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1
Ultracold Fermi Gases: Properties and Techniques
Selim Jochim

1.1
Introduction

After Fermi and Dirac had formulated their statistics for half-integer spin par-
ticles in 1926 it was immediately applied to Fermi gases such as neutron stars,
or the electron gas in metals. But only significantly later, Bardeen, Cooper and
Schrieffer (BCS) were able to explain superconductivity by a weak attractive
interaction among the electrons that form delocalized Cooper pairs in momen-
tum space. Due to their very weak coupling, superconductivity in BCS-type
superconductors only occurs at extremely low temperatures, way below the
Fermi temperature of the electron gas, limiting their practical use. When in
1986, G. Bednorz and A. Müller found superconductivity at temperatures as
high as 35 K (high-TC), applications of superconductivity in everyday life sud-
denly became much more realistic. However, until now, solid state physics
theory is not capable to fully explain the complex processes that lead to such
high critical temperatures.

Ultracold atomic Fermi gases offer a number of major advantages that
contribute significantly to getting a better understanding of the many-body
physics of fermions. First of all, due to the extremely low densities and tem-
peratures in ultracold gases, interactions between the particles can typically
be described by one single parameter, the s-wave scattering length a. As for
identical fermions s-wave scattering is forbidden because of their antisymmet-
ric properties, one can even create a completely noninteracting ideal Fermi
sea. In most cases however, we would like the trapped fermions to interact
with each other which can be realized in the simplest way by preparing the
atoms in a mixture of different internal spin states. In most of the experiments
described in this chapter, we are dealing with a spin mixture of two Zeeman
states of the same atom, analogous to the spin up and down mixture that exists
in an electron gas.
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The interaction between the trapped particles due to typical scattering
lengths is very weak, so that superfluidity in ultracold Fermi gases is pre-
dicted to occur at very low temperatures, out of reach for current experiments.
Luckily, a great opportunity to tune the scattering length to arbitrary values
by applying an external magnetic field near so-called Feshbach resonances
has emerged in recent years. While the details of the interatomic potentials
can still be neglected, the interaction strength can be tuned to arbitrary val-
ues. In fact, just at the resonance position, a new molecular bound state is
introduced. It turned out that it is possible to start with a weakly interacting
ultracold gas of atoms, and by simply changing the magnetic field first ob-
tain a strongly interacting Fermi gas, before one finally ends up with a gas
of bosonic molecules that form a Bose-Einstein condensate (BEC). What hap-
pens in between is the so-called BCS-BEC crossover, that smoothly converts
a gas of fermions into bosons! One of the major findings is that a Fermi gas
with resonant interactions can have a critical temperature higher than a tenth
of the Fermi temperature, much higher than any currently known high-TC
superconductor.

In this chapter we will first discuss the properties of ultracold fermions in a
harmonic trap and how to prepare such a gas. Then we will discuss the effect
of interactions and how they can be altered using a Feshbach resonance. An
important topic will be the creation of molecules and molecular condensates
as a starting point for experiments with strongly interacting gases in the BCS-
BEC crossover. We assume that the reader has basic knowledge of ultracold
collisions and BECs as they are the topic of previous chapters in this book.

1.2
Ultracold Fermions in a Trap

All traps that we will be considering in this chapter can be approximated by
a harmonic potential at the trap center, such that we can write the trapping
potential as

V(�r) =
1
2

mω2
xx2 +

1
2

mω2
yy2 +

1
2

mω2
zz2, (1.1)

where m is the mass of the atoms, and ωx/2π, ωy/2π, ωz/2π are the trap
frequencies in the respective axes of the trap. For many calculations it will be
sufficient to consider without loss of generality a spherically symmetric trap
with a mean trap frequency

ω̄ =
(
ωxωyωz

)1/3 . (1.2)
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1.2.1
Ideal Fermi Gas

Because s-wave collisions are forbidden for identical Fermions (see Sec. 1.4.1),
a spin polarized gas of Fermions is essentially non-interacting at ultralow tem-
peratures. The absence of interactions in such a gas makes its description rel-
atively simple. Here we summarize quickly the properties of such a gas in
a harmonic trap, and look only at the thermodynamic limit, where the parti-
cle number is large. This allows us to ignore the quantization of the trapping
potential and we can use the Fermi distribution function in the form

f (�r,�p) =
1

exp((�p2/2m + V(�r) − μ)/kBT) + 1
(1.3)

where the chemical potential μ is constrained by the number of particles as

N =
1

(2πh̄)3

∫
f (�r,�p) d�r d�p =

1
2(h̄ω̄)3

∫ ∞

0

E2 dE
exp((E − μ)/kBT) + 1

, (1.4)

where for the second half of the equation the harmonic potential of Eq. 1.1
is assumed. At T = 0, the integral just counts all the number of occupied
quantum states in the trap, and one obtains

μ(T = 0) = (6N)1/3h̄ω̄ ≡ EF ≡ kBTF, (1.5)

which we use as the definition for the Fermi energy and the Fermi tempera-
ture. In this semiclassical approximation we can also readily calculate the the
density and momentum distributions of the noninteracting gas at zero tem-
perature, by simply integrating the distribution function over �p or�r, respec-
tively. The results are

n(�r) =
1

6π2h̄3 (2m(EF − V(�r)))3/2

=
8

π2
N

xFyFzF

(
1− x2

x2
F
− y2

y2
F
− z2

z2
F

)3/2

(1.6)

and

n(�p) =
1

(2πh̄)3

∫
Θ
(

p2

2m
+ V(�r)− EF

)
d�r

=
8

π2
N
p3

F

(
1− p2

p2
F

)3/2

. (1.7)

Obviously, these equations are valid where they are positive, while outside
this range, they are both zero. In the final form of these equations we have
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used the Fermi radii and momenta defined as:

EF =
1
2

mω2
xx2

F =
1
2

mω2
yy2

F =
1
2

mω2
zz2

F =
p2

F
2m

. (1.8)

Note that while the spatial distribution depends on the trap frequencies of the
individual axes, the momentum distribution is always isotropic for a nonin-
teracting Fermi gas, independent of the trapping potential.

Finite Temperature To obtain density or momentum distributions at finite
temperatures, we have to integrate Eq. 1.3, as before. But as we cannot give an
explicit expression for the chemical potential μ, the results can only be given
in terms of a polylogarithmic function,

Lin(x) =
1

Γ(n)

∫ tn−1dt
exp(t)/x + 1

=
∞

∑
k=1

xk/kn, (1.9)

where the second identity is very useful, when such a function needs to be
integrated, for example to calculate an integrated 2-D or 1-D density distribu-
tion. The result for the density and momentum distributions is

n(�r) = −
(

mkBT

2πh̄2

)3/2

Li3/2

(
− exp

(
μ − V(�r)

kBT

))
(1.10)

and

n(�p) = − 1

h̄3ωxωyωz

(
kBT
2π

)3/2

Li3/2

(
− exp

(
μ − �p2/2m

kBT

))
. (1.11)

As before, we assumed a harmonic potential of the type 1.1 for the calculation
of Eq. 1.11. Again, it can be seen that while the density distribution is depen-
dent on the trapping potential, while the momentum distribution is isotropic.

