8.4 Bag Models

Despite extensive searches in the late 60’s (continuing to the present day), no free quarks were
found. It was therefore clear, even before QCD, that one needed some form of confinement
mechanism. The most obvious was to make the quarks extremely massive, but have them
bound in an extremely deep potential so that the observed hadronic states could still have
reasonable masses. A simple model of this kind was constructed by Bogoliubov {Bog 67]. He
set the quark masses to m, with m — oc, but placed them in a spherical volume of radius R,
within which they felt an attractive scalar field of strength . This extremely simple model
ted to an accurate prediction for the ratio of the mass of the Roper resonance to that of the
nucleon, to a simple explanation of the deviation of g4 from the naive SU(6) result of % and
many other interesting results.

However, the real renaissance of interest in such models came only after it was realized
that QCD is asymptotically free, at short distances, as well as (probably) confining at large
distances. The MIT bag model [Ch 74, DeG 75] was constructed in such a way as to build
these properties into a simple phenomenological model. Space was divided into two regions,
the interior of the bag in which the quarks had very small (current) masses and felt only weak
forces and the exterior in which the quarks were not allowed to propagate and which had a
different (lower) vacuum energy. It was soon realized that as far as the motion of the quarks
was concerned, at least for a static, spherical cavity, the wave functions in the MIT bag were
identical to those in the model of Bogoliubov in the limit where the parameter m — oo.
Bearing this in mind, we begin our discussion of bag models with a review of the model of
Bogoliubov which 1s mathematically very simple.

8.4.1 The Model of Bogoliubov

Consider the Dirac equation for a particle of mass rn moving in a spherical cavity of radius I
within which it feels a constant scalar potential — V.

&g+ gm — V) = Ev. (8.71)
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The operators representing the total angular momentum, 3 = |+ /2, and also K =
3 (&E’ +1) commute with this Hamiltonian and may therefore be used to classify the eigenstates
of Eq. (8.71). Taking the eigenvalues of 72, j, and K to be {3 + 1), p and —k, respectively,
one can show that k is equal to (7 + %) and 1t 1s therefore sufficient to label ¢ by x and .,

wi. The 4 x 4 matrix operator K obviously has the 2 x 2 matrices ::(f - + 1) = £k down
the diagonal. Taking the eigenfunctions of £ and 7, to be x¥ we may therefore write:
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Using the operator identity
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[t is then simple to write down the two coupled differential equations for g{r) and f{7):
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If we now take V; = mforr < Rand V; = O forr > R it is easy to solve these coupled

equations. For x = —1 (in which case the upper component is in s-wave) we find:
sin Br
. r < R,

e r > It
T

where the eigenenergy 1s obtained by matching the first derivatives at r = K.

The particular case of interest here 1s the limit where m — o0, so that the quarks behave
as though they were free (with zero effective mass) inside R, but have infinite mass outside —
and are therefore confined. In that limit, matching the derivative inside and outside gives the
condition |

jo(ER) = j1(ER), (8.77)
where 75 and 7; are the spherical Bessel functions

Sin a * SI1N X COS T
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Equation (8.77) has the solutions £ = 2.04,5.40, . . ., so that if we label the eigenenergies
by the principal quantum number, 7, and « we have F,, . = w, /R with, for example,

wp —1 = 2.04,5.40, . . .. Using the property

Xt =& FxH, (8.79)
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we can now write down the wave tunctions for the confined quark in this simple problem

'U'I.-‘H _ f\:r”‘_l jﬂ(wn,—I%) ){u (8 80)
o, — | \/ﬂ .-153 ) ﬁjl(“—"u,—]%) A—] % .

for r < RR. (Itis, of course, zero for r > R.) In the present case, the upper component is in an
s-state and the spin-angle function, x* , is just a Pauli spinor. The normalization constant is
given by:

.
"“"I:rr.._—l

N, _1 = : , |
re,—1 QRJ(WH,—'I — ]_)Einz(u-}ﬂ.,—l)

(8.81)

The first excited state

The immediate success of this simple model, which was observed by Bogoliubov, is that the
first excited state of the nucleon (with positive parity) has two quarks in the 1s-state and one
in the 2s-state. The ratio of the mass of this excited state to that of the nucleon is therefore
(5.40 + 2 x 2.04)/{3 x 2.04) = 1.55, which is in remarkable agreement with the ratio of
the mass of the Roper resonance to that of the nucleon, namely 1.56. Of course, this close
agreement cannot now be regarded as anything more than a happy coincidence as there are
many subtleties 1gnored in this extremely simple model. Nevertheless, 1t 1s an indication that
the model 1s not grossly incorrect and certainly served to encourage early work.

