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Kurzreferat

Unter Verwendung von 126 fb−1 an
√
s = 13 TeV Proton-Proton-Kollisionen, welche

vom ATLAS-Detektor in Run 2 gesammelt wurden, wird nach nicht-resonanten
Higgs-Boson-Paaren gesucht, die durch Vektorboson-Fusion (VBF) erzeugten wur-
den und die in den bb̄bb̄ Endzustand zerfallen. Die vom Standardmodel vorherge-
sagte Produktion von Higgs-Boson-Paaren ist bisher nicht experimentell belegt. Die
beobachtete (erwartete) Ausschlussgrenze auf den Produktions-Wirkungsquerschnitt
des Standardmodells entspricht dem 132,3 (132,8) -fachen der Vorhersage des Stan-
dardmodell-Wirkungsquerschnitts; mit einem Konfidenzniveau von 95%. Durch Op-
timierung der Analysestrategie wird die bisherige Grenze auf den Standardmodell
HH → bb̄bb̄ VBF-Wirkungsquerschnitt um einen Faktor sechs verbessert. Darüber
hinaus werden nicht mit dem Standardmodell konforme Kopplungen untersucht.
Dadurch wird κ2V auf das beobachtete Intervall [0,09, 1,99] eingegrenzt. Die voll-
ständig datengesteuerte QCD-Untergrundabschätzung mittels neuronaler Netze hat
einen großen Einfluss auf das verbesserte Ergebnis und wird in dieser Arbeit aus-
führlich diskutiert. Zusätzlich werden Projektionsstudien für die zukünftigen ex-
perimentellen Szenarien, HL-LHC und FCC-hh, durchgeführt. Hierfür wird ein
vereinfachter Ansatz mittels Monte-Carlo-generierten Signal- und Untergrunddaten
gewählt. Das Ergebnis der Studie ist eine erwartete Ausschlussgrenze auf den
Standardmodell-Wirkungsquerschnitt, die im Falle des HL-LHC das 248-fache der
Vorhersage des Standardmodells und für das FCC-Szenario das 18-fache des Stan-
dardmodells betragen; ebenfalls mit einem Konfidenzniveau von 95%.

Abstract

Non-resonant Higgs boson pairs produced via Vector Boson Fusion (VBF) and decay-
ing to bb̄bb̄ final state are searched for using 126 fb−1 of

√
s = 13 TeV proton-proton

collisions data collected by the ATLAS detector in Run 2. There is no evidence for
the Standard Model production of Higgs boson pairs. The observed (expected) 95%
CL exclusion limit on the Standard Model production cross-section is set at 132.3
(132.8) times the Standard Model cross-section prediction. The analysis strategy is
optimised so that the previous limit set on the Standard Model HH → bb̄bb̄ VBF
cross-section is improved by a factor of 6. Non Standard Model couplings are tested
as well, leading to the observed κ2V constrained interval of [0.09, 1.99]. The fully
data-driven neural network QCD background estimation has a considerable impact
on the improved result and is discussed in detail in this thesis. Additionally, pro-
jection studies for the future experimental scenarios: the HL-LHC and the FCC-hh,
are performed using a simplified approach with Monte Carlo generated signal and
background samples. The study results in a 95% CL expected limit on the Standard
Model cross-section reaching 248 times the Standard Model cross-section prediction
for for the HL-LHC and 18 times the Standard Model cross-section prediction for
the FCC scenario.
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Chapter 1

Introduction

The missing piece of the Standard Model, a particle responsible for the masses of
other fundamental particles and its own, was experimentally confirmed in 2012 with
the discovery of the Higgs boson by the ATLAS [1] and the CMS [2] collaborations.
Since then, the properties of the new particle have been extensively studied, and
many have been measured. Nevertheless, the exact shape of the Higgs potential at
high energies is not yet known, while it hides important insights, for example, on the
matter of the universe stability. The Higgs potential is studied through Higgs boson
pair production. The measurement of the Higgs couplings: the self-coupling (from
the gluon-gluon di-Higgs production) or the quartic coupling between two vector
bosons and two Higgs bosons (from the Vector Boson Fusion di-Higgs production)
is possible. The non-SM values of these couplings would hint at the existence of the
new physics. This thesis explores the VBF di-Higgs production using Run 2 proton-
proton collision data collected by the ATLAS detector with the total integrated
luminosity of 126 fb−1. The Higgs bosons decay to various final states. The final
state with the highest branching fraction, namely bb̄bb̄, is studied here.

The analysis presented here is not the first ATLAS attempt to search for the VBF
di-Higgs production. However, compared to the previous results [3], the methods are
greatly improved, both in the reconstruction phase, the new and better performing
Particle Flow jet objects and the DL1r flavour tagging algorithm are used, as well
as in the analysis techniques. A new Higgs pairing algorithm is proposed, and
the fully data-driven neural network background estimation is introduced. The
background estimation is based on the assumption of the kinematic similarity of
the 2 b-tagged events to the 4 b-tagged events and the possibility of removing any
kinematic differences by neural network reweighting in the control regions. The
derived weights are applied to the signal region 2-tagged events constituting the
predicted 4b background. Additionally, for the amelioration of the overall signal
significance, event categorization in |∆ηHH | variable is applied to the signal region
events.

Given the limited amount of statistics that are available in ATLAS and the lack of
possibility to precisely test Higgs self and quartic couplings, the future experimental
scenarios, the HL-LHC [4], and the FCC-hh [5], are considered in the complementary
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Chapter 1 – Introduction

projection studies. The Standard Model VBF Higgs pair production is studied using
the Monte Carlo generated signal and background samples. The study is simplified,
but it stretches beyond the generator-level study by introducing the calorimeter
emulation.

The document’s structure is the following: the theory of the Standard Model and
Higgs pair production are explained in Chapter 2. Chapter 3 describes the basics of
the LHC and the ATLAS detector operation. Machine Learning concepts, which are
applied in the analysis, especially the neural networks, are discussed in Chapter 4.
Chapter 5 introduces the reconstruction of the b-tagged jets in ATLAS. The newest
b-tagging algorithm is introduced, including an evaluation of the flavour tagging
scale factors. Chapter 6 presents the datasets used in the analysis and continues
with the analysis strategy and optimizations: triggering and trigger calibrations,
selection of the Higgs Candidates and VBF events, the Higgs Candidates pairing,
definitions of the top quark veto variable, and the analysis signal and control regions.
The data-driven neural network background estimation is derived in Chapter 7. The
motivation for this sophisticated method, as well as its practical implementation in
the analysis, is presented. Background estimation performance, together with the
derivation of the statistical and systematic uncertainties, and the background esti-
mate validation, are described in detail. The statistical analysis, the signal modelling
uncertainties and the results are presented in Chapter 8. Chapter 9 is dedicated to
the projection studies for future experiments. It presents the methodology, includ-
ing the sample generation, the calorimeter emulation and the event selection. The
chapter continues with the results from the signal significance studies and presents
the expected 95% CL upper limits on the SM di-Higgs cross-section for the HL-LHC
and the FCC-hh scenarios. The conclusion is presented in Chapter 10.
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Author’s Contribution

In the HH → bb̄bb̄ ATLAS analysis team, I was one of the main contributors in the
VBF production mode studies. My main responsibility was the implementation and
the validation of the VBF background estimation. I implemented neural network
reweighting to the VBF channel, selected datasets for training and validation, and
studied the optimal set of input variables and the network architecture. I integrated
the procedure with the ggF part of the analysis and studied different methods of
evaluating background shape systematics for the VBF. I evaluated the background
estimate performance in the control regions and validated the VBF background
estimate using the 3b1f method with downsampling. I also contributed to the VBF
channel selection steps optimization and the Higgs Candidates pairing selection. I
documented the VBF background estimate sections in the Internal Note [6]. The
analysis Conference Proceeding for the combined ggF and VBF non-resonant search
is available in [7].

I also performed the projection studies outside of the ATLAS analysis team. I
generated signal and background samples, implemented calorimeter emulation and
b-tagging, and performed the VBF analysis.

As part of my PhD, I spent one year at CERN designing and implementing the Cen-
tral Online Monitoring Application for the FastTracKer ATLAS detector subsystem,
which constituted my ATLAS qualification task. The online monitoring allowed for
the direct communication of the FTK hardware components, replacing an older, less
efficient tool. The publication summarizing the FTK system, including the Online
Monitoring, can be found in [8].
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Chapter 2

Theory

The chapter introduces the theoretical concepts explored experimentally in this the-
sis. The Standard Model (SM) is introduced first, followed by the Higgs pair pro-
duction process both in the context of verifying the SM predictions and new physics
searches. The challenges related to the estimation of the underlying background are
also discussed.

2.1 The Standard Model

The Standard Model is one of the two greatest existing theories that describe the
fundamental building blocks of nature1. In the following, the constituent pieces of
the SM are described, with emphasis on the Higgs Mechanism. This chapter closely
follows [9].

2.1.1 Structure of the Standard Model

Figure 2.1 lists the constituents of the Standard Model. The SM consists of two
groups of fundamental particles: fermions, which follow the Fermi-Dirac statistics
and therefore have the half-integer spin, and bosons, which obey the Bose-Einstein
statistics instead, hence have an integer spin 0 or 1.

The first group are the particles (and anti-particles) that make up matter; quarks -
stable matter, and leptons - unstable matter, in three generations of increasing mass.
Additionally, each lepton has an accompanying neutrino partner. In the second
group, bosons with spin-1 are responsible for carrying the fundamental forces that
govern the interactions between particles. W and Z bosons carry the weak force,
photon, γ, carries the electromagnetic force while gluon carries the strong force.
Some of these particles are massive thanks to the spin-0 Higgs boson. Note that the
last fundamental force, gravity, is not included in the SM. Among a few theoretical

1The second being the General Relativity and its description of gravity.

5



Chapter 2 – Theory

Figure 2.1: Particles constituting the Standard Model. Both fermions (quarks and
leptons), as well as bosons, are shown. The description follows in the
text. Figure taken from [10].

reasons, gravity’s very different operational scale makes it impossible to directly
include it in this framework.

Formally, the SM belongs to the quantum gauge field theories. It means that
particles are excitations of the quantum field and are defined by sets of quantum
numbers, while the field itself is described by a Lagrangian density, L. The field
must be invariant under the local transformations of the constituent gauge groups:
SU(3) × SU(2) × U(1). The invariance condition is required for the theory renor-
malizability which is needed to make meaningful predictions at higher energies. The
constituent SU(3) is responsible for the strong force binding the atomic nuclei to-
gether, more details of QCD are discussed in Section 2.1.2. The SU(2) × U(1) is
responsible for the unified electroweak force, with more details of the unification
mechanism discussed in Section 2.1.3. To preserve electroweak invariance, all gauge
bosons should be massless. However, W and Z are not massless. They have to
be massive as weak force is a short-ranged interaction. In 1964, the publications
by Brout and Englert [11] and, separately, Higgs [12], explained how this could be
possible. They introduced the mechanism of spontaneous electroweak symmetry
breaking that results in W and Z bosons acquiring mass. This is the famous Higgs
mechanism discussed in Section 2.1.4.
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2.1.2 QCD

The strong interactions are described by the Quantum Chromodynamics (QCD)
gauge theory. In experiments, quarks never appear alone, but only as hadrons, the
bound states of quarks. These can either have two constituents: quark and anti-
quark, mesons, or three: combined quarks and antiquarks, baryons. In order to
preserve the Pauli exclusion principle in the baryonic case, the colour charge was
introduced. Each quark has one of the RGB (red, green, blue) colours, or anti-
colours, while the observable states must be colourless. This implies the lack of
existence of free quarks: the quark confinement. However, at very high energies
quarks may exist on their own, leading to the phenomenon of asymptotic freedom.

The theory is associated with the SU(3)C symmetry group where the conserved
quantity under transformations is the colour charge C. The compact form of the
QCD Lagrangian reads:

L = −1

4
Ga
µνG

µν
a +

∑

f

q̄f (iγµD
µ −mf ) qf , (2.1)

where Gµ
a is the gluon field with a = 1, .., 8 as there are 8 possible gluons, qf = qTf =

(q1
f , q

2
f , q

3
f ) is the quark triplet, with one of the six flavours (u, d, c, s, b, t) and each

having one of the three colours. mf is mass of the quark and Dµ is the covariant
derivative:

Dµ = ∂µ − igs
λa
2
Gµ
a(x) = ∂µ − igs

λa
2
Gµ
a(x). (2.2)

gs is the strong coupling, λa are generators associated with the symmetry group:
the Gell-Mann 3× 3 matrices.

The unitary transformation of the group is defined as:

U = exp
(
igs
λa
2
θa
)

(2.3)

where θa is a parameter. When U is applied to quarks it results in:

qf → (qf )
′ = Uqf , (2.4)

to gluons:

Gµ
a(x)→ (Gµ

a(x))′ = UGµ
a(x)U † +

i

gs
(∂µU)U †, (2.5)

and Dµ transforms as:
(Dµ)′ = UDµU †. (2.6)

Evaluating Lagrangian with definition of Dµ, we get:

LQCD = −1

4
Ga
µνG

µν
a +

∑

f

(q̄f iγµ∂
µqf + gsq̄fγµG

µqf −mf q̄fqf ) , (2.7)

7
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Figure 2.2: QCD vertices.

with gluon fields Ga
µν expanding as:

Ga
µν = ∂µG

a
ν − ∂νGa

µ − fabcGb
µG

c
ν , (2.8)

where fabc are the symmetry group structure constants. When Eq. 2.8 is plugged
into Eq. 2.7, the resulting Lagrangian gives the three vertices of QCD, shown
in Figure 2.2. These are the gluon-quark-quark (quarks are of the same flavour)
interaction and the trilinear and quartic gluon self-interactions.

2.1.3 Electroweak Unification

The observed charged currents are only possible withW bosons carrying the electric
charge, meaning W ’s must also interact electromagnetically with photons. Further-
more, the cross-section of the e−e+ → W+W− process was theoretically predicted
as divergent. The Glashow-Weinberg-Salam unification mechanism introduced the
fourth boson, the Z boson, in order to make this cross-section finite.

The basis of this mechanism is that under transformations of SU(2), only the left-
handed isospin, I, is conserved. It acts on the left-handed doublets of quark and
lepton fields, which for the first generation of both are:

ψ1 = lL =

(
νe,L
eL

)
,

ψ1 = qL =

(
uL
dL

)
. (2.9)

The right-handed fields exist but are singlets, for quarks:

ψ2 = qR,1 = uR,

ψ3 = qR,2 = dR. (2.10)

8



Chapter 2 – Theory

The symmetry group associated with the electromagnetic interaction, U(1), con-
serves the weak hypercharge quantity under the transformation. The hypercharge,
Y , is defined as:

Y = 2(Q− I3), (2.11)

where Q is the electric charge and I3 is the third component of the isospin I.

Using the quark doublet and two quark singlets2, the Lagrangian is:

L = −1

4
W k
µνW

µν
k +

3∑

j=1

iψ̄j(x)γµDµψj(x), (2.12)

where Dµ is the covariant derivative defined as:

Dµ = ∂µ + ig
σi
2
W i
µ + ig′

Y

2
Bµ, (2.13)

in which σi are the three Pauli spin matrices, g and g′ are the coupling constants.
The four gauge bosons are introduced: three W i

µ associated with the weak isospin I
and one Bµ associated with hypercharge Y .

The unitary transformation that leaves the Lagrangian invariant acts on the left-
handed doublet only. It reads:

UL = exp
(
i
σi
2
αi
)
. (2.14)

The resulting global transformations of the fields become:

ψ1(x)→ (ψ1(x))′ = exp (iy1β)ULψ1(x),

ψ2(x)→ (ψ2(x))′ = exp (iy2β)ψ2(x),

ψ3(x)→ (ψ3(x))′ = exp (iy3β)ψ3(x). (2.15)

Finally, the physical, observed gauge bosons W+
µ , W−

µ , Zµ and the photon field Aµ
are defined as:

W±
µ =

1√
2

(W 1
µ ±W 2

µ) (2.16)

and (
Aµ
Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ

W 3
µ

)
, (2.17)

where θW is the weak mixing angle. The introduced gauge bosons solve the e−e+ →
W+W− cross-section issue, with the Z0 present, the cross-section is finite for a range
of centre of mass energies.

However, the unification theory introduces all four bosons as massless, while we
know it is not the case. The Higgs mechanism is needed to explain how W and Z
bosons acquire mass.

2Same could be done with lepton doublet and singlets.
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2.1.4 The Higgs Mechanism

In order for W and Z bosons to be massive, it is required that the local symmetry
is spontaneously broken. For this purpose, the additional massive scalar boson, the
Higgs boson, is introduced.

The local symmetry to be broken is the SU(2)L × U(1)Y symmetry. We first write
the SM electroweak Lagrangian for the gauge bosons in terms of bosons W i and B,
which are assumed massless:

L = −1

4
W iµνW i

µν −
1

4
BµνBi

µν . (2.18)

To give mass to those bosons, an introduction of the two complex scalar fields is
needed; a doublet invariant under SU(2)L reads:

Φ(x) =

(
φ+(x)
φ0(x)

)
, (2.19)

where φ+(x) represents a positively charged particle and φ0(x) represents a neutral
particle.

The potential of this doublet, the Higgs potential is given as:

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (2.20)

where µ2 and λ are, for now, just constants.

