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MotivationMotivation
Superfluidity, the frictionless flow, is still not fully understood. Although it has now been 

studied for almost 100 years.

So far there are mainly two different theories describing superfluidity:

Bardeen Cooper Schrieffer (BCS) Theory 
(for fermions)

BEC Theory 
(for bosons)

vortex lattice in sodium BEC [1] vortex lattice in superconductor [2]

ultracold fermionic gases can establish a connection between these two descriptions
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Phase DiagramPhase Diagram

[1,5]

pair formation
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OutlineOutline

Brief reminder (ultracold fermions, Feshbach 
resonances) 
Molecule formation and molecular BECs
Superfluidity and vortices

Bardeen Cooper Schrieffer (BCS) Theory
BCS pairing 
Unitary regime 
Summary
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Reminder: Experimental SetupReminder: Experimental Setup

fermionic 6Li oven
(360 °C)

v~1000 m/s 

MOT
T~470µK
v~1 m/s 

in UHV ~10-12 mbar

optical dipole trap
evaporative
cooling to
T~100 nK

(two lowest hyper-
fine states of 6Li )

~1.5 m

Zeeman Slower
v~50 m/s 



Preseminar Extreme Matter Institute EMMI 6

Reminder: Experimental SetupReminder: Experimental Setup

fermionic 6Li oven
(360 °C)

v~1000 m/s 

Zeeman Slower
v~50 m/s 

MOT
T~470µK
v~1 m/s 

in UHV ~10-12 mbar

optical dipole trap
evaporative
cooling to
T~100 nK

(two lowest hyper-
fine states of 6Li )



Preseminar Extreme Matter Institute EMMI 7

Reminder: Ultracold FermionsReminder: Ultracold Fermions
dilute gas: n-1/3= d =interparticle spacing >> size of the interaction potential

→ description via effective  δ-potential 
for ultracold temperatures only s-wave scattering:
single parameter to describe interaction: the scattering length a

6Li: 3 protons
3 neutron → fermion
3 electrons

for ultracold temperatures no s-wave scattering (due to Pauli 
blocking) for identical fermions

→ use cooling agent (e.g. Na, 7Li) or 2 species of same 
atom (two different hyperfine states)

strong interactions: a=scattering length >> interparticle spacing
possible to tune interactions via Fesbach resonances
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Reminder: Feshbach ResonancesReminder: Feshbach Resonances

r (interatomic
distance)

E

open channel

closed channel

a<0
attractive

a>0
repulsive

molecular 
bound state

cool evaporatively at 750 G
(a~3500 a0, Eb ~ kB 3 µK)

→ if temperature of the sample
~ Eb/kB formation of molecules

sets in 
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Molecule FormationMolecule Formation

|1>

|3>

|2>

RF
Our gas consists of atoms in states |1>  and |2>.
Transition from |2> to |3> can be driven via RF fields.
Additional energy is needed to break up the pairs.

atoms molecules

binding energy

[3]

molecules are bosonic:
can condense into molecular BEC

[5]

getting colder:
→ less atoms
→ more molecules
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[5]

Molecular BEC (mBEC)Molecular BEC (mBEC)
thermal cloud

(T=1580nK)

pure molecular BEC 
(T~100nK)

N = 80 000

N = 360 000a b c d

e f g h

Images taken via absortion
imaging after ~10ms time-
of-flight.

The bimodal distribution is
clearly visible:

gaussian wings + parabolic TF distribution  [4]
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[5]

Description of the mBECDescription of the mBEC
Gross-Pitaevskii equation (stationary):

In the TF-limit (N a/aho>>1, means: interactions >> kinetic energy term) leads to inverted
parabola for the mBEC in a harmonic potential:

Pairing mechanism:
Real two body bound state, which is associated with the Feshbach resonance, leads to 
weakly bound molecules .
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SuperfluiditySuperfluidity
Landau criterion: If Ek is the dispersion relation of a medium, an object moving with 

velocity  v<vc (where                    ) can not scatter from the medium [5,6].=
=

min k
c k

Ev
k

BEC without interaction:

BEC with weak interaction:                                      with c = speed of sound

=∼ 2 thus   v 0k cE k
µ

= = >v 0c c
m

for particles with v<vc frictionless superfluid 

Modern definition: If there is a (off diagonal) long range order (→stiff phase over whole cloud) 
then the sample is superfluid.

Proofs of superfluidity:

1. Collective excitation frequencies: excite oscillation of the cloud, frequency 
changes when the sample is superfluid.                          
Problem: collisional hydrodynamic gas has almost the same frequencies 
(                                                ).

2. Quantized vortices: excite vortices in rotating superfluid, they build a vortex lattice.    
Problem: experimentally difficult to realize, but „smoking gun proof“ for superfluidity.

12 / 5 1.549 ; 5 / 2 1.581ω ω ω ω= =

[5]
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is a eigenfunction of the GPE with the angular momentum         Hence one Vortex 
carries the angular momentum:  

VorticesVortices
Search for solutions of the GPE with cylindrical symmetry, for example (see [6]):

ϕ ϕ= ∈Ψ Z( ) with coordinates , and ( )( ) i sn r e r z sr
= =.zl s

= =.zL N s

[5]

irrotational
superfluid

stiff classical
rotor = Ω×

G G JG G
( )v r rϕ= ∇

JJG G =( ) ( )sv r s
m

velocity distribution:

( ) 2sv r dr s
m

π→ =∫
JJG G G =v

t
s

sv
m r

=
=

quantized in units of 

→ tangential velocity:

= .
m

creation of vortices: In a system rotating with Ω the Hamiltonian is given by:

so the creation of a vortex minimizes the energy if Ω> Ωc = Evortex/Lz .
First observation in a BEC in 2000 at MIT and  ENS.

