### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

Physikalisches Institut Universität Heidelberg

Preseminar Extreme Matter Institute EMMI Workshop on Quark-Gluon-Plasma and Cold Atomic Physics - SS 2008 05. 05. 2008 Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Outline

#### Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

#### Summary

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Outline

#### Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions

- Centrality
- Particle Production
- Density
- Transverse Expansion Velocity
- Equation of State
- Spatial Extension

Summary

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### A QGP-Reminder

- QGP  $\simeq$  state of deconfined quarks and gluons
- ► can be produced by heating and/or compressing hadronic matter → relativistic nuclear collisions



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### A Comment on Theoretical Tools

#### QCD

- correct theory of strong interaction
- but: pertubation theory only applicable at high energies/short distances (running coupling)
- in QGP at non-asymptotic temperatures coupling relativley large

#### Thermal field theory

- QCD in thermal systems
- but: perturbative expansion (HTL) doesn't converge very well
- application to heavy ion collisions questionable

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### A Comment on Theoretical Tools

#### QCD

- correct theory of strong interaction
- but: pertubation theory only applicable at high energies/short distances (running coupling)
- in QGP at non-asymptotic temperatures coupling relativley large

#### Thermal field theory

- QCD in thermal systems
- but: perturbative expansion (HTL) doesn't converge very well
- application to heavy ion collisions questionable

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### A Comment on Theory

#### AdS/CFT correspondence (Maldacena conjecture)

- relates strongly coupled conformal field theory to a weakly coupled type IIB string theory (supergravity)
- pro: many quantities become calculable
- con: QCD is not a conformal theory
- exciting but remains to be proven

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Outline

#### Introduction

#### Setting the Stage

#### An Example of an Experiment

#### Aspects of Relativistic Nuclear Collisions

- Centrality
- Particle Production
- Density
- Transverse Expansion Velocity
- Equation of State
- Spatial Extension

#### Summary

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroductior

#### Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

#### Natural Units

$$\hbar = c = k_{\mathsf{B}} = 1$$

$$\Rightarrow [E] = [p] = [m] = [T] = [l^{-1}] = [t^{-1}] = \text{GeV}$$

usually: 
$$[E] = [p] = [m] = [T] = \text{GeV}$$
  
 $[l] = [t] = \text{fm} = 10^{-15} \text{ m}$ 

extremely useful:  $\hbar c = 0.2 \text{ GeVfm} = 1$ 

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Coordinates and Useful Quantities



#### 1-Particle Observables

longitudinal momentum: transverse momentum:

transverse mass:

rapidity:

pseudo-rapidity:

$$\begin{split} p_{||} &= |\vec{p}| \cos \vartheta \\ p_{\perp} &= |\vec{p}| \sin \vartheta \\ m_{\perp} &= \sqrt{p_{\perp}^2 + m^2} \\ y &= \tanh^{-1}(\beta_{||}) = \frac{1}{2} \ln \left( \frac{E + p_{||}}{E - p_{||}} \right) \\ \eta &= -\ln \left( \tan \frac{\vartheta}{2} \right) = \frac{1}{2} \ln \left( \frac{p + p_{||}}{p - p_{||}} \right) \end{split}$$

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

Summary

for  $E \gg m$ :  $y \simeq \eta$ 

### Coordinates and Useful Quantities

#### Global Observables

transverse energy:  $E_{\perp} = \sum_{i} E_{i} \sin \vartheta_{i}$ excitation energy:  $E^{*} = E_{cm} - N_{part} m_{N}$  $= (\gamma_{beam} N_{part, beam} + \gamma_{target} N_{part, target}) m_{N} - N_{part} m_{N}$ kinetic energy of participating nucleons  $\rightarrow$ energy of the produced matter

isotropic source: 
$$E_{\perp}=rac{\pi}{4}E^{*}$$

zero-degree energy:  $E_{ZD}$ : energy deposited in small solid angle around beam axis  $\rightarrow$  sensitive to number of projectile spectator nucleons ideally:  $\frac{E_{ZD}}{E_{beam}} = \frac{N_{spec}}{A}$  $\Rightarrow E_{\perp}$  and  $E_{ZD}$  ( $E^*$ ) complementary Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Coordinates and Useful Quantities



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroductior

#### Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

Rapidity

#### rapidity: relativistic analogue of (longitudinal) velocity



 $\Rightarrow$  The shape of rapidity distributions is invariant under Lorentz-transformations.

