Quark-Gluon-Plasma and Cold Atomic Physics - SS 2008 Thermodynamics of relativistic gases and the QGP

Florian Beutler

University of Heidelberg

14.04.2008

Florian Beutler

Thermodynamics of relativistic gases and the QGP

Outline

1 What is a quark gluon plasma?

- The fundamentals of QCD
- The MIT Bag model
- Colour screening

Ideal relativistic gas

- Hadronic gas
- Gas of quarks and gluons

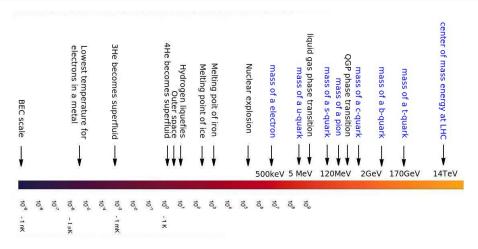
3 Construction of the phase diagram

- Gibbs condition, estimation of T_c at $\mu = 0$
- The $\mu \neq$ 0 case
- The energy density at the transition point
- Is a pion gas a good approximation?

Conclusion

The fundamentals of QCD The MIT Bag model Colour screening

Energy scale



[Kelvin]/11605 = [eV]

Thermodynamics of relativistic gases and the QGP

The fundamentals of QCD The MIT Bag model Colour screening

What is a quark-gluon plasma?

Where we are?

 \Rightarrow QCD = The theory of strong interactions.

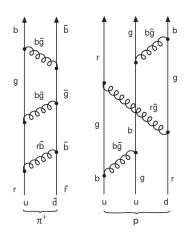
In a QCD system at very high temperature and/or very high pressure the quarks and gluons are expected to become quasi-free. This deconfined dense state of matter is called a Quark Gluon Plasma (QGP).

But:

- How is it possible to get free quarks?
- What are the necessary conditions? $T_c = ?$, $n_c = ?$

The fundamentals of QCD The MIT Bag model Colour screening

The fundamentals of QCD



Postulate of the QCD:

All free particles are colourless!

- We will not find a free quark or a free gluon in nature.
- In QCD we have three different colours: red, green and blue.
- White objects are mesons and baryons → hadrons

$$\langle \mathbf{r}^{+} \rangle = \begin{cases} |u_r \overline{d}_{\overline{r}} \rangle & \\ |u_g \overline{d}_{\overline{g}} \rangle & \\ |u_b \overline{d}_{\overline{b}} \rangle & \end{cases} |p\rangle = \begin{cases} |u_r u_g d_b \rangle \\ |u_g u_r d_b \rangle \\ |u_r u_b d_g \rangle \\ \vdots & \end{cases}$$

 $|\tau|$

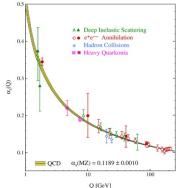
The fundamentals of QCD The MIT Bag model Colour screening

The fundamentals of QCD

The QCD coupling constant:

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2n_f)\ln(Q^2/\Lambda_{\rm QCD}^2)}$$

- Strength of the coupling depends on the momenta exchange.
- Situation in QED and QCD is absolutely different
 - gluon loops
 - The QCD only calculable for $\alpha_s < 1$, means high energies
- At high momenta (small distances) the coupling constant becomes weaker → asymptotic freedom.



The fundamentals of QCD The MIT Bag model Colour screening

The MIT Bag model

Basic assumptions of the MIT Bag model:

- Two different vacua, a confined and a deconfined vacuum.
- Quarks are caged in the volume of a hadron ("Bag") \rightarrow confinement.
- Within this volume the quarks are free \rightarrow asymptotic freedom.

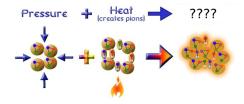
This leads to the following consequences:

- To make room for a deconfined vacuum bubble of volume V in the confined vacuum, an energy E = BV is necessary.
- To stabilize the bubble, the internal vapor pressure p(T) must be equal to the external pressure B.

