Ultra-Relativistic Nuclear Collisions

Korinna Zapp

05.05.2008

Contents

1	Introduction						
	1.1	A QGP-Reminder	2				
	1.2	A Comment on Theoretical Tools	2				
2	Setting the Stage						
	2.1	Natural Units	3				
	2.2	Coordinates and Useful Quantities	3				
	2.3	Stages of a Nuclear Collision	5				
	2.4	Geometry	5				
3	An Example of an Experiment		6				
	3.1	Challenges	6				
	3.2	An Example for an Experiment: STAR	7				
4	Aspects of Relativistic Nuclear Collisions						
	4.1	Centrality	7				
	4.2	Particle Production	8				
	4.3	Density	10				
	4.4	Transverse Expansion Velocity	11				
	4.5	Equation of State	12				
	4.6	Spatial Extension	13				
5	Sum	imary	15				

1 Introduction

1.1 A QGP-Reminder

- QGP \simeq state of deconfined quarks and gluons
- can be produced by heating and/or compressing hadronic matter \rightarrow relativistic nuclear collisions

1.2 A Comment on Theoretical Tools

QCD

- correct theory of strong interaction
- but: pertubation theory only applicable at high energies/short distances (running coupling)
- in QGP at non-asymptotic temperatures coupling relativley large

Thermal field theory

- QCD in thermal systems
- but: perturbative expansion (HTL) doesn't converge very well
- application to heavy ion collisions questionable

AdS/CFT correspondence (Maldacena conjecture)

- relates strongly coupled conformal field theory to a weakly coupled type IIB string theory (supergravity)
- pro: many quantities become calculable
- con: QCD is not a conformal theory
- exciting but remains to be proven

2 Setting the Stage

2.1 Natural Units

$$\hbar = c = k_{\mathsf{B}} = 1$$

$$\Rightarrow [E] = [p] = [m] = [T] = [l^{-1}] = [t^{-1}] = \text{GeV}$$

usually: [E] = [p] = [m] = [T] = GeV $[I] = [t] = \text{fm} = 10^{-15} \text{ m}$

extremely useful: $\hbar c = 0.2 \text{ GeVfm} = 1$

	J	eV	g	m^{-1}	K
J	1	$6.2 \cdot 10^{18}$	$1.1 \cdot 10^{-14}$	$3.2 \cdot 10^{25}$	$7.2 \cdot 10^{22}$
eV	$1.6 \cdot 10^{-19}$	1	$1.8 \cdot 10^{-33}$	$5.1 \cdot 10^{6}$	$1.2 \cdot 10^{4}$
g	9.0 · 10 ¹³	$5.6 \cdot 10^{32}$	1	$2.8 \cdot 10^{39}$	$6.5 \cdot 10^{36}$
m^{-1}	$3.2 \cdot 10^{-26}$	$2.0 \cdot 10^{-7}$	$3.5 \cdot 10^{-40}$	1	$2.2 \cdot 10^{-3}$
K	$1.4 \cdot 10^{-23}$	$8.6 \cdot 10^{-5}$	$1.5 \cdot 10^{-37}$	$4.4 \cdot 10^{2}$	1

2.2 Coordinates and Useful Quantities

Coordinates and Useful Quantities

1-Particle Observables

longitudinal momentum: transverse momentum:	$egin{aligned} & ho_{ } = ec{ ho} \cosartheta \ & ho_{\perp} = ec{ ho} \sinartheta \end{aligned}$
transverse mass:	$m_{\perp} = \sqrt{p_{\perp}^2 + m^2}$
rapidity:	$y = \tanh^{-1}(\beta_{\parallel}) = \frac{1}{2} \ln \left(\frac{E + p_{\parallel}}{E - p_{\parallel}} \right)$
pseudo-rapidity:	$\eta = -\ln\left(\tan\frac{\vartheta}{2}\right) = \frac{1}{2}\ln\left(\frac{p+p_{\parallel}}{p-p_{\parallel}}\right)$