10 5 > 0 -5 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -100 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -10000-1000000000000000000000000000

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

Rapidity





 $\Rightarrow$  The shape of rapidity distributions is invariant under Lorentz-transformations.

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

AGS:  $E_{\text{beam}} = 11 \text{ A GeV Au+Au}$  fixed target SPS:  $E_{\text{beam}} = 158 \text{ A GeV Pb+Pb}$  fixed target RHIC:  $\sqrt{s_{\text{NN}}} = 200 \text{ GeV Au+Au}$  collider LHC:  $\sqrt{s_{\text{NN}}} = 5.5 \text{ TeV Pb+Pb}$  collider



#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroduction

#### Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

#### AGS: $E_{\text{beam}} = 11 \text{ A GeV}$ Au+Au fixed target

SPS:  $E_{\text{beam}} = 158 \text{ A GeV Pb+Pb}$  fixed target RHIC:  $\sqrt{s_{\text{NN}}} = 200 \text{ GeV Au+Au collider}$ LHC:  $\sqrt{s_{\text{NN}}} = 5.5 \text{ TeV Pb+Pb}$  collider



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

#### AGS: $E_{\text{beam}} = 11 \text{ A GeV}$ Au+Au fixed target

SPS:  $E_{\text{beam}} = 158 \text{ A GeV Pb+Pb}$  fixed target RHIC:  $\sqrt{s_{\text{NN}}} = 200 \text{ GeV Au+Au collider}$ LHC:  $\sqrt{s_{\text{NN}}} = 5.5 \text{ TeV Pb+Pb}$  collider



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

AGS:  $E_{\text{beam}} = 11 \text{ A GeV Au+Au fixed target}$ SPS:  $E_{\text{beam}} = 158 \text{ A GeV Pb+Pb fixed target}$ RHIC:  $\sqrt{s_{\text{NN}}} = 200 \text{ GeV Au+Au collider}$ LHC:  $\sqrt{s_{\text{NN}}} = 5.5 \text{ TeV Pb+Pb collider}$ 



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

AGS:  $E_{\text{beam}} = 11 \text{ A GeV Au+Au fixed target}$ SPS:  $E_{\text{beam}} = 158 \text{ A GeV Pb+Pb fixed target}$ RHIC:  $\sqrt{s_{\text{NN}}} = 200 \text{ GeV Au+Au collider}$ LHC:  $\sqrt{s_{\text{NN}}} = 5.5 \text{ TeV Pb+Pb collider}$ 





Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

AGS:  $E_{\text{beam}} = 11 \text{ A GeV Au+Au fixed target}$ SPS:  $E_{\text{beam}} = 158 \text{ A GeV Pb+Pb fixed target}$ RHIC:  $\sqrt{s_{\text{NN}}} = 200 \text{ GeV Au+Au collider}$ LHC:  $\sqrt{s_{\text{NN}}} = 5.5 \text{ TeV Pb+Pb collider}$ 





Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

AGS:  $E_{\text{beam}} = 11 \text{ A GeV Au} + \text{Au}$  fixed target SPS:  $E_{\text{beam}} = 158 \text{ A GeV Pb} + \text{Pb}$  fixed target RHIC:  $\sqrt{s_{\text{NN}}} = 200 \text{ GeV Au} + \text{Au}$  collider LHC:  $\sqrt{s_{\text{NN}}} = 5.5 \text{ TeV Pb} + \text{Pb}$  collider





Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

AGS:  $E_{\text{beam}} = 11 \text{ A GeV Au+Au}$  fixed target SPS:  $E_{\text{beam}} = 158 \text{ A GeV Pb+Pb}$  fixed target RHIC:  $\sqrt{s_{\text{NN}}} = 200 \text{ GeV Au+Au}$  collider LHC:  $\sqrt{s_{\text{NN}}} = 5.5 \text{ TeV Pb+Pb}$  collider





Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroduction

#### Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Stages of a Nuclear Collision



- (a) Lorentz-contracted nuclei
- (b) nuclei overlap, scatterings occur
- (c) nucleus remnants recede from interaction region leaving a dense and hot system behind
- (d) system expands, cools and hadronises, hadrons scatter and resonances decay

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroduction

#### Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Geometry Centrality



#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### Introductio

#### Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Geometry

#### Glauber-models

- characterise collision by
  - number of participating nucleons (N<sub>part</sub>(b))
  - ▶ number of binary nucleon-nucleon collisions (N<sub>bin</sub>(b))
- rule of thumb:
  - soft (low momenta) particle production scales with  $N_{\text{part}}$
  - hard (high momentum transfer) processes scale with  $N_{\rm bin}$



#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroductior

#### Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Outline

#### Introduction

Setting the Stage

#### An Example of an Experiment

#### Aspects of Relativistic Nuclear Collisions

- Centrality
- Particle Production
- Density
- Transverse Expansion Velocity
- Equation of State
- Spatial Extension

#### Summary

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Challenges

#### General Complications

- QGP not directly observable
- have to infer QGP properties from hadronic final state
- complicated space-time evolution
- comlpex multi-particle dynamics

#### Experimental Challenges

- ▶ high multiplicity (RHIC: up to ~ 4000 charged particles)
- many measurements have huge background
- this background contains structures and correlations
- it fluctuates

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

#### ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### An Example for an Experiment: STAR

**STAR Detector** 



Silicon Vertex Tracker: position and momentum Time Projection Chamber: momentum and position Time Of Flight: velocity E-M Calorimeter: energy

 $\Rightarrow$  combining information from different subdetetors allows for particle identification

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### A Central Au+Au Event in the STAR Detector



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroductior

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

Summary

[4]

### Outline

#### Introduction

Setting the Stage

An Example of an Experiment

#### Aspects of Relativistic Nuclear Collisions

Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

#### Summary

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

#### Aspects of Relativistic Nuclear Collisions

Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

Summary

[6]



 
 Q<sub>BBC</sub>: charge in Beam Beam Counter (detector at 3 < |η| < 4 measuring number of charged particles)

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions **Centrality** Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

Summary

#### complication: imcomplete measurement of spectators

#### Collisions with increasing centrality have

- increasing activity away from beam rapidity (transverse energy, number of produced particles, total charge etc.).
- decreasing activity near beam rapidity, i.e. decreasing number of spectator nucleons.
- ⇒ use a combination of the two to experimentally determine centrality



 
 Q<sub>BBC</sub>: charge in Beam Beam Counter (detector at 3 < |η| < 4 measuring number of charged particles)

complication: imcomplete measurement of spectators

Collisions with increasing centrality have

- increasing activity away from beam rapidity (transverse energy, number of produced particles, total charge etc.).
- decreasing activity near beam rapidity, i.e. decreasing number of spectator nucleons.
- ⇒ use a combination of the two to experimentally determine centrality

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension



 
 Q<sub>BBC</sub>: charge in Beam Beam Counter (detector at 3 < |η| < 4 measuring number of charged particles)

complication: imcomplete measurement of spectators

Collisions with increasing centrality have

- increasing activity away from beam rapidity (transverse energy, number of produced particles, total charge etc.).
- decreasing activity near beam rapidity, i.e. decreasing number of spectator nucleons.
- ⇒ use a combination of the two to experimentally determine centrality

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### nuclear stopping power: amount of kinetic energy lost by projectiles