B is the Bag constant. The volume which is occupied by a hadron depends on B.

The fundamentals of QCD The MIT Bag model Colour screening

What happens at high temperature/density?



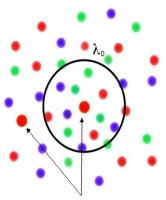
- Hadrons have intrinsic size $r_h \simeq 1 fm$, need $V_h \simeq \frac{4\pi}{3} r_h^3$ to exist \Rightarrow Limiting density of hadronic matter: $n_c = 1/V_h$ [Pomeranchuk 1951]
- Increasing temperature produces more and more particles (mainly pions). This leads to a limiting temperature: $T_c = 150-200 \text{ MeV}$

 \Rightarrow What lies beyond n_c , T_c ?

The fundamentals of QCD The MIT Bag model Colour screening

Colour screening

- The charge of one particle is screened by the surrounding charges.
- (Debye) screening radius (λ_D): The distance at which the charge is reduced by 1/e.
- Originally defined for electromagnetic plasma, later extended to plasma of colour charges.



These quarks effectively cannot "see" each other!

The fundamentals of QCD The MIT Bag model Colour screening

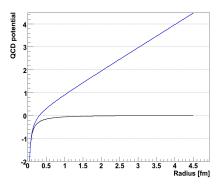
Colour screening

Normal QCD potential:

Colour screened QCD potential:

$$V(r) = -\frac{\alpha(r)}{r} + \sigma r$$
$$V(r) = -\frac{\alpha(r)}{r}e^{-\frac{r}{\lambda_D}}$$

- At T ≈ T_c, a screening factor is introduced and the linear term in the potential vanishes.
- The screening length decreases with increasing temperature (and/or density) $\lambda_D = \lambda_D(T, n).$
- Deconfinement sets in (we have a QGP).



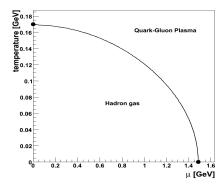
The fundamentals of QCD The MIT Bag model Colour screening

Phase transition

The Gibbs condition at a phase transition of first order is:

 $p_{phase1} = p_{phase2}$ $\mu_{phase1} = \mu_{phase2}$

In the case of a transition from hadron gas to QGP this will give:



Hadronic gas Gas of quarks and gluons

Ideal relativistic gas

What can we do to simplify the problem?

 \Rightarrow For high energies: Approximation as a quantum ideal gas (neglecting interactions). Then we can apply the relativistic Equation of State (EoS)

 $\epsilon(T,\mu)=3p$

The hadron gas and the QGP states are described by a grand canonical partition function:

$$\ln Z(z, V, T) = \frac{gV}{(2\pi)^3} \int d^3p \ln(1 \pm e^{-\beta E}z) \qquad \begin{array}{l} g = \text{d.o.t.} \\ \beta = 1/T \\ E = \sqrt{p^2 + m^2} \\ z = e^{\beta\mu} \end{array}$$

and the energy density is

$$\epsilon(T,\mu) = \frac{E}{V} = -\frac{1}{V} \frac{\partial}{\partial \beta} \ln Z(z,V,T) \bigg|_{z=const.} = \frac{g}{(2\pi)^3} \int \frac{E \ d^3p}{e^{(E-\mu)/T} \pm 1}$$

Hadronic gas Gas of quarks and gluons

Bosons (pions and gluons)