= −Ω0 zH H L
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[5]

VorticesVortices
vortex lattice in 87Rb BEC in magnetic trap
observed in Paris (2001) [6]

vortex lattice in Na BEC observed at
MIT (2001) [7]
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Phase DiagramPhase Diagram

[1]

mBEC

Weak repulsive interactions

Bosonic dimers

Superfluidity as a two-body effect

description via  Gross-Pitaevskii 
Eq. (mean field description)

[5]
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BCS TheoryBCS Theory
[5]

mBEC
[1]

1957 Bardeen, Cooper, Schrieffer:
First microscopic theory of superconductivity
(superconductivity = superfluidity of electrons in a metal)

3. Coherent BCS state
2. Presents of a filled Fermi sea
1. Weak attractive interaction
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[5]

BCS TheoryBCS Theory

In superconducting metals due to electron-phonon interaction
In ultracold fermionic gases possible accessible with Feshbach tuning

1. Weak attractive interaction

a>0
repulsive

a<0
attractive

BCS theory applies

3. Coherent BCS state
2. Presents of a filled Fermi sea
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[5]

BCS TheoryBCS Theory
1. Weak attractive interaction
2. Presents of a filled Fermi sea

3. Coherent BCS state

“Cooper problem”: A filled Fermi sea is unstable to 
even weak attractive interactions
between the particles

k up

-k down

Two fermions outside a fully 
occupied Fermi sea form a 
many-body induced bound state!
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[5]

BCS TheoryBCS Theory
1. Weak attractive interaction

3. Coherent BCS state
2. Presents of a filled Fermi sea

Schrieffer's solution:

In the full (BCS) state every fermion at the Fermi surface is part of a pair:

(pair creation operator)

Cooper pairs are not bosonic! 

(bosonic commutation only for non-overlappping pairs)

Full BCS state is coherent state of Cooper pairs:

[16]
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[5]

Gap and Critical TemperatureGap and Critical Temperature
• Gap in the excitation spectrum associated with Cooper pairing. At T=0:

≈ 0.49 kB TF

• Critical temperature TC for a transition into the superfluid state associated with 
o occurence of coherence

TC ≈ 0.28 TF
[15]

Problem: Still today, TC out of reach for BCS-type dilute atomic gas with kF|a|<<1.

Solution:   Increase kF|a|. (But BCS theory no longer valid.)

“perturbative” BCS BCS theory
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Pairing GapPairing Gap

Observation of the pairing gap [11]

Pairing on the BCS side 
is a many-body effect

6Li “high” T

low T

Absorption peak due to free fermions

Second peak shows formation 
of fermionic atom pairs

• Only atom pairs left.
• Drift of peak due to dependence of 
the gap on density and trap frequency.

[5]

|1>-|2> pairs; probe |2> → |3>
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[5]

Pairing Gap & VorticesPairing Gap & Vortices

Observation of the pairing gap [11]

Pairing on the BCS side 
is a many-body effect

Superfluidity on the
BCS side is due to the 
condensation of pairs

Observation of vortices [13]6Li “high” T

6Li

low T

|1>-|2> pairs; probe |2> → |3>
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Phase DiagramPhase Diagram

mBEC

“BCS”
experiments

BCS
theory

6Li

[5]

• Weak attractive interactions
• Non-bosonic cooper pairs
• Superfluidity

Description: („perturbative“) BCS

[1]
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[5]

Unitary RegimeUnitary Regime

Dilute gas
but
strongly interacting.

What happens on the resonance? Stable trapping possible? 
Crossover or phase transition from mBEC to BCS side? 
Superfluidity present?
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[5]

CrossoverCrossover
Smooth crossover from mBEC of 6Li dimers to an atomic Fermi gas. [12] 6Li

1. System prepared as molecular BEC.

2. = after forth-and-back sweep
over the resonance

= hold on mBEC side

3. No difference, i.e.,
adiabatic & reversible isentropic Smooth change in cloud size crossover
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Resonance CondensationResonance Condensation
Observation of fermionic condensates in the unitary regime. [14] 40K

[5]
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= short hold time (2ms)

= long hold time (30ms)
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[5]

Resonance SuperfluidityResonance Superfluidity
Observation of vortex lattices in a strongly interacting Fermi gas over the entire 
BEC-BCS crossover region.

First direct signature of superfluidity in these systems. [13] 6Li

B field: 766 G          792 G          812 G           833 G     843 G           853 G           863 G
Molecular BEC                                  Resonance        “BCS”
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Summary & Complete Phase DiagramSummary & Complete Phase Diagram

[5]

Summary:

In experiments with ultracold Fermi gases

• Crossover from mBEC to BCS

• Superfluidity over the entire crossover

Outlook:

Ultracold Fermi gases enable to study

• Unbalanced spin-mixtures

• Collective dynamics

• ...

Interdisciplinary:

Ultracold fermions might help to better 
understand the Quark-Gluon Plasma.
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