 $\Rightarrow$  stopping means that protons get shifted to midrapidity



 $\Rightarrow$  mean rapidity shift of projectiles:  $\Delta y \simeq 2$ 

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

etting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



### ⇒ inceasing beam energy we go from stopping to transparency

► valence quark part of wave function gets more and more Lorentz-contracted while sea cannot become smaller than ~ 1 fm (uncertainty principle) → collisions at high energy dominated by sea-sea interactions Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



⇒ inceasing beam energy we go from stopping to transparency

► valence quark part of wave function gets more and more Lorentz-contracted while sea cannot become smaller than ~ 1 fm (uncertainty principle) → collisions at high energy dominated by sea-sea interactions Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



#### ⇒ inceasing beam energy we go from stopping to transparency

► valence quark part of wave function gets more and more Lorentz-contracted while sea cannot become smaller than ~ 1 fm (uncertainty principle) → collisions at high energy dominated by sea-sea interactions Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension

### Total Energy

$$E = m_{\perp} \cosh y \Rightarrow E_{\rm tot} = \sum_{\rm species} \int dy \frac{dN}{dy} \langle m_{\perp} \rangle \cosh y$$

| particle        | energy [GeV] |
|-----------------|--------------|
| р               | 3108         |
| $\bar{p}$       | 428          |
| $K^+$           | 1628         |
| $K^-$           | 1093         |
| $\pi^+$         | 5888         |
| $\pi^-$         | 6117         |
| $\pi^0$         | 6004         |
| п               | 3729         |
| n               | 513          |
| $K^0$           | 1628         |
| $ar{K}^0$       | 1093         |
| Λ               | 1879         |
| $\bar{\Lambda}$ | 342          |



total: 33.4 TeV  $E_{\text{beam}} \cdot N_{\text{part}} = 35 \text{ TeV}$ produced: 24.8 TeV  $\Rightarrow$  74 % of beam energy goes into particle production

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



moving isotropic source: dN₁ = N₁,tot E/p sech²(y + y<sub>s</sub>)
 picture of nuclear collision: particles need proper time τ<sub>de</sub> to form → time-dilated in lab frame γτ<sub>de</sub> → superposition if independent moving sources

 $= \int_{-y_{\text{max}}}^{y_{\text{max}}} dy' \frac{dN_1}{dy} (y+y') \propto \tanh(y+y_{\text{max}}) - \tanh(y-y_{\text{max}})$ 

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



moving isotropic source: dN₁/dy = N₁,tot E/p sech²(y + ys)
 picture of nuclear collision: particles need proper time τ<sub>de</sub> to form → time-dilated in lab frame γτ<sub>de</sub> → superposition if independent moving sources

 $= \int_{-y_{\text{max}}}^{y_{\text{max}}} dy' \frac{dN_1}{dy} (y+y') \propto \tanh(y+y_{\text{max}}) - \tanh(y-y_{\text{max}})$ 

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



- moving isotropic source:  $\frac{dN_1}{dy} = \frac{N_{1,tot}}{2} \frac{E}{p} \operatorname{sech}^2(y + y_s)$
- ▶ picture of nuclear collision: particles need proper time  $\tau_{\rm de}$  to form  $\rightarrow$  time-dilated in lab frame  $\gamma \tau_{\rm de} \rightarrow$  superposition if independent moving sources

$$= \int_{-y_{\text{max}}}^{y_{\text{max}}} dy' \frac{dN_1}{dy} (y+y') \propto \tanh(y+y_{\text{max}}) - \tanh(y-y_{\text{max}})$$

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



- moving isotropic source:  $\frac{dN_1}{dy} = \frac{N_{1,tot}}{2} \frac{E}{p} \operatorname{sech}^2(y + y_s)$
- ▶ picture of nuclear collision: particles need proper time  $\tau_{\rm de}$  to form  $\rightarrow$  time-dilated in lab frame  $\gamma \tau_{\rm de} \rightarrow$  superposition if independent moving sources

 $= \int_{-y_{\text{max}}}^{y_{\text{max}}} dy' \frac{dN_1}{dy} (y+y') \propto \tanh(y+y_{\text{max}}) - \tanh(y-y_{\text{max}})$ 

