From BEC to BCS

Molecular BECs and Fermionic Condensates of Cooper Pairs

Preseminar Extreme Matter Institute EMMI

and

Andre Wenz Max-Planck-Institute for Nuclear Physics Matthias Kronenwett Institute for Theoretical Physics University of Heidelberg

Motivation

Superfluidity, the frictionless flow, is still not fully understood. Although it has now been studied for almost 100 years.

So far there are mainly two different theories describing superfluidity:

BEC Theory (for bosons)

vortex lattice in sodium BEC [1]

Bardeen Cooper Schrieffer (BCS) Theory (for fermions)

vortex lattice in superconductor [2]

ultracold fermionic gases can establish a connection between these two descriptions

Phase Diagram

Outline

- Brief reminder (ultracold fermions, Feshbach resonances)
- Molecule formation and molecular BECs
- Superfluidity and vortices
- Bardeen Cooper Schrieffer (BCS) Theory
- BCS pairing
- Unitary regime
- Summary

Reminder: Experimental Setup

Reminder: Experimental Setup

MOT T~470µK v~1 m/s (two lowest hyperfine states of ⁶Li)

optical dipole trap evaporative cooling to T~100 nK

Zeeman Slower v~50 m/s

fermionic ⁶Li oven (360 °C) v~1000 m/s

Reminder: Ultracold Fermions

dilute gas:

- $n^{-1/3}$ = d =interparticle spacing >> size of the interaction potential \rightarrow description via effective δ -potential for ultracold temperatures only s-wave scattering: single parameter to describe interaction: the scattering length a
- ⁶Li: 3 protons 3 neutron \rightarrow fermion 3 electrons

for ultracold temperatures **no s-wave scattering** (due to Pauli blocking) for identical fermions

 \rightarrow use cooling agent (e.g. Na, ⁷Li) or 2 species of same atom (two different hyperfine states)

Reminder: Feshbach Resonances

Molecule Formation

Molecular BEC (mBEC)

Description of the mBEC

Gross-Pitaevskii equation (stationary):

$$\left(-\frac{\hbar^2}{2m}\Delta + V(r) + \frac{4\pi\hbar^2 a}{m}|\Psi(r)|^2\right)\Psi(r) = \mu\Psi(r)$$

In the TF-limit (N a/a_{ho} >>1, means: interactions >> kinetic energy term) leads to inverted parabola for the mBEC in a harmonic potential:

$$|\Psi(r)|^2 = n(r) = \frac{m}{4\pi\hbar^2 a} (\mu - V(r))$$

Pairing mechanism:

Real two body bound state, which is associated with the Feshbach resonance, leads to weakly bound molecules .

Superfluidity

Landau criterion: If E_k is the dispersion relation of a medium, an object moving with velocity v<v_c (where $v_c = \min_k \frac{E_k}{\hbar k}$) can not scatter from the medium [5,6].

BEC without interaction:

BEC with weak interaction:

 $E_k \sim k^2$ thus $v_c = 0$ $v_c = c = \sqrt{\frac{\mu}{m}} > 0$ with c = speed of sound

for particles with v<v_c frictionless superfluid

Modern definition: If there is a (off diagonal) long range order (\rightarrow stiff phase over whole cloud) then the sample is superfluid.

Proofs of superfluidity:

- **1.** Collective excitation frequencies: excite oscillation of the cloud, frequency changes when the sample is superfluid. Problem: collisional hydrodynamic gas has almost the same frequencies $(\sqrt{12/5}\omega = 1.549\omega; \sqrt{5/2}\omega = 1.581\omega)$.
- **2. Quantized vortices:** excite vortices in rotating superfluid, they build a vortex lattice. Problem: experimentally difficult to realize, but "smoking gun proof" for superfluidity.

Vortices

Search for solutions of the GPE with cylindrical symmetry, for example (see [6]):

$$\Psi(r) = \sqrt{n(r)} e^{is\varphi}$$
 with coordinates r, φ and $z (s \in \mathbb{Z})$

is a eigenfunction of the GPE with the angular momentum $I_z = s\hbar$. Hence one Vortex carries the angular momentum: $L_z = Ns\hbar$.

creation of vortices: In a system rotating with Ω the Hamiltonian is given by:

$$H = H_0 - \Omega L_z$$

so the creation of a vortex minimizes the energy if $\Omega > \Omega_c = E_{vortex}/L_z$. First observation in a BEC in 2000 at MIT and ENS.

Vortices

vortex lattice in ⁸⁷Rb BEC in magnetic trap observed in Paris (2001) [6]

vortex lattice in Na BEC observed at MIT (2001) [7]

Phase Diagram 10000 5000 scattering length [a₀] -5000 -10000300 400 500 Weak repulsive interactions 1.2 Bosonic dimers Thermal Superfluidity as a two-body effect T/T_F 0.6 description via Gross-Pitaevskii **mBEC** Eq. (mean field description)

- 1957 Bardeen, Cooper, Schrieffer: First microscopic theory of superconductivity (superconductivity = superfluidity of electrons in a metal)
 - 1. Weak attractive interaction
 - 2. Presents of a filled Fermi sea
 - 3. Coherent BCS state

1. Weak attractive interaction

- > In superconducting metals due to electron-phonon interaction
- > In ultracold fermionic gases possible accessible with Feshbach tuning

2. Presents of a filled Fermi sea

3. Coherent BCS state

2. Presents of a filled Fermi sea

Two fermions outside a fully occupied Fermi sea form a many-body induced bound state!