Chemical Potential To plot now any of these two equations for as specific tem-
perature, one still needs to know the associated chemical potential. In fact
most thermodynamic quantities require the knowledge of the chemical po-
tential. For a Fermi gas in a trap at finite temperature it cannot be evaluated
analytically. But we can find a rather simple numerical solution. We start by
integrating equation 1.4. It can be written as

N = −
(

kBT
h̄ω̄

)3

Li3

(
− exp

(
μ

kBT

))
. (1.12)

Using equation 1.5 we can replace N(h̄ω̄)3 by (kBTF)3/6, and obtain an equa-
tion that constrains μ only by T and TF:

Li3

(
− exp

(
μ

kBT

))
= − 1

6(T/TF)3 . (1.13)
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Fig. 1.1 Chemical potential μ of a noninteracting Fermi gas in a har-
monic trap with respect to the temperature. Both quantities are nor-
malized to the Fermi temperature TF. The solid curve represents a
numerical calculation according to Eq. 1.13, the dashed line is the
Sommerfeld expansion, which is valid for small T/TF.

This equation represents a universal relationship between the chemical poten-
tial and the temperature in terms of the Fermi temperature, independent of the
trap parameters, or the number of particles in the trap. However, this relation
has to be solved numerically for μ = μ(T/TF). The result of the numerical
solution is shown as the solid line in figure 1.1.

For very low temperatures T � TF, we can approximate the chemical po-
tential by expanding it in terms of T/TF. This is the so-called Sommerfeld
expansion [10],

μ(T) = EF

[
1 − π2

3

(
T
TF

)2
]

, (1.14)

in which higher order terms vanish for a harmonic potential. For comparison,
this equation is plotted as a dashed line in figure 1.1 together with the exact
result. For relatively high temperatures T ≥ TF, the classical expression for
the chemical potential is a good approximation. In terms of T/TF, it can be
expressed as [10]

μ(T) = −kBT ln

[
6
(

T
TF

)3
]

. (1.15)

Knowing μ(T/TF), we can now proceed to plot the density distributions
for various temperatures as shown in Fig. 1.2. Note that for our harmonic

test
Line

test
Line
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Fig. 1.2 Density distribution of a noninteracting Fermi gas in a har-
monic trap for various temperatures T/TF. The inset shows the region
near the Fermi radius. Only here, there is a significant difference in
density for highly degenerate gases. Note that the relative density
scale of the inset only extends to 5 % of the maximum intensity

trap, density and momentum distributions have the same shape: Just replace
the r/rF by p/pF on the abscissa. The inset of Fig. 1.2 shows that for tem-
peratures much smaller than the Fermi temperature, it is actually very hard
to make out a difference from the T = 0 -profile, making it especially diffi-
cult to fit a temperature to a measured density distribution. The edge of the
momentum distribution at pF of a highly degenerate Fermi gas is called the
Fermi surface, which is softened by thermal excitations. As deeply inside the
Fermi sphere, all quantum states are occupied, collisions can only occur near
the Fermi surface, because inside, Pauli blocking does not allow particle to
change their momentum state. Therefore, a weakly interacting Fermi gas is
completely collisionless except for atoms near the Fermi surface.

1.3
Preparing an Ultracold Fermi Gas

Many of the techniques and methods needed to trap and cool fermions had
already been developed for Bose gases and were described in the previous
chapters. Therefore we only enumerate the major steps here and point out the
particularities. So far, all experiments on ultracold Fermi gases use a magne-
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tooptical trap as a source for cold atoms, which restricts the available species
to those fermionic isotopes that can be laser cooled with a reasonable effort.
Thus, most of the current experiments use either 40K [19] and 6Li [63], while
metastable 3He∗ [44] and 173Yb [24] have also been cooled to degeneracy more
recently.

For further evaporative cooling, both magnetic and optical traps are em-
ployed. As in magnetic traps the trapping potential depends on the magnetic
moments, it is not independent of the internal state of the atoms. This is a
serious drawback as in most experiments mixtures of different spin states are
used. This is why most current setups use optical traps at least for the final
stage of cooling and for experiments. In far off-resonant optical dipole traps,
the atoms are trapped by the electric polarizability, independent of their Zee-
man sublevel at sufficient detuning. Furthermore, optical traps provide a lot
of flexibility in shaping the trapping potential. A detailed overview of dipole
traps is given in [28].

The first obstacle that one faces in preparing a degenerate Fermi gas is the
lack of s-wave collisions in a spin polarized gas, which are a necessary pre-
requisite for thermalization during evaporative cooling. And so far, no real
alternative techniques to evaporative cooling exist. Therefore all experiments
working have used a mixture of non-identical particles for the preparation of
their degenerate gas. Three different methods are employed in current exper-
iments:

• Non-identical particles can simply be two different spin states of the
same atoms, as it has been done in the first realization of a degenerate
Fermi gas with 40K-atoms [19]. The major advantage of this technique is
that it does not require laser cooling of more than one species as is neces-
sary for all other techniques. This method has gained a lot of popularity
later when cooling 6Li with resonantly tuned elastic collisions using a
Feshbach resonance proved to work extremely well [26, 38].

• Using bosonic atoms as a cooling agent for the Fermions is an attractive
technique as these bosons can also collide among each other, and there-
fore, more efficient evaporative cooling can be expected. If one uses a
bosonic isotope of the same species, due to the relatively small isotope
shift, (∼ 10 GHz for Lithium) the same technology, or even the same
laser system can be used to laser cool both isotopes [45].

• The largest Fermi gases to date are being prepared using bosonic Sodium
as a cooling agent. The major advantage here is that very large cold en-
sembles of Sodium can be made, enabling a very high cooling efficiency.

Several Spin States The first degenerate Fermi gas was produced in a mix-
ture of the F = 9/2, mF = 7/2, 9/2 states of 40K in a magnetic trap, in which
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the atoms were cooled by forced radio frequency evaporation [19], similar to
how most BECs are prepared. The crucial difference is however, that in this
case, one is dealing with two noninteracting ensembles in the two spin states,
that reach thermal equilibrium only through thermal contact with each other.
To ensure that thermal equilibrium is maintained during evaporative cooling,
the amount of atoms in both states has to be closely matched by simultane-
ously removing atoms from both spin states. In the case of the above men-
tioned experiment this was achieved by applying two separate radio frequen-
cies for the two spin states. When the gas approaches degeneracy, momentum
can only be exchanged with atoms near the Fermi surface of each state. This
makes it indispensable that the surfaces of the two states are matched ade-
quately, which obviously is getting more and more difficult to achieve when
the gas becomes more and more degenerate.

