Mehr als die Vergangenheit und die Gegenwart interessiert mich die Zukunft, denn in ihr gedenke ich zu leben. (Albert Einstein)

Renewable Energy Networks a playground for Applied Theoretical Physics

More + more + ... renewables: what is the end of the story?

How much ...

- ... wind energy?
- ... solar PV energy?
- ... backup energy + power?
- ... transmission?
- ... storage?
- ... costs?
- ... energy sector coupling?

Renewable European electricity network + fluctuating "weather forces"

100

200

Renewable European electricity network + fluctuating "weather forces"

$$G_n^R(t) = G_n^W(t) + G_n^S(t)$$

$$\langle G_n^R \rangle = \gamma_n \langle L_n \rangle$$
$$\langle G_n^W \rangle = \alpha_n \langle G_n^R \rangle$$

$$G_n^R(t) - L_n(t) = B_n(t) + P_n(t) + \cdots$$

$$G_n^B(t) = (B_n(t))_-$$
$$C_n(t) = (B_n(t))_+$$

$$\sum_{n} P_n(t) = 0$$

$$F_l(t) = \sum_n H_{ln} P_n(t)$$

$\Delta_n(t) = G_n^R(t) - L_n(t) = B_n(t) + P_n(t)$

localized flow

synchronized balancing

$$P_n(t) = 0$$

$$\min\left(\sum_{n}G_{n}^{B}(t)\right)$$

$$\min\left(\sum_{l}F_{l}^{2}(t)\right)$$

$$B_n(t) = \beta(t) \left\langle L_n \right\rangle$$

DEPARTMENT OF ENGINEERING

Renewable European electricity network + fluctuating "weather forces"

$$G_n^R(t) = G_n^W(t) + G_n^S(t)$$

$$\langle G_n^R \rangle = \gamma_n \langle L_n \rangle$$
$$\langle G_n^W \rangle = \alpha_n \langle G_n^R \rangle$$

$$G_n^R(t) - L_n(t) = B_n(t) + P_n(t) + \cdots$$

Balancing distribution (Germany)

$$B_n(t) = G_n^{RES}(t) - L_n(t) - P_n(t)$$

$$\left\langle G_n^{RES} \right\rangle = \left\langle L_n \right\rangle$$

variance: balancing \iff transmission

 $\Delta_n(t) =$ $=\overline{G_n^R(t)}-\overline{L_n(t)}$ $= B_n(t) + P_n(t)$

variance: balancing \iff transmission

 $\vec{\Delta}(t) = \vec{G}^R(t) - \vec{L}(t) = \vec{B}(t) + \vec{P}(t)$ $\Delta_n(t) \vec{e}_n =$ $a_k(t)$

principal component analysis

AARHUS UNIVERSITY DEPARTMENT OF ENGINEERING

Infrastructure measures II

backup energy

backup capacity

transmission capacity

wind capacity

solar capacity

$$E_n^B = \langle G_n^B \rangle$$

$$K_n^B = max_q(G_n^B)$$

$$K_l^T = max_q |F_l| \cdot d_l$$

$$K_n^W = \frac{\alpha_n \gamma_n \langle L_n \rangle}{CF_n^W}$$

$$K_n^S = \frac{(1 - \alpha_n)\gamma_n \langle L_n \rangle}{CF_n^S}$$

Levelized Cost of SYSTEM Energy

wind and solar power capacities

annual consumption (2009) = 3400 TWh

80% wind power generation

- = 1000 GW installed capacity
- = 200.000 x 5 MW turbines
- = 5000 x 200 MW wind farms
- ≈ 130000 km²

20% solar PV power generation

- = 370 GW installed capacity
- ≈ 2500 5000 km²

Breaking homogeneity: cost-optimal heterogeneity

Breaking homogeneity: optimal heterogeneity

Back-on-the-envelop estimate

 OPT-HOM-noT(K=1):
 64.5 €/MWh

 OPT-HOM(K=1):
 56.6 €/MWh

 OPT-HET(K=2):
 53.8 €/MWh

EU cost reduction / y = 3500 TWh/y x 10 €/MWh = 35 x 10⁹ €/y

Who pays for the heterogeneity?

Who pays for the heterogeneity?

