Ultracold Fermions in an Optical Box

Prof. Nir Navon

Department of Physics, Yale University

For the past two decades harmonically trapped ultracold atomic gases have been used with great success to study fundamental many-body physics in flexible experimental settings. However, the resulting gas density inhomogeneity in those traps makes it challenging to study paradigmatic uniform-system physics (such as critical behavior near phase transitions) or complex quantum dynamics.

The realization of homogeneous quantum gases trapped in optical boxes has marked a milestone in the quantum simulation program with ultracold atoms [1]. These textbook systems have proved to be a powerful playground by simplifying the interpretation of experimental measurements, by making more direct connections to theories of the many-body problem that generally rely on the translational symmetry of the system, and by altogether enabling previously inaccessible experiments.

I will present a set of studies with ultracold fermions trapped in a box of light. This platform is particularly suitable to study problems of Fermi-system stability, of which I will discuss two cases: the spin-1/2 Fermi gas with repulsive contact interactions [2], and the three-component Fermi gas with spin-population imbalance [3]. I will also show our recent observation of the quantum Joule-Thomson effect for fermions [4] and the realization of strongly driven Fermi polarons [5]. These studies led to surprising results, highlighting how spatial homogeneity not only simplifies the connection between experiments and theory, but can also unveil unexpected outcomes.

[1] N. Navon, R.P. Smith, Z. Hadzibabic, Nature Phys. 17, 1334 (2021)
[2] Y. Ji et al., Phys. Lev. Lett 129, 203402 (2022)
[3] G.L. Schumacher et al., arXiv:2301.02237
[4] Y. Ji et al., arXiv:2305.16320
[5] F.J. Vivanco et al., arXiv:2308.05746