The potential is then incorporated into the electroweak Lagrangian from Eq. 2.18
resulting in:

LH = (DµΦ)†DµΦ− V (Φ), (2.21)

where Dµ is a covariant derivative as:

Dµ =

(
∂µ − igσi

2
W µ
i − ig′

Y

2
Bµ

)
, (2.22)

with g and g′ being the electroweak coupling constants and σi the 2× 2 Pauli spin
matrices.

Let’s now look at the illustration of the Higgs potential in Figure 2.3. In both cases
λ is positive, but µ2 is either positive (on the left), or negative (on the right). In
the negative case, the potential has an infinite number of non-zero minima which
are given by:

|Φ|2 = Φ†Φ =

√
−µ

2

2λ
. (2.23)

When the field is at the position of |Φ|2 = 0, everything is symmetric. The core of
the spontaneous symmetry breaking is the transition of the field from |Φ|2 = 0 to

10
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Figure 2.3: Schematic of the Higgs potential for positive λ and two cases of µ2.
Notice the red dot, on the left, the field is at the equilibrium position,
while on the right, at the minimum; the field is at the vacuum expecta-
tion value and the electroweak symmetry is broken. Figure taken from
[13].

one of the minima states at |Φ|2 =
√
−µ2

2λ
. As a result of this transition, some of the

particles become massive. The reached minimum is called the vacuum expectation
value, v or VEV.

In order to show that W and Z are massive, while the photon remains massless, we
choose the particular field Φ, written as:

Φ(x) =
1√
2

(
0

H(x) + v

)
, (2.24)

where H(x) is the scalar field associated with the Higgs boson and v =
√
−µ2

λ
.

We now plug Eq. 2.24 into the kinetic part of the Higgs Lagrangian (Eq. 2.21):

(DµΦ)†DµΦ =
1

2
∂µH∂µH

+(v+H)2

(
g2

8
(W (1)

µ + iW (2)
µ )(W (1)µ − iW (2)µ) +

1

8
(gW (3)

µ − g′Bµ)(gW (3)µ + g′Bµ)

)
.

(2.25)

The W boson fields, W (1) and W (2) are included in the equation, while the Z boson
field, together with the massless photon field, are mixtures of the W (3) and B fields,

11
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Figure 2.4: Bosonic interactions of the Higgs boson.

see Eq. 2.17. Now, skipping the photon field and using the potential term with the
field Φ defined in Eq. 2.24, we finally arrive at the full Lagrangian as:

LΦ =
1

2
∂µH∂µH+(v+H)2

(
g2

4
W †
µW

µ +
g2

8 cos2(θW )
ZµZ

µ

)
−µ2H2−λvH3− 1

4
λH4.

(2.26)

As can be inferred from the equation, a number of interactions are possible between
W , Z and H bosons, namely, the trilinear and quartic Higgs self-interactions, and
the VVH and VVHH interactions between the gauge bosons and Higgs. Figure
2.4 illustrates these four Higgs vertices. After recognizing the mass terms in the
Lagrangian, we finally obtain:

MW =
vg

2
, (2.27)

MZ =
vg

2 cos θW
, (2.28)

MH =
√
−2µ2 =

√
2λv, (2.29)

substituting µ2 from the definition of v.

All these values, MW = 80.379 ± 0.012 GeV, MZ = 91.1876 ± 0.0021 GeV and
MH = 125.10 ± 0.14 GeV, [14], have been measured in experiments. It is now
possible to explore the value of the constant λ.

The last three terms of the Lagrangian in Eq. 2.26 are the Higgs potential. The
term proportional to H2 is the Higgs mass term, H3 is responsible for the Higgs

12
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trilinear self-interaction and H4 is the quartic self-interaction. For the Standard
Model, we end up with the following equality:

V (H) = −λv22H2 − λvH3 − 1

4
λH4

= −1

2
m2
HH

2 − λSMHHHvH3 − λSMHHHHH4. (2.30)

Therefore, λ = λSMHHH is the Higgs trilinear self-coupling. Using the H2 term and
the value of v = 246 GeV in the SM, we get:

λSMHHH =
m2
H

2v2
≈ 0.13. (2.31)

This value has not been measured yet, as this can only be done through the processes
with the multi-Higgs final state; starting from the Higgs pair production, which is
already an extremely rare process. Assuming the SM at

√
s = 13 TeV, di-Higgs

production is 1500 times rarer than the single Higgs production. Taking into account
detector inefficiencies, only around 100 Higgs pairs are expected in the full Run 2
data, yet the search for such pairs is the topic of this thesis. If the measured Higgs
self-coupling value is different from the calculated SM value, it will indicate the
existence of physics Beyond the Standard Model (BSM).

2.1.5 Phenomena Unexplained by the SM

Despite the Standard Model’s successes in predicting various processes, there are
observed phenomena that are not included in the model, a list of chosen ones is
presented here. Firstly, gravity, the fourth fundamental force, is not included in the
SM. Secondly, also from the cosmological observations, it is known that only 5% of
the universe is visible matter, while dark matter and dark energy constitute the rest.
Including the Dark Matter particle in the SM has been attempted for some time. No
signs of any dark matter particles have been seen, while many models were tested,
for example, the Weakly Interacting Massive Particle (WIMP) models [15]. Some
of the decay rates of B0 - mesons [16] have hinted at the new physics where the
lepton flavour universality would not be required. Lastly, the prevalence of matter
over anti-matter and the question of how this is possible is also not considered in
the SM.
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Figure 2.5: Possible scenarios for the shape of the Higgs potential at higher ener-
gies, while it is the known Higgs potential at the lower energies. The
first possibility is that the potential keeps increasing, making our vac-
uum the global minimum and leaving the universe in a stable state. The
second possibility is that, at higher energies, the potential reaches an-
other minimum, making our vacuum only a local minimum. In that case,
the universe would be metastable [18].

2.2 Higgs Pair Production

In this section the motivation to search for Higgs boson pairs is given first, followed
by the details of the pair production mechanism in the two main production modes:
the gluon-gluon fusion and the vector boson fusion, and the decay channel of interest,
bb̄bb̄.

2.2.1 Shape of Higgs Potential

The Higgs potential plays a crucial role in the Higgs mechanism. However, what
we really know about this potential is its shape at low energies, near the minimum,
but not at high energies. Figure 2.5 illustrates different full potential shapes that
originate from the same potential shape at low energies. Depending on the full shape
of the potential, our VEV could be a global or local minimum, which leads to the
question of vacuum stability. Additionally, exploring the Higgs boson self-coupling
can lead to understanding electroweak baryogenesis [17].
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Baryogenesis 31

determined by the behavior of the Higgs potential at finite temperature, as shown
in figure 10. In a first order transition, the potential develops a bump which sep-
arates the symmetric and broken phases, while in a second order transition or a
smooth cross-over there is no bump, merely a change in sign of the curvature of
the potential at H = 0. The critical temperature Tc is defined to be the tem-
perature at which the two minima are degenerate in the first order case, or the
temperature at which V ′′(0) = 0 in the second order case.

V

H

T>Tc

T=Tc

T<Tc

V

H

T>Tc

T<Tc

T=Tc

Fig. 10. Schematic illustration of Higgs potential evolution with temperature for first (left) and second
(right) order phase transition.

A first order transition proceeds by bubble nucleation (fig. 11), where inside
the bubbles the Higgs VEV and particle masses are nonzero, while they are still
vanishing in the exterior symmetric phase. The bubbles expand to eventually
collide and fill all of space. If the Higgs VEV v is large enough inside the bub-
bles, sphalerons can be out of equilibrium in the interior regions, while still in
equilibrium outside of the bubbles. A rough analogy to GUT baryogenesis is that
sphalerons outside the bubbles correspond to B-violating Y boson decays, which
are fast, while sphalerons inside the bubbles are like the B-violating inverse Y de-
cays. The latter should be slow; otherwise they will relax the baryon asymmetry
back to zero.
In a second order EWPT, even though the sphalerons go from being in equi-

librium to out of equilibrium, they do so in a continuous way, and uniformly
throughout space. To see why the difference between these two situations is im-
portant, we can sketch the basic mechanism of electroweak baryogenesis, due to
Cohen, Kaplan and Nelson [32]. The situation is illustrated in figure 12, which
portrays a section of a bubble wall moving to the right. Because of CP-violating
interactions in the bubble wall, we get different amounts of quantum mechanical
reflection of right- and left-handed quarks (or of quarks and antiquarks). This
leads to a chiral asymmetry in the vicinity of the wall. There is an excess of

Figure 2.6: Illustration of the difference in the temperature-dependent phase tran-
sitions: the non-SM first-order phase transition that can lead to bubble
nucleation on the left and the cross-over transition of the second-order,
the SM-like, on the right. Figure taken from [17].

2.2.2 Electroweak Baryogenesis

The three Sakharov conditions point out what is necessary in order to explain the
matter-antimatter asymmetry. These are; the baryon number violation, C and CP
violation, and the CPT violation [5]. Even though the CP violation is present in the
SM CKM matrix, it is not strong enough to fulfil the second Sakharov condition,
while the CPT violation is not included in the SM at all. The electroweak baryo-
genesis model solves this problem by requiring the electroweak symmetry breaking
to proceed via the strong, first-order phase transition instead of the smooth, cross-
over second-order transition, which is the case for the SM Higgs mechanism. Such
a transition could happen if a second singlet scalar Higgs field is coupled with the
SM Higgs field [19]. The measured Higgs self-coupling different from the SM value
could be a sign of the Higgs composite.

Phase Transitions

Figure 2.6 shows the two phase transitions. The crucial point is at the critical
temperature Tc. For the cross-over, second-order transition (right), this temperature
is defined as the temperature at which the second derivative of the potential is zero;
the sign of the Higgs potential curvature changes smoothly. In the case of the
first-order transition (left), Tc is defined at the point where the two minima are
degenerate. There is a bump in between the symmetric and broken phases, which
is overcome through the bubble nucleation transition [17].
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m=0
m>0

m>0

m>0

m>0

m>0

m>0

Fig. 11. Bubble nucleation during a first-order EWPT.

qL + q̄R relative to qR + q̄L in front of the wall, and a compensating deficit of
this quantity on the other side of the wall. This CP asymmetry is schematically
shown in figure 13.

Sphalerons interact only with qL, not qR, and they try to relax the CP-asymmetry
to zero. Diagramatically,

is slower
than

quarks
leptons antileptons

antiquarks
simply because there are more q̄L than qL in front of the wall. But the first in-
teraction violates baryon number by −3 units while the second has ∆B = 3.
Therefore the CP asymmetry gets converted into a baryon asymmetry in front of
the wall (but not behind, since we presume that sphaleron interactions are essen-
tially shut off because of the large Higgs VEV). Schematically the initial baryon
asymmetry takes the form of figure 14.

Figure 2.7: Illustration of the bubble nucleation for the electroweak baryogenesis.
Inside the bubbles, VEV is zero, only while the bubbles expand, the
antimatter is lost at the bubble walls. Figure taken from [17].

Bubble Nucleation

The schematic of the bubble nucleation is shown in Figure 2.7. Inside the bubbles
the VEV of Higgs is non-zero, and so are the masses of the particles, the symmetry
is broken. Outside of the bubbles VEV is zero, the electroweak symmetry is not
broken and all particles are massless. At the point of thermal non-equilibrium, the
bubbles expand, eventually collide and occupy the whole universe, hence the symme-
try is broken everywhere. The baryon asymmetry arises at the bubble walls. Inside
the bubbles, the baryon number is violated, while outside, the baryon-antibaryon
equilibrium holds. The transition happens through the walls and it is not smooth,
leading to the antimatter being lost at the walls. The sphalerons explain how the
baryon asymmetry propagates to leptons, thus creating the matter-antimatter asym-
metry [17].

2.2.3 gluon-gluon Fusion

Although this thesis is focused on the vector boson fusion production of Higgs pairs,
for completeness the gluon-gluon fusion production is discussed first.
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(a) Spin-0 scalar boson resonance (b) Spin-2 Kaluza-Klein graviton reso-
nance

Figure 2.8: Feynman diagrams illustrating the resonant ggF production of a Higgs
pair.

g

g H

H

H

κt κλ

(a)

g

g

H

H

κt

κt

(b)

Figure 2.9: Feynman diagrams of the non-resonant gluon-gluon fusion production
of two Higgs bosons in the final state. (a) shows the production via
a triangular loop resulting in access to the Higgs self-coupling κλ, (b)
shows the box diagram, where each Higgs couples directly to the top
quark from the loop.

The gluon-gluon fusion (ggF) is the dominant production mode of Higgs pairs. The
di-Higgs production proceeds either via a massive resonance or is a non-resonant
production. The resonant scenario involves, for example, a spin-0 scalar boson X in
the two Higgs doublet model [20] or spin-2 boson, for example, in the Kaluza-Klein
theory [21]. Figure 2.8 shows the two resonant Feynman diagrams.

In this thesis, only the non-resonant channel is explored. Figure 2.9 shows the
non-resonant ggF Feynman diagrams. Diagram in (a) is of the main interest as it
allows direct access to the Higgs self-coupling, introduced in the SM as λSMHHH in
Section 2.1.4. Since its value is to be explored experimentally, for convenience, the
parameter called the coupling strength modifier κλ, is defined:

κλ =
λHHH
λSMHHH

, (2.32)

for the SM κλ = 1. The same notation is applied to all other couplings; values of
κ’s are always 1 for the SM. Formally, these are coupling strength modifiers but for
simplicity, they will be referred to as couplings.
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Figure 2.10: The theoretical cross-section values for different κλ values in gluon-
gluon fusion. The prediction for the SM is indicated with a star. Cross-
section values taken from [22].

The cross-section of the ggF production in the SM at
√
s = 13 TeV is 31.05 fb,

evaluated at the next-to-next-to-leading order (NNLO) with the FTApprox top mass
correction [22]. This low cross-section value comes from the destructive interference
of the two diagrams shown in Figure 2.9. However, for the modified values of κλ, the
cross-section increases, facilitating observation of Higgs pair production, see Figure
2.10.

2.2.4 Vector Boson Fusion

The second most dominant di-Higgs channel is the vector boson fusion production.
Similarly to ggF, it can proceed via resonance or not. Figure 2.11 shows the resonant
VBF production. The resonance is a scalar boson, for example, a heavy scalar from
the 2HDM Type II model [23].

The non-resonant Feynman diagrams at the leading order are shown in Figure 2.12.
A number of couplings are accessible through this channel; the self-coupling κλ,
the coupling of Higgs to a single vector boson, κV , and the coupling of two vector
bosons to two Higgs bosons, the quartic coupling κ2V . The last coupling is the
most interesting because it is only accessible via this particular process. Experi-
mental measurement of κ2V 6= 1 would be another indication of the BSM physics
existence.

In the SM, the VBF production is around 20 times less likely than the ggF produc-
tion, and the VBF cross-section at

√
s = 13 TeV, evaluated at N3LO, is 1.73 fb [24].

This is because the exact divergences are cancelled between the diagrams 2.12b and
2.12c in the SM due to the perturbative unitarity. Once the non-SM scenarios are
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H

H

q q

q q

X

V

V

Figure 2.11: Feynman diagram illustrating the resonant VBF production of a Higgs
pair.

considered, and κV and κ2V are away from the SM value, the cross-section increases
[25], illustrated in Figure 2.13.

2.2.5 bb̄bb̄ Decay Channel

Higgs boson can decay to many different final states, with the highest branching
ratio of 58.2% for H → bb̄ in the SM. Figure 2.14 shows the SM branching ratios
of all possible decays of the Higgs boson pairs. The final state of bb̄bb̄ is dominant,
with the BR of 33%.

Although the 4b final state has the highest branching ratio, the signal process is
accompanied by a difficult-to-estimate QCD background. Therefore, for the full
exploration of the di-Higgs production, other decay channels are considered. To the
most sensitive decay channels belong bb̄τ+τ− and bb̄γγ. The two channels have much
lower BRs, 7.3% and 0.3% respectively, but in the case of bb̄τ+τ−, taus effectively
help to reject the multi-jet QCD background, and in the case of bb̄γγ, great di-photon
mass resolution provides remarkable signal purity.
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Figure 2.12: Feynman diagrams of the non-resonant vector boson fusion production
of two Higgs bosons. (a) shows production in which each Higgs cou-
ples to one vector boson, (b) shows the production through Higgs self-
interaction, while in (c) the quartic coupling κ2V between two vector
bosons and two Higgs bosons is accessed.
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Figure 2.13: The theoretical cross-section values for different κ2V values in vector
boson fusion. The prediction for the SM is indicated with a star. Cross-
section values taken from [3].

Figure 2.14: The SM branching ratios of all final states of the Higgs pair production.
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2.2.6 Monte Carlo Modelling of Signal and Background

Hadrons consist of quarks, anti-quarks and gluons. These constituents, partons,
rather than the whole hadrons, participate in hadron collisions. For the process
of interest, pp → F , where p is the proton and F is the final state, the goal is to
measure the cross-section, σ:

σ =

∫ 1

0

dx1

∫ 1

0

dx2

∑

ij

fi (x1, µF ) fj (x2, µF ) σ̂ij (sx1x2, µR) , (2.33)

where i and j can be any of the flavours of any of the QCD constituents, while x1

and x2 are the fractions of the total energy of the proton, carried by a given parton
involved in the collision. fi and fj are the parton distribution functions (PDFs)
which give the probability of finding the parton with a given momentum fraction.
They depend on µF which is the factorization scale. σij is the cross-section of the
hard process which depends on the renormalization scale µR and s, the centre of
mass energy squared.