Benefit of cooperation

hom,noT

LCO

n:

> LCO

DEPARTMENT OF ENGINEERING

het.7

hom,T > LC

some "physics" challenges

emerging renewable energy networks: socio-economic market + investment games

big networks:

power-flow renormalization small-world AC/DC networks, self-organizing power flows.

flexibility classes

storage phase transition

climate change + mesoscale turbulence

Decompositions of injection patterns for nodal flow allocation in renewable electricity networks THE EUR

Mirko Schäfer^{1,a}, Bo Tranberg^{1,2}, Sabrina Hempel^{3,b}, Stefan Schramm³, and Martin Greiner¹

THE EUROPEAN PHYSICAL JOURNAL B

Eur. Phys. J. B (2017) 90: 144 DOI: 10.1140/epjb/e2017-80200-y

some "physics" challenges

emerging renewable energy networks: socio-economic market + investment games

big networks: power-flow renormalization small-world AC/DC networks, self-organizing power flows.

flexibility classes

storage phase transition

climate change + mesoscale turbulence

Scaling of transmission capacities in coarse-grained renewable electricity networks

M. SCHÄFER¹, S. BUGGE SIGGAARD², KUN ZHU¹, C. RISAGER POULSEN² and M. GREINER¹

A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS

EPL, **119** (2017) 38004 doi: 10.1209/0295-5075/119/38004

some "physics" challenges

emerging renewable energy networks: socio-economic market + investment games

big networks:

power-flow renormalization small-world AC/DC networks, self-organizing power flows.

flexibility classes

storage phase transition

climate change + mesoscale turbulence

Emerging renewable electricity system: German flexibility classes

some "physics" challenges

emerging renewable energy networks: socio-economic market + investment games

big networks:

power-flow renormalization small-world AC/DC networks, self-organizing power flows.

flexibility classes

storage phase transition

climate change + mesoscale turbulence

How much storage? @ 100% penetration in EU

$$S(t) - S(t - 1) =$$

$$= \begin{cases} \eta_{in} \Delta(t) & (\Delta > 0) \\ \eta_{out}^{-1} \Delta(t) & (\Delta < 0) \end{cases}$$

$$C_E = \max_t S(t) - \min_t S(t)$$

$$\eta_{in} = \eta_{out} = 1$$

 $C_s = 10\% \langle L \rangle$

= 340 TWh

Seasonal optimal mix

- = 60% wind power
- + 40% solar power

Emergence of a phase transition for the required amount of storage in highly renewable electricity systems

THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS

223, 2475–2481 (2014)

DEPARTMENT OF ENGINEERING

Enhanced Storage Singularity

$$C_E(\text{random}) << C_E(\text{original})$$

 $C_E(\text{random}) \propto \frac{1}{\delta} = 1$

temporal correlations

synoptic time scale

some "physics" challenges

emerging renewable energy networks: socio-economic market + investment games

big networks:

power-flow renormalization small-world AC/DC networks, self-organizing power flows.

flexibility classes

storage phase transition

climate change + mesoscale turbulence

Mesoscale Wind Turbulence

R Baïle + J Muzy: Spatial Intermittency of surface layer wind fluctuations at mesoscale range, Phys.Rev.Lett. 105 (2010) 254501. P Milan, M Wächter + J Peinke: Turbulent character of wind energy, Phys.Rev.Lett. 110 (2013) 138701. R Calif, F Schmitt + Y Huang: Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis, Physica A 392 (2013) 4106-20. J Apt: The spectrum of power from wind turbines, J. Power Sources 169 (2007) 369-74.

2dim multifractal fBm

$$\mathbf{v}(\mathbf{x}) = \mathbf{v}_{typ} + \frac{\sqrt{m(\mathbf{x})}}{\langle \sqrt{m} \rangle} \mathbf{v}_{fBm}(\mathbf{x})$$