The boson energy density:

$$\epsilon = \frac{g}{(2\pi)^3} \int \frac{E \ d^3 p}{\exp((E-\mu)/T) - 1} = \frac{4\pi g}{(2\pi)^3} \int \frac{p^3 \ dp}{\exp(p/T) - 1}$$

$$\epsilon = \frac{g}{(2\pi)^3} \int \frac{E \, d^3 p}{\exp((E-\mu)/T) - 1} = g \frac{3}{\pi^2} T^4 \zeta(4) = g \frac{\pi^2}{30} T^4$$

with $\zeta(4) = \frac{\pi^4}{90}$. And the number density

$$n = \frac{g}{(2\pi)^3} \int \frac{d^3p}{\exp((E-\mu)/T) - 1} \bigg|_{\substack{m=0\\\mu=0}} = \frac{1.2g}{\pi^2} T^3$$

Hadronic gas Gas of quarks and gluons

Fermions (quarks and nucleons)

Fermion energy density (μ not generally = 0)

$$\epsilon = \frac{g}{(2\pi)^3} \int \frac{E \ d^3 p}{\exp((E-\mu)/T) + 1} = \frac{4\pi g}{(2\pi)^3} \int \frac{p^3 \ dp}{\exp((p-\mu)/T) + 1}$$

and we get for particle and antiparticle $(\epsilon(\mu) = \overline{\epsilon}(-\mu))$

$$\epsilon + \overline{\epsilon} = g\left(\frac{7\pi^2}{120}T^4 + \frac{\mu^2}{4}T^2 + \frac{\mu^4}{8\pi^2}\right)$$

and the number density is

$$n = \frac{g}{(2\pi)^3} \int \frac{d^3p}{\exp((E-\mu)/T) + 1} = \frac{4\pi g}{(2\pi)^3} \int \frac{p^2 dp}{\exp((p-\mu)/T) + 1}$$

what yields for particle and antiparticle

$$n - \overline{n} = g\left(\frac{\mu}{6}T^2 + \frac{\mu^3}{6\pi^2}\right) \to n = \overline{n} \Rightarrow \mu = 0$$

Hadronic gas (T \neq 0, μ = 0 case)

The pressure of the hadronic phase is, at low temperature, dominated by the pressure of the lightest hadron. Therefore we approximate our hadron gas as a massless pion gas and neglect all other particles.

If we treat the hadron gas as an ideal pion gas

$$p_{\pi}(T) = g_{\pi} \frac{\pi^2}{90} T^4$$

$$\epsilon_{\pi}(T) = 3p_{\pi}(T) = g_{\pi} \frac{\pi^2}{30} T^4$$

with $g_{\pi} = 3$ and accordingly the entropy density

$$s=rac{1}{T}(\epsilon+p)=4g_{\pi}rac{\pi^2}{90}\,T^3$$

Gas of quarks and gluons - The MIT Bag model

The pressure difference between the both vacua in the MIT Bag model is negative

$$\Delta p = p_{deconf} - p_{conf} = -B < 0$$

and causes the confinement.

Thus the energy density and pressure in the QCD vacuum should be modified according to the rule

$$p'_{QGP} \rightarrow p_{QGP} = p'_{QGP} - B$$

 $\epsilon'_{QGP} \rightarrow \epsilon_{QGP} = \epsilon(p_{QGP}) + B$

But B = B(T,n) and B is not well known (but we will fix B in the further treatment).

The vacuum structure keeps the coloured particles bound and confined. To be able to move colour charges within a region of space, one needs to "melt" the confining structure.

Florian Beutler

Hadronic gas Gas of quarks and gluons

Gas of quarks and gluons (T \neq 0, μ = 0 case)

Using again the approximation of a ideal gas we get for the QGP consisting of just gluons and quarks.

$$p'_{QGP} = 2_{q,\overline{q}}g_q \frac{7\pi^2}{720}T^4 + g_g \frac{\pi^2}{90}T^4$$
$$= (\frac{7}{8}2_{q,\overline{q}} \cdot g_q + g_g)\frac{\pi^2}{90}T^4$$

and

$$\epsilon'_{QGP} = 3p'_{QGP} = (\frac{7}{8}2_{q,\overline{q}} \cdot g_q + g_g)\frac{\pi^2}{30}T^4$$