for $E \gg m$: $y \simeq \eta$

Global Observables

transverse energy: $E_{\perp} = \sum_{i} E_{i} \sin \vartheta_{i}$

excitation energy: $E^* = E_{cm} - N_{part}m_N = (\gamma_{beam}N_{part,beam} + \gamma_{target}N_{part,target})m_N - N_{part}m_N$ kinetic energy of participating nucleons \rightarrow energy of the produced matter

isotropic source: $E_{\perp} = \frac{\pi}{4}E^*$

- **zero-degree energy:** E_{ZD} : energy deposited in small solid angle around beam axis \rightarrow sensitive to number of projectile spectator nucleons ideally: $\frac{E_{\text{ZD}}}{E_{\text{beam}}} = \frac{N_{\text{spec}}}{A}$
- \Rightarrow E_{\perp} and E_{ZD} (E^*) complementary

Rapidity

rapidity: relativistic analogue of (longitudinal) velocity

$$\beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$$

$$y = \tanh^{-1} \beta$$

$$= \tanh^{-1} \left(\frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2} \right)$$

$$= \tanh^{-1} \beta_1 + \tanh^{-1} \beta_2$$

$$= y_1 + y_2$$

 \Rightarrow The shape of rapidity distributions is invariant under Lorentz-transformations.

Accelerators and Beam Rapidity

AGS: $E_{\text{beam}} = 11 \text{ A GeV Au} + \text{Au}$ fixed target

SPS: $E_{\text{beam}} = 158 \text{ A GeV Pb+Pb}$ fixed target

RHIC: $\sqrt{s_{NN}} = 200 \text{ GeV} \text{ Au+Au collider}$

LHC: $\sqrt{s_{NN}} = 5.5 \text{ TeV Pb+Pb collider}$

2.3 Stages of a Nuclear Collision

- (a) Lorentz-contracted nuclei
- (b) nuclei overlap, scatterings occur
- (c) nucleus remnants recede from interaction region leaving a dense and hot system behind
- (d) system expands, cools and hadronises, hadrons scatter and resonances decay

2.4 Geometry

Centrality

b: impact parameter

centrality =
$$\frac{\sigma}{\sigma_{geo}} \simeq \frac{\int_0^b b' db'}{\int_0^{2R_A} b' db'} \propto b^2$$

Glauber-models

- characterise collision by
 - number of participating nucleons $(N_{part}(b))$
 - number of binary nucleon-nucleon collisions $(N_{bin}(b))$
- rule of thumb:
 - soft (low momenta) particle production scales with N_{part}
 - hard (high momentum transfer) processes scale with $\textit{N}_{\rm bin}$

3 An Example of an Experiment

3.1 Challenges

General Complications

- QGP not directly observable
- have to infer QGP properties from hadronic final state
- complicated space-time evolution
- comlpex multi-particle dynamics

Experimental Challenges

- high multiplicity (RHIC: up to \sim 4000 charged particles)
- many measurements have huge background
- this background contains structures and correlations
- it fluctuates

STAR Detector

3.2 An Example for an Experiment: STAR

Silicon Vertex Tracker: position and momentum

Time Projection Chamber: momentum and position

Time Of Flight: velocity

E-M Calorimeter: energy

 \Rightarrow combining information from different subdetetors allows for particle identification

4 Aspects of Relativistic Nuclear Collisions

4.1 Centrality

• complication: imcomplete measurement of spectators

Collisions with increasing centrality have

- increasing activity away from beam rapidity (transverse energy, number of produced particles, total charge etc.).
- decreasing activity near beam rapidity, i.e. decreasing number of spectator nucleons.
- $\Rightarrow\,$ use a combination of the two to experimentally determine centrality