2dim multifractality: random multiplicative cascade

$$m_{i+1}(\mathbf{x}) = q_{i+1}(\mathbf{x}) m_i(\mathbf{x})$$

L,μ

Mesoscale wind power generation

$$\mathbf{v}(\mathbf{x}) = \mathbf{v}_{typ} + \frac{\sqrt{m(\mathbf{x})}}{\langle \sqrt{m} \rangle} \mathbf{v}_{fBm}(\mathbf{x})$$

$$v(\mathbf{x}) \rightarrow G_n^W(t)$$

$$\langle G_n^W \rangle = \langle L_n \rangle$$

Impact of synthetic climate change

$L \; [\mathrm{km}]$	300	600	1200
$E^B \left[\langle L \rangle \right]$	0.0701 ± 0.0018	0.073 ± 0.003	0.086 ± 0.004
$\mathcal{K}^B\left[\langle L \rangle\right]$	0.362 ± 0.007	0.396 ± 0.013	0.471 ± 0.010
\mathcal{K}^T [GW]	160.0 ± 1.1	233.2 ± 1.1	334 ± 2
$\operatorname{Var}(\mathbf{B}) \left[\left< L \right>^2 / 100 \right]$	0.240 ± 0.005	0.275 ± 0.004	0.387 ± 0.007
$\operatorname{Var}(\mathbf{P}) \left[\langle L \rangle^2 / 100 \right]$	0.197 ± 0.0019	0.401 ± 0.002	0.719 ± 0.011
$\operatorname{Cov}(\mathbf{B},\mathbf{P}) \left[\left\langle L\right\rangle^2/100\right]$	0.0115 ± 0.0007	0.0185 ± 0.0007	0.0372 ± 0.0014
LCOE [€/MWh]	7.85 ± 0.19	9.1 ± 0.2	11.3 ± 0.7
$\sigma_0 [v_{\mathrm{typ}}]$	0.1	0.2	0.3
$\sigma_0 [v_{\text{typ}}]$ $E^B [\langle L \rangle]$	$0.1 \\ 0.069 \pm 0.002$	$0.2 \\ 0.073 \pm 0.003$	0.3 0.079 ± 0.002
$ \begin{array}{c} \sigma_0 [v_{\text{typ}}] \\ E^B [\langle L \rangle] \\ \mathcal{K}^B [\langle L \rangle] \end{array} $	0.1 0.069 ± 0.002 0.357 ± 0.006	0.2 0.073 ± 0.003 0.396 ± 0.013	$\begin{array}{c} 0.3 \\ 0.079 \pm 0.002 \\ 0.414 \pm 0.015 \end{array}$
$ \begin{array}{c c} \sigma_0 & [v_{\rm typ}] \\ E^B & [\langle L \rangle] \\ \mathcal{K}^B & [\langle L \rangle] \\ \mathcal{K}^T & [{\rm GW}] \end{array} $	0.1 0.069 ± 0.002 0.357 ± 0.006 151.8 ± 0.9	0.2 0.073 ± 0.003 0.396 ± 0.013 233.2 ± 1.1	$\begin{array}{c} 0.3 \\ 0.079 \pm 0.002 \\ 0.414 \pm 0.015 \\ 278.1 \pm 1.5 \end{array}$
$ \begin{array}{c c} \sigma_0 & [v_{typ}] \\ E^B & [\langle L \rangle] \\ \mathcal{K}^B & [\langle L \rangle] \\ \mathcal{K}^T & [\mathrm{GW}] \\ \mathrm{Var}(\mathbf{B}) & [\langle L \rangle^2 / 100] \end{array} $	$\begin{array}{c} 0.1 \\ 0.069 \pm 0.002 \\ 0.357 \pm 0.006 \\ 151.8 \pm 0.9 \\ 0.238 \pm 0.008 \end{array}$	$\begin{array}{c} 0.2\\ 0.073 \pm 0.003\\ 0.396 \pm 0.013\\ 233.2 \pm 1.1\\ 0.275 \pm 0.004 \end{array}$	$\begin{array}{c} 0.3\\ 0.079 \pm 0.002\\ 0.414 \pm 0.015\\ 278.1 \pm 1.5\\ 0.302 \pm 0.004 \end{array}$
$ \begin{array}{c c} \sigma_0 & [v_{typ}] \\ \hline E^B & [\langle L \rangle] \\ \mathcal{K}^B & [\langle L \rangle] \\ \mathcal{K}^T & [\mathrm{GW}] \\ \mathrm{Var}(\mathbf{B}) & [\langle L \rangle^2 / 100] \\ \mathrm{Var}(\mathbf{P}) & [\langle L \rangle^2 / 100] \end{array} $	$\begin{array}{c} 0.1\\ 0.069 \pm 0.002\\ 0.357 \pm 0.006\\ 151.8 \pm 0.9\\ 0.238 \pm 0.008\\ 0.1727 \pm 0.0018 \end{array}$	$\begin{array}{c} 0.2\\ 0.073 \pm 0.003\\ 0.396 \pm 0.013\\ 233.2 \pm 1.1\\ 0.275 \pm 0.004\\ 0.401 \pm 0.002 \end{array}$	$\begin{array}{c} 0.3\\ 0.079 \pm 0.002\\ 0.414 \pm 0.015\\ 278.1 \pm 1.5\\ 0.302 \pm 0.004\\ 0.591 \pm 0.007\end{array}$
$ \begin{array}{c c} \sigma_0 & [v_{typ}] \\ \hline E^B & [\langle L \rangle] \\ \mathcal{K}^B & [\langle L \rangle] \\ \mathcal{K}^T & [GW] \\ Var(\mathbf{B}) & [\langle L \rangle^2 / 100] \\ Var(\mathbf{P}) & [\langle L \rangle^2 / 100] \\ Cov(\mathbf{B}, \mathbf{P}) & [\langle L \rangle^2 / 100] \end{array} $	$\begin{array}{c} 0.1\\ 0.069 \pm 0.002\\ 0.357 \pm 0.006\\ 151.8 \pm 0.9\\ 0.238 \pm 0.008\\ 0.1727 \pm 0.0018\\ 0.0123 \pm 0.0008\end{array}$	$\begin{array}{c} 0.2\\ 0.073 \pm 0.003\\ 0.396 \pm 0.013\\ 233.2 \pm 1.1\\ 0.275 \pm 0.004\\ 0.401 \pm 0.002\\ 0.0185 \pm 0.0007 \end{array}$	$\begin{array}{c} 0.3\\ 0.079 \pm 0.002\\ 0.414 \pm 0.015\\ 278.1 \pm 1.5\\ 0.302 \pm 0.004\\ 0.591 \pm 0.007\\ 0.0236 \pm 0.0010 \end{array}$