To model what happens in the hadron-hadron collision, Monte Carlo simulations of
the processes are used. The computation of the cross-section from Eq. 2.33 is based
on the perturbation theory. Each cross-section is evaluated by the calculation of the
process’ amplitude,M, as σ ∼ |M|2. The perturbative expansion of the amplitude
reads:

M = αM0 + α2M1 + α3M2 +O(α4), (2.34)

where α, representing the coupling strength, must be sufficiently small for the per-
turbative expansion to work. The electroweak coupling at the electroweak scale is
αQED = 1

129
, which makes the higher-order corrections very small and hence negli-

gible. For QCD, the strength of the coupling varies depending on the energy range.
For the LHC energy range |q| > 100 GeV (where q2 is the amount of momentum
transferred), resulting in αs ≈ 0.1. Such a small value of α allows for the use of the
perturbation theory [9] but it is not small enough for the corrections to be negligible.
Therefore, calculations beyond the leading order are usually required for the QCD
processes at the LHC.

The leading order term is the αM0, which gives the cross-section at the leading
order as:

σ0 ∼ α2|M0|2 (2.35)

For the more precise determination of the cross-section, with smaller theoretical
uncertainties, higher-order corrections to the amplitude are required. At the next-
to-leading order, the cross-section reads:

σ1 ≈ |αM0 + α2M1 +O(α3)|2. (2.36)

which, when expanded, leads to the inclusion of the loop diagrams and the interfer-
ence term betweenM0 andM1. That is why the calculations are very difficult.
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TheHH VBF production involves a large momentum transfer, which means that the
perturbation theory can be used for the cross-section calculation. The SM cross-
section has been computed up to next-to-next-to-next-to-leading order3 (N3LO)
[24].

Themulti-jet QCD background consists of jets either initiated by heavy quarks: bot-
tom or top, or by light quarks incorrectly tagged as b-jets. The complexity of the
multi-jet QCD processes, for example, the presence of the non-perturbative effects,
causes a computational complication, especially for the computation of higher order
diagrams which also include the loop diagrams. Moreover, the QCD background
cross-section is orders of magnitude larger compared to the VBF HH → bb̄bb̄ signal
cross-section. Since the background cross-section is large, the amount of computa-
tional expense to produce sufficient background event statistics for the analysis is
enormous. Therefore, to avoid the complication and expensive computation, data-
driven methods are chosen for the background estimation in the analysis.

2.2.7 Di-Higgs Searches Status

The VBF di-Higgs production decaying to bb̄bb̄ channel was explored by the ATLAS
collaboration in the non-resonant, resolved4 analysis with the full Run 2 data [3],
[26]. It finds the observed interval for κ2V values as [-0.55, 2.72], while other κ2V

values are excluded at 95% CL. The most recent, resolved non-resonant CMS result
finds this interval to be [-0.1, 2.2] [27]. The boosted bb̄bb̄ non-resonant search was
also performed by CMS [28], the κ2V observed interval is then [0.62, 1.41], for the
first time excluding the κ2V = 0 scenario in which the HHVV vertex would vanish.

The ggF bb̄bb̄ results are the ATLAS partial Run 2 (data collected in 2015 and
2016) non-resonant publication [29], the ATLAS full Run 2 resonant analysis [30],
and both CMS publications: resolved non-resonant and boosted non-resonant [27],
[28].

A number of Higgs pair searches were performed both by ATLAS and CMS in other
decay channels. The best up-to-date non-resonant result for the VBF comes from the
combination of the bb̄bb̄ with the bb̄τ+τ− and the bb̄γγ decay channels resulting in the
κ2V interval of [0.1, 2.0] [31], while from the CMS combination of the multilepton,
the bb̄γγ, the bb̄τ+τ− and the bb̄bb̄ decay channels it is [0.67, 1.38] [32].

3In the analysis the MC signal samples are generated at the leading order but the theoretical
N3LO result for the SM cross-section allows to rescale the LO cross-sections to obtain more
precise values.

4Resolved means four b-jets are identified separately in the final state. The complementary
category is boosted, in which not all b-jest are resolved.
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LHC and ATLAS detector

The focus of this chapter is the experimental set-up used to collect the data: the
Large Hadron Collider and the ATLAS detector.

3.1 The Large Hadron Collider

In order to obtain the highly energetic particles, in this analysis the two Higgs bosons
with a mass of at least 125 GeV each, a huge amount of energy must be involved,
given by the famous E = mc2 equation. Such energy can be produced by first
accelerating and then colliding beams of particles. In order to accelerate particles
to the desired energies efficiently, a circular rather than a linear collider is used,
as the higher the required acceleration, the larger the distance the particles must
travel in the electric field. The boost from the electric field is felt by the particles
multiple times when they continue moving around the circle. To achieve the same
energy levels in a linear collider, a much larger dimension of an accelerator would
be needed.

The Large Hadron Collider (LHC) is the biggest of such circular accelerators that has
ever existed. It was built around 100 meters below the ground at the French-Swiss
border near Geneva and has a circumference of 27 km [33]. The colliding particles
are hadrons, protons or heavy ions, which are circulating in two beam tubes of
opposite directions and are forced to collide at four points. These four experimental
sites are ATLAS, CMS, LHCb and ALICE. The first two are the general purpose
detectors, the third concentrates on the flavour physics, while the last focuses on
heavy ion collisions.

The data analysed in this thesis come from the beams of protons colliding at the
centre of mass energy of 13 TeV. There are several stages between the injection
of the hydrogen atoms until the collision itself. Figure 3.1 shows the accelerating
complex. Its functions are described below based on [33] and [34].
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Figure 3.1: Schematic of the CERN accelerator complex. The most important stages
needed to obtain the proton-proton collisions are described in the text
[34].

First, in the electric field, electrons are removed from the hydrogen resulting in
protons. Such protons are injected into a linear accelerator (LINAC 2 ) to be ini-
tially accelerated to 50 MeV. Protons are then processed by the Proton Synchrotron
Booster which increases the beam energy to 1.4 GeV. Next, the Proton Synchrotron
pushes the beam energy further to 25 GeV, after which the Super Proton Synchrotron
allows to reach the energy of 450 GeV. At this point, the LHC itself takes over and
makes each beam travel with the final energy of 6.5 TeV.

The key hardware components needed to accelerate particles in a circular collider
are magnets and radiofrequency (RF) cavities. Magnets take care of the transverse
acceleration, i.e. perpendicular to the velocity of the charged particles in the beam,
keeping the circular paths of the beams. The RF cavities produce longitudinal
acceleration through oscillating electric fields.
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The main magnets are the state-of-the-art superconducting niobium-titanium dipoles
that can provide a magnetic field of 8.22 T. For the purpose of superconductivity,
they are cooled down to 1.9 K using liquid helium. Since it is not efficient to col-
lide just one single proton with another single proton at a time, protons travel in
bunches. Such bunches contain tightly clustered protons, which all have a positive
charge. Quadruple magnets are used to keep the protons together and to focalize
the beams.

The RF cavities make the electric field change direction in the specific time intervals
so that each time the bunch of protons from the beam passes through, it is acceler-
ated. The frequency of the electric field oscillation corresponds to the proton bunch
spacing of the LHC, which is 25 ns.

3.1.1 Luminosity

In order to quantify the size of the dataset that can be obtained from the experi-
ment, namely the number of collisions produced per second per cm2, the integrated
luminosity is quoted. The integrated luminosity is defined as:

Lint =

∫
L dx (3.1)

where L is the luminosity. With colliding proton beams approximated by the
Gaussian distributions and while the LHC collisions are head-on, the luminosity
reads:

L = f
Nbn1n2

4πσxσy
, (3.2)

where f is the frequency of one revolution of a bunch, Nb is the total number of
bunches in the collision, n1 and n2 are the numbers of protons in either bunch and
σx, σy are the RMS of the Gaussian profiles in horizontal and vertical directions
respectively.

Eventually, the number of events that are produced with a corresponding quantum-
mechanical cross-section σ is:

N = Lintσ, (3.3)

meaning the larger the total integrated luminosity, the more events are accessible.
Figure 3.2 shows the total integrated luminosity delivered by the LHC in Run 2
(operation of the LHC between 2015 and 2018). The total luminosity was 156 fb−1,
out of which 139 fb−1 [35] is usable for the physics analysis in the ATLAS experiment.
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Figure 3.2: The total integrated luminosity in Run 2. The total luminosity recorded
by ATLAS and the total luminosity good for physics analyses is indicated
as well [35].

3.2 The ATLAS experiment

ATLAS is one of the two general-purpose experiments on the LHC ring. Its scien-
tific aims are broad and include both precision measurements and searches for new
physics using highly energetic proton-proton collisions. The detector weighs about
7 000 tonnes and is of a symmetrical cylindrical shape with a length of 45 meters and
a diameter of 25 meters. It covers the range of almost 4π in solid angle and is split
into three parts: the central barrel region, the end cap and the forward detector.
Figure 3.3 presents the schematic of the detector with all sub-detectors and magnets
indicated. These are:

• Inner Detector placed closest to the collision axis whose aim is to provide
tracks of charged particles,

• Solenoid built from a thin superconducting material that allows the charged
particles to bend in the Inner Detector (magnetic field of 2 T),

• Calorimeters (both electromagnetic and hadronic) that measure the energy
deposited by charged and neutral particles interacting in the detector,

• Toroidal magnets needed for the charged muons to bend after they pass through
the calorimeters,

• Muon spectrometer that measures the muon leptons created at the collision
point.

Each part will be briefly discussed in this chapter, while the full description can be
found in [36].
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Figure 3.3: Schematic presenting the ATLAS detector and its constituents described
in the text [37].

3.2.1 Coordinate System of the Detector

For clearer descriptions to follow, the ATLAS coordinate system is introduced first.
Figure 3.4 schematically illustrates the coordinate system. The coordinate system
is right-handed with the origin at the Collision Point. The z-axis is placed along the
Beam Line, the x-axis points towards the centre of the LHC and the y-axis points
upwards. To define the transverse plane, the cylindrical coordinates are used: (r, φ),
with φ being the azimuthal angle around the z-axis. The polar angle θ is also given
and is used to define the two variables; pseudorapidity:

η = − ln tan(θ/2), (3.4)

and angular distance:
∆R =

√
(∆η)2 + (∆φ)2. (3.5)

3.2.2 Inner Detector

The Inner Detector (ID) is a tracking device. Figure 3.5 shows the components
of the Inner Detector: the Insertable B layer, Pixels, SemiConductor Tracker and
Transition Radiation Tracker. The components are built from three types of sensors
placed in a number of layers. Each layer receives an electrical signal when the charged
particle passes through and ionises the active detector volume. By connecting these
signals, hits, the particle’s trajectory can be inferred.
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Table 3 Parameters of the LHC at the end of 2010 and the end of 2011
including an estimate of the average number of interactions per bunch-
crossing [115].

Parameter 2010 2011

p
s 7 TeV 7 TeV

N(1011 p/b) 1.2 1.5
k(nbunches) 368 1380
Bunch Spacing (ns) 150 50
L (cm�2s�1) 2 ·1032 3.6 ·1033

Average pp-interactions per bunch-crossing ⇡ 1.2 ⇡ 10�15

Table 4 Overview of recorded integrated luminosity in 2010 and 2011
by the ATLAS and CMS experiments. Also shown is the integrated
luminosity which is used for physics analyses.

Experiment
R

L dt (2010)
R

L dt (2010)
recorded used recorded used

ATLAS 45pb�1 35pb�1 5.08fb�1 4.6fb�1

CMS 40.8pb�1 36pb�1 5.55fb�1 4.5-4.8fb�1

ATLAS [111], CMS [112], LHCb [113] and ALICE [114].
The primary LHC machine parameters at the end of the data
taking in 2010 and 2011 are given in Table 3. From 2010
to 2011, the number of circulating proton bunches was in-
creased by a factor of 3.8, the spacing between two bunches
was decreased from 150ns to 50ns and the beam-focus pa-
rameter b ⇤ was reduced by a factor of 3.5. This resulted
in a significant increase of instantaneous luminosity from
L = 2⇥1032cm�2s�1 in 2010 to L = 3.7⇥1033cm�2s�1 in
2011 [115].

The total integrated luminosity delivered to the experi-
ments was L ⇡ 44pb�1 in 2010 and L ⇡ 6.1fb�1 in 2011.
The data taking efficiency of ATLAS and CMS, when the
detector and data-acquisition systems were fully operational,
was above 90% for both years. The recorded integrated lu-
minosity, which was used as the data samples for the pub-
lished physics analyses for ATLAS and CMS in 2010 and
2011, is shown in Table 4 together with their respective rel-
ative uncertainties.

The precise knowledge of the recorded integrated lumi-
nosity is a crucial aspect for all cross-section measurements.
The Van der Meer methods [116], [117] was applied in total
three times in 2010 and 2011 to determine the luminosity
for ATLAS and CMS, leading to relative uncertainties be-
low 2%. It should be noted that the luminosity determination
is highly correlated between ATLAS and CMS, leading to
correlated uncertainties in the corresponding cross-section
measurements.

The change in the machine settings from 2010 to 2011
leads to an increase of pile-up noise, which is the occur-
rence of several independent, inelastic proton-proton colli-
sions during one or more subsequent proton-proton bunch

crossings. These additional collisions can lead to a signif-
icant performance degradation of some observables which
are used in physics analysis. The in-time pile-up, i.e. the ad-
ditional collisions occurring within the same bunch cross-
ing, can be described by the number of reconstructed col-
lision vertices Nvtx in one event. The out-of-time pile-up is
due to additional collisions from previous bunch crossings,
that can still affect the response of the detector, in partic-
ular calorimeters, whose response time is larger than two
subsequent bunch crossings. The number of interactions per
crossing is denoted as µ and can be used to quantify the
overall pile-up conditions. On average, there is roughly a
linear relationship between µ and Nvtx, i.e. < Nvtx >⇡ 0.6 <
µ >. In 2010, the average number of interactions per col-
lision was µ = 2. The first

R
L dt ⇡ 1fb�1 in 2011 had

< µ >⇡ 6, while < µ > of greater than 15 was reached by
the end of 2011. This affects several systematic uncertainties
related to precision measurements at the LHC.

3.2 Coordinate system

The coordinate system of the ATLAS and CMS detectors
are orientated such that the z-axis is in the beam direction,
the x-axis points to the center of the LHC ring and the y-
axis points vertically upwards (Figure 13). The radial coor-
dinate in the x-y plane is denoted by r, the azimuthal an-
gle f is measured from the x-axis. The pseudorapidity h
for particles coming from the primary vertex is defined as
h = �log q

2 , where q is the polar angle of the particle di-
rection measured from the positive z-axis. The transverse
momentum pT is defined as the transverse momentum com-
ponent to the beam direction, i.e. in the x-y-plane. The trans-
verse energy is defined as ET = E sinq .

Z Beam Line

Point
Collision

Detector

Y

X (Center of LHC)

θ φ

Fig. 13 Illustration of the ATLAS and CMS coordinate system.

3.3 The ATLAS detector

The "A Toroidal LHC ApparatuS" (ATLAS) detector is one
of the two general purpose detector at the LHC. It has a sym-
metric cylinder shape with nearly 4p coverage (Figure 14).

Figure 3.4: Schematic of the coordinates of the ATLAS detector with the centre at
the Collision Point. Figure taken from [38].

Silicon Detectors

The first two layers closest to the beam pipe are the silicon detectors. Figure 3.6
shows a sketch of a silicon sensor. The silicon sensor chip is bump-bonded to its
readout chip. When a charged particle goes through the silicon, it creates electron-
hole pairs along the way. Electrons and holes naturally move via diffusion, but
since the high voltage is applied to the sensors, the strong electric field causes the
drift motion. Due to the charge carriers’ movement, a signal in the readout chip is
induced, as the chip is electrically coupled to the solder bumps. The readout chip
pixel, closest to where the free charge carriers were generated, gets the most signal.
By connecting all the readouts, the path of the particle can be inferred.

Closest to the beam line lies the high-granularity pixel detector, providing four layers
in total. Each pixel is of size 50 µm×400 µm, making it a total of around 80 million
pieces, individual readouts in the detector. The innermost layer of the pixel detector
is the Insertable B layer, IBL, which was added to the detector shortly before Run 2
in order to enhance the b-tagging efficiency [41].

The next ID component, the SemiConductor Tracker (SCT), consists of the silicon
strip detectors, which work similarly to the pixels, but are not as small (80 µm×
12 cm), hence their granularity is lower. There are four double layers of these strips.
Pixel and SCT together cover the entire 2π region of the detector with |η| < 2.5.

Transition Radiation Tracker

On top of the two silicon detectors, at the range of |η| ≤ 2, a technology-wise
different Transition Radiation Tracker (TRT) detector is placed. The drift tubes
filled with the Xenon gas are placed in the material instead of the pixel chips.
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Figure 3.5: The structure of the Inner Detector components with the indication of
the radial distances from the centre. Figure taken from [39].

Figure 3.6: Sketch of a pixel detector with sensor and readout chips. Figure taken
from [40].
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When a charged particle passes through the material in between the tubes, it loses
energy and photons are produced. The particle enters the drift tube and ionises the
gas inside, thereby liberating electrons. The particle is accompanied by the radiated
photons from the material surrounding the tubes, which also interact with the gas.
The radiated photons free even more electrons which are then transferred to the gold
wire, where the electrical signal is measured. Importantly, depending on the particle
of interest, for example, whether it is an electron or a charged pion, the number of
radiated photons differs. It comes from the fact that the loss of energy of the particle
coming through the non-homogenous medium is proportional to the Lorentz factor;
γ = E/m. Hence, the lighter the particle, the more energy it deposits and the more
photons are produced causing a larger electrical signal in the gold wires. On average,
around 36 hits are found in TRT for each collision.