The axial coupling constant

Within the non-relativistic SU(G) quark model we have already seen that the axial coupling
I‘L:"

constant of the nucleon 1s predicted to be 3, in disagreement with the experimental value
of 1.26. In a relativistic treatment the axial current involves ’qﬂﬁa“f}-ﬁ%w and for the case of
massless, confined quarks one can easily see that, in the Bogoliubov model, the non-relativistic
result is just multiplied by a factor

Ir 21a2 l 2 1 P -9
jU drr{j; 3J1 =1 — 3 ( ;uJL 1 ) = ().63. (8.82)
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This reduces ¢4 from § to 1.09 — somewhat below the experimental value but much closer to
it

8.4.2 The MIT Bag Model

Although, from the modern point of view, the model of Bogoliubov was quite attractive, build-
ing 1in asymptotic freedom and confinement in a simple way, it was not very useful for spec-
troscopy. In particular, the radius of the spherical cavity was put in by hand, rather than being
determined dynamically. Indeed, minimizing the energy of the hadron would lead us to favour
R — o0. In addition, one would prefer to formulate a model of hadron structure covariantly,
even If, in practice, one needed to make approximations to find a solution.
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The MIT bag model satisfies all of these criteria, while retaining an elegant simplicity. In
its most general form, for massless quarks, the model involves a three-dimensional volume V
— the “bag” — with surface S. If fy is one inside the volume and zero outside the Lagrangian
density for the MIT bag 1s

e 1 -
L= (197"9u¢ = B) by — 5 ds, (8.83)

where dg 15 a 0 function at the bag surface. The additional constant, 13, is supposed to be
the extra energy per unit volume required to create a region of space where the vacuum is
perturbative — as opposed to the region outside the bag, where there are no free quarks and the
vacuum 1s non-perturbative.

Requiring that the action associated with £ be stationary with respect to variations in the
field and the bag surface, .5, leads to three equations. The first is the free Dirac equation for a
massless quark inside the bag

ivh8, = 0. (8.84)

The other two equations are boundary conditions for ¢! on S, a linear boundary condition
(I.b.c.):

Vi {x) = ¥{x), xr €S, (8.85)

and a non-linear boundary condition (n.l.b.c.):

1 - .
B = —5 1, 0" ('z;:':-t,-i‘-'(;z:)) , - xr €S, (8.86)

where 7 is a normal to the surface (with 2 = —1).
The Lb.c. can be used to show that the component of the quark current, j* = yyH e,

normal to the bag surface 1s zero:
nuty(a) = 0, r e S, (8.87)

The proof is easy. Taking the Hermitian conjugate of Eq. (8.85) and multiplying to the right
by ~" we find

W = _E',&,T ‘1. (8.88)

Hence, we may write

i = (i - n) v = =y
. -1; (iy-mp) = +-t;"3ui: (8.89)
= ().

As there 1s no component of the current normal to the surface the quarks are confined to
the interior of the bag. In the case of a static, spherical bag, n* = (U}, 7), and substituting
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Eq. (8.80), which for arbitrary w,, _1 18 the solution of the free Dirac equation (in s-wave},
into Eq. (8.85), the LLb.c., we find (al r = R):

jU (':"*""H-,— | ) - jl ({*"'-".Ti-,.—l)- (89(])

This 1s exactly the same eigenvalue condition as we found in the model of Bogoliubov.

