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4th lecture: Summary 3rd lecture: Properties of NH3
Transition probability: Starting in one of the mirror symmetric states, the other state develops as 
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Short times:  
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: transition probability rises quadratically with time, 

and is independent of the field strength 
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the energy uncertainty 
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General rule: For very short times, a quantum system 
does not take notice of external perturbations, the system is quasi-free.

Alternative derivation from the ordinary Schrödinger equation with solutions ψ1(z), ψ2(z): 

The NH3 system has mirror symmetry S with respect to the x-y plane of the 3 H-atoms. 
The eigenstates of S are the symmetric and antisymmetric states 
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Symmetry operator S and the Hamiltonian H commute, 

which therefore the ψ± are also the energy eigenstates, with eigenvalues E±. 

With no tunneling, the mean energy of the system is 
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With tunneling, the energy splitting is 
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that is, the coupling constant A is given by the overlap intergral 
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Ammonia MASER
1. active medium: beam of NH3
2. population inversion:
E+ state selection in a quadrupole filter
3.
resonator: microwave Ramsey double-cavity at 24 GHz
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2.3
The Stern-Gerlach effect

a) The experiment and its interpretation
Expectation: The potential energy of a magnetic moment μ 
under angle θ to a magnetic field B along axis z is 
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Therefore, the force on a magnetic moment in an inhomogeneous magnetic field Bz(z) 
is 
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Classically all angles θ are permitted, so one expects a broad distribution of deflections. 

Observation: splitting into two beams 
[image: image141.wmf] 
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Examples:
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Interpretation: only two angular spin orientations are allowed: 
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b) Angular momentum and uncertainty relation

The uncertainty relation between momentum p and position r of a particle makes it impossible 
to measure simultaneously component px and position x, or py and y, … 
This uncertainty in p and x is carried over to the angular momentum, 
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p

l

´

=

, 

with 
[image: image14.wmf]Ñ

-

=

r

h

i

p

, or: 
[image: image15.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

¶

¶

-

¶

¶

¶

¶

-

¶

¶

¶

¶

-

¶

¶

-

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

z

y

y

x

z

x

x

z

y

z

z

y

i

l

l

l

z

y

x

h

  

, and (without proof) makes it impossible 
to measure simultaneously more than one angular momentum component lx, ly, lz.
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Only the length of vector 
[image: image16.wmf]l

 and one component lz along an arbitrary quantization axis z 

can be measured simultaneously with arbitrarily high accuracy, 

and these are quantized to 
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In the Bohr model, this quantization may pictorially be linked to the requirement 

that the rotating particle must form a standing matter wave: 

Moreover, as the Stern-Gerlach effect shows (and as the Dirac equation describes), 

particles may carry spin angular momentum s, quantized to 
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and 
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. For the electron s = ½ and ms = ± ½.
The momentum p - position r uncertainty relation leads to 
the strange phenomena seen for instance in the double slit experiment. 
[Electron makes self-interference, therefore it must go through both slits simultaneously. 

When the electron is localized such that one knows which slit it passes, 

then the electron is so much disturbed that interference is lost. 

In this way knowledge what is going on under the cover of uncertainty is principally prevented.] 

These strange phenomena reappear for angular momentum (both orbital 
[image: image25.wmf]r
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 and spin s) 
in the form of new puzzling behaviour that can be seen for instance in the Stern Gerlach effect 

[more generally: in 'entangled' systems, to be discussed later]. 

c) SG effect with unpolarized beams
[image: image145.emf] 


1. SG apparatus along axis z: 

Observation: Two outgoing beams, each 100% polarized along z. 

Each atom counted with spin up in detector ↑, or with spin down in detector ↓

[image: image146.png]


Interpretation: directional quantization of spin s: 

2. [image: image147.png]Ofen Magnet



SG apparatus rotated through angle θ: 
Observation: both outgoing beams and their polarizations are also rotated by θ, 

each beam 100% polarized along the new axis z'. As, for an unpolarized beam, 
no spatial direction is preferred, this is what we really expect to happen. 
However, the
Interpretation is puzzling: 
'spin up' and 'spin down' is not a property of the incoming atoms, because the 

atoms cannot know in advance what measurement is going to be done downstream. 