The inner tracker detectors provide the positional information on the particle’s track.
In order to assign the momentum to such tracks, the ID is surrounded by the solenoid
which produces the magnetic field of 2 T. In this magnetic field the relation

r =
pT
qB

, (3.6)

holds and with the arc radius measured from the hits, the transverse momentum is
determined.

3.2.3 Calorimeter

To measure the particle’s energy a system of calorimeters is used. In contrast to
the tracker, both charged and neutral particles are recognized here. In the electro-
magnetic calorimeter, these are electrons, positrons and muons, and in the hadronic
calorimeter, these are particles produced via a strong force, for example, pions,
neutrons or protons.

The type of calorimeter that best serves the purpose of both stopping the particle
and precisely measuring its energy, is the sampling calorimeter which consists of two
material layers. The two types of materials are layered on top of each other; the
heavy absorbers and the active materials. Most generally, particles are stopped in
the absorbers while their energy is measured in the active material.

In the ATLAS detector, looking from its middle axis, calorimeters are placed after
the Inner Detector covering the range |η| < 4.9. Figure 3.7 shows the ATLAS
calorimeters. Both calorimeters are divided into those covering the central, barrel
region, and those covering the end-cap and the forward regions.

The electromagnetic calorimeter is placed closer to the beam and it covers |η| < 3.2.
The absorber is made of lead while the active material is liquid argon with copper
electrodes inserted inside in order to collect the electric charge from the showered
particles.
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Figure 3.7: The calorimeter system in ATLAS [42].

When a high energy electron enters the absorber material, it is deflected by the
electromagnetic field of the heavy nucleus and therefore it radiates a photon (brems-
strahlung occurs). The radiated photon produces a positron-electron pair and the
new electron and positron behave in the same way as the first electron and radiate
a new photon. Hence, the particle shower is produced in the absorber material and
the original particle gradually loses all its energy until it is completely stopped. In
the meantime, the low-energy showered particles ionize the active material placed in
between the absorber layers, facilitating the measurement of the energy deposited
by the original particle.

The hadronic calorimeter is placed on top of the electromagnetic calorimeter. Since
hadrons are heavier, the amount of absorber needed in order to stop them com-
pletely is also greater. The central, barrel region (|η| < 1.7), is made of a steel
absorber and the plastic scintillator tiles serve as an active material. When show-
ered particles pass through the scintillator, a proportional amount of scintillating
light is emitted and it is collected by the wavelength-shifting optical fibres connected
to the photomultipliers in order to measure the deposited energy. At the end-cap
(1.5 < |η| < 3.2), the active material is liquid argon while the absorber is copper.
In the front calorimeter (3.1 < |η| < 4.9), the absorber is made of copper-tungsten
layers.
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Figure 3.8: Schematic of the muon sub-system [43].

3.2.4 Muon Spectrometer

Since muons are much heavier than electrons (mµ = 106 MeV compared to me =
0.511 MeV), they can not be stopped by the electromagnetic calorimeters. Instead,
they are detected in the Muon Spectrometer which is the last, outermost part of
the ATLAS detector. Figure 3.8 shows the schematic of the muon spectrometer.
Similarly to the TRT design in the Inner Detector, the muon chambers consist of
drift tubes which allow for measuring the tracks of muons. The magnetic field (now
produced by the massive toroidal magnets) allows for measuring the momentum of
the tracks. The tracking chambers are placed in three layers at the region of |η| < 2.7
and in the forward region, where the cathode-strip chambers are used in addition to
the drift tubes. The complementary chambers are used for the fast-track triggering.
They cover the |η| < 2.4 region and are made of the resistive-plate chambers in the
barrel, and the thin-gap chambers in the end-caps.

3.2.5 Triggering and Data Acquisition

The number of collisions that happen in the ATLAS detector reaches 40 million
each second. Even with cutting-edge technology, it is impossible to save all this
information, and it is also not necessary for the ATLAS physics goals. The job
of choosing and saving only the potentially interesting information is done by the
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triggering system. Figure 3.9 schematically shows the ATLAS triggering system in
Run 2, while more details on the TDAQ Run 2 performance can be found in [44].

Firstly, events must pass a hardware-based, Level 1 Trigger requirement. Level
1 Trigger takes the raw data from the calorimeters, the muon spectrometers and
the inner detector. With a simple and quick object reconstruction, L1 reduces the
number of events to be processed per second from 40 million to 100 000. Secondly,
the selected events, from different Regions of Interest of the detector, are passed
to the software-based High Level Trigger (HLT), where information from the full
detector is available. At the same time, if the Level 1 Trigger accepts an event,
the Readout Drivers (detector’s front-end electronics) send the event data to the
Readout System, which makes them available to the HLT so that different trigger
algorithms can be run on the sampled data while the rest of the data is buffered.
After the acceptance by the HLT, the data, around 1500 events per second, are
moved to the permanent storage via the Data Logger. They can be accessed for
object reconstruction first, and finally for physics analysis.

Figure 3.9: The TDAQ system of the ATLAS detector in Run 2. The most important
components are briefly described in the text. Figure taken from [45].
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Chapter 4

Machine Learning

In the past few years, the popularity of Machine Learning (ML) in various fields
of science has sky-rocketed, including Particle Physics in general, and the analysis
presented in this thesis in particular. In this chapter, a short overview of ML, with
a focus on neural networks, is presented in order for the reader to fully grasp the
ideas developed in the next chapters.

4.1 Supervised Learning

First of all, what Machine Learning really is? In a usual, non-ML computing system,
a programmer gives the program some inputs and writes an algorithm, so that the
program can process these inputs and give the outputs. In ML, the computers have
the ability to learn the inputs and sometimes outputs (in supervised learning) all by
themselves, without needing an explicit programming step. They can become very
good at their task, which can be assessed using various quantifiers, explained in this
chapter.

Supervised learning is what is used in the analysis, and generally in ATLAS, hence
solely this part of the field will be discussed here, following [46] and [47].

In the first step of the supervised learning, the program is given n known sets of
data, which include the inputs X = {x1, x2, ..., xn} and corresponding outputs Y =
{y1, y2, ..., yn}1, so that the program can learn the functional dependence between
the two, Y = f(X). Once f(X) is known, it can be applied to the new set of X for
which Y is unknown.

Two developments are possible, depending on whether X and Y are continuous or
discrete. For the continuous case, regression modelling is performed with the classic
equation being:

yi = αxi + β, (4.1)

1Note, both xi and yi can be single data points, but they are usually tensors.
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where yi is a vector of outputs, xi of inputs, α is a vector of parameters and β is
the scalar offset. In order to find values of α and β, an optimization procedure
is necessary. In the simplest case, this involves minimizing the least-squared error
(LSE) which reads:

n∑

i=1

(αxi + β − yi)2 . (4.2)

If instead, X and Y are discrete, a classification approach is taken. As an outcome
of learning, the program answers the yes or no question and assigns inputs to the
pre-defined categories. For example, during an event selection, the signal from
background distinction is made. For such a task, the model called logistic regression
is used in most cases. Instead of optimization of the LSE, a logistic function is
optimized:

f(xi) =
1

1 + e−(αxi+β)
. (4.3)

In particular, the α and β parameters have to be maximized via the maximum
likelihood method. The values of f(xi) range between 0 and 1. Hence, the value
obtained for a given input xi can be interpreted as a probability of its classification
in one of the categories. Figure 4.1 illustrates linear regression and classification
approaches.

4.2 Neural Networks

The goal is for the model to learn the connections between inputs and outputs and
to predict unknown outputs as a function of inputs. The simplest, although very
powerful, functional relations are explained above. However, not all dependencies
between variables are as simple. The dependencies which are not linear, as in the
case of many particle physics variables, need more advanced models. Inspired by the
biological network of neurons and an appreciation of brain functionality, neural net-
works have been developed. In simplest words, they are networks of layers of nodes
interconnected via weighted neurons, as schematically presented in Figure 4.2.

We focus on the classic feed-forward networks. Therefore, following the schematic,
we start from the left and continue to the right. Firstly, the network receives the
data via the input layer. Each node is a different xi connected by neurons to all
nodes in the second layer. Each of these neurons is randomly assigned a weight (this
is the random initialization). The question arises, what values do the nodes have in
the second layer?

Let’s assume there are m nodes in the input layer. Each node in the second layer is
connected to all nodes of the input layer. There are m connections per node, each
with a random weight, wji, here connecting j = 2 layer with j = 1 input layer.
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Figure 4.1: Illustration of the two types of modelling done in Machine Learning:
regression and classification. In (a) the pink line indicates the final
regression output while in (b) the pink line is a linear decision boundary
in order to classify data into either "-" or "+" category. Figure taken
from [47].
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Figure 4.2: Schematic of a deep neural network with nodes indicated as circles and
connected to other nodes by neurons, the first layer is the input layer,
while the last is the output layer [48].

Moreover, it has to be noted that each non-input node has an associated bias or
threshold term, bj and an activation function, factivation, j. The value of the threshold
decides whether a given node is activated or if it is discarded. The value of a node
in the second layer, xj with j = 2, is given by:

xj =

(
m∑

i=1

wjixi + bj

)
× factivation, j. (4.4)

The second layer is fed the values from the first layer and therefore the method is
called feed-forward. For the third layer, or any further layer k, it continues as:

xk =

(
m2∑

j=1

wkjxj + bk

)
× factivation, k

=

(
m2∑

j=1

wkj

(
m∑

i=1

wjixi + bj × factivation, j
)

+ bk

)
× factivation, k, (4.5)

with m2 being a number of nodes in layer 2 and wkj the weights of the neurons
connecting layer two with the layer three. The direct inheritance from Eq. 4.4 onto
Eq. 4.5 can be noticed. The procedure continues until the output layer is reached.
All layers in between the input and output layers are the hidden layers. Networks
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Figure 4.3: Example graphs of sigmoid and ReLU functions which are the most
common activation functions used by Neural Networks [49].

with more than one hidden layer are referred to as Deep Neural Networks. The
number of such layers as well as the number of nodes in each layer are the network
hyperparameters. Depending on the complexity of the problem and the number of
training data available, both of these have to be tuned.

Defining the activation function is an important part of the neural network method.
Without an activation function, the problem would narrow down to linear regression
and the non-linear relations would not be explored. There is a number of activation
functions commonly used. For instance, in the classification task, the output is the
probability of the data being assigned to a given category. That is why, in the
output layer, the used activation functions are functions with values smoothly rising
between 0 and 1. The most classical example of such a function is the sigmoid
function, which reads:

σ(x) =
1

1 + e−x
. (4.6)

For the hidden layers, the common choice is the Rectified Linear Unit function, or
for short ReLU. For the inputs that are less than 0, it gives the output of 0, while
it is a linear function for the positive inputs, as:

R(x) = max(0, x). (4.7)

The illustration of both functions is shown in Figure 4.3.

The general idea of how we reach the output layer is shown. To assess whether the
network predicted the output correctly and whether the set of weights is optimal
(since a large part of the modelling is done based on randomly initialized weights),
the so-called loss function is defined. The goal for the network is to iteratively
continue choosing weights such that the loss function is minimized. Many such
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Figure 4.4: Illustration of gradient descent method. As weights are optimised, the
Loss function reaches its minimum [48].

functions are available. A common, simplest choice, is the Mean Square Error,
MSE :

Loss function =
1

2n

n∑

i=1

(yi − f(xi))
2, (4.8)

where n is the number of outputs, yi are the known outputs from the dataset corre-
sponding to given xi, while f(xi) are the outputs predicted by the network.

The iterative technique which allows updating of the weights and minimises MSE
is called the gradient descent. The gradient of the loss function with respect to the
value of the weight has to be computed. It is computed for all the weights in the
network starting from the last layer and going backwards to the beginning (hence
this is the back-propagation method). The weights are updated by the fixed value,
called the learning rate, and the same procedure is repeated until the minimum is
reached. Each repetition is an epoch of the training. An illustration of how gradient
descent works is shown in Figure 4.4.

Two issues can appear during the network training. If the network does not reach
the minimum of the loss function, underfitting occurs. The other case is that the
network learns the detailed connections between X and Y of the training set, but it
is unable to make correct predictions on the unknown data, leading to an overfitting.
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The overfitting is usually monitored on an additional set of data, the validation data.
A comparison of the training and the validation loss is performed. In the case of over-
fitting, for the training data, the loss decreases with the increased model complexity,
while for the validation data, the loss increases with the increased complexity. The
methods such as the regularization of penalizing large weights, or dropout, where
some connections are randomly omitted during each epoch, have to be employed to
avoid overtraining [47].
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Analysis Relevant Objects

The method of obtaining data from the particle collisions was introduced in Chapter
3. This chapter describes the process of reconstruction of the physical objects for
the analysis. Since four b-quarks constitute the final state, the reconstructed objects
of interest are the b-tagged jets. This chapter specifically focuses on jets and the
b-tagging procedure.

5.1 Jets

Observing pure quarks in the detector is impossible because of the quark confine-
ment. Instead, the high-energy hadrons built from the collimated quarks and gluons,
jets, are identified in the detector. For a systematic identification, an algorithm-
based definition of a jet is required. A number of such algorithms exist, but the
focus is given to the algorithm used in ATLAS1 and thus in this analysis: the
sequential-recombination algorithm called the anti− kt [50].

5.1.1 The anti− kt Algorithm

The sequential-recombination algorithm works based on a reversed approach with
respect to the jet creation process, in which one parton successively branches out
into more particles. In the anti − kt algorithm, the final particles, as seen in the
detector, are the starting point2. They are grouped one by one based on either the
inter-particle distance di,j or the jet-beam distance, diB. The two are defined as:

dij = min

(
1

k2
t,i

,
1

k2
t,j

)
∆R2

ij

R2
, (5.1)

1However, the algorithm is used not only in ATLAS.
2Same applies for the kt and Cambridge-Aachen algorithms with the difference of the diB defini-
tion in Eq. 5.2.
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Figure 5.1: The result of the jet clustering with anti − kt, here for jet radius of 1.
Figure taken from [52].

where kt,i and kt,j are the momenta of the two objects i and j w.r.t. the beam axis,
∆Rij is the geometric distance in the rapidity - azimuthal angle (y − φ) plane and
R is a jet radius (a free parameter of choice), while

diB = knt,i, (5.2)

where n = −2 in case of the anti− kt algorithm.

An object/particle is chosen, and it is associated with the next object/particle that
lies closest in the y − φ plane. The one-by-one clustering is repeated as long as
dij < diB. When ∆Rij > R, dij > k−2

t,i = diB, the object i (the harder from objects
i and j), becomes the jet and no more objects are attached to it.

In Eq. 5.2, n = −2 is the way of weighting the impact of the momentum as
min

(
1
k2t,i
, 1
k2t,j

)
. Therefore, the hard particles are clustered first, and the soft parti-

cles are attached. This way, the soft radiation is avoided, and the shape of the jets
becomes circular, making the jet calibration easier in the experimental method [51].
Figure 5.1 illustrates the result of jet clustering with anti − kt algorithm, with the
jet radius of 1.

5.1.2 Jets in ATLAS

In ATLAS Run 1, only the topologically clustered calorimeter cells, topo-clusters
[53], were used to reconstruct jets. In Run 2, a new algorithm, called Particle
Flow, is proposed, in which both tracking information and the topo-clusters are
used [54].
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Figure 5.2: Comparison of the pT resolution of the particle flow jets to the topological
clusters jets (LC+JES) as a function of the jet’s pT . The bottom panel
serves as the performance comparison of the two algorithms as the square
root of the difference of the squares of the resolution of the p-flow and
topo-clusters jets [54].

Particle Flow Jets

The tracks of the charged particles are first matched to the energies of the particles
deposited in the calorimeter. The deposited energy is removed from the calorimeter
in order to avoid double counting. This results in the particle flow objects, which
are either the tracks matched to the charged hadrons3 or the remaining calorimeter
energy deposits for neutral hadrons (those that had no tracks associated with them).
The jets are clustered from both types of objects with the anti− kt algorithm.

Figure 5.2 shows the comparison of the pT resolution of the particle flow jets to the pT
resolution of the topological clusters. The overall improvement in energy resolution
performance is significant, especially at low pT [54]. This can be explained by the
topo-clusters suffering from the high levels of stochastic noise at low energies, which
is avoided when tracking information is used instead, as momenta of tracks are
well-known. The improved performance motivates the use of this algorithm, despite
the necessity of the complicated track-to-calorimeter signal matching to avoid the
energy double counting.

3Those have the energy deposits removed.
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Figure 5.3: Illustration of jet calibration steps in order to match the detector recon-
structed jets to the MC jets. Figure taken from [55].

5.1.3 Jet Calibrations and Corrections

The detector output is biased due to a number of associated effects, such as pile-up
and calorimeter inefficiencies. Figure 5.3 shows the steps of jet calibration in ATLAS.
The reconstructed jet’s energy, mass and pT are matched to the corresponding,
unbiased values for the Monte Carlo jets.