The technique of using two spin states that sympathetically cool each other
becomes considerably simpler, when the two states are trapped by the same
potential and experience the same evaporation threshold. These require-
ments are easily fulfilled in a far detuned optical trap, a concept that was first
adopted by John Thomas and his group [26]. Such a far detuned trap confines
the atoms independent of their spin state, and forced evaporation causes both
states to be removed equally. When the interactions between the particles are
tuned resonantly, and pairing occurs, this method also ensures an equal spin
mixture, as unpaired atoms are evaporated much more efficiently from the
trap, and eventually one is left with a pure paired sample.

Different Isotopes Many of the difficulties described above for evaporative
cooling of a spin mixture of one kind of atoms are eased if one uses a bosonic
gas as a coolant for the Fermi gas. In this case the basic idea is that the bosonic
isotope will be cooled in much the same way as for the preparation of a Bose-
Einstein condensate. At the same time it will serve as a thermal bath for the
Fermions confined in the same trap. Most easily this is achieved by simply
choosing a bosonic isotope of the same atom, such as 40K-41K, or 6Li-7Li, be-
cause the same, or similar laser systems can be used for laser cooling of both
isotopes: While the isotope shift requires slightly different laser frequencies,
they are typically well within the tuning range of any laser source that might
be used.

The first success using this concept was reported by the groups of Randy
Hulet and Christophe Salomon [60, 63], who sympathetically cooled 6Li us-
ing the bosonic isotope 7Li as a coolant. One very beautiful aspect of these
experiments was that the properties of a Bose gas could be directly compared
to those of a Fermi gas of the same type of atoms, while the two gases cooled
down simultaneously. What happened is shown in Fig. 1.3: As the two gases
approach degeneracy, the bosonic cloud shrinks rapidly while the size of the
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Fig. 1.3 Observation of Fermi pressure: During evaporative cooling
the bosonic cloud of 7Li atoms shrinks significantly as the temperature
is lowered while the fermionic cloud of 6Li atoms does not shrink very
much as the gas is cooled deeper into degeneracy. From Science 291,
2570. Reprinted with permission from AAAS.

Fermi sea does not shrink notably any more. Higher and higher signal-to-
noise is required to measure directly the temperature of the Fermi gas that
is being cooled below the Fermi temperature, as it differs less and less in
shape from an ideal Fermi gas at zero temperature. The shrinking cloud of
bosonic atoms that is in thermal contact with the Fermi sea can serve as a pre-
cise thermometer in this case. However, using 7Li has a serious disadvantage:
As its s-wave scattering length is negative, only a limited number of Bose-
condensed atoms can exist [7]. This limits the number of atoms that can serve
as a coolant, and thereby the specific heat available for cooling the Fermions
is limited when the samples become deeply degenerate.

Different Atoms If one aims for a very large number of degenerate Fermions,
one would want a bosonic coolant that can be readily obtained in large num-
bers, and that exhibits more favorable scattering properties, such that large
Bose-Einstein condensates can be produced. This means that Sodium [30] and
Rubidium [56, 61] are a natural choice as a coolant. As both of them do not
have a fermionic isotope, it becomes necessary in this case to set up two atom
sources, and two laser systems for cooling the two species, increasing signifi-
cantly the experimental effort. But indeed the largest fermi seas are created in
this way, containing up to 108 degenerate Lithium atoms [29].

Very Low Temperatures: Overcome Pauli Blocking One other important diffi-
culty of cooling a Fermi gas when it approaches degeneracy is a phenomenon
called Pauli-blocking. As the gas is cooling down, only particles with a mo-
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mentum that is close to the Fermi sphere can collide and contribute to ther-
malization. All the atoms deep inside the Fermi sphere cannot be scattered
into a new momentum state, because all accessible states are already occupied
by identical Fermions. This effect was studied carefully in Ref. [20]. Obvi-
ously, this challenge becomes more and more important as the gas is being
cooled well below the Fermi temperature, and the width of the Fermi sphere
becomes smaller.

The suppression of elastic collisions causes evaporative cooling rates to
drop significantly. Thus, successful evaporative cooling then relies on very
low inelastic collision rates, and extremely stable trapping potentials, that on
one hand are deep enough to confine the Fermi sea with its maximum en-
ergy EF, and on the other hand, feature a stability both in depth as well as
in position that causes heating rates to be small enough to match the small
evaporative cooling rates that can be achieved in a highly degenerate Fermi
gas.

An important remedy to circumvent Pauli blocking completely was found
in first associating pairs of ultracold fermionic atoms into weakly bound ther-
mal molecules. As composite Bosons, these particles do not obey the Pauli
exclusion principle, and can therefore be evaporatively cooled into a Bose-
Einstein condensate using conventional techniques. Creating and manipulat-
ing such molecules will be the topic of the following section.

Diagnostics, Temperature Measurements The most important observables in
studying ultracold Fermi gases are, as for BECs, density distributions of the
cloud, that are obtained through imaging with resonant light. Very common is
the measurement of the density distribution or after a certain time-of-flight to
infer information on the momentum distribution of the gas, or the mean field
energy stored in the gas. Assuming that there are no collisions between the
particles during the expansion, the distribution function 1.3 can be mapped as
fTOF(�r,�p, t) = f (�r − (�p/m)t). The resulting density distribution is calculated
for example in [52]. For long times of flight when the initial size of the cloud
becomes irrelevant, the distribution only depends on the momentum of the
particles and is therefore expected to remain spherical.

A precise fit to the shape of the expanded cloud will be necessary to mea-
sure temperatures well below the Fermi temperature, images with very low
distortion have to be achieved. The same problem occurs of course in a BEC,
when the temperature drops significantly below the critical temperature, and
the condensate fraction approaches unity.

The typically used imaging techniques allow only to measure 2-D density
distributions, where the density in one axis is being integrated over. To elim-
inate experimental noise and to reduce the fitting effort, it is common to also
integrate the density along a second axis to obtain a 1-D distribution. To ob-
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tain the respective fit functions, one needs to integrate Eq. 1.10, which can be
easily done by using the sum definition of the polylogarithmic function.

1.4
Interactions

Just as for BECs, interactions play an important role for the preparation, and
for the physics of ultracold Fermi gases. In both cases, sufficient elastic col-
lision rates are key to successful evaporative cooling. For a typical BEC in a
trap that is well approximated by the Thomas-Fermi limit, the kinetic energy
can be neglected, and the ground state can be described by a mean field inter-
action. An ultracold Fermi gas always has a finite kinetic energy due to the
Pauli exclusion principle and the resulting Fermi motion of the particles. As
a consequence, the momentum of the particles can never be neglected, signif-
icantly complicating the description. This means that in a weakly interacting
gas, where na3 � 1, the resulting mean field will be a small perturbation on
the noninteracting state, aside from the case of weak attraction at extremely
low temperatures, where the gas undergoes a transition into a superfluid BCS-
state.