Account for the MIT Bag model

$$p_{QGP} = p'_{QGP} - B$$

$$\epsilon_{QGP} = 3(p_{QGP} + B) + B = 3p_{QGP} + 4B$$

Hadronic gas Gas of quarks and gluons

Degrees of freedom for a QGP

The effective number of partonic degrees of freedom in a QGP state

$$g = \frac{7}{8} 2_{q,\overline{q}} \cdot g_q + g_g$$

where g_q and g_g are the d.o.f. of, respectively, the quark and gluon states

$$g_q = 2_{spin} \cdot 3_{colour} \cdot n_f = 6n_f$$

$$g_g = 2_{spin} \cdot 8_{colour} = 16$$

which yields the value g = 37(95/2) for an $n_f = 2(3)$ flavour QGP.

Hadronic gas Gas of quarks and gluons

Rollback -Quarks-

Quarks are:

- Fermions with spin $= \pm \frac{1}{2}$.
- Carry colour charge, weak charge, electric charge and mass.

name	flavour	symbol	electric charge	mass[MeV]
Up		u	$+\frac{2}{3}$	1.5-3.0
Down		d	$-\frac{1}{3}$	3-7
Strange	S = -1	S	$-\frac{1}{3}$	$95{\pm}25$
Charm	C = +1	с	$+\frac{2}{3}$	$1250{\pm}90$
Bottom	B = -1	b	$-\frac{1}{3}$	$4200{\pm}70$
Тор	T = +1	t	$+\frac{2}{3}$	$170900 {\pm} 1800$

Hadronic gas Gas of quarks and gluons

Rollback - Gluons-

Gluons are:

- Exchange particle of the strong interaction
- Massless
- Boson (Spin = 1)
- Carry colour charge and anticharge

We have 8 independent possibilities (SU(3) has 8 generators \Rightarrow 8 gluons):

$$|r\bar{g}\rangle,\;|r\bar{b}\rangle,\;|g\bar{r}\rangle,\;|g\bar{b}\rangle,\;|b\bar{r}\rangle,\;|b\bar{g}\rangle,$$

and

$$rac{1}{\sqrt{6}}(|rar{r}
angle+|gar{g}
angle-2|bar{b}
angle) \ rac{1}{\sqrt{2}}(|rar{r}
angle-|gar{g}
angle)$$

Hadronic gas Gas of quarks and gluons

Degrees of freedom for a QGP

The effective number of partonic degrees of freedom in a QGP state

$$g = \frac{7}{8} 2_{q,\overline{q}} \cdot g_q + g_g$$

where g_q and g_g are the d.o.f. of, respectively, the quark and gluon states

$$g_q = 2_{spin} \cdot 3_{colour} \cdot n_f = 6n_f$$

$$g_g = 2_{spin} \cdot 8_{colour} = 16$$

which yields the value g = 37(95/2) for an $n_f = 2(3)$ flavour QGP.

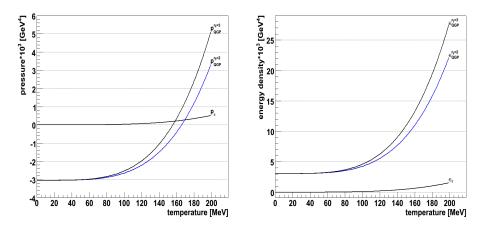


Figure: (a) Determination of the phase boundary in the T- μ plane. (b) Energy density for a pion gas and a QGP.

