienne. Phys. Rev. A 73, 042705, 2006.

1. Interactions at very low temperatures:

- **1.1 Possible interactions**
- **1.2 Theoretical description**
- 2. Feshbach Resonances
 - 2.1 The channel method
 - **2.2 Expectations for the experiments**

1. Interactions at very low temperatures: 1.1 Possible interactions **1.2 Theoretical description** 2. Feshbach Resonances 2.1 The channel method **2.2 Expectations for the experiments 3. Experimental Observations**

1. Interactions at very low temperatures: 1.1 Possible interactions 1.2 Theoretical description 2. Feshbach Resonances 2.1 The channel method **2.2 Expectations for the experiments 3. Experimental Observations 3.1 Feshbach Resonances**

S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, und W. Ketterle. Nature, 392:151, 1998.

1. Interactions at very low temperatures: 1.1 Possible interactions 1.2 Theoretical description 2. Feshbach Resonances 2.1 The channel method **2.2 Expectations for the experiments 3. Experimental Observations 3.1 Feshbach Resonances**

1. Interactions at very low temperatures: 1.1 Possible interactions 1.2 Theoretical description 2. Feshbach Resonances 2.1 The channel method **2.2 Expectations for the experiments 3. Experimental Observations 3.1 Feshbach Resonances 3.2 Creation of a molecular condensate**

Markus Greiner, Cindy A. Regal, and Deborah S. Jin. Nature 426, 537 (2003).

special type of interactions at very low temperatures:

Thank you for your attention

