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8th lecture: Summary 7th lecture: NMR 
Spin resonance: 
linear rf-field:
  


   Rotating field approximation:
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In the rotating frame: effective field 
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At resonance 
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: Rotating frame: M precesses about B1;



 Lab. frame:       M spirals up and down: 
NMR: 
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, T = 300 K, B = 10 T. 

1. Spin-lattice relaxation time T1: fluctuating 
[image: image7.wmf]^

B

 at ω0 establish energetic equilibrium of Mz (~ sec). 

2. Spin-spin relaxation time T2 < T1: fluctuating Bz destroy 
[image: image8.wmf]^

M

, increase entropy: decoherence (~ msec), 

   lead to homogeneous broadening by spin flip-flop processes (Lorentzian), 
   and to inhomogeneous broadening by non-uniform B0(x): 
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This is also described by Bloch equations: 
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Solutions for Mz = M0: 
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with dispersive and resonant Lorentz curves: 
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In solids: static internal fields Bz from randomly orientated neighbor spins make additional Gaussian broadening. 

[image: image56.png]


In liquids: these Bz are averagen out due to motional narrowing. 
Pulsed NMR: π/2-flip, spectrum from free induction decay: 
Chemical shifts by chemical environment = finger-print of the molecule:  
4.4 Some special NMR techniques

a) Spin-echo (SE)
1. NMR-SE in sample 
rf-pulse sequence:
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leads to time sequence of magnetization (in rotating frame):
[image: image57.wmf]Ý


produces NMR signal: 
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After 'refocussing' 180o-flip: 
	At a main field of 1.5 T

	Tissue Type
	T1 in ms
	T2 in ms

	Adipose tissues
	240-250
	60-80

	Whole blood (deoxygenated)
	1350
	50

	Whole blood (oxygenated)
	1350
	200

	Cerebrospinal fluid 
	2200-2400
	500-1400

	Gray matter of cerebrum
	920
	100

	White matter of cerebrum
	780
	90

	Liver
	490
	40

	Kidneys
	650
	60-75

	Muscles
	860-900
	50


All coherence losses due to inhomogeneous B0-field cancel (T2inhom). 
Main use of NMR-SE: measurement of T2: 
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2. Atomic or nuclear SE in-beam: 
Like NMR-SE, but 'in-flight': 

[image: image58.wmf]Ý


All coherence losses due to different times of flight (TOF) cancel, i.e. a 'white atomic beam' can be used. 
Main use of ABSE: measurement of the sample's time-correlation function 
[image: image19.wmf]'
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with particle density ρ(t). G(t) gives the probability that the system changes within time t. Explanation: 
1.
atoms' polarization is flipped by π/2, from Pz to 
[image: image20.wmf]^

P

, in low field. 
2. 
The beam enters B0-field region: the longitudinal Stern-Gerlach effect 

slows down the spin-up partial amplitude (relative to B0), accelerates the spin-down partial amplitude. 

[image: image59.emf] 
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3.
spin-up and spin-down arrive on the sample with a time difference 
[image: image21.wmf]SE
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, called the spin echo time, 

which is a property of the apparatus, as discussed on the next page. 

4. The value of maximum Pz at the spin-echo point equals 
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Measurements at different 
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 gives the complete time-correlation function G(t), with 
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When G(t) is measured under different scattering angles θ, 
that is for different momentum transfers ħq to the sample: 
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one obtains G(q, t), i.e. one probes the system at different spatial scales 
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The Fourier transform gives the sample's space-time correlation function 
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Derivation of the SE time 
[image: image28.wmf]SE
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 from simple kinematics: 
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The TOF of the atom through the magnetic field region of length L is 
[image: image29.wmf]L/
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Without magnetic field, 
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With magnetic field, due to the 'longitudinal Stern-Gerlach' effect, 
the velocity changes, for the spin-up and down amplitudes, to 
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, for magnetic potential Emagn << Ekin. 

With 
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(BL usually must be replaced by the magnetic field integral along the flight path z). 
Hence, 
[image: image36.wmf]SE
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 can be varied by varying the magnetic field B along the beam. 

Measurement the SE signal for various magnetic fields B directly gives the time-correlation function G(t). 

[image: image37.png]



Neutron-SE: 

Spin dynamics of mono-domain Fe particles in Al2O3, at q = 0.07Å-1. 
The measurement at a correlation time of 200 ns in this experiment 
is equivalent to a measurement at an energy transfer of about 10 neV. 

b) Multidimensional NMR 
[image: image61.wmf]B
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The spin-echo principle can also be used to study the 
interaction of one nucleus with its molecular neighbour nuclei. 
One vayies the delay t1/2 between the first π/2 pulse
and the refocussing pulse, and measures the spin-echo signal 

f(t1, t2) as a function of two time scales. 
The signal then contains information to what extent 

magnetization is transferred from one nucleus to its neighbors. 

Double Fourier transformation then gives a two-dimensional spectrum g(ω1, ω2). 
From the angular and distance information encoded in this spectrum one can 

build up the whole 3-dimensional molecular structure. 