Gibbs condition, estimation of T_c at $\mu = 0$ The $\mu \neq 0$ case The energy density at the transition point

Estimation of T_c

$$p_{QGP}(T_c) = p_{\pi}(T_c)$$
 and $T_{QGP} = T_{\pi} = T_c$

what yields

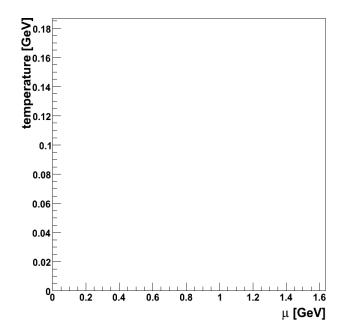
$$g_{\pi} \frac{\pi^2}{90} T_c^4 = g_{QGP} \frac{\pi^2}{90} T_c^4 - B$$

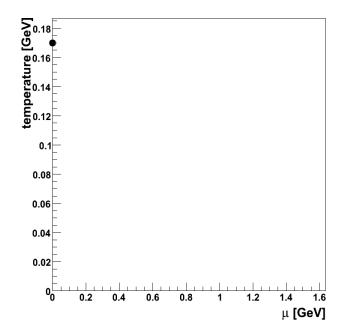
$$\Leftrightarrow \qquad B = \Delta g \frac{\pi^2}{90} T_c^4$$

$$\Leftrightarrow \qquad T_c = \sqrt[4]{\frac{90B}{\Delta g \pi^2}}$$

taking $B^{1/4} = 0.235 \text{GeV}$ we get $T_c \simeq 169 \text{MeV}$.

Florian Beutler





Gibbs condition, estimation of T_c at $\mu = 0$ **The** $\mu \neq 0$ **case** The energy density at the transition point

The T = 0, $\mu \neq 0$ case

At T = 0 (no pions) and $\mu \neq 0$ we can approximate our gas as a gas of nucleons (lightest baryons) (mass is not neglectable)

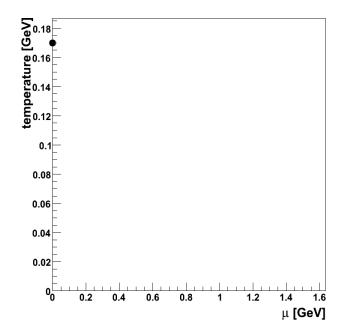
$$p_{nuc} + \overline{p}_{nuc} = \frac{g_{nuc} 4\pi}{(2\pi)^3} \int \frac{Ep^2 dp}{e^{(E-\mu)/T} + 1} + \frac{g_{nuc} 4\pi}{(2\pi)^3} \int \frac{Ep^2 dp}{e^{(E+\mu)/T} + 1}$$

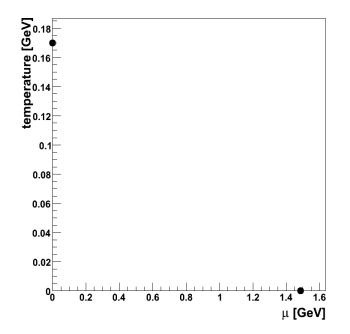
with $g_{nuc} = 4$
$$p_{QGP} = \frac{g_q \mu_q^4}{24\pi^2} - B$$

with $\mu = 3\mu_q$ and $g_q = 12$ (only quarks, no gluons)

$$p_{nuc} + \overline{p}_{nuc} = p_{QGP} \stackrel{\text{n.s.}}{\Longrightarrow} \mu = 1485 MeV$$

w





Gibbs condition, estimation of T_c at $\mu = 0$ **The** $\mu \neq 0$ **case** The energy density at the transition point

Constructing the phase diagram

The T \neq 0 and $\mu \neq$ 0 case:

$$g_{\pi} \frac{\pi^{2}}{90} T^{4} + \sum_{p+\overline{p}} \frac{g_{\text{nuc}} 4\pi}{(2\pi)^{3}} \int \frac{Ep^{2} dp}{e^{(E\pm\mu)/T} + 1} = \frac{g_{q\overline{q}}}{3} \left(\frac{7\pi^{2}}{120} T^{4} + \frac{\mu_{q}^{2}}{4} T^{2} + \frac{\mu_{q}^{4}}{8\pi^{2}} \right) + g_{g} \frac{\pi^{2}}{90} T^{4} - B$$