4.2 Particle Production

Stopping

nuclear stopping power: amount of kinetic energy lost by projectiles

 \Rightarrow stopping means that protons get shifted to midrapidity

 \Rightarrow mean rapidity shift of projectiles: $\Delta y \simeq 2$

- \Rightarrow inceasing beam energy we go from stopping to transparency
- valence quark part of wave function gets more and more Lorentz-contracted while sea cannot become smaller than $\sim 1 \,\text{fm}$ (uncertainty principle) \rightarrow collisions at high energy dominated by sea-sea interactions

Total Energy

$$E = m_{\perp} \cosh y \Rightarrow E_{tot} = \sum_{\text{species}} \int dy \frac{dN}{dy} \langle m_{\perp} \rangle \cosh y$$

particle	energy [GeV]
р	3108
p	428
K^+	1628
K ⁻	1093
π^+	5888
π^-	6117
π^0	6004
п	3729
n	513
K^0	1628
\bar{K}^0	1093
Λ	1879
Ā	342
	1

total: 33.4 TeV $E_{\text{beam}} \cdot N_{\text{part}} = 35 \text{ TeV}$ produced: 24.8 TeV \Rightarrow 74 % of beam energy goes into particle production

• isotropic particle source at rest: $\frac{dN_1}{d\cos\vartheta} = \frac{N_{1,tot}}{2}$

•
$$y = \frac{1}{2} \ln \left(\frac{E + p \cos \vartheta}{E - p \cos \vartheta} \right)$$

 $\Rightarrow \cos \vartheta = \frac{E}{p} \tanh y$
 $\Rightarrow \frac{dN_1}{dy} = \frac{dN_1}{d \cos \vartheta} \frac{d \cos \vartheta}{dy}$
 $= \frac{N_{1, \text{tot}}}{2} \frac{E}{p} \text{sech}^2 y$

- moving isotropic source: $\frac{dN_1}{dy} = \frac{N_{1,tot}}{2} \frac{E}{p} \operatorname{sech}^2(y + y_s)$
- picture of nuclear collision: particles need proper time τ_{de} to form \rightarrow time-dilated in lab frame $\gamma \tau_{de} \rightarrow$ superposition if independent moving sources

•
$$\frac{\mathrm{d}N}{\mathrm{d}y} = \int_{-y_{\mathrm{max}}}^{y_{\mathrm{max}}} \mathrm{d}y' \frac{\mathrm{d}N_1}{\mathrm{d}y} (y + y') \propto \tanh(y + y_{\mathrm{max}}) - \tanh(y - y_{\mathrm{max}})$$

Space-Time Picture

- particle formation time: $t = \gamma \tau_{de}$ from moment of projectile overlap at t = 0 and z = 0
- particles at rest $(\gamma = 1)$ are formed at midrapidity and at z = 0
- moving particles are formed at higher rapidity and travel a distance $\beta/\gamma \tau_{\rm de}$ before formation
- \Rightarrow Particles with high rapidity are produced at high z
- \Rightarrow The rapidity is related to the point of particle emission (in coordinate space).

$$y = \frac{1}{2} \ln \left(\frac{E + p_{\parallel}}{E - p_{\parallel}} \right) = \frac{1}{2} \ln \left(\frac{\gamma m + \gamma m v}{\gamma m - \gamma m v} \right) = \frac{1}{2} \ln \left(\frac{t + z}{t - z} \right) = Y$$

Y: space-time rapidity

NB: We habe ignored the transverse expansion.

4.3 Density

Bjorken's density estimate:
$$\epsilon_0 = \frac{1}{\pi R^2 \tau_0} \left. \frac{\mathrm{d}E_{\perp}}{\mathrm{d}\eta} \right|_{\eta \simeq 0}$$

 $au = \sqrt{t^2 - z^2}$: proper time au_0 : equilibration time ($au_0 \simeq 0.2...1$ fm) $\epsilon_0 = \epsilon(au_0)$: early energy density

$$\frac{\mathrm{d}E_{\perp}}{\mathrm{d}\eta}\bigg|_{\eta=0} \simeq \left.\frac{\mathrm{d}E_{\perp}}{\mathrm{d}y}\right|_{y=0} = \pi R^2 \epsilon(\tau) \left.\frac{\mathrm{d}z}{\mathrm{d}y}\right|_{y=0} = \pi R^2 \epsilon(\tau)\tau$$