Impact of synthetic climate change

μ	0.18	0.36	0.54
$E^B \left[\langle L \rangle \right]$	0.0745 ± 0.003	0.073 ± 0.003	0.075 ± 0.003
$\mathcal{K}^B \left[\langle L \rangle \right]$	0.405 ± 0.006	0.396 ± 0.013	0.396 ± 0.004
\mathcal{K}^T [GW]	238.5 ± 0.8	233.2 ± 1.1	224.6 ± 1.6
$\operatorname{Var}(\mathbf{B}) \left[\left\langle L \right\rangle^2 / 100 \right]$	0.280 ± 0.005	0.275 ± 0.004	0.272 ± 0.007
$\operatorname{Var}(\mathbf{P}) \left[\left\langle L \right\rangle^2 / 100 \right]$	0.422 ± 0.005	0.401 ± 0.002	0.382 ± 0.003
$\operatorname{Cov}(\mathbf{B},\mathbf{P}) \left[\langle L \rangle^2 / 100 \right]$	0.0193 ± 0.0011	0.0185 ± 0.0007	0.0177 ± 0.0017
LCOE [€/MWh]	9.2 ± 0.4	9.1 ± 0.2	9.0 ± 0.3
Н	1/3	1/2	2/3
$E^B \left[\langle L \rangle \right]$	0.075 ± 0.003	0.073 ± 0.003	0.0736 ± 0.0014
$\mathcal{K}^B \left[\langle L \rangle \right]$	0.402 ± 0.010	0.394 ± 0.007	0.389 ± 0.013
\mathcal{K}^T [GW]	243 ± 2	233 ± 2	224.4 ± 1.9
$\operatorname{Var}(\mathbf{B}) \left[\langle L \rangle^2 / 100 \right]$	0.283 ± 0.006	0.276 ± 0.007	0.273 ± 0.006
$\operatorname{Var}(\mathbf{P}) \left[\left\langle L \right\rangle^2 / 100 \right]$	0.432 ± 0.007	0.400 ± 0.008	0.368 ± 0.005
$\operatorname{Cov}(\mathbf{B},\mathbf{P}) \left[\langle L \rangle^2 / 100 \right]$	0.0194 ± 0.0010	0.0177 ± 0.0009	0.0185 ± 0.0016
LCOE [€/MWh]	9.3 ± 0.2	9.0 ± 0.3	8.85 ± 0.11