1.4.1
Collisions

Scattering of ultracold identical Fermions differs fundamentally from scatter-
ing of bosons, because their symmetry properties cause s-wave collisions to be
forbidden while for bosons they are enhanced by a factor of two compared to
nonidentical particles. Therefore, for identical Fermions, collisions necessarily
need to involve angular momentum. However, such collisions are suppressed
at low scattering energies [58], limiting their use in ultracold atoms exper-
iments. In fact, the absence of s-wave collisions provided the opportunity
to observe suppression of p-wave collisions, as a first demonstration of the
fermionic properties of an ultracold Fermi gas [18]: As a spin-polarized gas
of 40K atoms was cooled down as shown in Fig. 1.4, the textbook result that
the cross section for p-wave collisions should be σp ∝ E2 could be beautifully
demonstrated.

1.4.2
Weakly Attractive Fermions, Superfluidity

While typical BECs are governed by their mean field interaction, the situation
is totally different for a typical gas of Fermions at ultracold temperatures. To
estimate the effect of weak interactions of a two-component Fermi gas at zero
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Fig. 1.4 Observation of the p-wave threshold law: Collision cross sec-
tion as a function of temperature for a spin-polarized gas (solid points),
and for a spin-mixture where s-wave scattering lead to a constant
cross section. Reprinted figure with permission from B. deMarco et
al., Phys. Rev. Lett. 82,4208, 1999. ©1999 by the American Physical
Society

temperature, let us estimate the ratio of mean field energy

Eint = gn =
4πh̄2a

m
n (1.16)

at the peak density n(0) versus the Fermi energy assuming the density distri-
bution of a noninteracting Fermi gas. The result is

Eint(n(0))
EF(a = 0)

= 2
(

n(0)
36π

)1/3

a =
1

6π
kFa, (1.17)

which has been calculated using Eqs. 1.6 and 1.8. Obviously, the dimension-
less parameter kFa determines the interaction strength. For a typical dilute
ultracold gas, where the interparticle separation is much larger than the scat-
tering length (na3 ∝ (kFa)3 � 1), interactions will have only a small im-
pact on the density profile. Obviously, this does not mean that the physics
of such gases is not governed by their interactions. But because observing
density and momentum distributions are the most important observables in
ultracold atoms experiments, the consequences of such weak interactions are
hard to spot. In fact, Bardeen, Cooper and Schrieffer (BCS) [3] were able to
explain superconductivity in metals by an extremely weak attraction between
the electrons, which causes the electrons to form delocalized pairs in momen-
tum space called Cooper pairs [17]. The BCS theory successfully describes
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Fermi systems with weak interactions, where the scattering length is much
smaller than the interparticle spacing. At the same time, the mean distance
between paired atoms is much larger than the interparticle separation. Asso-
ciated with Cooper pairing is a gap in the excitation spectrum giving rise to
the superfluid properties of the gas. At zero temperature, this gap has been
calculated for a homogeneous two-component gas with s-wave interactions to
be [25]

Δ0 =
1
2

(
2
e

)7/3

EF exp
(
− π

2kF|a|
)

. (1.18)

The critical temperature for a transition into the superfluid state reads [12, 25]

TBCS =
eγ

π

(
2
e

)7/3

TF exp
(
− π

2kF|a|
)

≈ 0.277TF exp
(
− π

2kF|a|
)

, (1.19)

where γ is Euler’s constant. For typical values of kF|a|, TBCS is orders of mag-
nitude lower than TF. This means that still today, reaching the critical temper-
ature in a BCS-type atomic gas with kF|a| � 1 seems out of reach.

However, Eq. 1.19 also instructs us on how to achieve a higher critical tem-
perature: With kF|a| approaching unity, Eq. 1.19 predicts TBCS to be close to
unity. Even though BCS theory is no longer valid for such strong interactions,
increasing a has been the key to experimental success. Recent calculations es-
timate the critical temperature of a Fermi gas with infinite scattering length to
be TC(a = ∞) ∼ 0.2TF [8, 9].

1.4.3
Tunable Interactions, Feshbach Resonances

In the preceding section we have seen that it is desirable to increase the inter-
action strength in an ultracold Fermi gases. Near a Feshbach resonance the
scattering length can be tuned to arbitrarily large positive or negative values
by applying a suitable homogeneous magnetic field. kFa can then become on
the order of unity or even much larger.

Ever since the first observation of Feshbach resonances in ultracold atomic
gases [36], researchers were wondering how to make use of the tunability of
the scattering length in the vicinity of a Feshbach resonance, which in the first
place seemed very difficult because of the presence of strong inelastic decay:
As the scattering rate increased for two-body elastic collisions, the scatter-
ing rate for three-body collisions increased even more: As a consequence,
molecule formation that causes trap loss is strongly enhanced. Researchers
were also hoping to make use of the very weakly bound molecular state as-
sociated with a Feshbach resonance. Both of these dreams have become the
foundations of research with ultracold Fermi gases, the tunability of the inter-
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incident energy

E = x B

closed channel

open channel

interatomic distance

en
er

gy

a)

molecular state

continuum

virtual bound state

en
er

gy

magnetic field

b)

Fig. 1.5 a) A Feshbach resonance occurs, when a bound state of a
closed channel is tuned into degeneracy with the continuum of the
open scattering channel using an external magnetic field. b) The cou-
pling of the two channels leads to an avoided crossing adiabatically
connecting the molecular state with a free-atom state.

actions using Feshbach resonances was the key to all major achievements in
the past years.

Feshbach Resonances The concept of Feshbach resonances has its roots in
nuclear physics, where they were first studied by Herman Feshbach [23]. Here
we give the reader an intuitive introduction into the concept of Feshbach res-
onances as they are being used in ultracold atoms experiments: Consider two
ultracold atoms in a given Zeeman state scattering in their interatomic po-
tential, which is usually called the open channel (Fig. 1.5 a)). For the same
pair of atoms in different internal states, the potential can be different and
represent so-called closed channels if their continuum lies above the incident
scattering energy. When the atoms are scattered in the open channel, they may
be coupled to the closed channel for example through hyperfine interactions.
But as the continuum of the closed channel lies above the total energy, the
atoms have to finally end up in the open channel, leading to a second-order
coupling. If now the closed channel has a different magnetic moment than the
open channel, the two potentials are tuned against each other by ΔE = Δμ× B
by applying an external magnetic field B. Tuning a bound state in the closed
channel into degeneracy with the continuum results in resonant scattering if
there is a coupling between the two states. The scattering length can then be
written in the form

a(B) = abg

(
1 +

Δ
B − B0

)
, (1.20)
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Fig. 1.6 Feshbach resonance for the two lowest spin states in 6Li
(F = 1/2, mF = ±1/2 at low magnetic field): a) Scattering length
versus the magnetic field. The resonance occurs at 834 G [4]. b) Bind-
ing energy of the molecular state associated with the Feshbach reso-
nance.

where abg is the off-resonant background scattering length, Δ the width and
B0 the position of the resonance. As an example, Fig. 1.6 the scattering length
versus the magnetic field is shown for the two lowest spin states in 6Li. The
coupling mixes the continuum of the open channel and the bound state in the
closed channel to form two new states as shown in Fig. 1.5 b). In analogy to
the avoided crossing in a two level system, the resulting molecular state is
connected adiabatically to the free-atom continuum, when the closed chan-
nel is tuned into the continuum. This means that by adiabatically ramping
the magnetic field across the resonance, pairs of atoms can be converted into
molecules and vice versa. However, there is an important difference to the
case of a simple two-level crossing as here, one of the states is a continuum
state. This means that a stable molecular state can only exist below the con-
tinuum, while the molecular state embedded in the continuum can only be a
virtual state.