On the other hand, the n.l.b.c., Eq. (8.86), 1s new. It involves a relationship between the
normal derivative of 7 at the surface of the bag and B. This has a simple interpretation as a
stabtlity condition because, 1f we consider the energy-momentum tensor for the model

—

?mﬂ:(?mau—aﬁﬁ+5¢%)%g (8.91)

we find, using the relation
55 — — I 39‘\.’1 (892)

that the n.l.b.c. ensures that 0,77 = 0 on the surface (it is guaranteed by the Dirac equation
elsewhere). Thus B 1s essential to ensure energy momentum conservation. From the energy
momentum tensor we 1dentity — %T} ¥oll L-T;fuh) as the normal component of the pressure exerted
by the gas ot tree Dirac particles inside the bag. The n.l.b.c. ensures that this 15 exactly
balanced at the surface by the difference in the energy density inside and outside the bag — and
hence that the system 15 stable.

Using the energy momentum tensor we can construct the energy of the bag as

PV = /d::;:;r: f s | (8.93)

Specializing again to the simplest case of a static spherical bag of radius /¢, with three quarks
in the 1s-state, this yields

W1 — 4 :
Pﬂzgﬁgl{ - B, (8.94)
and the n.l.b.c. requires
E}P[J
B 0. (8.95)

Thus the internal energy of the quarks determines the radius of the cavity it 5 1s taken to be a

universal constant — independent of the hadron being considered. One can now discuss excited
states with confidence.

Static spherical cavity

The MIT bag model, as formulated above, 1s a very complicated problem 1in quantum field
theory. It has only been solved in one space and one time dimension [Jaf 81]. For practical
purposes 1t has mainly been used in a much simpler form where the cavity 15 taken to be a
static, spherical cavity of radius £, fixed by satistying the n.LLb.c. on average over the surface.
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(One can only satisty the n.l.b.c. exactly over a spherical surface for states with quantum
numbers 51 and PL .) As we have seen this is the model of Bogoliubov, but with the radius
determined dynamlcally

The MIT bag model is constructed to model QCD and one must therefore also include
the glue required to ensure local gauge invariance. Of course, the bag itself is supposed to
be generated by the non-perturbative interactions between gluons so there is some danger of
double counting. For this reason, while the gluons are included in the Lagrangian density
describing the bag model, they are typically treated only in low order perturbation theory. (An
exception to the rule 1s the treatiment of glueball or hybrid states, but those are not of direct
concern to us In the context of the structure of the nucleon.) Taking the volume to be V and
the surface S in this case, the Lagrangian density is

_ 1 -
L = (?ﬁ*ﬂ,&’}f“ﬂﬂ_m — = C;,MG‘”’” — B) Gy — 5 1ridg. (8.96)

In Eq. (8.96) D* = g#* — g A* (with A" = ““’l AH), the usual covariant derivative in QCD.
It we choose n# to be the outward normal f{:rr a static spherical bag

= (0,7), (8.97)

minimizing the action associated with Eq. (8.96) leads to the quark and gluon field equations:

[:s:q,--ﬂa,f, + gq--f-*A#] — r < R (8.98)
o ‘)‘ﬂ- : L1
SJJGEH — 4 |}fﬁ7# 9 (Il fﬂbﬂGi Al r < I, (8.99)

linear boundary conditions (l.b.c.) for the quarks and gluons:

—Y - TP = P, r= R, (8.100)
FoE, =0, fx B,=0. r=R, (8.101)

and finally a generalization of the n.L:b.c. to include the pressure of the confined gluons:

1
B:—-—i(t )——(i“ G,  r=R. (8.102)

or 1y

If we treat the effect of the gluons in low order perturbation theory, for the reasons explained
carlier, Egs. (8.98) and (8.100) are just the free Dirac equation and the linear boundary con-
dition for which we obtained the s-wave solution above. The solutions with arbitrary angular
momentum are (recall kK = £(7 + %) )

| T i (w L :, ‘ |
Wi = \( i;.’fl ,vl( - R) ) )x‘ for s < 0) (8.103)
and

N N
Pl = Ny ( ”T | " ""(u}f’*.’{f jq) ) ¥k, for # > 0. (8.104)
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In general y# is given by:

Z (*"’"“’“ Y™ ¥ (8.105)

™, L

As we have already seen the eigenvalues, w,, , are determined by the 1.b.c., Eq. (8.100), which
implies