"engineering" challenge: electricity → "smart" energy system

cross-sector coupling

AARHUS UNIVERSITY DEPARTMENT OF ENGINEERING

Synergies of sector coupling and transmission extension in a cost-optimised, highly renewable European energy system

T. Brown^{a,*}, D. Schlachtberger^a, A. Kies^a, S. Schramm^a, M. Greiner^b

Scenario All-Flex-Central with optimal transmission

Energy

"Energiewende": kickoff to the second half

Figure 1. RE-Invest will combine the Smart Energy Systems cross-sectoral approach (right side) at Aalborg University with the crossborder approach (left side) and tools developed by Aarhus University at the European scale. This will lead to a **novel twodimensional interconnectivity approach** for the design of robust and cost-effective investment strategies towards a sustainable energy system.

AARHUS UNIVERSITY DEPARTMENT OF ENGINEERING

Fundamental Research on Renewable Energy Systems

at the interface between engineering + physics + mathematics + economics

Gorm Andresen + Mahdi Abkar + Martin Greiner (greiner@eng.au.dk)

(1) Highly Renewable Energy Networks

(2) Complex Networks

FunRes

(3) Wind-farm Modeling + Optimization

(4) Turbulence

B Carlsen (Master16) (Master16) A Huche **E** Thorgersen (Master16) **M** Therkildsen (Master15) **P** Nybroe (Master15) **J** Otten (Master15) **J** Bierre **J Herp** (Master13) (Assist Prof) **U** Poulsen

M Schäfer D Schlachtber M Victoria	(Carlsb ger	erg PostDoc) (PostDoc) (PostDoc)
M Dahl	(Master	15 + PhD18)
B Tranberg	(Master	(15 + PhD19)
n Liu S Kozarcanin	(Master	10 + PhD19 15 + PhD19
K Zhu	(IVIAStel	(PhD20)
S Siggaard		(Master17)
M Kofoed		(Master16)
L Schwenk_Ne	ebbe	(Master16)
M Janum		(Master16)
M Raunbak		(Master16)
C Poulsen		(Master16)
N Skou-Nielse	n	(Master15)
k Halm		(Iviaster15)
F Frikson		(Master15)
Δ Thomsen		(Master14)
B Sairanen		(Master14)
T Jensen		(Master13)
T Zeyer		(Master13)
A Søndergaar	d	(Master13)
R Rodriguez		(PhD14)
M Rasmussen		(PostDoc11)

D Heide et.al.: Seasonable optimal mix of wind and solar power in a future, highly renewable Europe, Renewable Energy 35 (2010) 2483-89. D Heide et.al.: Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation,

Renewable Energy 36 (2011) 2515-23.

MG Rasmussen et.al.: Storage and balancing synergies in a fully or highly renewable pan-European power system, Energy Policy 51 (2012) 642-51. RA Rodriguez et.al.: Transmission needs across a fully renewable European power system, Renewable Energy 63 (2014) 467-76. S Becker et.al.: Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply, Energy 64 (2014) 404-18. TV Jensen et.al.: Emergence of a phase transition for the required amount of storage in highly renewable electricity systems, EPJ ST 223 (2014) 2475-81. S Becker et.al.: Features of a fully renewable US electricity system – optimized mixes of wind and solar PV and transmission grid extensions, Energy 72 (2014) 443-58.

GB Andresen et.al.: The potential for arbitrage of wind and solar surplus power in Denmark, Energy 76 (2014) 49-58. S Becker et.al.: Renwable build-up pathways for the US: Generation costs are not system costs, Energy 81 (2015) 437-45. RA Rodriguez et.al.: Cost-optimal design of a simplified, highly renewable pan-European electricity system, Energy 83 (2015) 658-68. RA Rodriguez et.al.: Localized vs. synchronized exports across a highly renewable pan-European transmission network,

Energy, Sustainability & Society 5 (2015) 21.

GB Andresen et.al.: Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis, Energy 93 (2015) 1074-88.