Weakly Bound Molecules A resonantly large scattering length is caused by a
bound molecular state that is very close to the continuum. When the scatter-
ing length is large and positive, there is a weakly bound state with a binding
energy that can be calculated to be [40]

EB =
h̄2

ma2 . (1.21)
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This formula is correct as long as the scattering length is much larger than
the effective range of the potential between the atoms, and the exact shape of
the potential does not have an effect on the binding energy. This means that
such molecules will always have a very tiny binding energy. Let us take as an
example a molecule formed of two 6Li atoms. Plugging in as the scattering
length the effective range of the Lithium of ∼62.5 Bohr radii [65] and the mass
of 6Li into Eq. 1.21, one concludes that the binding energy of such a molecule
needs to be much smaller than 10−6 eV, or 7 mK on the thermal energy scale of
ultracold atoms. As an example, the binding energy of 6Li Feshbach molecules
is shown in the experimentally interesting range in Fig. 1.6. The size of such
molecules has been calculated to be on the order of the scattering length aat of
the atoms, with on the order of 1000 Bohr radii an incredible size for a diatomic
molecule. Accordingly, their scattering length is also very large, amol = 0.6aat

[51].
On one hand these molecules have the very important advantage that their

binding energy can be tuned freely by applying a magnetic field over the
whole range of relevant energies for ultracold gases experiments, and all the
molecules that share this weakly bound level are identical composite Bosons,
even if their constituents are two Fermions. On the other hand, this particu-
lar molecular level is the highest in the molecular potential, and an enormous
amount of potential energy, on the order of electronvolts, is stored in such a
molecule, that could be released in molecule-molecule collisions, which would
be an important loss channel in such a gas of molecules.

Enhancing elastic collision rates How large can the scattering cross section
really get by increasing the scattering length? In the zero-energy limit, it is
given by

σ0 = 4πa2 (1.22)

for non-identical particles. So what happens near a Feshbach resonance, when
the scattering length diverges? The scattering cross section can obviously not
diverge. It is at most limited by the size of the wave packets of the colliding
atoms, which is called the unitarity limit. The cross section is then σu = 4π/k2,
where k is the relative momentum of the colliding atoms. This value is ap-
proached when a becomes much larger than 1/k. Note that this limit is still
within the approximation that only s-wave collisions occur. At finite collision
energies, the cross section can be described by

σ(k) =
4πa2

1 + k2a2 , (1.23)

which interpolates between the zero-energy limit of Eq. 1.22 and the unitarity
limit.
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The first success of exploiting the tunability of interactions in an ultracold
Fermi gas was the all-optical production of a degenerate Fermi gas [26] in J.
Thomas’ group at Duke University, where an optically trapped gas of 6Li was
exposed to an external magnetic field to increase the scattering length and
thus the scattering cross section. This made it possible to achieve a collision
rate high enough for efficient evaporative cooling.

Strong Interactions So far we’ve only been concerned with increasing the
scattering rate through the scattering cross section. But what are the effects
of resonant interactions on a deeply degenerate Fermi gas? Obviously, our
estimation in Sec. 1.4.2 is no longer correct. In Eq. 1.16, we have to replace
a by 1/kF as a goes to infinity. This means that in this case, the interaction
energy has to be proportional to 1/kF × n. As n ∝ k3

F (Eq. 1.7), we obtain

Eint ∝ k2
F ∝ EF. (1.24)

This indicates that the Fermi pressure will always scale in the same way as the
attractive interaction strength between the particles. Indeed, a rigorous cal-
culation shows that for infinite scattering length, the gas behaves much like a
noninteracting Fermi gas with a chemical potential that is reduced by a factor
of (1 + β) [2, 31]. β can be shown to be a universal parameter that is the same
for any Fermi system with infinite scattering length, independent of density
or temperature. Such "universality" plays a role in many, very different Fermi
systems, such as nuclei or neutron stars and has therefore been of great theo-
retical interest. Only recently the value of β was determined accurately using
quantum Monte-Carlo calculations to be β = −0.58± 0.01 [1,11]. Experimen-
tally, β can be measured for example by a simple determination of the size of
a cloud with infinite scattering length, as the density drops to zero now where
V(�r) = μ(a → ∞) = (1 + β)EF.

The first realization of such a strongly interacting gas was achieved in John
Thomas’ group. The most striking result of their first measurements is shown
in Fig. 1.7 [48]: Upon sudden release from the trap, the atoms expanded in
an anisotropic way, reversing the initial aspect ratio of the trap. For a non-
interacting gas, Eq. 1.7 tells us that we should expect an isotropic expansion
independent of the trap potential. The fact that there was such a significant
deviation from the noninteracting case could be attributed to a collisionless
superfluid, but a classical description assuming a hydrodynamic expansion
could explain such an expansion just as well. Nevertheless, this experiment
provided the first presumptive evidence that ultracold Fermi gases were en-
tering the superfluid regime.
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Fig. 1.7 Anisotropic expansion of a strongly interacting two-
component Fermi gas. From Science 298, 2179. Reprinted with per-
mission from AAAS.

1.5
Feshbach Molecules and Molecular Condensates

1.5.1
Formation of Feshbach Molecules

Within a very short time after the first observation of molecules in the very
weakly bound state of a Feshbach resonance [21], researchers established two
ways to form such molecules efficiently:

• An adiabatic sweep from the side of the Feshbach resonance where no
bound state exists to the side where the bound state appears binds pre-
viously unbound pairs of atoms into molecules [54].
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free-atom continuum

Feshbach molecule

B(t)
Ekin = 2Eb/3

Ekin = Eb/3

Eb= 2/(ma2)

a) b)

Fig. 1.8 The two most common ways to produce molecules from ultra-
cold Fermions: a) A sweep of the magnetic field across the Feshbach
resonance causes previously unbound atoms to be associated into
molecules. This method is effective for highly degenerate samples. b)
The magnetic field is held at a fixed value where three-body recom-
bination is effective, and an atom-molecule chemical equilibrium is
achieved. This method is effective for thermal samples, and when the
molecules are collisionally stable.