[image: image38.emf]
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Multidimensional NMR techniques currently allow

2-dim NMR spectrum of erythromycin in D2O. 


structure determination of proteins up to 50 kDa.

[image: image62.wmf]Ý

c) Magnetic resonance imaging 
B0- field along body axis z. Spatially resolved NMR-signal for position (x0, y0, z0) by:

z0:  Slice selection: 


Strong static magnetic field gradient along axis z, selects slice through body at z0.  

Apply π/2-pulse with the frequency ω0(z0) belonging to this slice. 


Only nuclei in this slice will participate in the following operations. 
x0: Phase encoding:

a small gradient of short duration is applied along x: 


the precessing magnetization 
[image: image40.wmf]^
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 gets a different phase φ(x) for each line of the image. 

y0: Frequency encoding:


then for some time a gradient is applied along y:

[image: image63.wmf]Ý



[image: image41.wmf]^
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 precesses with a different frequency ω0(y) for each line of the image. 
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For a given z0, the x-y-resolved free induction signal is Fourier transformed to an image 
whose intensity is modulated as a function of proton density, relaxation time T2, …




d) Ramsey's separated oscillatory field method 
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1. Rabi's method: Spin resonance in-flight 
Polarized atomic beam in a magnetic field B0 transverses 
oscillatory field region where a spin-flip is induced at frequency 
[image: image43.wmf]0
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. 
The spin-flip is detected in an analyzer/detector setup. 

The minimum width of the resonance signal is given 
[image: image66.emf]by the TOF t through the resonance region: 
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2. Ramsey's method: separated oscillatory fields

The TOF can be significantly increased by using two successive rf-field pulses, 

separated either in space (for an atomic beam) or in time (for trapped atoms). 

The two rf-fields come from the same oscillator, 
so they are always in phase with each other. 
First rf-pulse: induces a π/2-flip to the polarization: 
[image: image45.wmf]^
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The transverse polarization 
[image: image46.wmf]^
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 precesses about B0 during its TOF to the second rf-coil. 
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Second rf-pulse: induces a second π/2-flip 
[image: image47.wmf]z
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, but only if

the atoms' transverse polarization has exactly the same phase as the rotating rf-field, 

i.e. if it precesses, during its TOF, at the same frequency 
[image: image48.wmf]0
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 as the rf-field. 

By scanning B0 one obtains very narrow 'Ramsey-fringes' in the signal, 

again convoluted with the atomic beam's TOF spectrum. 

[image: image68.png]


Applications: 

1. Time/frequency standard in atomic clocks (in-beam): 
Lock the external oscillator frequency to the Larmor frequency of the 
atom's hyperfine transition, which then determines the length of a second. 

2. Precision measurements on atomic transition under various conditions
(in-trap or in-beam)

Example: CP-violating electric dipole moment of the neutron (in n-bottle)
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Neutron spin precession frequency in Hz

Double pulse NMR signal from 10,000 polarised neutrons 


Neutron spin-precession frequency

Double-pulse signal from 10,000 polarized neutrons 
stored in the apparatus for 150 s, which is used to search 
for an electric dipole moment (EDM) to the neutron. 
The double-pulse interference pattern is analogous to the 
well known double-slit interference pattern in optics. 
A shift in the interference pattern of one linewidth would correspond 
to a magnetic field change of 10−10 Tesla, or an EDM of 10-22 e cm. 
e) Adiabatic theorem 
The adiabatic theorem of quantum mechanics: 

1. Adiabatic evolution: A physical system remains in its instantaneous eigenstate 
if a given perturbation is acting on it slowly enough, that is: 
When the Hamiltonian H(t) of a system changes slowly enough in the course of time t, 

then the system will remain in the corresponding eigenstate of the final Hamiltonian. 
Example: particle polarization 
[image: image50.wmf]ñ
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 adiabatically follows slowly changing magnetic field B, 
when frequency Ω of the turning magnetic field << Larmor frequency ω0:

[image: image51]
2. Non-adiabatic evolution: Rapidly changing conditions prevent the system from adapting 
its configuration during the process, hence the probability density remains unchanged.
The system ends in a linear combination of states (with respect to the final Hamiltonian) 

that sum to reproduce the initial probability density. 

Example: particle polarization does not follow rapidly changing magnetic field. 

Current-sheet neutron spin-flipper:
without current (only small holding field):
  with current: field changes sign within the thin current-sheet: 
[image: image71.jpg]
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NMR-Adiabatic fast passage: 
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Fig. 2 - Schematic diagram of the Ramsey two-zone atomic beam clock.




Slow adiabatic sweep through the resonance at ω0
(though fast with respect to transverse relaxation time T2). 

Far off resonance ω << ω0, the magnetization M is 'upwards' along z. 
When the frequency slowly approaches resonance, 

Beff is changing its direction adiabatically towards x. 

After the sweep, at ω >> ω0, the magnetization is 'downwards' opposite to z. 

The method works both for a frequency sweep and a magnetic field sweep. 

Example: rf-spin flipper in-beam: 

adiabatic spin reversal during passage through a non-uniform field B(z), 
with superimposed rf-field of constant frequency 
[image: image52.wmf]/
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