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QCD phase diagram

[Ruester et al.]

I Which region is theoretically described by what?
I Which region is probed by what?
I Experimental control of the probed region



Atomic phase diagram

[W. Ketterle and M. W. Zwierlein]

I comparison to QCD
I different axis: µ → a
I easy control of temperature and interaction

(Feshbach resonances)



Where to look for Superconductivity?

I Superconductivity requires:
I in a fermionic system:
I attractive interaction (to form pairs)
I low temperature
I high density ⇒ high µ (for QCD)

I QCD (asymptotically) features an attractive interaction
(one gluon exchange)

I Possible abundances:
I Heavy ion collisions
I Compact stars (neutron stars)
I . . .
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Phases in BEC/BCS

I trapped atoms (fermions/bosons)
⇒ µ(T ) given by normalization

I Adjustable coupling (by Feshbach resonance)
I observation of condensation
I observation of vortices



Comparison of relevant variables

QCD Atoms

µ is
√

s-dependent µ given by N
measured from composition

T from collision T adjusted by cooling

coupling strength from µ coupling (scattering length)
adjustable

additionally color & flavor dof

dense matter (to free quarks) dilute gas (to avoid losses)



Equation of State (EoS)

I Free Fermi gas (no interaction):

Ē0 =
3
5

k2
F

2m

I for strong coupling:

ξ =
E
Ē0

QCD

ξ =
3
4

Ultracold gas

ξ = 0.09− 0.5

in QCD case:
strongly interacting phase hardly distinguishable by EoS



Pairing

Consider weak coupling limit

QCD

asymptotically free
one-gluon exchange:

∆ ∝ ΛBCS exp
(
− 3π2
√

2g

)

Tc =
eγ

π
∆

exponentially suppressed

Ultracold gas

weak coupling
BCS regime

∆ ∝ exp
(
− π

2kF|a|

)

Tc =
eγ

π
∆



Stressed pairing

QCD Atoms

effect of different mq spin-polarization

leads to difference in Fermi-surface

partial pairing possible only one pairing pattern
in 2SC phase no pairing

but: pairs with q 6= 0

∆(~x) = ∆e2i~q·~x

FFLO/LOFF phase
order parameter has spatial dependence



What can we learn?

I Similar behaviours

I nomenclature, formulation

I Universal features
(not depending on the details of the interaction)

I separation of interaction-dependent phenomena
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Prerequisites to observe CSC

I high µ ⇒ high net baryon density

I sufficiently low temperature

I but: no cooling mechanism in HIC

I lower limit in T probably above Tc



Feasibility

[N. Xu]

I HIC can only probe high-temperature region
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Compact Stars

I Star evolution determined by
its mass

I Stabilization by Fermi
pressure

I white dwarfs (e−-pressure)
(typ. M ≈ M�,
R ≈ 10−2R�)

I neutron stars (n-pressure)
(typ. M ≈ M�,
R ≈ 10−5R�)

I Structure of a neutron star

I Charge neutrality
[Yagi, Hatsuda, Miake]



Neutron star

I Tcore ≈ 1MeV

I ρcore ≈ 5− 10 · ρ0

I core:
quark or hadronic matter

I quark matter (if any)
in SC phase

I nn-pairing →
superfluidity

I pp-pairing →
electromagnetic
superconductor



Equation of State (EoS)

I P = P(ρ)?

I from radial equilibrium:

dP
dr

= −Gm(r)ρ(r)
r2

I EoS ⇒ R(M) ∝ 1

M
1
3

I CSC is a Fermi-surface effect
⇒ small influence on EoS (∝

(
∆
µ

)2
)

I not sensitive enough to detect CSC
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Low Mass X-ray Binary (LMXB)

I LMXBs consist of a ns/bh and a donor

I accretion from companion

I gaining angular momentum and moment of inertia

I decreasing core density, decreasing quark matter part

I in model: effectively no change in frequency

I observation: cumulation of LMXBs around 250-350 Hz

only probes the EoS
(existence of a quark core)



Cooling history

I cooling governed by heat capacity and neutrino emission:
e. g. d → u e− ν̄e

I CV and Lν dominated by Fermi-surface effects

I if ∆ � T for all quarks
⇒ contribution suppressed by e−

∆
T

I CV and Lν much smaller than in nuclear matter outside the
core

I ⇒ Probing for small gaps
which would lead to high cooling rate



Supernova neutrinos

I shortly after SN too hot (30− 50MeV) for SC
⇒ rapid cooling below Tc

I mean free path for νs increases

I sudden release of neutrinos

I looking for bump in neutrino signal



R-mode instabilities

I ns with sufficiently high angular rotation frequency Ω
⇒ unstable to r-mode oscillations

I damping by viscosity

I damping is exponentially suppressed for gapped SC

I SC quark star instable for Ω & 10− 100Hz
many stars faster ⇒ no SC pure quark stars

I if only core SC
friction to mantle leads to damping



Magnetic field evolution

I in conventional electric SC: Meissner effect
magnetic field penetration only in flux tubes

I anchor for the magnetic field

I magnetic flux within the core cannot decay !

I measurement: dipole moment

I but: magnetic flux lines can move

I ⇒ no clear signature



Glitches

I Glitch: sudden jump in the rotational frequency

I pairing between species of different µ:
possibility of pairs with non-zero momentum (LOFF)

I Assume LOFF phase ; spatially varying gap

I Assume superfluid ; vortices

I pinning of vortices to structured superfluid

I rotation frequency ∝ vortex density

I abrupt change of overall rotation frequency
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Summary

I Universal (interaction independent) features

I Color superconductivity observation difficult

I Atomic case easier to control
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FFLO/LOFF

[R. Combescot]



µ(
√

s), T (
√

s)

[Andronic et al.]



Feshbach resonance: B ↔ mπ

Dependence of scattering length in QCD on mπ

similar to Feshbach resonance

[Beane, Savage]

Plausibility, Explanation ???
mπ determined by what ??? chiral symmetry ???
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