• Three-body recombination leads to the binding of pairs of atoms into
molecules. The binding energy is transferred into kinetic energy, and a
chemical equilibrium of atoms and molecules is obtained [37].

Magnetic Field Ramps The very simple concept of creating molecules using
an adiabatic magnetic field ramp across a Feshbach resonance is illustrated
in Fig. 1.8 a): Free atom pairs on the right hand side of the figure, where
no bound state exists, are adiabatically transferred into the emerging bound
state on the resonance. While this concept has a lot in common with a well-
known Landau-Zener two-level crossing, there exist some notable differences
that arise primarily from the fact that the unbound atoms are not a single
state, but two free atoms. This causes two main factors to influence the con-
version efficiency of atoms into molecules: First, the magnetic field ramp has
to be slow enough such that the spatial two-particle wave function can follow
adiabatically into the bound state. In some cases this is difficult to realize ex-
perimentally, when strong inelastic collision processes limit the lifetime of the
gas near the Feshbach resonance, and a compromise for the ramp speed opti-
mizing the conversion efficiency has to be found. Second, the temperature of
the atomic gas determines how many atoms will actually find themselves in
a bound state, when the resonance is crossed. This means that for the conver-
sion process to be highly effective, one needs to start with a highly degenerate
gas of atoms. A detailed experimental study of this technique can be found in
Ref. [33].
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Three-Body Recombination Two free particles cannot simply bind into a
molecule during a binary collision, because energy and momentum cannot
be conserved at the same time: There has to be a third particle that takes away
part of the binding energy as kinetic energy, such as a photon, or in our case a
third atom.

The concept of the formation process is again very simple. The weakly
bound molecular state is just one more energetically accessible state for the
atoms, and while atoms are bound into molecules through collisions, releasing
kinetic energy, molecules can also be dissociated into atoms again, provided
enough kinetic energy is available to overcome the binding energy: A chemi-
cal equilibrium establishes in which the ratio of atoms bound into molecules
versus free atoms is determined by the temperature of the gas and the binding
energy of the molecules.

Three-Body Recombination of a Spin Mixture of Fermions While the Feshbach
molecules we are concerned with here are made up of two atoms in different
spin states, the third atom involved will necessarily have to be identical to one
of the atoms forming the molecule. As at ultralow collision energies there is no
angular momentum involved, the spatial wave function of the three colliding
atoms is symmetric, forcing the spin part of the wave function to be antisym-
metric. This cannot be achieved as soon as two identical particles are involved,
so in this simple picture three-body recombination should be forbidden. Fur-
thermore, as these Feshbach molecules occupy the highest vibrational level in
the molecular potential, rapid collisional decay is expected to occur when the
molecules exchange their internally stored energy for kinetic energy. Surpris-
ingly enough, three-body recombination into the high-lying Feshbach molec-
ular state proceeds at a high rate constant while the relaxation into lower-lying
vibrational states is suppressed especially well for 6Li atoms in the two low-
est Zeeman levels. This phenomenon could be quantitatively explained by D.
Petrov et al. [51]. Intuitively, their calculation can be understood by the fact
that the size of the Feshbach molecule is on the order of the scattering length,
typically much larger than the effective range Re of the molecular potential.
However, all other levels in the molecular potential are much more strongly
confined, their size being on the order of Re. For a relaxation to occur, two
identical particles now have to come very close to each other, and then the
argument holds that we mentioned earlier that all three-body recombination
in a two-component Fermi gas should be suppressed by Pauli blocking.

Chemical Equilibrium The equilibrium ratio of molecules versus atoms in a
thermal gas can be derived by minimizing the free energy of the system, which
results in the so-called Saha equation, originally derived by Saha for a partially
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ionized plasma [41]. Adapted to our case of a two-component gas, its reads

Nmol

Nat
= φat × exp

(
EB

kBT

)
, (1.25)

where Nmol, Nat are the number of molecules and atoms, respectively, φat is
the atomic phase space density, and EB is the molecular binding energy.

An important advantage of this technique is that a high conversion effi-
ciency can be achieved even for gases that are far from being quantum de-
generate, by choosing the binding energy to be much larger than the thermal
energy in the gas. It turned out that a mixture of 6Li-atoms and molecules can
be very effectively cooled into degeneracy, due to the large elastic scattering
cross sections for atom-atom-, atom-molecule-, and molecule-molecule colli-
sions. Furthermore, Feshbach molecules see a trapping potential Umol = 2Uat

twice as large as the atoms do when they are confined in a far-detuned optical
dipole trap, which can be explained by the fact that both weakly bound atoms
have the same polarizability as a free atom with respect to the far off resonant
light. This leads to primarily atoms being evaporated from the trap, taking a
kinetic energy of Uat + αkBT with them, where alpha is a numerical constant
of order unity [43]. Upon the loss of atoms, the atom molecule equilibrium
needs to be readjusted, causing molecules to be dissociated, which absorbs ki-
netic energy. A more detailed description of this evaporative cooling scheme
for a nondegenerate gas can be found in [14]. When the gas is cooled further
and approaches degeneracy, there is a significant advantage over cooling a
two-component Fermi gas because the bosonic molecules do not exhibit Pauli
blocking and are cooled straight into a BEC, which will be discussed in the
next section.

Detection of Feshbach Molecules One of the major difficulties in working
with ultracold Feshbach molecules had been anticipated in their detection:
How should it be possible to detect such a fragile object? What happens if
they are exposed to resonant light?

All the methods that have been developed involve the dissociation of
the molecules and the subsequent imaging of the resulting atoms. By far
the simplest method is a ramp across the Feshbach resonance, where the
molecules are dissociated into atoms, which are then imaged by conventional
means. Obviously, this method as such cannot differentiate between atoms
and molecules. To accomplish this, one can simply take two measurements,
where in the first measurement, one performs the ramp across the resonance
to dissociate the molecules, whereas in the second measurement it is omitted.
The difference between the two measurements is then the number of atoms
that had been bound into molecules [54]. Another way of differentiating be-
tween atoms and molecules is to separate atoms and molecules spatially in



22 1 Ultracold Fermi Gases: Properties and Techniques

a Stern-Gerlach type of experiment. Exploiting the fact that the molecules
have a different magnetic moment than the atoms, they are accelerated at a
different rate in an applied magnetic field gradient. After the molecules have
been converted back into atoms, they appear at a different location as the
atoms [32].

