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electrons in a metal
=1pK

BEC scale — 107 -1nK




The fundamentals of QCD
The MIT Bag model

Constrt .
Colour screening

Is a pion

Where we are?
= QCD = The theory of strong interactions.

In a QCD system at very high temperature and/or very high pressure the
quarks and gluons are expected to become quasi-free. This deconfined
dense state of matter is called a Quark Gluon Plasma (QGP).

But:

@ How is it possible to get free quarks?

@ What are the necessary conditions? T, =7, n. =7
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What is a quark gluon plasma?

Postulate of the QCD:
All free particles are colourless!

T
>
>

b b gl b3 |b _ _
b3 o We will not find a free quark or a
" free gluon in nature.
g g @ In QCD we have three different

5 colours: red, green and blue.
QQEQQA @ White objects are mesons and

s’ e
» g b
b |5 bg | baryons — hadrons
L’Géep = |urugdp)
! b urdy
r F o . | r_r> lugurdp)
u d u u d |7T > = |ugd§> |p> = ’urubdg>
nt p |ubdg>
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What is a quark gluon plasma?

The QCD coupling constant:

127

as(Q7) = (33 — 2ny) |n(Q2//\(2}CD)

@ Strength of the coupling depends on
the momenta exchange. \ 52 Ducp ncasic Scatering

oe ete— Annihilation
@ Situation in QED and QCD is \ I g
absolutely different X

e gluon loops
e The QCD only calculable for
as < 1, means high energies oz

oQ)

@ At high momenta (small distances) the
coupling constant becomes weaker — M) 011892 00010

asymptotic freedom. i ito
QIGeV]

I
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What is a quark gluon

Iy The fundamentals of QCD

The MIT Bag model

Constre 2
Colour screening

Is a pion approximati

Basic assumptions of the MIT Bag model:

e Two different vacua, a confined and a deconfined vacuum.
@ Quarks are caged in the volume of a hadron ("Bag") — confinement.
@ Within this volume the quarks are free — asymptotic freedom.

This leads to the following consequences:

@ To make room for a deconfined vacuum bubble of volume V in the
confined vacuum, an energy E = BV is necessary.

@ To stabilize the bubble, the internal vapor pressure p(T) must be
equal to the external pressure B.

B is the Bag constant. The volume which is occupied by a hadron depends
on B.
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What is a quark gluon plasma?

Pressure + [creﬂees%?ons] * ????
5!
~38-+ 83 > 6§
! )

@ Hadrons have intrinsic size ry ~ 1fm, need V, ~ 4—7’r,?; to exist

=Limiting density of hadronic matter: n. = 1/V,
[Pomeranchuk 1951]

@ Increasing temperature produces more and more particles (mainly
pions). This leads to a limiting temperature: T, = 150-200MeV

= What lies beyond n., T.?
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What is a quark gluon plasma?

@ The charge of one particle is
screened by the surrounding
charges.

o (Debye) screening radius (A\p):
The distance at which the
charge is reduced by 1/e.

@ Originally defined for
electromagnetic plasma, later
extended to plasma of colour
charges.

These quarks effectively
cannot “see” each other!
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The fundamentals of QCD
The MIT Bag model
Colour screening

Normal QCD potential: V(r) = —@ +or

Colour screened QCD potential: V(r)= —@e_ )
r

o At T = T, a screening factor is
introduced and the linear term
in the potential vanishes.

QCD potential
w

@ The screening length decreases 2
with increasing temperature
(and/or density)

Ap = Ap(T,n).

-

<

e Deconfinement sets in (we have

a QGP).
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What is a quark gluon plasma?

The Gibbs condition at a phase transition of first order is:

Pphasel = Pphase2 Hphasel = Hphase2

In the case of a transition from hadron gas to QGP this will give:

°
o @

Quark-Gluon Plasma

°
)

tempegature [GeV]
-

)
N

o
o
@

°
b
TT T [ T[T [T [T T[T T [ TTT[TTT][T#T]T

Hadron gas

o
o
o

2

°
S

I

1
12 14 16
u [GeV]

sl b Lo Lo b Lo Loges
0.2 0.4 0.6 0.