"Cooper problem": A filled Fermi sea is unstable to even weak attractive interactions between the particles

3. Coherent BCS state

- 1. Weak attractive interaction
- 2. Presents of a filled Fermi sea
- 3. Coherent BCS state

Schrieffer's solution:

• In the full (BCS) state every fermion at the Fermi surface is part of a pair:

 $\hat{P}_{\boldsymbol{k}}^{\dagger} = \hat{\psi}_{\boldsymbol{k}\uparrow}^{\dagger} \hat{\psi}_{-\boldsymbol{k}\downarrow}^{\dagger} \text{ (pair creation operator) } \hat{P}^{\dagger}(\boldsymbol{R}) = \int \mathrm{d}^{3}r \,\varphi(\boldsymbol{r}) \hat{\psi}_{\uparrow}^{\dagger}(\boldsymbol{R}+\boldsymbol{r}/2) \hat{\psi}_{\downarrow}^{\dagger}(\boldsymbol{R}-\boldsymbol{r}/2)$

• Cooper pairs are not bosonic!

 $\left[\hat{P}(\boldsymbol{R}), \hat{P}^{\dagger}(\boldsymbol{R}')\right] \neq \delta(\boldsymbol{R} - \boldsymbol{R}')$ (bosonic commutation only for non-overlappping pairs)

• Full BCS state is **coherent state** of Cooper pairs:

$$\left| \Phi_{\rm BCS} \right\rangle = \text{const.} \exp\left(\sum_{\boldsymbol{k}} \alpha_{\boldsymbol{k}} \hat{P}_{\boldsymbol{k}}^{\dagger}\right) \left| 0 \right\rangle$$

[16]

Gap and Critical Temperature

• Gap in the excitation spectrum associated with Cooper pairing. At T=0:

 Critical temperature T_C for a transition into the superfluid state associated with occurence of coherence

 $T_{C} \approx 0.28 \ T_{F} \exp\left(-\frac{\pi}{2k_{F}|a|}\right)$

[15]

Problem: Still today, T_c out of reach for BCS-type dilute atomic gas with $k_F|a| << 1$.

Solution: Increase *k_F/a/.* (But BCS theory no longer valid.)

Pairing on the BCS side is a many-body effect

Pairing on the BCS side is a many-body effect

Observation of the pairing gap [11]

Superfluidity on the BCS side is due to the condensation of pairs

Observation of vortices [13]

Interaction parameter, $1/k_{\rm F}a$

Phase Diagram

- Weak attractive interactions
- Non-bosonic cooper pairs
- Superfluidity

Description: ("perturbative") BCS

Unitary Regime

What happens on the resonance? Stable trapping possible? Crossover or phase transition from mBEC to BCS side? Superfluidity present?

Crossover

Smooth crossover from mBEC of ⁶Li dimers to an atomic Fermi gas. [12] ⁶Li

Resonance Condensation

Observation of fermionic condensates in the unitary regime. [14] ⁴⁰K

Resonance Superfluidity

Observation of vortex lattices in a strongly interacting Fermi gas over the entire BEC-BCS crossover region.

First direct signature of superfluidity in these systems. [13] ⁶Li

Molecular BEC

833 G 84 Resonance

Summary & Complete Phase Diagram

Summary:

In experiments with ultracold Fermi gases

- Crossover from mBEC to BCS
- · Superfluidity over the entire crossover

Outlook:

Ultracold Fermi gases enable to study

- Unbalanced spin-mixtures
- Collective dynamics

Interdisciplinary:

Ultracold fermions might help to better understand the Quark-Gluon Plasma.

References

[1]	W. Ketterle, M. W. Zwierlein		
	Making, probing and understanding ultracold Fermi gases (arXiv: 0801.2500v1)		
[2]	U. Essmann, H. Träuble		
	Physics Letters 27A ,3 p.156 (1968)		
[3]	C.A. Regal et al.		
	nature 424 , 47 (2003)		
[4]	Jochim et al. (Innsbruck)	Greiner et al. (JILA)	Zwierlein et al. (MIT)
	science 302 , 2101 (2003) (2003)	nature 426 , 537 (2003)	PRL 91 , 250401
[5]	M.W. Zwierlein		
	PhD thesis: High-Temperature Superfluidity in an Ultracold Fermi Gas (MIT,2006)		
[6]	L.Pitaevskii, S. Stringari		
	Bose-Einstein Condensation (Oxford University press, 2003)		
[7]	Madison et al.		
	PRL 86 , 4443 (2001)		
[8]	Raman et al.		
	PRL 87 , 210402 (2001)		
[11]	Chin, Observation of the pairing gap, Science 305 , 1128		
[12]	M. Bartenstein <i>et al.</i> , PRL 92 , 120401 (2004)		
[13]	M. Zwierlein <i>et al.</i> , Nature 435 , 1047 (2005)		
[14]	C.A. Regal <i>et al.</i> , PRL 92 , 040403 (2004)		
[15]	L.P. Gorkov, T.K. Melik-Barkhudarov, Sov. Phys. JETP 13 , 1018		
[16]	J.F. Annett, Superconductivity, Oxford Master Series in Condensed Matter Physics, 2004		