For-1(Wnw) = J wlwnk); Ielwnk) = —Jr—1lwn.x) (8.106)

(Of course, the first and second cases in Eq. (8.106) correspond to « less than or greater than
zero, respectively.) For example, for ns, ,, one has w, 1 = 2.043, 5.396, 8.578, ... and for
NP1, Wy 41 = 3.812, 7.002, ..., etc

A final feature of the bag which needs some mention is that in practical applications it 18
common to introduce an additional correction to the bag energy of the form — 2,/ R. This was
originally introduced by DeGrand et al.[DeG 75] as an approximation to the Casimir energy
associated with gluon and gg fluctuations in an empty bag. In practice there does seem to be
a need for such a term, with Zy ~ 1.8, It has the effect of raising the value of 3 needed to
fit the nucleon mass and hence making the nucleon bag radius somewhat smaller. However,
its origin in the Casimir effect 1s rather unclear. We simply note that the center of mass
correction, which will be discussed in more detail below, also tends to lower the total energy
of the hadronic states in the bag by an amount proportional to 1/R. From the practical point
of view, the term —Z,/R may be viewed as including both the center of mass and Casimir
corrections 1n a phenomenological way.

Spectroscopy

The key additions to the model required in order that it can be applied to the lowest mass
baryons and vector mesons are: (a) a non-zero mass for the strange quark, and (b) the spin-
dependent energy shaft arising from perturbative gluon exchange. Introducing a quark mass
term 1nto Eqs. (8.96) and (8.98) adds no significant complications to what we have already
discussed. For example, for an s-state (xk = —1) we find

: — N ﬂ-l-jD(IT)
Q(Jn?—l —Jﬁ\‘ﬂ,,—l ( o i :'rjl( ) )X 13 (8107)

where the quark energy 1s related to the spatial frequency, «, by

0
E==; Q= VT2 + (mR)2, (8.108)

and x 1s determined by the l.b.c.

tana = . 3.109
and 1 —mHK ~ € ( )

The coefticients vy are v/(F & m)/m and the normalization constant is

Q2 — mR)
R3j23(x)[2QQ —1) + mR]

N? = (8.110)
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By introducing ms # m,, 4 one can fit the SU{3) breaking in the hadron mass spectrum, just
as 1n the non-relativistic quark model.

The treatment of gluon exchange 1s somewhat more idiosyncratic, as the total Coulomb
energy 1s supposed to be zero because the physical hadrons are color singlets. Thus the only
term retained in second order perturbation theory 1s the spin-dependent one gluon exchange
between different quarks

AEM = Z/d‘j:r B¢ . B, (8.111)

LRy

Here Eﬂ 15 the solution of the classical field equations for the gluon field strength inside the
cavity, mcludmg the boundary conditions, generated by the color current of quark i. (Note
that each B” separately satisfies the 1.b.c. 7 x B”’ = ().) Equation (8.111) leads to

AEM = —3 “‘f (ALY - (GAS) M (m,,my, R), (8.112)

1<}

where M can be obtained in closed form. Clearly Eq. (8.112) has exactly the same spin-flavor
structure as the hyperfine interaction in the non-relativistic quark model and since v, is treated
as an adjustable parameter one can fit the N — A mass difference and the 2 — A splitting — as
was discussed in Section 8.2.6.

In summary, the energy of a bag, including all the effects we have discussed, is

{2, 3 M_ <
E(R)_ERJF _R’B + AE! - (8.113)
and the radius is determined by the n.l.b.c., GF(R)/IR = (). By adjusting B, cx,, Z and m,
one can obtain a very good fit to the masses of the gmund state baryon octet and decuplet
as well as the vector mesons. B 1s typically (146 MEV)4 or roughly 58 MeV/fm®, and the
nucleon bag radius 1s about 1 fm. (The other parameters are m, — 279 MeV and Z; ~ 1.84,
while o, ~ 2.2 15 even larger than in the non-relativistic quark model.)