Florian Beutler Thermodynamics of relativistic gases and the QGP



Hadronic gas
Gas of quarks and gluons

What can we do to simplify the problem?
= For high energies: Approximation as a quantum ideal gas (neglecting
interactions). Then we can apply the relativistic Equation of State (EoS)

e(T,n)=3p

The hadron gas and the QGP states are described by a grand canonical
partition function:

.o.f.
/T
/p2 + m2

eBu

_ 8 E d°p
T @n)3 ) EWIT 1
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and the energy density is

E 10
€(T7y’) = V = _V%In Z(Z, V: T)

z=const.
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Ideal relativistic gas

The boson energy density:

.. & / E d*p _ 4mg / p? dp
(2m)2 ) exp((E—p)/T) =1 (27)® ) exp(p/T) -1
g E d*p

3 a7,
© (2W)3/exp((E_u)/T)_1:ng W =g55T

with ¢(4) = 2.
And the number density

B g / d3p 1.2¢g
T ) e((E- /T~ tfeo
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Ideal relativistic gas

Fermion energy density (1 not generally = 0)

g / E d*p 4rg / p* dp
€ = =
(2m)* ) ep((E—-w)/T)+1  (27)* ) exp((p—p)/T) +1
and we get for particle and antiparticle (e(u) = €(—pu))
2 4

_ s p [
et+e = g(]_20T4+4T2+87T2>

and the number density is

n—

g / d*p _ 4ng / p> dp
(2m)* ) exp((E—p)/T)+1  (27)* J exp((p—p)/T)+1
what yields for particle and antiparticle

3
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t is a quark gluon
Hadronic gas
Gas of quarks and gluons

The pressure of the hadronic phase is, at low temperature, dominated by
the pressure of the lightest hadron. Therefore we approximate our hadron
gas as a massless pion gas and neglect all other particles.

If we treat the hadron gas as an ideal pion gas

7T2
p=(T) = gﬂ%TZ‘
7T2
e(T) = 3p(T)=geo= T

30
with g = 3 and accordingly the entropy density

1 2
s=(c+p) =4gngs T’

90
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Hadronic gas
Gas of quarks and gluons

The pressure difference between the both vacua in the MIT Bag model is
negative

Ap = pdeconf — Pconf = —B <0
and causes the confinement.
Thus the energy density and pressure in the QCD vacuum should be
modified according to the rule

Poep — PQGP = Poep — B
€gep — €qap = €(pqer) + B

But B = B(T,n) and B is not well known (but we will fix B in the further
treatment).

The vacuum structure keeps the coloured particles bound and confined. To
be able to move colour charges within a region of space, one needs to
"melt" the confining structure.
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Ideal relativistic gas

Using again the approximation of a ideal gas we get for the QGP consisting
of just gluons and quarks.

7 2
! - 9 g T4 ~ T4
PGP 9980750 1 T gg290
7 ™ 4
= (gzq,ﬁ "8q gg)% T
and )
7 s
cocp = 3Pocr = (5243 84+ 8g) - T°
8 30
Account for the MIT Bag model
poGgp = p/QGP -B

egep = 3(pqep + B) + B =3pqep + 4B
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Ideal relativistic gas

The effective number of partonic degrees of freedom in a QGP state
7
8=735%a 8 18
where g; and g, are the d.o.f. of, respectively, the quark and gluon states

8¢ = 2spin * colour - Nf = 6n¢

8 = 2spinBcolour =16

which yields the value g = 37(95/2) for an ns = 2(3) flavour QGP.
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Ideal relativistic gas

Quarks are:
@ Fermions with spin = :l:%.

o Carry colour charge, weak charge, electric charge and mass.

name  flavour symbol electric charge  mass[MeV]

Up u +3 1.5-3.0
Down d L 3-7
Strange S =-1 s —% 95+25
Charm C=+1 ¢ +2 1250-£90
Bottom B =-1 b -2 4200470

Top T=+1 t +2 17090041800
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Ideal relativistic gas