The property 'spin up' or 'spin down' imposed onto the beam 
by the measurement in the SG apparatus. 

d) SG effect with polarized beams
[image: image148.jpg]



Incoming beam is 100% vertically polarized along z,
using for instance the outgoing beam of configuration 1:

3. SG apparatus along z. 
Observation: all outgoing atoms counted in detector ↑, as expected. 
4. SG apparatus rotated through angle θ. 
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Observation: each outgoing atom is counted in detector ↑, with probability 
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or is counted in detector ↓, with probability 
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 (cf. section 3.2a) below). 
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e) Two successive SG operations
Incoming beam is 100% vertically polarized along z,

[image: image151.emf]
5. SG apparatus rotated through angle 90o. 

Observation: the outgoing atoms are counted in detector ↑ or in detector ↓, 

each with probability ½. 

One outgoing beam goes into second SG apparatus:

6. Incoming beam is horizontally polarized along y, 
[image: image152.jpg]


SG apparatus rotated through angle 180o.
Observation: one of the outgoing beams now is polarized 'spin down', 
although the original incoming beam of 5 was 100% 'spin up'. 

Interpretation: There is an apparent violation of angular momentum conservation, 

which in some way is covered by the uncertainty relation. 
3. The description of effective spin ½-systems
3.1
Gyromagnetic effects
a) The classical gyromagnetic effect
A rotating charge possesses angular momentum L and magnetic moment μ. 
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When a magnetic field B is applied, both L and μ will precess about B.
In detail: A rotating particle on a circular orbit, with
constant velocity υ, mass m, charge q = −e, area 
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magnetic moment 
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directed along L: 
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When a spinning top experiences a torque 
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With 
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the precession frequency is 
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The equation of motion of the spinning top then becomes 
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in vectorial form:
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In the gyromagnetic case with 
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With 
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linear in field B: 
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Later on we shall rederive this expressions for quantum mechanics: they remain valid for the expectation value 
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á

L

.
b) The quantum Zeeman effect 
Particle with spin s, magnetic moment 
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μ

 

γ

-

=

, in a magnetic field B directed along z. 

Like in the classical case, the gyromagnetic ratio is 
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Examples:

In the relativistic Dirac equation, electron spin arises naturally and has g = 2. 

Non-relativistic ansatz:

Hamiltonian is 
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In the 'matrix representation of the operator H in 2s+1-dimensional spin space' 
H is diagonal with respect to the spin eigenfunctions ψm, 
with spin quantum number s and magnetic quantum numbers 
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Hence the ψm are also energy eigenstates with 
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energy eigenvalues 
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with Larmor frequency 
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Zeeman effect: The energy E0 is split into 2s+1 levels, splitting is linear in Bz.
For the s = ½ two-state system in 2-dim spin space, 

with basis vectors ψm, m = ±½, i.e. 
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the Hamiltonian is, 
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Alternative notations for the matrix elements: 
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3.2  Spin Rotation 
a) Rotation matrices
What happens if the B-field is not along z but a different axis? 

We simply have to rotate the coordinate system to the new axis, 
with the help of a rotation operator R, with RR† = 1, which changes the wave function from ψ to R†ψ, 

[image: image159.png]


and the Hamiltonian from H to 
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We shall assume that in the Hamiltonian Htot only the magnetic interaction H is affected by the rotation. 

When the coordinate system is rotated about the z-axis through an azimuth angle φ, 

then the wave function changes merely by a phase factor 
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that is the spin-½ wave function 
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 changes to Rz† ψ, with rotation matrix 
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where the successive lines and rows correspond to m = +½ and m = −½. 

When the coordinate system is rotated about the y-axis through polar angle θ, 

then the wave function ψ changes to Ry†ψ, with rotation matrix 
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In the general case, the rotation matrix is 
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with Euler angles θ, φ, χ.

For spin 1, the rotation matrix about the y-axis through polar angle θ is 
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b) Pauli matrices[image: image160.wmf]-
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Let the B-field be along the x-axis. This configuration can be reached from the case with B along z 

by rotating the system through θ = π/2 about y, by applying 
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Then the rotated Hamiltonian has, instead of σz, the matrix
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Let the B-field be along the y-axis. This configuration can be reached from the case with B along x 

by rotating the system about z through φ = π/2, by applying 
[image: image73.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

-

4

/

4

/

e

0

0

e

i

π

i

π

z

R

 to σx, 

which gives 
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that is 
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The matrices 
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 are the 3 Pauli matrices. 