Beside a magnetic field ramp to dissociate the molecules one can also use
radio frequency transitions in the following way: Consider the molecules are
formed from atoms in two states, |1〉 and |2〉. Assume now a radio frequency
field ωRF,at can be applied to drive free atoms in |2〉 into a third state |3〉. If the
atoms in |2〉 are bound into molecules, then an RF-transition from |2〉 to |3〉 at
ωRF,at cannot occur, as there is not exactly the same bound state between |1〉
and |3〉. However, by increasing the frequency of the RF pulse such that the
binding energy of the molecule can be broken, the two bound atoms can be
dissociated into two free atoms in |1〉 and |3〉, if the radio frequency ωRF,mol of
the pulse satisfies

ωRF,mol = ωRF,at +
EB

h̄
. (1.26)

If now the radio frequency is tuned to ωRF,at, previously unbound atoms will
be detected in state |3〉. If the radio frequency is tuned to ωRF,mol however,
no previously unbound atoms can detected, but molecules will be dissociated
and previously bound atoms can be detected in |3〉. Using this method, also
the binding energy can be determined from the radio frequency spectra [54].
Furthermore, the line shape of the spectra gives insight into the wave function
of the molecules [15].

Yet another possibility to detect the molecules arises, when the atoms are
very weakly bound: It turns out that when the size of the molecules is larger
than the resonant wavelength, the individual atoms in the molecule "forget"
that they are bound in a molecule and scatter photons as they would do as
free atoms [67, 68]. Obviously, this is not a selective technique, one cannot
differentiate between free atoms and bound molecules.

1.5.2
BEC of Molecules

The stable, weakly bound bosonic molecules produced from two fermionic
atoms have a lot in common with Cooper pairs. The major difference is how-
ever that there does not exist a two-body bound state for the Cooper pairs,
as their pairing mechanism is a many-body phenomenon. While the transi-
tion from a normal gas to a Cooper paired, superfluid Fermi gas is a very
elusive effect that is very hard to observe in typical experimental observables
like density or momentum distribution, the condensation of bosons is readily
observed as a bimodal distribution in density and momentum. Therefore, it
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was considered an important step towards a superfluid gas of Fermions, when
molecular Bose-Einstein condensates could be produced [27, 38, 67].

At first sight, the properties of such molecular condensates do not differ
very much from atomic condensates. In fact, these atoms can be perceived as
bound pairs of an ion and its most loosely bound electron. The major differ-
ence lies in the fact that the interactions between the particles are much larger:
The molecular gas becomes unstable against inelastic decay when the scatter-
ing length is reduced. In an atomic gas, three-body recombination as a loss
process from the condensate increases sharply when the scattering length is
increased, for example by approaching a Feshbach resonance. Thus, an atomic
gas is generally restricted to the case where the scattering length is much
smaller than the interparticle separation (na3 � 1). For a molecular BEC,
the regime of so-called strong interaction, where na3 ≥ 1 is easily reached.
However, the system becomes complicated relatively quickly as the interac-
tion strength is increased, because at the same time, the molecular binding
energy is reduced, and soon happens to be on the same order of magnitude as
other relevant energies of the system, so the two body nature of the molecules
can no longer be ignored.

From the very beginning, there were two successful techniques for the
preparation of molecular BECs, based on the two methods to produce Fes-
hbach molecules: A sweep across a Feshbach resonance starting from a highly
degenerate Fermi Sea, and the simple evaporative cooling of a spin mixture
of fermionic atoms, leading first to the formation of ultracold molecules that
finally condense into a BEC.

A Molecular BEC out of a Fermi Sea For this technique to work, one starts
with a very cold Fermi gas of atoms and assumes that when changing the
magnetic field slowly enough while crossing the Feshbach resonance, the pro-
cess of molecule formation is adiabatic and the entropy of the ensemble is
conserved. To calculate the required temperature of the Fermi gas to obtain a
molecular BEC, one can compare the entropy on both sides of the resonance,
as has been done in Ref. [12],

SFermi = kBNπ2 T
TF

, (1.27)

SBEC = kBNmol
2π4

45ζ(3)

(
T

TBEC

)3

, (1.28)

ζ is the Riemann zeta function and TBEC is the critical temperature for BEC.
For simplicity we have omitted all effects of interactions. Setting T/TBEC = 1
SFermi = SBEC, and N = 2Nmol, we get

T
TF

=
π2

45ζ(3)
≈ 0.18. (1.29)
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Fig. 1.9 Time-of-flight images of 40K2-molecules created through a
magnetic field ramp across a Feshbach resonance. The image on
the left shows molecules that have been created from Fermions at
0.19 TF, very close to the critical temperature. For the image on the
right, Fermions at 0.06 TF were employed. Here, a clearly visible bi-
modal distribution proves the presence of a molecular BEC. Reprinted
by permission from Macmillan Publishers Ltd: Nature 426, 537, © 2003

This is a readily achievable value in most ultracold Fermion experiments, and
indeed it is very close to the temperature at which the critical temperature for
Bose condensation was observed in the first molecular BEC experiment in the
group of D. Jin [27] with 40K-atoms. Time-of-flight images of this experiment
are shown in Fig. 1.9. The image on the left shows the momentum distribution
of molecules that have been created from a Fermi gas with a temperature of
0.19 TF. No bimodal profile as a signature of a BEC is visible, but a temper-
ature fit to this image reveals T = 290 nK, which corresponds to ∼ 0.9 TBEC,
well in agreement with the expectation. The image on the right was taken
of molecules that were created from Fermions at 0.06TF. These molecules
show clearly the typical bimodal distribution of a BEC at about one half of
the critical temperature. There was however one important difficulty that ex-
perimenters struggled with during these experiments. As inelastic collisions
among the trapped 40K atoms and molecules significantly reduced the life-
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time, the adiabaticity condition for the magnetic field sweep was very difficult
to achieve without sacrificing most of the particles.

A Molecular BEC by Direct Evaporation of Thermal Fermions While creating
a molecular BEC using the previously described technique requires the prior
preparation of a highly degenerate Fermi gas, creating a molecular BEC from
thermal molecules can be much more efficient, as there is no Pauli blocking
that obstructs thermalization in the final evaporative cooling stage. The ma-
jor prerequisite for this technique to work is a sufficient collisional stability of
the Feshbach molecules, which so far has only been achieved with 6Li atoms.
The most significant advantage is that through evaporative cooling it is typi-
cally possible to achieve temperatures significantly below the critical temper-
ature for BEC. Assuming that one can ramp the magnetic field to the Fermi
side of the Feshbach resonance without increasing the entropy, extremely cold
Fermi gases can be produced: Assuming a realistic temperature of the BEC of
TBEC/4, the temperature of the Fermi gas estimated using Eqs. 1.27 and 1.28
is 3 × 10−3 TF! As we haven’t included interactions in our crude estimation,
which are important for the molecular BEC with its large scattering length,
the final temperature will be slightly higher [12]. The prospect for such low
temperatures cause molecular BECs made from 6Li attractive starting points
for experiments with ultracold Fermions.