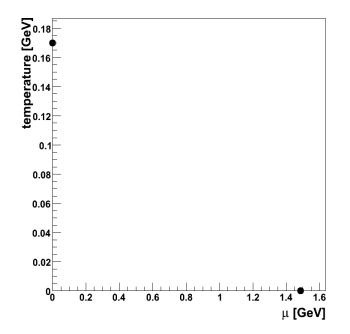
with

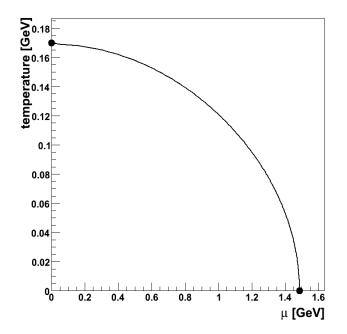
$$g_{q\overline{q}} = 6n_f = 12$$

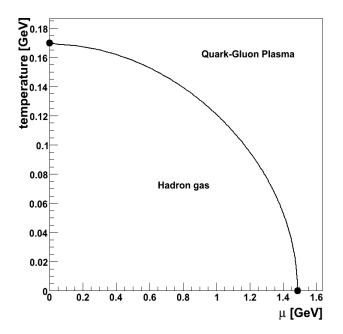
$$g_g = 16$$

$$g_{\pi} = 3$$

$$g_{nuc} = 4$$





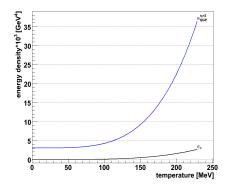


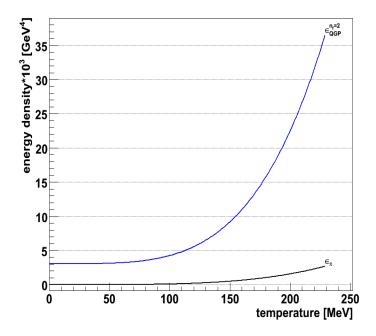
Gibbs condition, estimation of T_c at $\mu = 0$ The $\mu \neq 0$ case The energy density at the transition point

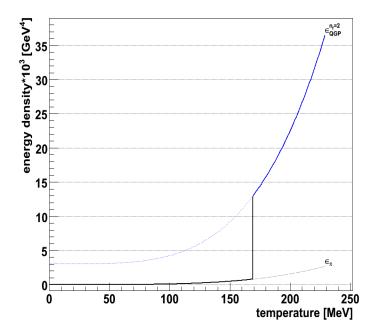
The energy density at the transition point

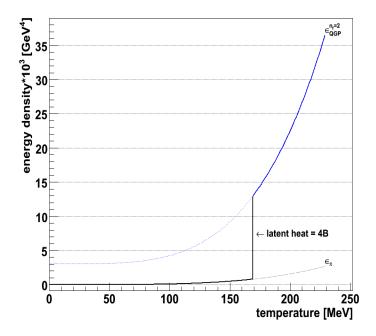
The latent heat is (again the $\mu = 0$ case):

$$Q = \epsilon_{QGP} - \epsilon_{\pi} = (g_{QGP} \frac{\pi^2}{30} T^4 + B) - g_{\pi} \frac{\pi^2}{30} T^4 = 4B$$









Gibbs condition, estimation of T_c at $\mu = 0$ The $\mu \neq 0$ case The energy density at the transition point

The energy density at the transition point

What happens with the energy density at the phase transition?

$$\frac{\epsilon_{QGP}(T_c)}{\epsilon_{\pi}(T_c)} = \frac{(\frac{7}{8}2_{q\bar{q}} \cdot g_q + g_g)\frac{\pi^2}{30}T^4 + B}{g_{\pi}\frac{\pi^2}{30}T^4} = \dots = \frac{4\frac{g_{QGP}}{g_{\pi}} - 1}{3} \approx 16$$

 \Rightarrow Step in the energy density at the transition point. Transition from hadronic to partonic degrees of freedom.

