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QCD is a gauge theory
➡color superconductivity
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History of the QCD phase diagram

first conjectured phase diagram:     (Cabbibo and Parisi 1975)

confined
phase

deconfined phase „the true phase 
diagram may 
actually be 
substantially 
more complex“

Collins and Perry (1975):
„Also we might expect superfluidity or superconductivity, 
since the interquark forces are attractive in some channels“
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(Alford, Rajagopal, Wilczek (1998); Rapp, Schäfer, Shuryak, Velkovsky (1998))

•larger diquark gaps
•sizeable critical temperatures
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BCS : Tc = 0.57∆(T = 0)
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•larger diquark gaps
•sizeable critical temperatures

∆ ∼ 100 MeV
BCS : Tc = 0.57∆(T = 0)

History of the QCD phase diagram

〈q̄q〉 = 0

〈q̄q〉 #= 0

〈qq〉 = 0

lattice & functional
methods

perturbation theory

(Rajagopal (1999))➡ schematic phase diagram

〈ud〉 #= 0

〈ud〉 = 〈us〉 = 〈ds〉 #= 0



Recent Developments

•imposing electric and color neutrality

➡no 2SC phase? (Alford and Rajagopal (2002))

• alternative condensation patterns

‣crystalline (LOFF) phases

‣CFL + kaon condensates

‣gapless phases

‣...

➡ J. Klein
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Pairing Patterns
only constraint on quark pairing pattern:

Pauli principle

➡ one-gluon exchange in antisymmetric color channel (@ asymptotic densities)

attractive interaction?

spin-0 channels energetically favored (antisymmetric)

➡ antisymmetric flavor channels

in QCD 3 different types of degrees of freedom:

color - - + +
spin - + - +
flavor - + + -

-  antisymmetric
+ symmetric
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neutrality conditions can prevent pairing

Pairing Patterns
strange quark light:
CFL: all flavors pair CFL = color flavor locking
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Neutrality
local color neutrality is energetically not costly
➡ focus only on electric neutrality: 2nu − nd − ns ≈ 0

md = mu = ms ⇒ nu = nd = ns CFL

ms

pF

u,d,s

d

u

s

CFL gCFL uSC 2SC unbroken

pF,d ≈ µ +
m2

s

2µ

pF,s ≈ µ− m2
s

2µ



Further Phases

normal phase ordered phase

A. Legget, Nobel Lecture

d su

Spin-1 phases:
•flavors pair independently
•different Fermi energies do not prevent pairing
•usually energetically less favored
•e.g. „Color-spin-locking“
•similarity to condensed matter pairing (Helium-3)
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Realisation in Nature?
best guess: „neutron stars“

to be clarified:
1) reach of critical density for phase transition NM to QM
2) stability of „neutron star“

ad 1) depends on equation of state (unknown)
ad 2) depends on model of QGP and on realised phase

current state:
rather unlikely, need experimental 

signatures



thank you for
your attention



Goldstone Bosons
finite quark masses
➡modification of GB chemical potential

µπ+ = µQ +
m2

d −m2
u

2µQ
µ+ = µQ +

m2
s −m2

u

2µQ
µ0 =

m2
s −m2

d

2µQ

µGB ≥ µGB•if Goldstone Bosons condense

•Goldstone Bosons contribute to the pressure
➡treatment of GB can change phase structure in phase diagram
➡ e.g. CFL + K favoured to 2SC, even if 2SC favoured to CFL