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



moving isotropic source: dN₁/dy = N₁,tot/2 E/p sech²(y + y<sub>s</sub>)
 picture of nuclear collision: particles need proper time τ<sub>de</sub> to form → time-dilated in lab frame γτ<sub>de</sub> → superposition if independent moving sources

$$= \int_{-y_{\text{max}}}^{y_{\text{max}}} dy' \frac{dN_1}{dy} (y+y') \propto \tanh(y+y_{\text{max}}) - \tanh(y-y_{\text{max}})$$

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension



- moving isotropic source:  $\frac{dN_1}{dy} = \frac{N_{1,tot}}{2} \frac{E}{p} \operatorname{sech}^2(y+y_s)$
- ▶ picture of nuclear collision: particles need proper time  $\tau_{\rm de}$  to form → time-dilated in lab frame  $\gamma \tau_{\rm de} \rightarrow$  superposition if independent moving sources

$$dN = \int_{-y_{\text{max}}}^{y_{\text{max}}} dy' \frac{dN_1}{dy} (y+y') \propto \tanh(y+y_{\text{max}}) - \tanh(y-y_{\text{max}})$$

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension

1/---



- ▶ moving isotropic source: dN<sub>1</sub>/dy = N<sub>1,tot</sub>/2 E/p sech<sup>2</sup>(y + y<sub>s</sub>)
   ▶ picture of nuclear collision: particles need proper time
- $au_{\sf de}$  to form o time-dilated in lab frame  $\gamma au_{\sf de}$  o superposition if independent moving sources

$$\frac{\mathrm{d}N}{\mathrm{d}y} = \int_{-y_{\mathrm{max}}}^{y_{\mathrm{max}}} dy' \frac{\mathrm{d}N_1}{\mathrm{d}y} (y+y') \propto \tanh(y+y_{\mathrm{max}}) - \tanh(y-y_{\mathrm{max}})$$

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension

### Space-Time Picture

- particle formation time: t = γτ<sub>de</sub> from moment of projectile overlap at t = 0 and z = 0
- ▶ particles at rest ( $\gamma = 1$ ) are formed at midrapidity and at z = 0
- moving particles are formed at higher rapidity and travel a distance β/γτ<sub>de</sub> before formation
- $\Rightarrow$  Particles with high rapidity are produced at high z
- ⇒ The rapidity is related to the point of particle emission (in coordinate space).

$$y = \frac{1}{2} \ln \left( \frac{E + p_{\parallel}}{E - p_{\parallel}} \right) = \frac{1}{2} \ln \left( \frac{\gamma m + \gamma m v}{\gamma m - \gamma m v} \right) = \frac{1}{2} \ln \left( \frac{t + z}{t - z} \right) = Y$$

Y: space-time rapidity

NB: We habe ignored the transverse expansion.

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality **Particle Production** Density Transverse Expansion Velocity Equation of State Spatial Extension

Density

Bjorken's density estimate: 
$$\epsilon_0 = \frac{1}{\pi R^2 \tau_0} \left. \frac{\mathrm{d} E_\perp}{\mathrm{d} \eta} \right|_{\eta \simeq 0}$$

 $au = \sqrt{t^2 - z^2}$ : proper time  $au_0$ : equilibration time ( $au_0 \simeq 0.2...1$  fm)  $extsf{e}_0 = \epsilon( au_0)$ : early energy density

$$\frac{\mathrm{d}E_{\perp}}{\mathrm{d}\eta}\bigg|_{\eta=0} \simeq \left.\frac{\mathrm{d}E_{\perp}}{\mathrm{d}y}\right|_{y=0} = \pi R^2 \epsilon(\tau) \left.\frac{\mathrm{d}z}{\mathrm{d}y}\right|_{y=0} = \pi R^2 \epsilon(\tau)\tau$$