Gluons are:
@ Exchange particle of the strong interaction
@ Massless
@ Boson (Spin = 1)
@ Carry colour charge and anticharge
We have 8 independent possibilities (SU(3) has 8 generators = 8 gluons):

g), |rb), |g7). lgb), |b7), |b),

and
(Ir7) + |g&) — 2|bb))

i
—5(Ir7) — g8)

&
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Ideal relativistic gas

The effective number of partonic degrees of freedom in a QGP state
7
8=735%a 8 18
where g; and g, are the d.o.f. of, respectively, the quark and gluon states

8¢ = 2spin * colour - Nf = 6n¢

8 = 2spinBcolour =16

which yields the value g = 37(95/2) for an ns = 2(3) flavour QGP.
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Figure: (a) Determination of the phase boundary in the T-p plane. (b) Energy
density for a pion gas and a QGP.



Construction of the phase diagram

pQGP(TC) = pﬂ'(Tc) and TQGP =T,=T,

what yields
gngf = gQGPg_;Tg_B
& B = Agg—;Tg‘
= T = ¢ %ﬁz

taking B!/* = 0.235GeV we get T, ~ 169MeV.
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Construction of the phase diagram

At T = 0 (no pions) and p # 0 we can approximate our gas as a gas of
nucleons (lightest baryons)
(mass is not neglectable)

_ GnuchT / Ep®dp GrucAT / Ep*dp
el

Pnuc + Ppuc = (2r)3 e(E-p)/T 41 (2m)3 E+p)/T 41
with gpue = 4
4
gq/*Lq
= - B
Pack = 54

with 1 = 34 and gg = 12 (only quarks, no gluons)

Pruc + Poye = PQGP == 11 = 1485MeV/
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Construction of the phase diagram

The T #£ 0 and i # 0 case:

47 Ep?dp 8oa [ 77 2 [y
_T4 8nuc — S99 _T4 _q-,—2 mq
&r Z @n)3 ) eE=IT 11 3 \1200 T2 TR
2 4
—T - B
+ gggo
with
8qg = 6nf =12
g = 16
& = 3
e = 4
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Construction of the phase diagram

The latent heat is (again the u = 0 case):

2
Q—EQGP_Gr_(gQGP T4+B)—g7r%T4=4B

30
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What is a qu: f'l' glt Gibbs condition, estimation of T, at . = 0

The 1 # 0 case
The energy density at the transition point

What happens with the energy density at the phase transition?

2 £Q6
coer(Te) _ (52 6o+ 8)5 " +B _ 4 —1

ETr(TC) o gﬂ_ 30 T4 o 3

= Step in the energy density at the transition point. Transition from
hadronic to partonic degrees of freedom.

. . S
The latent heat Q = 4B is an increase of energy
with fixed temperature and causes therefore a step

in the entropy density. s
T
seap(Tc) _ fleqer + B+ poer —B) _ _ gasp ¢,
se(Te) Blex + ppi) 8r
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Ideal rela
Construction of the pha
Is a pion gas a good appr

What is the reason for the difference between lattice QCD calculations and
our results?

@ Negligence of interactions.

@ The hadron gas approximation as a pion gas is questionable for high
temperatures (is lattice QCD better?).

Check with all particles (the most common 330 particle types)

sa _ P(€an + pan) _ Eanl
St ﬂ(fﬂ' + pTr) 8

s/ T=Y €&+ pi
i

i

with

If pion gas is a good approximation, we would expect that this ratio is 1...
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Conclu

@ There is a transition in strong interaction thermodynamics at which:
o Deconfinement sets in (we get a QGP).
o Latent heat increases the energy density (e. ~ 1.7GeV /fm?3).
e The transition temperature is T, ~ 150-180MeV.
@ To reach this state of matter (QGP), high energies are needed (Big
Bang, neutron stars, heavy ion collisions...)

@ In a first approximation it is possible to use the ideal gas equation to
estimate the critical parameters (neglecting interactions). Further
approximations are

e Hadron gas as massless pion gas.
o QGP as a massless gas of u, d (and s) quarks and gluons.
@ But this approximations give errors of about 20%.
@ Lattice QCD calculations are the best calculations available, up to

now.
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