The latent heat Q = 4B is an increase of energy with fixed temperature and causes therefore a step in the entropy density.

$$\frac{s_{QGP}(T_c)}{s_{\pi}(T_c)} = \frac{\beta(\epsilon_{QGP} + B + p_{QGP} - B)}{\beta(\epsilon_{\pi} + p_{pi})} = \dots = \frac{g_{QGP}}{g_{\pi}} \approx 12$$

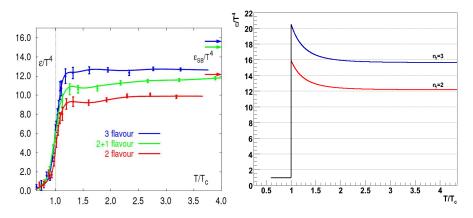


Figure: Energy density ϵ as a function of temperature (left) from lattice calculations and (right) with relativistic gas approximation.

left: [F. Karsch et al. hep-lat/0109017]

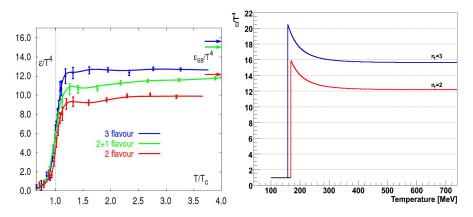


Figure: Energy density ϵ as a function of temperature (left) from lattice calculations and (right) with relativistic gas approximation.

left: [F. Karsch et al. hep-lat/0109017]

Is a pion gas a good approximation?

What is the reason for the difference between lattice QCD calculations and our results?

- Negligence of interactions.
- The hadron gas approximation as a pion gas is questionable for high temperatures (is lattice QCD better?).

Check with all particles (the most common 330 particle types)

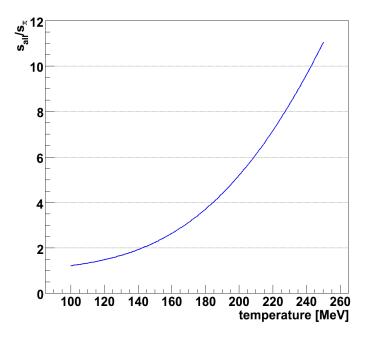
$$\frac{s_{all}}{s_{\pi}} = \frac{\beta(\epsilon_{all} + p_{all})}{\beta(\epsilon_{\pi} + p_{\pi})} = \frac{g_{all}}{g_{\pi}}$$

with

$$s_{all}/T = \sum_i \epsilon_i + \sum_i p_i$$

If pion gas is a good approximation, we would expect that this ratio is 1...

Florian Beutler



Conclusion

- There is a transition in strong interaction thermodynamics at which:
 - Deconfinement sets in (we get a QGP).
 - Latent heat increases the energy density ($\epsilon_c pprox 1.7 \, GeV/fm^3$).
 - The transition temperature is $T_c\simeq 150\text{--}180\,\mathrm{MeV}$.
- To reach this state of matter (QGP), high energies are needed (Big Bang, neutron stars, heavy ion collisions...)
- In a first approximation it is possible to use the ideal gas equation to estimate the critical parameters (neglecting interactions). Further approximations are
 - Hadron gas as massless pion gas.
 - QGP as a massless gas of u, d (and s) quarks and gluons.
- But this approximations give errors of about 20%.
- Lattice QCD calculations are the best calculations available, up to now.

Please keep in mind

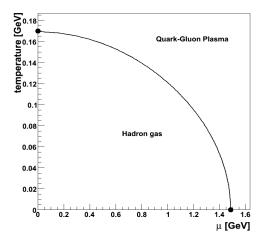


Figure: The nuclear matter phase diagram

Florian Beutler

Thermodynamics of relativistic gases and the QGF