Figure 5.3 presents the summary of the calibration steps, while the full description
can be found in [55]. The first step is the removal of any energy remaining in
the calorimeter which is left from the previous bunch crossing, this is the so-called
out-of-time-pileup correction. The second step is the removal of the in-time-pileup
based on the average number of particles per bunch crossing (µ) and the number
of primary vertices (NPV ). Next, the MC jet pT four-vector is used to correct the
pT of the detector reconstructed jet. Subsequently, the correction factors for the
jet energy resolution are applied as six multiplicative correction factors denoted as
Global Sequential Calibration. Finally, the in-situ calibrations are used to correct for
any remaining discrepancies between the data and MC based on precisely studied
reference objects, for instance, Z bosons or photons.
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Figure 5.4: Schematic representing jet tagging in ATLAS. Attention should be drawn
to the b-jet and its secondary vertex, which is distance Lxy away from
the primary vertex, associated with the B-hadron’s longer lifetime. As
a result, displaced tracks are formed. The existence of tracks in the
detector can be inferred by inspecting the transverse impact parameter
d0. B-jets are compared to the prompt jets, decaying at the primary
vertex directly. Figure taken from [56].

5.2 b-tagging

In order to know which type of quark initiated the given jet, the flavour tagging
procedure is performed. Jets are divided into light-flavoured: coming from light
quarks such as d, u or s, or gluons, or heavy-flavoured: either c-tagged or b-tagged.
The last is our tagging of interest.

The b-quarks (B hadrons resulting from the confinement) can be easily distinguished
in the detector due to their fundamental properties: long lifetime (∼ 1.5 ps) and
large mass. Because of the long lifetime, the path that a B hadron travels before the
decay is cτ ≈ 0.45mm, resulting in a displaced secondary vertex in the detector. In
practice, this displacement is recognised based on the transverse and longitudinal
impact parameters of the tracks. Large values of the impact parameters indicate
the displaced vertex. A schematic illustrating the b-jet’s displaced vertex is shown
in Figure 5.4.
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5.2.1 Algorithms in ATLAS

The impact parameters and information on the secondary vertices of the B hadrons
are used in ATLAS flavour tagging algorithms. The methods are distinguished as
the low-level and the high-level taggers. The low-level taggers directly use track and
vertex information in order to initialise the tagging procedure. These algorithms are
the IP2D (3D) algorithm which uses the 2D (3D) impact parameters, SV1 which
uses the secondary vertex information and the JetFitter, which fits the displaced
vertices. The RNNIP is a novel neural network-based tool to identify b-jets using
the track information only. More information on the first three algorithms can be
found in [57], while on RNNIP in [58].

The outputs of the low-level taggers are used by the high-level taggers which are
complex multivariate algorithms. Such an approach is proven to enhance the b-
tagging performance. The final jet flavour assignment comes from the high-level
taggers’ discrimination power. The newest of such taggers is a deep neural network
tool, called DL1r [59], which is used in the analysis. It replaces its Boosted Decision
Tree predecessor, the MV2 algorithm [57]. The new algorithm takes all of the above
low-level taggers as inputs, including the RNNIP. The deep neural network DL1
algorithm also exists, but it does not use the RNNIP output as its input.

Figure 5.5 shows the performance of the DL1r tagger compared to the MV2 and
DL1 taggers. The y-axis represents either the light-flavour rejection efficiency (in a)
or the c-jets rejection efficiency (in b), while the x-axis is the b-tagging efficiency.
The DL1r algorithm outperforms the other two algorithms. The comparison with
the MV2 is especially important as the MV2 was used in the previous VBF analysis
[3]. The use of the new b-tagging algorithm contributes to the improved result of
the analysis.

5.2.2 Working Points

The high-level DL1r algorithm discriminates whether the jet is, or is not, b-tagged.
By setting a threshold on the discriminant value such that the desired efficiency of
the b-jet identification is achieved, an operating point of the algorithm is defined [61].
The efficiency is determined by studying the Monte Carlo simulated data sample
consisting of the tt̄ events. In this analysis, the single-cut operating point at 77%
b-jet identification efficiency is chosen as the nominal Working Point.

For validation purposes of the background estimation in Chapter 7, b-jets tagged
at the Working Point of 85% are considered. The higher score, quite conversely,
means that the selection/cut on the tagger’s discriminant is in fact looser (as 100%
efficiency would indicate the complete removal of such cut), but the b-jet efficiency
is higher.
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(a) (b)

Figure 5.5: Comparison of light-flavour (in a) or c-jets (in b) rejection performance
of three high-level taggers: MVA, DL1 and DL1r, as a function of b-jets
efficiency. The lower panel shows the light-flavour or c-jets rejection as
a ratio to the MV2 rejection [60].

5.2.3 Offline Flavour Tagging Calibrations

The efficiency is not a global value but depends on the kinematic properties of jets
such as pT or η. Since these can differ between the MC samples and the real data,
calibration is needed. As a result, simulation-to-data scale factors are derived [57]
for different working points, and are applied to the MC samples to correct for the
efficiency in data. The general flavour tagging scale factor evaluated per-jet, is
defined:

SFj =
εdataj

εMC
j

, (5.3)

where ε is the efficiency of tagging the flavour j in data or MC, and the efficiencies
are measured as functions of pT . For jets that are not flavour tagged, a tagging
inefficiency scale factor is calculated as:

SFj =
1− εdataj

1− εMC
j

=
1− SFj · εMC

j

1− εMC
j

. (5.4)

In order to evaluate the per-event scale factor, the product of all per-jet efficiency
and inefficiency scale factors is calculated.

Figure 5.6 shows the scale factors for five different pseudo-continuous operating
points. The values of the scale factors are close to 1. The associated total statistical
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Figure 5.6: Scale factors as b-jet efficiency ratios in data over MC for different
pseudo-continuous operating points [62].

and systematic uncertainty varies. For the 77% working point, the uncertainty is
around 2% when measured with the b-jets in the [85, 110] GeV pT bin. Figure 5.7
shows the offline b-tagging scale factors as a function of the particle flow jet pT for
the 70% working point4. The SF is close to 1 for most of the pT spectrum, except
for the pT > 250 GeV bin, where it is 0.97. The corresponding total statistical and
systematic uncertainties are no larger than 2%.

4As no SF vs pT plot is available for the 77% working point.
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Figure 5.7: Scale factors as b-jet efficiency ratios in data over MC as a function of
p-flow jet pT for the 70% working point [62].
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Chapter 6

Event Selection

Previous chapters introduced both the theoretical and experimental context needed
to perform the ATLAS data analysis with the aim of finding Higgs boson pairs
decaying to the four b-quarks final state. Starting from this chapter, the focus is
put on the analysis and the results.

The scope of the non-resonant Run 2 HH → bb̄bb̄ analysis performed by the AT-
LAS HH4b analysis team, includes the search for the non-resonant ggF and VBF
productions. This thesis work focuses on the VBF channel and details of the ggF
analysis will not be discussed unless the choice of certain selections is motivated by
the specifics of the ggF channel in particular.

The previous HH → 4b analyses performed by the ATLAS Collaboration are men-
tioned in Section 2.2.7. Given such a legacy, some analysis choices were directly
motivated by the studies performed previously. In the course of this analysis, var-
ious improvements have been applied, leading to the final result being ameliorated
by a factor of 6 compared to the previous non-resonant Run 2 VBF analysis [3],
in which the same total integrated luminosity was used. Most importantly, re-
garding the analysis itself, the data-driven background estimation is changed from
the histogram-based event reweighting technique to the neural network reweighting.
Similarly, other important pieces of analysis such as the triggering approach and the
Higgs Candidates pairing algorithm are optimised.

6.1 Data Samples

The data considered in this analysis are the ATLAS Run 2
√
s = 13 TeV proton-

proton collision data collected between 2016 and 2018. Run 2 also includes data
from 2015, however, due to the lack of b-jet trigger scale factors for these data, they
are not used in this analysis. The total used integrated luminosity is 126 fb−1 split
as follows: 24.60 fb−1 coming from 2016, 43.65 fb−1 from 2017 and 57.70 fb−1 from
2018.

55



Chapter 6 – Event Selection

Table 6.1: All Monte Carlo generated signal points for the non-resonant VBF anal-
ysis.

DSID κλ κ2V κV

502970 1 1 1
502971 1 0 1
502972 1 0.5 1
502973 1 1.5 1
502974 1 2 1
502975 1 3 1
502976 0 1 1
502977 2 1 1
502978 10 1 1
502979 1 1 0.5
502980 1 1 1.5
502981 0 0 1

6.2 Monte Carlo Samples

Monte Carlo simulations are used for signal events only. The main background is
comprised of various QCDmulti-jet processes, which are not well modelled by Monte
Carlo simulations as explained in Section 2.2.6. The background is estimated using
data-driven techniques.

Signal samples, including the SM couplings point and the points with varied κλ
and κ2V couplings, were produced using MadGraph, version 2.7.3 [63] for the
event generation at the leading order (LO), with the PDF set: NNPDF3.0nlo
[64]. Pythia8.244 [65], was used for parton showering and hadronization with
NNPDF2.3lo PDF set with A14 set of tuned parameters [64]. In order to simulate
the detector response Geant4 [66] was used. The generated signal samples are
listed in Table 6.1.

Since samples are produced at LO, but the N3LO result for the κ2V = 1 is available,
all cross-sections are rescaled to the N3LO value as:

σκ2V =x
N3LO = σκ2V =1

N3LO
σκ2V =x
LO

σκ2V =1
LO

, (6.1)

with σc2v=1
N3LO = 1.723 fb [24] and σc2v=1

LO = 1.394 fb [67].
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6.2.1 κ2V Reweighting

Even though twelve samples are produced, they are not enough for the overall study
of the di-Higgs VBF production cross-section, for which a continuous range of the
κ2V values is needed. Producing more samples would be one possibility, however, it
is computationally very expensive. The combination of a handful of samples is used
instead. The combination has its mathematical foundations in the expansion of the
differential cross-section. For VBF with its three contributing Feynman diagrams
at the tree level, it reads:

dσ(κ2V , κλ, κV )

dmHH

= |A(κ2V , κλ, κV )|2 = |κV κλMs(mHH)+κ2
VMt(mHH)+κ2VMx(mHH)|2.

(6.2)

After the expansion, the expression has six terms meaning six coefficients, ai, de-
pendent on the mHH as:

dσ(κ2V , κλ, κV )

dmHH

= κ2
V κ

2
λa1(mHH) + κ4

V a2(mHH) + κ2
2V a3(mHH)

+κ3
V κλa4(mHH) + κV κλκ2V a5(mHH) + κ2

V κ2V a6(mHH).

(6.3)

Because of this dependence, the analytical evaluation of the coefficients is very
difficult. Instead, the six basis samples of the three couplings (κ2V , κλ, κV ) are
chosen. Each is run through the analysis reconstruction and selection to finally
give the mHH distribution. A cross-section for each basis and for each bin is then
evaluated.

The six samples are chosen using the optimization technique designed specifically
for this analysis. It is based on the minimization of the unphysical, negative bins
while producing mHH distributions for a continuous combination of κλ and κ2V .
The result of this optimization gives the following six orthogonal basis samples:
(κ2V , κλ, κV ): (1,1,1), (1.5,1,1), (1,2,1), (1,10,1), (1,1,0.5), (0,-5,0.5).
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The total differential cross-section equation reads:

dσ(κ2V , κλ, κV )

dmHH

=
(

68κ2
2V

135
− 4κ2V κ

2
V +

20κ2V κV κλ
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+
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V
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2
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× dσ
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(6.4)

giving the prescription for how to obtain any specific value of the κ2V coupling
required for the final coupling scan.

6.3 Triggers

Triggers are used in order to select interesting events for the analysis. Because of the
b-jet only final state, the multi-b-jet triggers are chosen. A simple approach would
be to only use one trigger, but using multiple triggers, with each working better
in a particular phase-space, enhances the event acceptance. Such enhancement is
especially important in the case of a statistically deficient VBF channel.

The data-driven background estimation is based on the assumption that the 2b data
is kinematically similar to the 4b data and the 2b data is used for the 4b background
estimation in the signal region. Therefore, the chosen triggers require a maximum of
two b-jets. With additional requirements on the number of other jets, two categories
are proposed, namely, 2b1j and 2b2j. Table 6.2 presents the 2b2j and 2b1j triggers
for 2016, 2017 and 2018 data taking years. Jets are required to pass the minimum
transverse energy, ET , thresholds. For the 2b1j the threshold is 100 or 150 GeV
(varies for different years of data collection) required on the non-b-tagged jet of the
2b1j trigger, while for the 2b2j trigger, the thresholds are 35 GeV for all four jets,
including the b-jets.
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Table 6.2: Names and types of triggers used in each year of data taking.
Year Name Type

2016 HLT_j100_2j55_bmv2c2060_split 2b1j
HLT_2j35_bmv2c2060_split_2j35_L14J15.0ETA25 2b2j

2017 HLT_j110_gsc150_boffperf_split_2j35_gsc55_bmv2c1070_split_L1J85_3J30 2b1j
HLT_2j15_gsc35_bmv2c1040_split_2j15_gsc35_boffperf_split_L14J15.0ETA25 2b2j

2018 HLT_j110_gsc150_boffperf_split_2j45_gsc55_bmv2c1070_split_L1J85_3J30 2b1j
HLT_2j35_bmv2c1060_split_2j35_L14J15.0ETA25 2b2j

6.3.1 b-jet Trigger Efficiency Correction

Online to Offline b-tagging correction

The b-jet triggers work based on the online b-tagging applied at the High Level
Trigger. The online b-tagging algorithms are the same as the offline b-tagging algo-
rithms, described in Section 5.2.1, but they work with the lower-quality tracks and
jets.

Only the reconstructed jets that are matched to the online trigger-level jets are
considered in the analysis1. These jets have to be both online and offline b-tagged.
The two tagging efficiencies vary and the online to offline b-tagging correction is
calculated. Furthermore, the performance of both online and offline b-tagging varies
in the MC and the real data due to the detector discrepancies not accounted for in
the MC. Therefore, the overall correction takes into account both the online-to-
offline correction and the MC-to-data correction. The correction is applied to the
MC efficiency as a scale factor.

For each jet, the online trigger efficiency conditioned on the offline efficiency for the
Dl1r b-tagging at the 77% working point is evaluated and denoted as εOnline|Offline

b .

If the jet is both online and offline b-tagged, the combined flavour tagging efficiency
is:

εOnline∩Offline
b = ε

Online|Offline
b εOffline

b . (6.5)

If the jet is not both online and offline b-tagged, the efficiencies are: for passing
offline but failing online:

ε
¯Online∩Offline

b = (1− εOnline|Offline
b )εOffline

b , (6.6)

for passing online and failing offline:

εOnline∩ ¯Offline
b = εOnline

b − εOnline|Offline
b · εOffline

b , (6.7)

1For details of the jet matching procedure see Chapter 4 in [6].
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for failing both online and offline:

ε
¯Online∩ ¯Offline

b = 1− εOffline
b − εOnline

b + ε
Online|Offline
b · εOffline

b . (6.8)

The efficiencies are evaluated as functions of pT . Values of εOffline
b , εOnline

b and
ε
Online|Offline
b for the MC jets and corresponding per-jet MC-to-data scale factors are
provided by the ATLAS b-jet Trigger Flavour Tagging Group as CDI files [56].

As shown in Eq. 6.7 and 6.8, the online jet kinematics and flavour tagging efficiencies
cannot be evaluated separately, the combined MC-to-data scale factors for the online
and the offline b-tagging are calculated as:

SFper-jet
FTAG =

εData

εMC
, (6.9)

where εMC are evaluated by plugging in the efficiencies values provided in the CDI
files into one of the eq. 6.5 - 6.8 and εData are evaluated by multiplying the CDI
efficiencies values by the CDI SF values. For events with more than one jet, the
product of per-jet scale factors is evaluated to give the per-event scale factor.

Online Jet Kinematic Correction

Online jet kinematic conditions also differ between MC and data. A scale factor for
each reconstructed jet is derived specifically for this analysis to obtain the MC-to-
data correction as a function of the matched offline jet pT .

Firstly, each of the multi-b-jet triggers is split into its constituent L1 and HLT
trigger jets. For example, the 2017 trigger of the type 2b1j is:

HLT_j110_gsc150_boffperf_split_2j35_gsc55_bmv2c1070_split_L1J85_3J30,

which means it consists of three HLT jets:

• HLT_j110_gsc150_boffperf_split_L1J85

• HLT_j110_gsc150_j35_gsc55_boffperf_J30

• HLT_j35_gsc55_boffperf_J30,

for simplicity L1 jets are not considered here.

Figure 6.1 shows the scale factors as the ratio of efficiency in data to the efficiency
in MC for each of the above HLT jets as a function of the matched offline jet pT for
the 2017 2b1j trigger. For the leading jet with pT > 170 GeV, the second leading
jet with pT > 60 and the third leading jet with pT > 70 GeV, the scale factors are
close to 1 and the corresponding total uncertainty is not larger than 5%.
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(a) HLT jet 1 (b) HLT jet 2

(c) HLT jet 3

Figure 6.1: 2017 2b1j trigger scale factors for the three leading online HLT jets mea-
sured as a function of the matched offline jet pT . Statistical uncertainties
are shown as the black bars, while the total statistical and systematic
uncertainty is shown as the green bands.
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Since scale factors are derived as functions of offline jet pT , they can be combined
with the total flavour tagging scale factors discussed in Section 6.3.1. As a result, a
single trigger scale factor is applied to the MC events. More details on the method
can be found in Appendix H of [6].