1.6
BEC-BCS Crossover

indexBEC-BCS crossover In the previous section we have seen two techniques
to produce a BEC of molecules: The first one involves an adiabatic crossing
of a Feshbach resonance to create a gas of superfluid bosons from a highly
degenerate Fermi sea. We quoted the second technique as an ideal starting
point to produce a deeply degenerate Fermi gas starting from a Bose gas. But
what exactly happens when the gas undergoes this crossover from a Fermi
gas to a BEC, and vice versa?

1.6.1
From Fermions to Bosons, a Continuous Crossover!

The theoretical exploration of this question already has a long history. While
Eagles initiated the idea that increasing the effective attraction between elec-
trons leads to strongly bound pairs that condense into a BEC in 1969 [22], Leg-
ett found a direct link between "diatomic molecules and Cooper pairs" [42],
and Nozières and Schmitt-Rink concluded in 1985 that "the transition from
weak coupling to strong coupling superconductivity is smooth" [47]. Hence,
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Fig. 1.10 Size of an ultracold gas of 6Li atoms in the BEC-BCS
crossover, normalized to the size of a noninteracting fermi gas: On
the Bose side of the Feshbach resonance, the size initially follows the
expectation for an interacting BEC (solid line), then it levels off and
reaches the size of a strongly interacting Fermi gas. The bottom part
of the graph shows the corresponding scattering length for reference
(figure adapted from [6]).

all these ideas had been developed long before one could think of realizing
such systems with ultracold atoms using Feshbach resonances. An excellent
theoretical overview is given in Ref. [13]

So what exactly happens while a Bose gas is transformed into a Fermi gas?
After all, the quantum statistics of the gas is completely altered! It turned out
that there is no discontinuity in any observable of the system, and so far all ex-
periments confirm this conclusion. In fact, researchers were impressed that an
ultracold cloud of 6Li atoms could be transformed from a molecular BEC into
an interacting Fermi gas and back without any noticeable increase in temper-
ature, strengthening the assumption of the previous section that the Feshbach
resonance can be crossed in an isentropic way [5]. The density distribution
of the gas evolved continuously from an interacting BEC into an interacting
Fermi gas (see Fig. 1.10).
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Fig. 1.11 Vortex lattices in a gas of 6Li atoms in the BEC-BCS
crossover. On the left, the magnetic field is tuned below the Feshbach
resonance (a > 0), resulting in a molecular BEC. In the middle, the
magnetic field is tuned on resonance (a → ∞). For the image on the
right, the scattering length is negative, and no two-body bound state
is available. Reprinted by permission from Macmillan Publishers Ltd:
Nature 435, 1047, © 2005.

1.6.2
High-TC-Superfluidity in a Fermi Gas of Atoms

The prospect of being able to realize ultracold Fermi gases with resonant inter-
actions triggered a tremendous theoretical interest in the topic. Superfluidity
was suggested to occur at very high temperatures, "resonance superfluidity"
with a critical temperature on the order of the Fermi temperature [34, 49, 62].

When the first molecular Bose-Einstein condensates were realized, this im-
mediately raised the question, under which circumstances such a gas would
remain superfluid, when the binding energy of of the molecules is reduced
further and further, and finally, after crossing the Feshbach resonance, when
there is no two-body bound state any more. But how could one observe a clear
signature for condensation, in a similar way as the observation of a bimodal
distribution that occurs during Bose condensation?

Taking the original idea of Eagles [22] of many-body pairs that Bose con-
dense seriously, one should expect that those pairs should exhibit a bimodal
momentum distribution below the critical temperature. Such a momentum
distribution should manifest itself in time-of-flight measurements of the den-
sity after a sudden switch-off of the trap. The situation is complicated how-
ever by the fact that the expansion is governed by the strong interaction be-
tween the particles. Also, the delicate pairs are immediately dissociated when
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the density is reduced. However, researchers were quick to find a solution
to these difficulties: Using a magnetic field ramp to the molecule side of the
Feshbach resonance, quick enough to make sure collisions between the par-
ticles do not lead to thermalization between the particles, such that the re-
sulting molecules would not find the time to arrange themselves in a BEC,
but slow enough such that pairs of Fermions would adiabatically be projected
into molecules. Then, a time-of-flight expansion of the gas should reflect the
momentum distribution of the many-body pairs that exist in the crossover re-
gion. Conceptually, such experiments were a minor modification of the way
how molecular condensates were produced in Ref. [27] from 40K-atoms: A
Fermi gas was produced with a certain temperature. Then, the magnetic field
was ramped to a specific value within the crossover, slowly enough that the
ramp was adiabatic with respect to the many-body system. To determine now
the momentum distribution of the pairs at this particular magnetic field, a
fast ramp was applied to the molecule side of the Feshbach resonance. The
momentum distribution was then determined as before using time-of-flight
absorption imaging. The result was stunning: Pairs of fermions could be seen
to be condensed within the whole crossover region [53], with both the number
of condensed pairs and the critical temperature being largest close to the Fes-
hbach resonance. The major difficulty of this so-called projection technique
lies in the fact that the time scale for the many-body system to evolve adia-
batically has to be significantly longer than the time scale for pairs to form
tightly bound molecules. However, the initial results were quickly confirmed
using 6Li atoms [70], complemented with systematic tests that showed that
the projection technique works as envisioned. Together with measurements
on the collective dynamics of strongly interacting, ultracold 6Li gases, these
results were considered to prove the existence of a superfluid phase on both
sides of the Feshbach resonance at sufficiently low temperature. However, an
unambiguous, direct manifestation of a superfluidity had not been observed.
Eventually, this has been achieved by M. Zwierlein et al. [66] who succeeded to
observe vortices in a rotating gas of 6Li atoms. Images of such rotating clouds
are shown in Fig. 1.11 for different magnetic fields, below the Feshbach res-
onance where there is a two-body bound state supported (left), on resonance
(middle), and finally, where bosonic pairs can only be formed in a many-body
context above the Feshbach resonance.

1.7
Conclusion

Within less than a decade since the first successful experiments on ultracold
Fermi gases, a whole new community developed that now has at its disposal
Fermi superfluids with tunable interactions. In fact, this tunability reaches



References 29

all the way from a weakly interacting BCS-type of gas with completely de-
localized pairs via a strongly interacting Fermi gas with diverging scatter-
ing length, where the gas shows a universal behavior to a Bose-condensed
gas of molecules. These gases now serve as an ideal starting point to study
both long-standing questions from other fields of physics as well as com-
pletely new phenomena: The physics of unbalanced spin mixtures has been a
lively debated topic during the past years [50,69], as well as collective dynam-
ics [16,64]. Ultracold Fermi gases serve as an ideal model system for solid state
physics, in tailored optical potentials such as lattices [55, 57], combined with
tunable interactions [39, 46]. Methods from nuclear physics are being applied
to cold Fermi gases, and vice versa [2]. High-energy physicists realize that
ultracold Fermions can help to better understand Quark-Gluon Plasma [59].
An excellent overview over current research topics will be given in Ref. [35].
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