Together with the 2-dim unit matrix I they form a complete set in the sense that 

any Hermitean 2 × 2 matrix can be expressed as a linear combination of these 4 matrices:
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The first term only shifts the overall energy, the second term can be expressed as a scalar product α·σ 

between a vector 
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which gives the operator s = ½ħσ in spin representation. 
Hence, any 2-state quantum system behaves like quantum-angular momentum and has all its peculiar properties. 
Extension to N identical states: any N-state quantum system corresponds to a spin system with spin quantum number s = ½(N − 1).

c) Spin rotation in a transverse magnetic field 
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For magnetic field 
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the Hamiltonian is 
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From the characteristic equation 
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we find the hyperbolic equation 
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and the energy eigenvalues 
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The curves 
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 are the same as for the eigenvalues 
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of the classical coupled asymmetric oscillator, 

with the asymmetry 
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 of spring constants, cf. summary p. 2.1,
and of the NH3 molecule as a function of the external electric field, p. 3.1. 

The same equations have the same solutions, and all the other features 
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found earlier carry over, like the temporal development of probabilities 

for spin-flip 
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no spin-flip  
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that is the evolution of spin polarization along axis z: 
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3.3 The density matrix
a) Pure states and mixed states
In quantum mechanics, event probabilities are determined, for instance by counting particles. 
Examples: 
NH3 molecules in upper energy state, focussed by the the quadrupole separator; 



Ag atoms in the spin-up state, deflected upwards in the Stern-Gerlach apparatus; 



monoenergetic electrons elastically scattered on protons into a certain direction. 

In these examples, the statistical ensembles of the outgoing particles are in a 

pure state: 
NH3 all in energy state 
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Ag atoms all in spin state 
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; 



electrons all in the same momentum state 
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A pure state can also be a superposition of these states, 

the Ag atoms, for instance, can all be in the pure state 
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Often the incoming particles are in a 
mixed state: 
NH3 in thermal equilibrium, i.e. Boltzmann distributed over 
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 and 
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Ag atoms unpolarized or only partially polarized; 



electrons are emitted from a cathode with Maxwell velocity distribution; 



the electrons can be transformed into an almost pure 
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 state by acceleration in an electric field. 
b) The density matrix in diagonal form

In the beam, the particles come in completely independent from each other.

When they are in mixed state, then one can only give a probability pn 

that they are, for instance, in the eigenstate 
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The mean energy of such a mixed ensemble then is 
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 when the population is normalized to 
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Define the density matrix in energy representation as 


[image: image108.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

n

p

p

p

ρ

...

0

0

...

...

...

...

0

...

0

0

...

0

2

1

, energy matrix being 
[image: image109.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

=

n

E

E

E

E

H

...

0

0

...

...

...

...

0

...

0

0

...

0

2

1

. 
The density operator has unit trace: 
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For the Hamilton operator energy conservation requires 
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, for a interacting closed system,
(when the energy of the non-interacting system is set to E0 = 0). 
The product of both is 
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and we find for the mean energy 
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The density matrix also covers the special case of a pure state. 
In this case, for instance p1 = 1, all other pn = 0. 

c) The density matrix for pure states
The result 
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 not only holds for H and ρ in their energy represention, 

but holds for any set of base states, because the trace of an operator is independent of representation. 

With the same arguments, we find for the expectation value of any operator A: 
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When we choose a different basis 
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then ρH transforms to 
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2-dim case: The most general unitary 2 × 2 matrix U , with UU+ = 1, is 
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For real Hamiltonian H, reduces to our earlier 
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The density matrix for a pure state is 
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For the new base states 
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the density matrix then is 
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In terms of the Pauli matrices: 
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d) The density matrix for mixed states
In the same way, the density matrix for a mixed state can be written as
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in terms of Pauli matrices: 
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The spin polarization along axis z then is 
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Similarly, 
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Then, both for pure and for mixed states, the density matrix can be expressed 

in terms of the vector 
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 of Pauli matrices 
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with the vector polarization 
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When the density matrix is given in spin representation, then 
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