One major difference between the non-relativistic oscillator model and the bag is that in the
latter the spin and spatial wave functions are inextricably mixed. For the [56] representation
of SU{6), which contains the nucleon Spin-% octet and the delta spin-g decuplet, this 1s not a
comphication as the wave function 1s a totally anti-symmetric product of flavor, color and spin
wave functions:

“@) ~ SU(g)ﬂwm X S(j(g){:mm X SUF(Q)*-HPin“. (81 14)

Here SU (2)-pin- is the full Dirac wave function for the 1s; /9 state, but in any casc the spatial
wave function 1s totally symmetric. However, for excited states, for example, where one quark
1SInap 1 state, the situation becomes much more complicated.

Whereas one can remove the center of mass motion exactly in the oscillator model, leav-
ing two 1nternal, spatial degrees of freedom, this is not possible in the bag. Equation (8.114)
corresponds to three, independent spatial degrees of freedom in the fixed cavity. This is phys-
ically incorrect and a great deal of effort has gone into attempts to remove spurious center of
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mass motion leading to unphysical excitations. For example, whereas 1t 1s trivial to see that the
[56] 17 is purely a spurious excitation of the center of mass in the non-relativistic harmonic
oscillator model, this 1s much less obvious in the bag model. In particular, one could 1imagine
a genuine excitation in which the quarks oscillate with respect to the non-perturbative glue
making up the bag. In order to address this one must go beyond the static bag approximation
and allow at least small surface excitations of the bag. Finally, we note that, because the spin
and orbital angular momentum are linked through the Dirac wave tunction, the natural cou-
pling scheme for the bag ts J-) coupling. On the other hand, the success of the non-relativiste
harmonic oscillator model strongly suggests that L-§ coupling 1s the better scheme within
which to tackle the spectrum of excited states.

In summary, the discussion of excited states within the bag model s technically compli-
cated because of the spurious center of mass motion and the fact that j-j coupling 1s most
natural. The overall description of the baryon spectrum 1s certainly less impressive in the bag
model than in the non-relativistic harmonic oscillator model, but 1t 15 not clear to what extent
this 1s a consequence of the technical difficulties, rather than a failing of the model. Certainly
the relativistic quark wave functions in the bag model have led to dramatic improvements 1n
the predictions for some photoproduction amplitudes (e.g., the [70] 17) in comparison with
the non-relativistic models [He 83]. The new feature, which could be extremely important,
15 the possibility of genuinely new states, not present in the oscillator model, in which the
non-perturbative glue and the quarks move relative to each other or in which the glue itself
1s excited. As an important example of the latter phenomenon, it has been suggested that
the Roper resonance may involve a breathing mode (07) excitation of the bag itself [Gui 85].
These are all important topics for future research.

Charge and current densities

The bag model Lagrangian density 1s clearly invariant under the phase transformations

P — W iE,
P > — iy (8.115)

and hence the vector current, j* = y*i»0y is conserved. Noting that the upper and lower
components of the quark wave functions must be equal at the bag boundary and that the charge
density 1s

00 T 0.
= p=yYyy

< [ () + a0 ()

we ¢an ¢asily understand the forms shown in Fig. 8.10.

The calculation of the magnetic moment i1s a little more interesting because massless
quarks have no DPirac moment. This 1s completely changed by the confinement as we now
(llustrate. Suppose that the bag 1s immersed n a constant magnetic field B, with correspond-

Ing vector potential A= 'B x 7. Then the confined quark will have a magnetic moment
given by

TR B = /dg-'r' e A




232 8 Models of the Nucleon

p(r)=1"(1)

= S § — N §
R R

Figure 8.10: Illustration of the bag boundary condition that the upper and lower components of
the Dirac wavefunction (u(r) and I(r), respectively) should be equal at v = R, together with the
corresponding charge distribution.

where the integral is taken over the bag volume. Substituting for j the spatial piece of the
conserved vector current this gives

i B = E/da?" (?;}Tdr'“.;{r) : (B" X F)

3 (8.118)
= 5 /dg?‘ T X (waEdJ) . B,
and hence
e
T=— | &% 7 x @y
=35 / v (8.119)
— chnf{?
where
el 40 -3
conf — =~ ° . 1
Heonf = 50 {6(9—1)} (s.120)

Thus the energy of the confined quark, {2/ R, acts something like a constituent quark mass.

We note that the famous relationship Eﬂ = —% 1s preserved here too.
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