 $\epsilon \tau = \epsilon_0 \tau_0$ from entropy conservation

• for $au_0 = 1 \, \mathrm{fm}$

- AGS:
$$\epsilon_0 = 1.4 \text{ GeV fm}^{-3}$$

- SPS: $\epsilon_0 = 3 \text{ GeV fm}^{-3}$
- RHIC: $\epsilon_0 = 5 \text{ GeV fm}^{-3}$
- esimated density needed to form QGP 1 GeV fm^{-3}

4.4 Transverse Expansion Velocity

- T_{kin} : kinetic freeze-out temperature ('temperature at last interaction')
- spectrum ot exactly exponential
- inverse slope \mathcal{T}_{kin} depends on particle mass
- \Rightarrow characteristic of transverse flow: $T_{kin}^{\text{eff}} \simeq T_{kin} + m_0 \beta_r^2/2$
- \Rightarrow need a hydrodynamic calculation

$$\frac{\mathrm{d}N}{m_{\perp}\mathrm{d}m_{\perp}} \propto \int_{0} r \mathrm{d}r \, m_{\perp} I_{0} \left(\frac{p_{\perp} \sinh \rho}{T_{kin}}\right) \mathcal{K}_{1} \left(\frac{p_{\perp} \cosh \rho}{T_{kin}}\right)$$

with $\rho = \tanh^{-1}\beta_{r}$ and $\beta_{r}(r) = \beta_{s} \left(\frac{r}{R}\right)^{n}$; $0 \le r \le R$

 $n \approx 1$ — analogous to Hubble expansion

4.5 Equation of State

- mean free path \ll system size \rightarrow hydrodynamical description
- pressure gradient steeper in x-direction
- collective flow develops preferentially in *x*-direction
- particle distribution shows azimuthal anisotropy

- anisotopy directly sensitive to equation of state
- mostly sensitive to early times, when eccentricity is largest

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{\mathrm{d}^{2}N}{2\pi p_{\perp}\mathrm{d}p_{\perp}\mathrm{d}y}\left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n\phi)\right)$$

elliptic flow: $v_2 = \langle \cos(2\phi) \rangle$

- hydrodynamic calculations with QGP EOS do good job at top SPS energies and RHIC
- suggests thermalisation and QGP formation

4.6 Spatial Extension

- Hanbury Brown Twiss interferometry: interferometry of identical particles (originally used to determine size of stars)
- measure momenta \vec{k}_1 and \vec{k}_2 of two pions emitted from \vec{x}_1 and \vec{x}_2 , respectively, at different positions
- indistinguishable particles \rightarrow interference
- transition probability:

$$|\Psi_{12}|^{2} = \frac{1}{2V^{2}} \left| e^{-i\vec{k}_{1}\cdot\vec{x}_{1}} e^{-i\vec{k}_{2}\cdot\vec{x}_{2}} + e^{-i\vec{k}_{1}\cdot\vec{x}_{2}} e^{-i\vec{k}_{2}\cdot\vec{x}_{1}} \right|^{2}$$
$$= \frac{1}{V^{2}} \left(1 + \cos(\Delta\vec{k}\cdot\Delta\vec{x}) \right)$$
$$\vec{x}_{1} + \vec{x}_{2}$$

• probability of observing \vec{k}_1 and \vec{k}_2 in emission from continuous source

$$P(\vec{k}_1, \vec{k}_2) = \frac{1}{2} \int d^3 x_1 d^3 x_2 \rho(\vec{x}_1) \rho(\vec{x}_2) |\Psi_{12}|^2$$

• probability of observing a single particle with \vec{k}_i

$$P(\vec{k}_i) = \int d^3 x_i \rho(\vec{x}_i) ||\langle \vec{k}_i | \vec{x}_i \rangle|^2$$