6.3.2 Trigger Bucket Algorithm

If an event passes multiple triggers, a combination of per-jet scale factors into a single
per-event scale factor becomes very complicated. In order to avoid the complication,
a technique called trigger buckets is used so that every event is assigned to exactly
one trigger.

In Figure 6.2 the flowchart of the trigger buckets algorithm is shown. The algorithm
is the offline and hierarchical algorithm which provides the selection steps in order to
split events into two categories. Each category directly matches one of the two online
triggers: 2b1j or 2b2j. Only if an event is discarded from the first category, the 2b1j,
it can be tried for the 2b2j category. After events are placed in the buckets, it is
checked whether they also pass the nominal, online trigger selection of the same type
as the bucket they are in. Only if this is a positive decision, events are selected.

The first category mimics the 2b1j trigger. Its cuts are defined for the first leading
jet (pT > 170 GeV) and for the third leading jet (pT > 70 GeV). The values of the
cuts match the minimum pT values for which the online jet kinematic scale factors
are close to 1, as shown in Figure 6.1. If an event does not pass these requirements,
it is placed in the second bucket which collects 2b2j -like events.

Figure 6.3 shows the trigger buckets composition for the κ2V = 0 signal as a function
of the di-Higgs mass. Bucket 1 represents the 2b1j trigger, which is dominant for
high mHH events, and Bucket 2 represents the 2b2j trigger, dominant for the low
mHH events. 38.9% of events are placed in 2b1j bucket, 54.5% in 2b2j, the remaining
events are discarded. More details on the trigger bucket algorithm studies can be
found in Chapter 9 of [68].
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Apply 2b + 2j
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Figure 6.2: Flowchart illustrating the trigger bucket algorithm used in this analysis.
Only if an event fails the first bucket, it can be tried for the second
bucket. Each event needs to pass the corresponding online trigger re-
quirements as well. The corresponding 2b2j or 2b1j event-level scale
factors are applied to each event. Figure taken from [68].

Figure 6.3: Buckets composition in the 4b signal region for the κ2V = 0 signal as
function of mHH . Bucket 1 corresponds to 2b1j trigger and bucket 2 to
2b2j trigger [68].
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Figure 6.4: Flow-chart of all selections that need to be passed by an event to be
considered for the VBF analysis.

6.4 VBF Event Selection

6.4.1 Nomenclature of the Analysis Jets

First of all, central and forward jets are defined. Kinematically, central jets must
fulfil pT > 40 GeV and |η| < 2.5 requirements. Central jets, if b-tagged, are used
for reconstructing the two Higgs Candidates in the event. The η requirement is
motivated by the b-tagging algorithm, which only works in the region covered by
the tracker, as described in Chapter 3. The choice of the pT threshold is motivated
by the selection of the b-jet trigger. Secondly, the forward jets are defined as those
with pT > 30 GeV and |η| > 2.5. The presence of the two well-separated, forward
jets is the crucial aspect of the VBF topology, as described in Section 2.2.4.

6.4.2 Steps of the Event Selection

All events considered here are the events that pass the triggering requirements and
the trigger buckets algorithm. For a better overview of all selections, a flowchart
showing VBF analysis steps is presented in Figure 6.4, while all selections are de-
scribed in the text below.

The nominal signal events need to have at least four b-tagged central jets from
which the Higgs Candidates can be built. This would be a sufficient selection for
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the gluon-gluon fusion, however, since the VBF production is the focus here, the
three additional VBF-specific conditions must be fulfilled. Namely, events must have
at least six central or forward jets. Since at least four of those are b-tagged, the
VBF jets are defined as the pair of the non-b-tagged jets with the highest mjj. The
events that pass the next selections must have the VBF jets with mjj > 1000 GeV
and |∆ηjj| > 3. The VBF events are also characterized by a significantly suppressed
hadronic activity in the central region. In order to quantify such a suppression, the
vector sum of six jets pT (four Higgs Candidate jets and two VBF jets) is evaluated
with the requirement of the total pT < 65 GeV.

2 b-tagged Region

Additionally, for the purpose of the data-driven background estimation, the 2b cat-
egory is defined. Events are selected with the same selection steps as the 4b events,
with the only difference being the requirement that exactly two jets are b-tagged
instead of at least four. The two remaining jets needed for Higgs Candidates con-
struction are two, non-tagged highest pT central jets.

6.5 Higgs Candidate Pairing

After the event selection, the four central b-tagged jets are paired into Higgs Can-
didates. Figure 6.5 illustrates the three possibilities of such pairings. Choosing the
correct pairing is crucial because the further analysis cuts are dependent on the
Higgs Candidates’ properties.

6.5.1 Overview of Considered Algorithms

The ways Higgs Candidates can be paired are numerous. To assess if the pairing in
data is correct, the Monte Carlo samples are used for comparison with the recon-
structed pairs. The paring algorithm which results in a smooth di-Higgs massplane
is preferred for the background estimation reasons. A smooth massplane means
that no events with a specific mass of leading or sub-leading Higgs Candidates are
preferred. Pairing is performed on all events that pass the selection to this point,
including the 2b events.
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Leading Higgs Candidate 
Subleading Higgs Candidate

pair # 1 pair # 2 pair # 3

ΔR
ΔR ΔR

Figure 6.5: Three possibilities of pairing four jets into two Higgs candidates. The
angular separations between jets of the leading Higgs candidates are
indicated. In this schematic, the second pair is the one with the smallest
∆R hence it would be chosen as the Higgs pair for this event based on
the minimum ∆R pairing algorithm.

DHH Pairing

The algorithm that was used in the previous VBF analysis [3] is aimed at minimizing
the quantity DHH given by equation:

DHH =

∣∣mH1 − 120
110
mH2

∣∣
√

1 +
(

120
110

)2
(6.10)

where the centre of the signal region is at mH1 = 120 GeV,mH2 = 110 GeV. The
DHH measures the distance between the reconstructed Higgs masses of each of the
three possible Higgs pairings, and the line crossing the origin and the centre of the
mH1 and mH2 massplane. Even though the efficiency of such pairing compared to
the true Higgs bosons is high (83% of the signal events were correctly paired in
the previous VBF analysis [3]), the algorithm leads to the undesired shaping of the
massplane; pairs laying nearby the central diagonal line are preferred. Therefore, a
new algorithm, in which massplane sculpting is avoided, is proposed.

Minimum ∆R Pairing

The new pairing strategy is based on choosing the leading pT Higgs Candidate in
each of the three possible pairs. The rapidity separation, ∆R =

√
∆η2 + ∆φ2, is
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calculated for the three leading Higgs Candidates. The pairing in which the leading
HC has the smallest ∆R is chosen.

Figure 6.6 shows the resulting massplanes for the different samples: the 4b data, the
2b data and the κ2V = 0 signal Monte Carlo. No peaks in the Higgs Candidates’
massplanes are observed. Figure 6.7 shows the pairing accuracy of the truth di-
Higgs mass for the VBF SM signal, the κ2V = 0 signal and the κλ = 10 signal. For
mHH > 450 GeV, the accuracy is at least 70% for the SM signal, while it is at least
80% for the non-SM signals. The harder pT spectrum of the non-SM signals at high
mHH results in pairs of jets that are more collimated, leading to the higher pairing
accuracy. At low mHH masses and for the SM point, the pT spectrum is softer. The
degradation of the accuracy at low mHH is acceptable because the analysis is aimed
at exploring the high mHH events, where the QCD background is reduced.

Because of the smooth massplane and sufficiently high pairing accuracy, the mini-
mum ∆R pairing method is chosen for the analysis.

6.6 Top veto for the Background Reduction

The multijet QCD processes are the dominant background of this analysis, while
events in which pairs of top quarks, tt̄, decay hadronically as t → b(W → q1q̄2)
constitute the second most dominant background. The method of reducing the
number of tt̄ events is presented.

The possible W boson candidates, to which t quarks decay, are constructed as the
combination of any two central jets that are neither Higgs Candidates nor VBF jets.
From combinatorics, given there are n jets, there will be

(
n
2

)
W candidates. Then,

to create the hadronic t candidates, each of the possible W candidates has to be
paired with a b-jet. There are exactly four b-jets in the event, hence there are 4

(
n
2

)

possible t candidates2.

Subsequently, we introduce the top veto variable XWt:

XWt =

√(
10 (mW − 80.4 GeV)

mW

)2

+

(
10 (mt − 172.5 GeV)

mt

)2

, (6.11)

wheremW andmt are the invariant masses of theW and t candidates respectively.

For each event, the XWt for 4
(
n
2

)
combinations is evaluated and the event is vetoed

if the minimum XWt from among all combinations is < 1.5.

2The Higgs Candidate b-jets and the jets constructing W boson must be distinct.
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(a) 4b data, before unblinding (b) 2b data

(c) MC simulated signal for κ2V = 0

Figure 6.6: The mH1 and mH2 massplanes for the VBF selection for the 4b data
(pre-unblinding), the 2b data used for the background estimation and
the simulated signal for the κ2V = 0. The kinematic regions are defined
in Section 6.7. Signal and two control regions CR1 and CR2, defined in
Section 6.7, are overlaid on each massplane.
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Figure 6.7: ∆R pairing accuracy as a function of the truth mHH distribution for
three VBF signals: VBF SM, κ2V = 0 and κλ = 10.

6.7 Kinematic Regions Definitions

The kinematic signal (SR) and control (CR) regions are defined in the di-Higgs
massplane. The signal region is defined by requiring XHH < 1.6, where:

XHH =

√(
10 (m(H1)− 124 GeV)

m(H1)

)2

+

(
10 (m(H2)− 117 GeV)

m(H2)

)2

, (6.12)

with m(H1) and m(H2) representing masses of leading and subleading Higgs Can-
didates respectively. The centre of the massplane is at m(H1) = 124 GeV, m(H2) =
117 GeV. During the Higgs Candidate pairing, there is an unavoidable energy loss
due to the semi-leptonic B-decays resulting in the two Higgs candidates of unequal
masses. 124 GeV and 117 GeV are chosen for consistency with the ggF analysis for
which this is an optimal signal region centre [6].

Control regions are defined for the background estimation procedure, which is based
on deriving scaling factors in the control regions and applying them to the events
in the signal region. To ensure a smooth extrapolation of the scaling factors, the
control region is bordering the signal region to preserve the two regions’ kinematic
resemblance. The outer boundary is selected such that there are enough statistics
to perform background estimation. The outer boundary equation reads:
√

((m(H1)− 1.05× 124 GeV)2 + ((m(H2)− 1.05× 117 GeV)2 < 45 GeV. (6.13)

The centre of the control region is shifted by 5% with respect to the centre of the
signal region in order to ensure that the event statistics are similar all around the
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SR while the very low Higgs mass events are avoided. For the low mass events,
the differences between the 2b and the 4b events are large, hence undesired for the
background estimation procedure.

Control Region Splitting

In order to better account for the systematic uncertainty for the background esti-
mation, the control region is split into two parts. Two separate background models
are then derived, and the difference between them constitutes the background shape
systematic uncertainty. For illustration, we refer to Figure 6.6b, which shows the
2b di-Higgs massplane, while the boundaries of the signal and two control regions,
CR1 and CR2, are overlaid. Each control region consists of two quadrants lying on
opposite sides of the signal region.

The lines splitting the control region are chosen such that they cross the centre of
the signal region at the angles 45°and 135°measured from the positive x-axis. In
order to refer to each quadrant a compass-like naming scheme is applied: the top
quadrant is N -orth and following in the clockwise direction these are E -ast, S -outh
and W -est.

To motivate such a choice of control region splitting, note that in Figure 6.6b at
70 < mH2 < 90 GeV, a horizontal lighter coloured strip is visible, similarly, a
vertical strip for the 70 < mH1 < 90 GeV. This is the result of introducing the top
veto variable, which in practice removes Higgs Candidates of approximately the W
boson mass. To account for these horizontal and vertical reductions in a number
of events with Higgs Candidate masses of around 80 GeV, the two control regions
are defined as CR1: vertically, (N, S), and CR2: horizontally, (W, E), around the
signal region. This way, the deficit in the number of events is the same for CR1 and
CR2.

6.8 Cut-flows

Table 6.3 shows the number of the 2b and the 4b events passing each of the selection
steps. The numbers are quoted for all years of data taking inclusively (2016, 2017
and 2018). The only requirement that differs for both samples is the number of the
b-tagged jets. For the 4b events, ≥ 4 b-tags are required, while for the 2b events
exactly 2 b-tags are required. It can be observed that out of the initially available
5.70× 108 events, only 502 4b events and 58 700 2b events are selected in the signal
region.
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Table 6.3: Cut-flow table indicating the number of 4b and 2b events passing each of
the described selection steps. 4b signal region data are unblinded.

4b data 2b data

Initial Yield 5.70× 108

Trigger 2.81× 108

Trigger Buckets 2.49× 108

VBF Selections 3.30× 106

≥ 4 central jets, ≥ 2 b-tags 3.16× 106

≥ 4 b-tags (4b) or exactly 2 btags (2b) 2.71× 104 2.76× 106

Top Veto 2.18× 104 2.47× 106

Control Region 1 9.47× 102 1.11× 105

Control Region 2 9.06× 102 1.10× 105

Signal Region (post-unlinding) 5.02× 102 5.87× 104

6.9 Acceptance times Efficiency

Figure 6.8 shows the cumulative acceptance times efficiency3 as a function of κ2V

for the MC simulated samples for the selection steps described in this chapter. The
final acceptance times efficiency is the worst for the SM point. At the SM point
cancellation due to the perturbative unitarity between the Feynman diagrams, shown
in Figures 2.12a and 2.12c in Chapter 2, is observed [25]. For the points away from
the SM, the non-cancellation effects result in a harder mHH spectrum. This leads
to an increased signal acceptance times efficiency at the non-SM points, while the
prediction around the SM region remains unimproved.

6.10 Discriminating Variable

Following [69], the full characterization of the di-Higgs system is provided by the di-
Higgs mass variable, mHH . The mHH is the discriminating variable of the analysis
and it is complemented with the angular variable between two Higgs bosons, ∆ηHH ,
for categorization.

Categorization

It is beneficial to split data into categories based on kinematic variables such that
the signal to background significance, S√

B
, is maximized in each category, resulting

3Number of events passing each selection divided by the total number of generated events
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Figure 6.8: Cumulative acceptance times efficiency as a function of κ2V for the MC
simulated samples for the selection steps described in the chapter.

in a better overall signal significance. |∆ηHH | is used for the categorization of events
in the signal region.

Figure 6.9 shows the |∆ηHH | distribution. The SM signal and the non-SM signals
for κ2V = 0 and κλ = 10, as well as the 2b reweighted data are shown. Signals
are scaled by integers for visibility. The category split is chosen at |∆ηHH | = 1.5.
|∆ηHH | ≤ 1.5 is sensitive to the non-SM signals, while |∆ηHH | > 1.5 is sensitive to
the SM signal.

Binning

Signal region events with |∆ηHH | ≤ 1.5 and |∆ηHH | > 1.5 are separately binned
in the mHH histograms. Variable binning with bins gradually increasing in width
is proposed, as the mHH is a steeply falling distribution. The prescription for the
consecutive bin edges reads:

bini+1
low = binilow + (100 + x%)× binilow, (6.14)

where the first bin edge is chosen at 400 GeV. The x% also varies for |∆ηHH | cat-
egories and it is 10% and 9% respectively for the low and high |∆ηHH | categories.
The binning algorithm iterates until the upper data limit is reached but it does not
stop exactly at this limit; it calculates the last bin edge as programmed. The maxi-
mum data limits for the two categories are 890 GeV (low) and 1470 GeV (high). The
choice of the specific percentage x is justified by posing the cap on the maximum
statistical error at 30%. For the asymptotic approximation to work, 10 events are
the minimum number of events per bin, so the Poisson error is

√
N =

√
10 ≈ 3

events, making it 3
10
≈ 30% the maximum relative error.
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Figure 6.9: The |∆ηHH | distribution in the 4b signal region of the 2b reweighted
data and the signal shapes scaled by integers (for visibility). The cut at
|∆ηHH | = 1.5 is shown to indicate the proposed category splitting.
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Background Estimation

Background estimation is the key component of the analysis. Because of the fully
hadronic final state of the 4b channel and the multijet QCD background, the analysis
uses a data-driven method instead of a Monte Carlo simulation. The details of the
neural network reweighting technique are discussed in this chapter.

7.1 Method of Event Reweighting with Bins

In many cases, the background is estimated using the Monte Carlo method. Clas-
sic event reweighting [70] is a correction method for the imperfect MC background
prediction obtained for a process when the simulated sample does not agree well
with the real data or the real data are unknown. In order to reduce the disagree-
ment, a new, but similar process, for which the MC and the real data are known, is
introduced. The goal is to find a multiplying factor by which the imperfect MC dis-
tribution should be multiplied so that it is calibrated with the real data distribution.
This calibration is the nominal reweighting.

Two distributions (MC and data) of a well-understood process are estimated using
binned histograms of the kinematic variables describing the process. The multiplying
factor m is calculated in the bin-by-bin fashion as:

mbin =
wbin, data, NP

wbin, MC, NP
, (7.1)

where wbin, data, NP and wbin, MC, NP are the total event weights in a given bin of
either the real data or the MC kinematic variable distribution of the new process.
Subsequently, factor m is applied, bin by bin, to the original, imperfect MC event
weight to obtain the corrected MC event weight:

wbin, MC, corrected = mbin × wbin, MC, imperfect. (7.2)

Usually, more than one variable is needed to calibrate the MC process and to perform
the desired reweighting. The distributions of several variables are multiplied, which
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leads to the problem of data scarcity. The curse of dimensionality occurs; the phase
space increases while the available data remains unchanged, much scarcer in the
enlarged space.