 $\epsilon au = \epsilon_0 au_0$  from entropy conservation



- for  $\tau_0 = 1 \text{ fm}$ 
  - AGS:  $\epsilon_0 = 1.4 \text{ GeV fm}^{-3}$
  - SPS:  $\epsilon_0 = 3 \text{ GeV fm}^{-3}$
  - RHIC:  $\epsilon_0 = 5 \text{ GeV fm}^{-3}$
- esimated density needed to form QGP 1 GeV fm<sup>-3</sup>

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production **Density** Transverse Expansion Velocity Equation of State Spatial Extension

#### Transverse Expansion Velocity



## Ultra-Relativistic Nuclear Collisions Transverse Expansion Velocity

#### Transverse Expansion Velocity

- *T<sub>kin</sub>*: kinetic freeze-out temperature ('temperature at last interaction')
- spectrum ot exactly exponential
- inverse slope  $T_{kin}$  depends on particle mass
- $\Rightarrow$  characteristic of transverse flow:  $T_{kin}^{\text{eff}} \simeq T_{kin} + m_0 \beta_r^2/2$
- $\Rightarrow$  need a hydrodynamic calculation



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

#### Transverse Expansion Velocity

$$\frac{\mathrm{d}N}{m_{\perp}\mathrm{d}m_{\perp}} \propto \int_{0}^{R} r \mathrm{d}r \ m_{\perp} I_{0} \left(\frac{p_{\perp} \sinh \rho}{T_{kin}}\right) K_{1} \left(\frac{p_{\perp} \cosh \rho}{T_{kin}}\right)$$

with 
$$\rho = \tanh^{-1}\beta_r$$
 and  $\beta_r(r) = \beta_s \left(\frac{r}{R}\right)^n$ ;  $0 \le r \le R$   
 $n \approx 1$  — analogous to Hubble expansion



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Equation of State



- ▶ mean free path ≪ system size → hydrodynamical description
- pressure gradient steeper in x-direction
- collective flow develops preferentially in x-direction
- particle distribution shows azimuthal anisotropy
- anisotopy directly sensitive to equation of state
- mostly sensitive to early times, when eccentricity is largest

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

Sum m ary

#### Equation of State

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{\mathrm{d}^{2}N}{2\pi p_{\perp}\mathrm{d}p_{\perp}\mathrm{d}y}\left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n\phi)\right)$$

elliptic flow:  $v_2 = \langle \cos(2\phi) \rangle$ 



- hydrodynamic calculations with QGP EOS do good job at top SPS energies and RHIC
- suggests thermalisation and QGP formation

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

- Hanbury Brown Twiss interferometry: interferometry of identical particles (originally used to determine size of stars)
- measure momenta  $\vec{k}_1$  and  $\vec{k}_2$  of two pions emitted from  $\vec{x}_1$  and  $\vec{x}_2$ , respectively, at different positions
- indistinguishable particles  $\rightarrow$  interference
- transition probability:

$$\begin{aligned} |\Psi_{12}|^2 &= \frac{1}{2V^2} \left| e^{-i\vec{k}_1 \cdot \vec{x}_1} e^{-i\vec{k}_2 \cdot \vec{x}_2} + e^{-i\vec{k}_1 \cdot \vec{x}_2} e^{-i\vec{k}_2 \cdot \vec{x}_1} \right|^2 \\ &= \frac{1}{V^2} \left( 1 + \cos(\Delta \vec{k} \cdot \Delta \vec{x}) \right) \end{aligned}$$



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

▶ probability of observing  $\vec{k}_1$  and  $\vec{k}_2$  in emission from continuous source

$$P(\vec{k}_1, \vec{k}_2) = \frac{1}{2} \int d^3 x_1 d^3 x_2 \rho(\vec{x}_1) \rho(\vec{x}_2) |\Psi_{12}|^2$$