• correlation function

$$C_{2} \equiv \frac{d^{6}N}{d^{3}k_{1}d^{3}k_{2}} \left(\frac{d^{3}N}{d^{3}k_{1}}\frac{d^{3}N}{d^{3}k_{2}}\right)^{-1} = \frac{2P(\vec{k}_{1},\vec{k}_{2})}{P(\vec{k}_{1})P(\vec{k}_{2})}$$
$$= 1 + |\tilde{\rho}(\Delta\vec{k})|^{2}$$

where $\tilde{
ho}$ is the Fourier transform of the density distribution

- \Rightarrow can infer size of source from correlation function
- in practice: fit a 3d Gaussian to data
- life is more complicated and more interesting with an expanding source
 - radii depend on transverse momentum of pair
 - $R_{out}/R_{side} > 1$ for long duration of hadron emission

- transverse rms radii larger than nuclei
- radii decrease with pair transverse momentum
- \Rightarrow extended, expanding source (β_r consistent with m_\perp spectra)
- $R_{\rm out}/R_{\rm side} \sim 1$

5 Summary

What we have learned about the properties of the hot and dense matter produced in relativistic nuclear collisions:

- low beam energies: stopping; high beam energies: transparency (proton & antiproton rapidity distributions)
- longitudinal expasion (rapidity distribution of charged particles)
- transverse expansion (m_{\perp} -spectra, HBT radii, elliptic flow)
- at top SPS energies and RHIC: QGP formation (density, elliptic flow)
- early thermalisation (elliptic flow)

References

- [1] from a sketch by K. Rajagopal
- [2] J. Stachel and G. R. Young "Relativistic heavy ion physics at CERN and BNL," Ann. Rev. Nucl. Part. Sci. 42 (1992) 537.
- [3] http://www-linux.gsi.de/~misko/overlap/interface.html
- [4] http://www.star.bnl.gov/central/experiment
- [5] J. Adams et al. [STAR Collaboration] "Measurements of transverse energy distributions in Au + Au collisions at s(NN)**(1/2) = 200-GeV," Phys. Rev. C 70 (2004) 054907 [arXiv:nucl-ex/0407003].
- [6] B. B. Back et al. "The PHOBOS perspective on discoveries at RHIC," Nucl. Phys. A 757 (2005) 28 [arXiv:nucl-ex/0410022].
- [7] S. S. Adler et al. [PHENIX Collaboration] "Identified charged particle spectra and yields in Au + Au collisions at s(NN)**(1/2) = 200-GeV," Phys. Rev. C 69 (2004) 034909 [arXiv:nucl-ex/0307022].
- [8] W. Busza and R. Ledoux, "ENERGY DEPOSITION IN HIGH-ENERGY PROTON NUCLEUS COL-LISIONS," Ann. Rev. Nucl. Part. Sci. 38 (1988) 119.
- [9] I. G. Bearden et al. [BRAHMS Collaboration], "Nuclear stopping in Au + Au collisions at s(NN)**(1/2) = 200-GeV," Phys. Rev. Lett. 93 (2004) 102301 [arXiv:nucl-ex/0312023].
- [10] I. Arsene et al. [BRAHMS Collaboration] "Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment," Nucl. Phys. A 757 (2005) 1 [arXiv:nuclex/0410020].
- [11] J. Adams et al. [STAR Collaboration] "Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration's critical assessment of the evidence from RHIC collisions," Nucl. Phys. A 757 (2005) 102 [arXiv:nucl-ex/0501009].
- [12] R. Debbe [BRAHMS Collaboration], "BRAHMS Overview," J. Phys. Conf. Ser. 50 (2006) 42 [arXiv:nucl-ex/0504015].

[13] K. Adcox *et al.* [PHENIX Collaboration] "Formation of dense partonic matter in relativistic nucleus nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration," Nucl. Phys. A 757 (2005) 184 [arXiv:nucl-ex/0410003].