7.1.1 2b to 4b Event Reweighting

The idea of the event reweighting was modified and applied to the data-driven back-
ground estimation in the 4b ggF analysis in the 2015/2016 dataset analysis [29].

The 2b events, events with exactly two b-tagged jets, are selected on top of the 4b
events, assuring no difference in the event selection other than the number of the
b-tagged jets. The main assumption, verified with various kinematic distributions,
is that the background events with exactly two b-jets are kinematically similar to
the four b-jets events.

The desired background distribution is the 4b background in the signal region, but
only the 2b background distribution in the signal region is known, the 2-tag events
are unblinded while the 4-tag events are blinded. This is analogous to the imperfect
MC from the general event reweighting method. The new processes, from which the
scaling factor m is derived, are the 2b and 4b distributions in the control region,
where both 4-tagged and 2-tagged events are unblinded. The control regions contain
only the background events, the signal contamination is assumed to be negligible.
In Figures 6.6a and 6.6b in Chapter 6, the 4b and 2b massplanes are shown with
the overlaid signal and control regions boundaries1. The multiplying factor m is
obtained as:

mbin =
4b distributionbin
2b distributionbin

. (7.3)

The multiplier m is applied to the 2-tag events in the signal region resulting in the
prediction of the 4b signal region background events.

Practically, to account for the kinematic differences between 2b and 4b events, ratios
of binned histograms of various kinematic variables are used for reweighting, which
leads to the mentioned curse of dimensionality problem. More details on this method
can be found in [29] and [3]. In this analysis, the reweighting method for background
estimation is retained, but a truly multivariate neural network approach is proposed.

1Note that in the original analysis where the event reweighting method was used, different defi-
nitions of the kinematic control and validation regions were used but the fundamentals of the
method do not differ. The original regions definitions can be found in [29].
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7.2 2b to 4b Neural Network Reweighting

In order to obtain the multiplying factor, from now on referred to as a weight, using
neural networks, the density ratio estimation of the two probability distributions is
required. For the 4 and 2-tag data, the probability density functions: p4b(x) and
p2b(x) across some input variables x are given. The aim of the neural network is to
learn a reweighting function w(x) between the 2 and 4-tag data such that:

p2b(x) · w(x) = p4b(x) (7.4)

from which it follows that:

w(x) =
p4b(x)

p2b(x)
. (7.5)

This density ratio estimation can be treated using various multivariate methods.
The method adapted for this analysis is based on [71]. Starting from the following
loss function:

L(R(x)) = Ex∼p2b
[√

R(x)
]

+ Ex∼p4b

[
1√
R(x)

]
. (7.6)

where, again, x represents some input variables in a vector form in Rn, R is the
estimator, while p4b and p2b are arbitrary, but fixed, probability density functions.

Using the definition of expectation value, we get:

L(R) =

∫ √
R(x)p2b(x)dx+

∫
1√
R(x)

p4b(x)dx

=

∫
dx

[
√
R(x)p2b(x) +

1√
R(x)

p4b(x)

]
.

(7.7)

In order to minimise this loss, the estimator, R, has to be found. This results in a
standard problem solvable by the calculus of variations. We start from:

I(x1, . . . , xn, R,R1, . . . , Rn) =
√
R(x)p2b(x) +

1√
R(x)

p4b(x), (7.8)

with Ri = ∂R
∂xi

. From the Euler-Lagrange equations, L has an extreme value (mini-
mum or maximum) only if R satisfies the partial differential equation:

∂I
∂R
−

n∑

i=1

∂

∂xi

(
∂I
∂Ri

)
= 0. (7.9)
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As I does not depend on Ri for any i ∈ {1, . . . , n}, the second term vanishes. The
extremizing estimator R is found after solving the following equation:

0 =
∂I
∂R

=
1

2
R−

1
2p2b −

1

2
R−

3
2p4b

=
1

2
R−

1
2 (p2b − p4bR

−1),

(7.10)

which is:
arg min

R
L(R) =

p4b(x)

p2b(x)
, (7.11)

as desired. Note that the above only guarantees that R is an extremizing estimator,
not necessarily a minimizing one. However, showing the latter property is outside
of the scope of this thesis.

In practice, to avoid imposing explicit positivity constraints, the substitutionQ(x) ≡
logR(x) is made. The form of the loss function then becomes

L(R(x)) = Ex∼p2b
[√

eQ(x)
]

+ Ex∼p4b

[
1√
eQ(x)

]
, (7.12)

with the solution
arg min

Q
L(Q(x)) = log

p4b(x)

p2b(x)
. (7.13)

Taking the exponent of the Eq. 7.13 results in the desired reweighting function.

7.3 Neural Network Reweighting in Practice

Figure 7.1 illustrates the neural network background estimation in practice, based
on the 2b and 4b massplanes introduced with Figure 6.6. The top row illustrates
the training stage in which the 2b data are mapped to the 4b data in the control
regions and the network learns weights so that the differences between the kinematic
distributions are minimized. The bottom row illustrates the background estimation
stage in which the learned weights are applied to the 2b signal region events. As a
result, the 4b background is predicted for the blinded 4b signal region.

7.3.1 Network Input Variables

An optimal set of input variables on which the network can efficiently learn the
differences between the 2-tag and 4-tag distributions is required. The discriminat-
ing variable in this analysis is the di-Higgs mass distribution, the mHH , for which
background modelling is crucial. In order to avoid bias, the network is not directly
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Figure 7.1: Illustration of the neural network reweighting approach based on the 2b
and 4b di-Higgs massplanes. In the top row, the training stage of the
procedure is shown; the network learns weights of the CR1 2b and 4b
distributions (same is done in CR2). In the bottom row, the learned
weights, are applied to the 2b events in the SR to obtain an estimation
of the signal region 4b background events.
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trained on the mHH variable, but instead on a set of variables chosen such that they
describe the mHH distribution well by being closely correlated to the mHH itself.

The correlations are checked using the Pearson Correlation Coefficients method [72],
defined in the following equation:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (7.14)

where r is the correlation coefficient, xi and yi are the values of the x and y variable
respectively, while x̄ and ȳ are their means. In the analysis, each of the considered
variables, x, is compared to the discriminating variable mHH , y.

The coefficients are calculated for the full 2b control region dataset split into two
categories in the |∆ηHH | variable to assure background modelling is correct for both
categories. The results of the coefficients calculation are presented in Figure 7.2.

The variables, for which the correlation coefficient is high (above 0.5) in both cat-
egories, are chosen. The second test is then performed in order to reduce the set
of input variables to the order of 10. The method is again the Pearson Correlation
Coefficient method, but now the correlations among variables from the set are mea-
sured. Figure 7.3 shows the resulting 2D correlation matrix. Seven variables that
are least correlated with each other are chosen. This way the redundant information
that is carried by the closely correlated variables is avoided.

The list of the network input variables is presented below. The variable names
displayed in the Figures are given in brackets. Additionally, two one hot encoder
variables are added. These are related to the encoded trigger bucket information
and the year in which the given event was recorded, even though the training is
based on the entire dataset, where information from mixed years of data collection
and all available triggers is included. The list is the following:

1. Maximum di-jet mass out of the possible pairings of the four Higgs candidate
jets (m_max_dj),

2. Minimum di-jet mass out of the possible pairings of the four Higgs candidate
jets (m_min_dj),

3. Energy of the leading Higgs candidate (E_h1),
4. Energy of the subleading Higgs candidate (E_h2),
5. Second smallest ∆R between the jets in the leading Higgs candidate (out of

the three possible pairings for the leading Higgs candidate) (pairing_score_2),
6. log(XWt), where XWt is the variable used for the top veto (X_wt_tag),
7. Average absolute value of Higgs candidate jet η (eta_i),
8. Trigger bucket index (for the trigger buckets inclusive training) as one hot

encoder,
9. Year index (for the years inclusive training) as one hot encoder.
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Figure 7.2: The display of the Pearson Correlation Coefficients for the kinematic
variables of the 2b Control Region 1 data correlated with the mHH and
evaluated in two |∆ηHH | categories. The variables are shown in the
descending order of the coefficient value r with themHH being correlated
to itself at the top, with the r value of 1.

81



Chapter 7 – Background Estimation

m
_m

ax
_d

j

pT
_h

2

pT
_h

1

pT
_2

pT
_h

1_
j1

pT
_h

2_
j1

bk
t_

le
ad

_je
t_

pt

bk
t_

HT

pa
iri

ng
_s

co
re

_1

pa
iri

ng
_s

co
re

_2

tri
g_

bu
ck

et

dR
jj_

1

dR
jj_

2

E_
h1

E_
h2

E_
h1

_j1

E_
h1

_j2

E_
h2

_j1

m
_h

2_
j1

X_
wt

_t
ag

X_
wt

_n
ot

ag

et
a_

i

m
_m

in
_d

j

m_max_dj

pT_h2

pT_h1

pT_2

pT_h1_j1

pT_h2_j1

bkt_lead_jet_pt

bkt_HT

pairing_score_1

pairing_score_2

trig_bucket

dRjj_1

dRjj_2

E_h1

E_h2

E_h1_j1

E_h1_j2

E_h2_j1

m_h2_j1

X_wt_tag

X_wt_notag

eta_i

m_min_dj

Correlation Matrix for control2b Region, hh<=1.5

0.5

0.0

0.5

1.0

(a) |∆ηHH | ≤ 1.5

m
_m

ax
_d

j

pT
_h

2

pT
_h

1

pT
_2

pT
_h

1_
j1

pT
_h

2_
j1

bk
t_

le
ad

_je
t_

pt

bk
t_

HT

pa
iri

ng
_s

co
re

_1

pa
iri

ng
_s

co
re

_2

tri
g_

bu
ck

et

dR
jj_

1

dR
jj_

2

E_
h1

E_
h2

E_
h1

_j1

E_
h1

_j2

E_
h2

_j1

m
_h

2_
j1

X_
wt

_t
ag

X_
wt

_n
ot

ag

et
a_

i

m
_m

in
_d

j

m_max_dj

pT_h2

pT_h1

pT_2

pT_h1_j1

pT_h2_j1

bkt_lead_jet_pt

bkt_HT

pairing_score_1

pairing_score_2

trig_bucket

dRjj_1

dRjj_2

E_h1

E_h2

E_h1_j1

E_h1_j2

E_h2_j1

m_h2_j1

X_wt_tag

X_wt_notag

eta_i

m_min_dj

Correlation Matrix for control2b Region, hh>1.5

0.5

0.0

0.5

1.0

(b) |∆ηHH | > 1.5

Figure 7.3: The matrices of the Pearson Correlation Coefficients for the kinematic
variables of the 2b Control Region 1 data evaluated in two |∆ηHH | cate-
gories. The darker the displayed colour (either red or blue), the stronger
the correlation between the variables with the strongest (100%) correla-
tion at the diagonal as the variables are correlated with themselves.
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7.3.2 Network Architecture

As already outlined in Chapter 4, network architecture also impacts the network
performance. Given the amount of available training data (limited by around 900 4b
events in each of the control regions, see Table 6.3), the number of input variables
and the computational expense, networks of 3 to 5 hidden layers with a varying
number of nodes (between 10 to 50 in the first hidden layer), were tried. The tests
involved establishing numbers of nodes, layers and network shape (i.e. the bottle
neck shape of consecutive layers having fewer nodes each gradually, e.g. 10:5:2).
The optimal network was chosen as a three-layered network with 20 nodes in each
layer. Each node is activated with the ReLU activation function and the output is
a linear, single node.

7.4 Background Estimate Uncertainties

7.4.1 Statistical Uncertainty and Bootstrapping

The statistical uncertainty on the background modelling is applied. It originates
from the nature of the counting experiment and the standard Poisson error is eval-
uated. The value of the background histogram for any bin i is :

ni =
∑

j∈i

wj (7.15)

when an event j has the weight wj. The standard error for such problem is then:

δni =

√∑

j∈i

w2
j . (7.16)

If all weights are equal to 1, this summation results in the usually quoted Poisson
error:

√
N [73].

Eq. 7.16 does not consider uncertainties on weights, wj. In order to predict the
uncertainty of weights, the neural network is retrained a number of times using the
technique known as bootstrap resampling with replacement [74]. A number of statis-
tically equivalent subsets are sampled with replacement from the original training
set and the neural network is trained separately on each of these subsets. This re-
sults in a number of statistically equivalent sets of weights leading to statistically
equivalent background estimates. Each time the network is retrained, it is initialised
randomly. This aspect is implicitly included in the bootstrapping error.
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Figure 7.4: Illustration of 100 individual bootstrap estimates of weights for the mHH

spectrum in control region 1, normalized to the average bootstrap weight.
The red band indicates the bootstrap standard deviation around the
average weight.

Derivation of Bootstrap Error Band

A set of 100 bootstraps is used in the background estimation procedure. This means
that for each kinematic variable considered, 100 statistically equivalent histograms
are created, each with a set of the bin-level weights predicted by a given network.
The nominal background estimate for a given variable is the mean value in each bin.
The associated uncertainty is evaluated as a standard deviation about that mean.

Figure 7.4 shows 100 bootstrap bin-level predictions of weights (light grey) normal-
ized to the average weight for each bin as a function of mHH . The red band shows
the bootstrap uncertainty which is the standard deviation from the average weight
in each bin.
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7.4.2 Shape Systematic Uncertainty

The method of bootstrapping accounts for an unstable neural network training,
but it does not account for the extrapolation uncertainty related to deriving the
background model in one kinematic region, CR1, and applying it to another, the
signal region, SR. In order to tackle this problem an alternative background model
is derived in CR2. The differences between the CR1 and CR2 predictions constitute
the background model’s systematic uncertainty.

A simple approach would be to take the difference between CR1 and CR2 predictions
and assume this is a single uncertainty. However, that would result in a single, heav-
ily constrained shape systematic that would impact the fitting procedure described
in Chapter 8. Therefore, a method is proposed in which four separate alternative
background predictions, corresponding to the splitting of the control regions into
four quadrants, are evaluated. As a result, four less constrained shape systematics
are used in the final fit in Chapter 8.

Figure 7.5 illustrates the splitting of the massplane for the systematic uncertainty
evaluation. The control regions are split into quadrants as outlined in Section 6.7.
Additionally, the signal region is split into four parts as shown in Figure 7.5a and
the compass naming scheme is used for the SR as well. An orange triangle in Figure
7.5b indicates the N -orth part of the signal region for illustration of the N -orth
shape systematic derivation.

For any event in SR, two background predictions are available: CR1 prediction
(weights derived in CR1) and CR2 prediction (weights derived in CR2). The CR1
prediction is applied to all SR 2b events giving the nominal 4b background predic-
tion. For the alternative background prediction, here the background prediction N ,
the CR2 prediction is applied to the N-orth part of the signal region, while CR1
prediction is applied to the remaining signal region parts: E, S and W (indicated
with the green triangles). The bin-by-bin difference between the nominal predic-
tion and the alternative prediction N is then evaluated for the signal region mHH

distribution.

Figures 7.6a and 7.6b illustrate the difference between the CR1 and CR2-North
predictions for the mHH signal region distribution evaluated for each bin in the
two |∆ηHH | categories. For an easier overview of the overall shape systematic, the
calculated difference between the two predictions is symmetrised about the nominal
estimate (from the CR1). The procedure is repeated for shape systematics E, S
and W . Figure 7.6 shows shape systematic variations N and E for both |∆ηHH |
categories, while 7.7 shows variations S and W .
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Figure 7.5: Illustration of splitting of the massplane for the N-orth shape systematic
evaluation. In (a), the signal region is split into four parts: N , E, S and
W . In (b), the colours of the triangles indicate whether the CR1 or the
CR2 background prediction is used in a given part of the signal region.
In this example, the N-orth shape systematic is evaluated, therefore, for
the alternative background estimate, the CR2 weights are applied to the
orange triangle part of the SR, while the CR1 weights are applied to the
three green triangles (the nominal prediction is the application of the
CR1 weights to all four triangles). Rotating this configuration so that
the orange triangle is always in a different part of the SR leads to the
four separate alternative background predictions.
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(a) N shape systematic for |∆ηHH | ≤ 1.5 (b) N shape systematic for |∆ηHH | > 1.5

(c) E shape systematic for |∆ηHH | ≤ 1.5 (d) E shape systematic for |∆ηHH | > 1.5

Figure 7.6: Systematic uncertainties evaluated for both regions split in |∆ηHH |.
Plots in the left column are for |∆ηHH | ≤ 1.5 category, plots in the
right column for |∆ηHH | > 1.5. The first row shows differences between
CR1 and CR2: N , and the second: E.
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(a) S shape systematic for |∆ηHH | ≤ 1.5 (b) S shape systematic for |∆ηHH | > 1.5

(c) W shape systematic |∆ηHH | ≤ 1.5 (d) W shape systematic |∆ηHH | > 1.5

Figure 7.7: Systematic uncertainties evaluated for both regions split in |∆ηHH | cat-
egories. Plots in the left column are for |∆ηHH | ≤ 1.5 category, plots
in the right column for |∆ηHH | > 1.5. The first row shows differences
between CR1 and CR2: S, and the second: W .
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7.5 Performance of the Reweighting in the Control
Regions

A closure check in the control regions in which the network was trained is performed
(in CR1 and CR2 for the networks trained in these respective regions), to assess the
performance of the neural network technique. The level of agreement between the
reweighted 2b data and the 4b data is checked. The agreement is quantified by the
calculation of χ2/NDF, where NDF is the number of degrees of freedom.