B Tranberg et.al.: Power flow tracing in a simplified highly renewable European electricity network, New J. Physics 17 (2015) 105002. D Schlachtberger et.al.: Backup flexibility classes in renewable electricity systems, Energy Conversion and Management 125 (2016) 336-46. E Eriksen et.al.: Optimal heterogeneity of a simplified highly renewable pan-European electricity system, Energy 133 (2017) 913-28. D Schlachtberger et.al.: The benefits of cooperation in a highy renewable European electricity network, Energy 134 (2017) 469-81. M Schäfer et.al.: Decompositions of injection patterns for nodal flow allocation in renewable electricity networks, Eur. Phys. J. B 90 (2017) 144. M Schäfer et.al.: Scaling of transmission capacities in coarse-grained renewable electricity networks, Europhysics Letters 119 (2017) 38004. M Raunbak et.al.: Principal mismatch patterns across a simplified highly renewable European electricity network, Energies 10 (2017)1934. J Hörsch et.al.: Flow tracing as a tool set for the analysis of networked large-scale renewable electricity systems, Int. J. Electrical Power and Energy Systems 96 (2018) 390-97.

H Liu et.al.: Cost-optimal design of a simplified highly renewable Chinese electricty network, Energy (2018) accepted.
 B Tranberg et.al.: Flow-based nodal cost allocation in a heterogeneous highly renewable European electricity system, Energy (2017) submitted.
 T Brown et.al.: Synergies of sector coupling and transmission extension in a cost-optimised highly renewable European energy system, Energy (2018) submitted.

Research-driven Teaching (ENG + PHY)

Regular: Fluid Dynamics (5 ECTS), Wind Energy (5 ECTS).

Occasional: Advanced Fluid Dynamics (5 ECTS), Turbulence (5 ECTS), Complex Networks (5 ECTS), Complex Renewable Energy Networks (5 ECTS).

Fundamental Research on Renewable Energy Systems

at the interface between engineering + physics + mathematics + economics

Gorm Andresen + Mahdi Abkar + Martin Greiner (greiner@eng.au.dk)

(1) Highly Renewable Energy Networks

(2) Complex Networks

FunRes

(3) Wind-farm Modeling + Optimization

(4) Turbulence

B Carlsen (Master16) (Master16) A Huche **E** Thorgersen (Master16) **M** Therkildsen (Master15) **P** Nybroe (Master15) **J** Otten (Master15) **J** Bierre **J Herp** (Master13) (Assist Prof) **U** Poulsen

M Schäfer D Schlachtber M Victoria	(Carlsb ger	erg PostDoc) (PostDoc) (PostDoc)
M Dahl	(Master	15 + PhD18)
B Tranberg	(Master	(15 + PhD19)
n Liu S Kozarcanin	(Master	10 + PhD19 15 + PhD19
K Zhu	(IVIAStel	(PhD20)
S Siggaard		(Master17)
M Kofoed		(Master16)
L Schwenk_Ne	ebbe	(Master16)
M Janum		(Master16)
M Raunbak		(Master16)
C Poulsen		(Master16)
N Skou-Nielse	n	(Master15)
k Halm		(Iviaster15)
F Frikson		(Master15)
Δ Thomsen		(Master14)
B Sairanen		(Master14)
T Jensen		(Master13)
T Zeyer		(Master13)
A Søndergaar	d	(Master13)
R Rodriguez		(PhD14)
M Rasmussen		(PostDoc11)

Miscellaneous Material

What about synergies: balancing + storage?

$$G_n^R(t) - L_n(t) = B_n(t) + \Delta S_n(t) + P_n(t)$$

$$G_n^B(t) = \left(B_n(t)\right)_-$$

"hydro/bio" balancing (150 TWh)

+ 6h "battery" storage+ seasonal H2 storage

(2.2 TWh, η=1.0) (25 TWh, η=0.6)

6h "battery" storage(2.2 TWh, η=1.0)+ seasonal H2 storage(25 TWh, η=0.6)+ "hydro/bio" balancing(150 TWh)

More balancing/storage synergies: When is G^B(t)=0 ?

6h "battery" storage(2.2 TWh, η=1.0)+ seasonal H2 storage(25 TWh, η=0.6)+ "hydro/bio" balancing(150 TWh)