• probability of observing a single particle with  $\vec{k}_i$ 

$$P(\vec{k}_i) = \int d^3 x_i \rho(\vec{x}_i) ||\langle \vec{k}_i | \vec{x}_i \rangle|^2$$

correlation function

$$C_{2} \equiv \frac{d^{6}N}{d^{3}k_{1}d^{3}k_{2}} \left(\frac{d^{3}N}{d^{3}k_{1}}\frac{d^{3}N}{d^{3}k_{2}}\right)^{-1} = \frac{2P(\vec{k}_{1},\vec{k}_{2})}{P(\vec{k}_{1})P(\vec{k}_{2})}$$
$$= 1 + |\tilde{\rho}(\Delta\vec{k})|^{2}$$

where  $\tilde{\rho}$  is the Fourier transform of the density distribution

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

 $\Rightarrow$  can infer size of source from correlation function

- ▶ in practice: fit a 3d Gaussian to data
- life is more complicated and more interesting with an expanding source
  - radii depend on transverse momentum of pair
  - $R_{\text{out}}/R_{\text{side}} > 1$  for long duration of hadron emission



Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension



# Ultra-Relativistic Nuclear Collisions Spatial Extension

- ▶ radii decrease with pair transverse momentum
- $\Rightarrow$  extended, expanding source ( $\beta_{\rm r}$  consistent with  $m_{\perp}$  spectra)

• 
$$R_{\rm out}/R_{\rm side} \sim 1$$

### Outline

#### Introduction

Setting the Stage

An Example of an Experiment

#### Aspects of Relativistic Nuclear Collisions

- Centrality
- Particle Production
- Density
- Transverse Expansion Velocity
- Equation of State
- Spatial Extension

#### Summary

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### Summary

What we have learned about the properties of the hot and dense matter produced in relativistic nuclear collisions:

- low beam energies: stopping; high beam energies: transparency (proton & antiproton rapidity distributions)
- longitudinal expasion (rapidity distribution of charged particles)
- ► transverse expansion (m<sub>⊥</sub>-spectra, HBT radii, elliptic flow)
- at top SPS energies and RHIC: QGP formation (density, elliptic flow)
- early thermalisation (elliptic flow)

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### References I

- [1] from a sketch by K. Rajagopal
- [2] J. Stachel and G. R. Young Ann. Rev. Nucl. Part. Sci. 42 (1992) 537.

[3]

http://www-linux.gsi.de/~misko/overlap/interface.html

[4] http://www.star.bnl.gov/central/experiment

- [5] J. Adams *et al.* [STAR Collaboration]
   Phys. Rev. C 70 (2004) 054907 [arXiv:nucl-ex/0407003].
- [6] B. B. Back *et al.* Nucl. Phys. A **757** (2005) 28 [arXiv:nucl-ex/0410022].
- [7] S. S. Adler *et al.* [PHENIX Collaboration]
   Phys. Rev. C 69 (2004) 034909 [arXiv:nucl-ex/0307022].
  - [8] W. Busza and R. Ledoux,
     Ann. Rev. Nucl. Part. Sci. 38 (1988) 119.

Ultra-Relativistic Nuclear Collisions

Korinna Zapp

Introduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Vuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension

### References II



- [10] I. Arsene *et al.* [BRAHMS Collaboration] Nucl. Phys. A **757** (2005) 1 [arXiv:nucl-ex/0410020].
- [11] J. Adams et al. [STAR Collaboration] Nucl. Phys. A 757 (2005) 102 [arXiv:nucl-ex/0501009].
- [12] R. Debbe [BRAHMS Collaboration],
   J. Phys. Conf. Ser. 50 (2006) 42 [arXiv:nucl-ex/0504015].
- [13] K. Adcox et al. [PHENIX Collaboration] Nucl. Phys. A 757 (2005) 184 [arXiv:nucl-ex/0410003].

#### Ultra-Relativistic Nuclear Collisions

Korinna Zapp

ntroduction

Setting the Stage

An Example of an Experiment

Aspects of Relativistic Nuclear Collisions Centrality Particle Production Density Transverse Expansion Velocity Equation of State Spatial Extension