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*Expulsion of magnetic fields (Meif3ner effect)
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*BCS theory: condensation of Cooper pairs

((E 1) (-, 1))

electromagnetic gauge invariance
spontaneously broken

QCD is a gauge theory
m» color superconductivity
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first conjectured phase diagram:  (cabbibo and Parisi 1975)
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A

deconfined phase ,the true phase

diagram may
actually be
confined substantially

phase more complex*

>

T
Collins and Perry (1975):

»Also we might expect superfluidity or superconductivity,
since the interquark forces are attractive in some channels®
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History of the QCD phase diagram

rediscovery of color superconductivity
(Alford, Rajagopal, Wilczek (1998); Rapp, Schafer, Shuryak, Velkovsky (1998))
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*larger diquark gaps A ~ 100 MeV
*sizeable critical temperatures BCS: 7T, = 0.57A(T = 0)
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m)» schematic phase diagram (Rajagopal (1999))
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Recent Developments

eimposing electric and color neutrality

m»no 25C phase! (Alford and Rajagopal (2002))
e alternative condensation patterns

p crystalline (LOFF) phases = J. Klein

» CFL + kaon condensates

p gapless phases
...
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attractive interaction!?
one-gluon exchange in antisymmetric color channel @ asymptotic densites
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strange quark heavy: only u and d quarks
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Pairing Patterns

strange quark light:

CFL a” ﬂavo IS Pair CFL = color flavor locking

neutrality conditions can prevent pairing
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BCS theory:

P opposite momenta
»momenta close to Fermi momentum

a

stressed pairing (e.g. different masses): I'F

» Fermi momentum pp = \/p2 — M?2
» pairing favored for % — 17| S V2A4
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Neutrality

local color neutrality is energetically not costly
= focus only on electric neutrality: 2n,, — ng — ns = 0

Mg = My, = Mg = nu:nd:ns* CFL

PF

A

gCFL  uSC 2SC  unbroken




Further Phases

Spin-1 phases:

*flavors pair independently

edifferent Fermi energies do not prevent pairing
eusually energetically less favored
°ec.g.,,Color-spin-locking™

*similarity to condensed matter pairing (Helium-3)

normal phase ordered phase

R \ S
NM A. Legget, Nobel Lecture
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Realisation in Nature!?

best guess: ,,neutron stars"

to be clarified:
|) reach of critical density for phase transition NM to QM
2) stability of ,,neutron star"

ad |) depends on equation of state (unknown)
ad 2) depends on model of QGP and on realised phase

current state:
rather unlikely, need experimental
signatures




thank you for

your attention




Goldstone Bosons

finite quark masses

= modification of GB chemical potential

2 2 2 2
mg — 11y,

21Q

21Q

u

Pnt = HQ p+ = (@

oif LGB = G B Goldstone Bosons condense

*Goldstone Bosons contribute to the pressure

= treatment of GB can change phase structure in phase diagram
= e.g. CFL + K favoured to 2SC, even if 2SC favoured to CFL