Figures 7.8 - 7.13 show closure checks performed on a set of chosen distributions;
Figures 7.8 and 7.9 for the variables on which the network was trained, while Figures
7.10 - 7.13 show kinematic distributions that were not involved in the training,
including the discriminant distribution, themHH , in Figure 7.13. In the left columns,
the plots show the pre-reweighting 2-tagged data, normalized to match the number
of the 4b events in the control region. In the right columns, the 2-tagged data for
which the reweighting was applied are presented. In each figure, the top row shows
the CR1 training, while the bottom row presents the CR2 (alternative) training. In
all plots, the 4b data points are indicated together with associated 4b Poisson error.
The bottom panel shows the ratio of the normalized, or the reweighted, 2-tagged
data to the 4-tagged data. The background estimate statistical error, including the
total of the 2b Poisson and bootstrap errors, is marked as a grey hatched area.

Generally, the good agreement between the reweighted 2-tagged data and the 4-
tagged data is observed; the pre-reweighting 2b to 4b agreement is improved after
the reweighting. The χ2/NDF values are quoted in each plot. Since this is a closure
check, the lower the χ2/NDF value, the better the closure. χ2/NDF values ob-
tained after reweighting are in most cases no larger than 2, meaning the closure was
achieved. For the mHH distribution in the CR1, χ2/NDF = 0.362 post reweighting,
compared to 1.568 pre-reweighting.
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(a) (b)

(c) (d)

Figure 7.8: Distributions of the training variable: XWt in Control Region 1 (top row)
and Control Region 2 (bottom row). The errors indicated in grey are
the total background estimate statistical uncertainty: 2b Poisson and
bootstrap. The 4b data points are shown with the Poisson uncertainty.
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(a) (b)

(c) (d)

Figure 7.9: Distributions of the training variable: m_max_dj in Control Region 1
(top row) and Control Region 2 (bottom row). The errors indicated
in grey are the total background estimate statistical uncertainty: 2b
Poisson and bootstrap. The 4b data points are shown with the Poisson
uncertainty.
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(a) (b)

(c) (d)

Figure 7.10: Distributions of the non-training variable: ∆Rhh in Control Region 1
(top row) and Control Region 2 (bottom row). The errors indicated
in grey are the total background estimate statistical uncertainty: 2b
Poisson and bootstrap. The 4b data points are shown with the Poisson
uncertainty.
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(a) (b)

(c) (d)

Figure 7.11: Distributions of the non-training variable: pT of the leading Higgs Can-
didate in Control Region 1 (top row) and Control Region 2 (bottom
row). The errors indicated in grey are the total background estimate
statistical uncertainty: 2b Poisson and bootstrap. The 4b data points
are shown with the Poisson uncertainty..
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(a) (b)

(c) (d)

Figure 7.12: Distributions of the non-training variable: number of jets in the event in
Control Region 1 (top row) and Control Region 2 (bottom row). The
errors indicated in grey are the total background estimate statistical
uncertainty: 2b Poisson and bootstrap. The 4b data points are shown
with the Poisson uncertainty.
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(a) (b)

(c) (d)

Figure 7.13: Distributions of the non-training variable, discriminating variable of
the analysis: mHH in Control Region 1 (top row) and Control Region
2 (bottom row). The errors indicated in grey are the total background
estimate statistical uncertainty: 2b Poisson and bootstrap. The 4b
data points are shown with the Poisson uncertainty.
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7.6 Validation of the Background Estimate

The background estimation method is validated in two different ways. The idea of
the validation is to use the exact same method of neural network reweighting as on
the analysis data, but for reweighting of the 2b data to the data excluded by the
analysis selections. This way, an unbiased confirmation that the method is working,
without unblinding the 4b data of the signal region, is possible.

7.6.1 3b1f Region Validation

Any b-tagging referred to in the analysis, is the b-tagging at the 77% working point.
A new analysis region for the background validation is proposed in which the first
three leading pT central jets are b-tagged at the 77% working point and no central
jet passes the looser 85% working point2. This validation region is referred to as
3b+1f, where f stands for fail3.

Analogically to the main background estimation, reweighting starts with the 2-tag
data. This time instead of aiming to learn the 4-tag distributions in the control
regions, the network learns the 3b+1f distributions. Since 3b+1f is not our analysis
signal region, it is unblinded. The 3b1f data has much more statistics, a factor of
10 more, than the original 4b data. Such a boost in the statistics untruly improves
the network’s performance. This is not desired as we want to validate the original
network performance which learns on a scarcer dataset. Therefore, at the start
of the validation procedure, the data is first downsampled. It is split into 10 sets
and the whole procedure is repeated 10 times. However, this must not be confused
with the earlier described bootstrap repetitions; in each of the 10 sets here, 100
bootstraps are still performed to estimate the mean weight. Figure 7.14 shows the
mHH distribution of the reweighted 2b data and the 3b1f data in the signal region
for the 10 downsampled trainings. Most importantly, it is checked that the ratio of
the 2b to 3b1f data (bottom panel) is constant for all the downsampled trainings. It
is therefore validated that the background estimation works well in the 3b1f signal
region.

2More details on the b-tagging working points can be found in Section 5.2.2.
3The initial motivation for the use of a loose 85% working point on the fourth leading b-jet
was considered as an additional signal category. This category was eventually dropped but its
complementary category, 3b1f, is kept as the validation region.
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Figure 7.14: Background validation performed in the signal region of the 3b1f data
sample shown as the 3b1f SR mHH distribution. There are 10 sepa-
rate green predictions for 10 downsampled sets of 3b1f data. Analo-
gously, the 10 separate 2b reweighted data, the background estimates,
are shown in red. The bottom panel shows the ratio of the 3b1f data
to the reweighted 2b data for 10 separate samples.
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Figure 7.15: Illustration of the shifted kinematic regions, here overlaid on the ggF
massplane (Figure taken from the same non-resonant analysis internal
note [6]), the same is done on the VBF massplane. The new regions
are named based on their relative position on the massplane: upper left
is pink, upper centre is dark blue, upper right is green, centre right is
light blue and lower right is orange.

7.6.2 Shifted Kinematic Regions Validation

The second validation method is based on redefining five full signal and control
regions areas, as shown in Figure 7.15. The regions overlap neither the original
signal region nor themselves. They are in proximity to the original SR so that the
validation is reliable. The naming scheme of the five regions is given in the figure’s
caption.

Regions are defined with a similar equation to the original SR equation (Eq. 6.12):

XHH,shift =

√(
mH1 −mH1,centre

σmH1
mH1

)2

+

(
mH2 −mH2,centre

σmH2
mH2

)2

< 1.6, (7.17)

where the mH1,centre and mH2,centre are given in Table 7.1. The resolutions: σmH1

and σmH2
are set to 1 for upper left, upper right and lower right regions, while for

the regions in between, upper centre and lower right, one of these values is slightly
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Table 7.1: Centers of the shifted regions.

Shifted Region mH1,centre [GeV] mH2,centre [GeV]

Upper Left 78 166
Upper Center 124 180
Upper Right 170 166
Center Right 188 117
Lower Right 170 68

decreased in order to avoid overlap. For upper centre:

σmH1
= 0.1× 124

mH1,centre
, (7.18)

and for centre right :

σmH2
= 0.1× 117

mH2,centre
, (7.19)

with 124 and 117 being the centre of the original signal region. As can be seen in
Eq. 7.17, the new signal regions are again required to be contained within the XHH

value of 1.6, as for the original SR. The control regions surrounding each of the
shifted signal regions are defined analogously to the original CR1 and CR2.

The background estimation procedure is performed separately for each shifted re-
gion. The comparison of the results, the 4b event yields with the Poisson uncer-
tainties, and the 2b reweighted event yields in the shifted signal regions, is shown in
Table 7.2. The total uncertainties for the background prediction, added in quadra-
ture 2b Poisson, bootstrap and systematic, are quoted as well. The predictions
agree well (within uncertainties) with the 4b background yields in the shifted signal
regions. The highest total relative error of 21% is observed in the lower right region
due to its S quadrant’s position at very low mH2. The second highest total relative
error of 18% is observed for the upper left region. In that case, quadrant W lies in
the low mH1 region. At low mH1 and mH2, bigger differences between the 2b and
the 4b kinematics are present, causing an increase in the shape systematic error.

Figure 7.16, shows the mHH distributions in the shifted signal regions. The good
agreement is seen throughout, validating that extrapolating weights from the control
regions into the signal region works well.

Based on these two background estimate validation methods, the neural network
background reweighting technique is validated. For the non-resonant ggF analysis,
two more validations are performed. For the ggF, an additional selection cut is
performed on the ∆ηHH variable. Events with ∆ηHH > 1.5 are discarded to reduce
the QCD background [6]. The 2b to 4b reweighting is performed with the discarded
events and the signal region closure is checked. The ∆ηHH selection is not used in
the VBF analysis, as many signal events would be lost. The validation with the
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(a) Upper left (b) Upper Center

(c) Upper right (d) Center right

(e) Lower right

Figure 7.16: The mHH distributions in the five shifted signal regions showing the
reweighted 2b data in yellow and the 4b signal region data with the 4b
Poisson errors in black. The grey band shows the total statistical and
systematic uncertainty for the background prediction.
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Table 7.2: Comparison of the 4b yields (with Poisson error) and the reweighted 2b
(background prediction) yields in the shifted signal regions. The quoted
Background Error includes the Poisson error, the bootstrap error and the
shape systematic error.

Shifted Region SR 4b Yield Background Prediction Background Error [%]

Upper Left 578 ± 24 595 ± 110 18
Upper Center 338 ± 18 339 ± 14 4
Upper Right 195 ± 14 203 ± 10 5
Center Right 214 ± 15 216 ± 14 6
Lower Right 303 ± 17 338 ± 71 21

Monte Carlo samples of the tt̄ and the di-jet events was performed in the ggF as
well. It was decided that the conclusion from the ggF, namely, that the closure is
observed, is sufficient and the study was not re-performed for the VBF.

7.7 Background Prediction in the 4b Signal Region

Finally, the background prediction in the 4b Signal Region is evaluated. Background
distributions in the two |∆ηHH | categories together with the unblinded 4b data in
the signal region are shown in Figure 7.17. The corresponding total background
uncertainty: statistical and systematic, is indicated as well. The background pre-
diction agrees well with the unblinded 4b data, the closure is observed with χ2/NDF
values of 1.00 and 1.25 for the two categories respectively.

Figure 7.18 shows the relative background uncertainties as a function of the mHH in
two |∆ηHH | categories in the 4b signal region. In both categories, for the low values
of mHH , the shape systematic error is dominant. Starting at mHH = 500 GeV for
|∆ηHH | < 1.5 category and at mHH = 1000 GeV for |∆ηHH | > 1.5 category, the
bootstrap error dominates.

Table 7.3 presents the total magnitudes of the statistical and systematic background
uncertainty components in the 4b signal region for both categories inclusively to
assess the total background error. The background uncertainties are evaluated as
the event counts and as a relative percentage error. The predicted background
yield in the 4b signal region is 354.6. The total statistical error quoted in the table
is the result of the addition of Poisson and bootstrap errors in quadrature. The
total systematic error is the result of adding four individual shape uncertainties
in quadrature. The total relative statistical error is 9.1%, while the total relative
background shape uncertainty is 0.45%. Both, added in quadrature, result in the
total background uncertainty of 9.1%.
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Figure 7.17: The mHH distributions in |∆ηHH | categories with the 2b reweighted
data, the background prediction, marked in yellow, and the unblinded
4b data with associated Poisson error marked in black. Total statistical
and systematic error for the background estimate is shown as hatched
area. The bottom panel presents the 4b-to-reweighted-2b ratio.

(a) |∆ηHH | ≤ 1.5 (b) |∆ηHH | > 1.5

Figure 7.18: Composition of the relative background error as a function of the mHH

in both |∆ηHH | categories.
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Table 7.3: Magnitudes of the statistical and systematic background uncertainty
components in the 4b signal region. The Poisson and bootstrap errors
are added in quadrature to obtain the total statistical error.

Counts Relative Error %

Total Background Prediction 354.6

Total Statistical Error 32.3 9.1

Shape N 1.2 0.34
Shape E 0.3 0.10
Shape S 0.5 0.15
Shape W 0.8 0.23

Total Systematic Error 1.6 0.45

Total Error 32.3 9.1
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Statistical Analysis

8.1 Mathematical Methods

8.1.1 Hypotheses of the Experiment

The main goal of the statistical inference is to confirm or reject a hypothesis. In
the case of our experiment, there are two kinds of hypotheses. Namely, the null hy-
pothesis (or the background only hypothesis), which assumes that the data describes
only the SM background, and the alternative hypothesis in which the data describes
both background and signal: s+ b.

In practice, for this analysis, the real data are plotted in the form of histograms of
the mHH variable. It is then possible to check how well the data agree with the
background-only hypothesis. To test the alternative hypotheses, similar histograms
are prepared with the Monte Carlo simulated data for different κ2V signal shapes.
If there is no excess in data, suggesting the presence of the signal, an upper 95%
confidence level limit on the signal cross-section is evaluated; we want to find the
amount of signal which is not rejected by the data according to the chosen confidence
level, here 95%. The CLs technique is used for such limit evaluation [75]. It ensures
that the signal events which are not well separated from the background events are
not prematurely rejected. It is given by:

CLs =
CLs+b
CLb

, (8.1)

where CLs+b is the confidence level for the alternative hypothesis and CLb for the
null hypothesis. Many alternative hypotheses are possible, but instead of testing
them separately, a continuous, parametrized alternative hypothesis reads:

Halternative = s(µ) + b = µ · s0 + b, (8.2)

where µ is the signal strength parameter and s0 is the reference signal strength taken
as 1 fb here. In other words, µ can be treated as a signal cross-section relative to
the SM signal cross-section.
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8.1.2 Likelihood

The CLs method is often based on the profile likelihood ratio. In order to first
introduce the likelihood, we take a step back and first assume a hypothesis H.
In the Frequentist regime, the probability for the frequency of data x given H is
considered; if an experiment is repeated a number of times, the probability for the
frequency of data is P (x|H).

The experimental outcomes and their frequencies are already known. These data
are used to extract the parameters of the distribution, the so-called parameters of
interest (POIs). P (x|H) is now treated as a function of the hypothesis H given
the data x. Instead of a probability for data, we define the Likelihood, L, of the
hypothesis;

L(H) = L(H|x) = P (x|H). (8.3)

Since our data are coming from a counting experiment, this likelihood is taken as
a Poisson distribution of n repeated experiments. Our hypothesis is then expressed
by a probability distribution function f(mHH) that depends on the signal strength
µ, and the systematic uncertainties.

The general equation for the unbinned likelihood reads:

L(H) = L(f(mHH)|x) = Pois(n|λ = nexp) = e−λ
λn

n!
, (8.4)

where exp is short for expected.

Since our signal and background events are categorized in |∆ηHH | and binned in the
mHH histogram, Eq. 8.4 becomes:

L(f(mHH)|x) =
∏

c ε categories

∏

b ε bins

Pois(nb|λ = nb,exp) (8.5)

where nb is the number of events in bin b and nb,exp is the expected number of events
in that bin.

The uncertainty associated with the Poisson distribution, the statistical uncertainty,
is defined as one standard deviation from the expected number of events, nexp,

σnexp =
√

Var(nexp), (8.6)

which with a relatively large sample, defined as nexp & 30 [76], simplifies to:

σnexp =
√
nexp. (8.7)

On top of the statistical fluctuations, there is a number of systematic uncertainties
related to the methods of data collection and analysis at its various stages. These
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systematic uncertainties constitute the Nuisance Parameters (NPs) of the model.
These are the parameters of no interest in terms of physics interpretations but are
still present in the model description. They are denoted by θ. Each NP has a
constraint term, p

(
θ
′ |θ
)
in which θ

′ is an auxiliary measurement through which
the information about a given θ is received. The used constraining function is
usually Gaussian, but sometimes Poisson constraints are used instead [77]. All
these elements are summarized in the following likelihood equation:

L(f(mHH)|x) =
∏

c ε categories

∏

b ε bins

Pois(nc,b|λ = nc,b,exp)
∏

s ε syst

p
(
θ
′ |θ
)

=

L(µ, θ) =
∏

c ε categories

∏

b ε bins

Pois(nc,b|λ(µ̂, θ̂))
∏

s ε syst

p
(
θ̂|θ
)
. (8.8)

It is important to note that the hatted parameters are the best fit values of the
likelihood. Since they were estimated from the data, we say they were profiled and
the likelihood from Eq. 8.8 is called the profile likelihood.

8.1.3 Profile Likelihood Method

Having defined the Profile Likelihood function, we proceed with setting the limits
using the CLs method as shown in Eq. 8.1. In order to test our hypothesis, we
define a test statistic q, simply a measure of compatibility of the data with the
signal and background model. When q is small, the level of compatibility is large
and if the CLs 6 0.05, a given signal strength µ is excluded; we obtain a limit on
the cross-section. The CLs at 95% CL is defined as:

CLs(µ) = CLs(µ) =
CLs(µ)+b

CLb
=
p(qµ ≥ qµ, obs|s(µ) + b)

p(qµ ≥ qµ, obs|b)
, (8.9)

with both p-values calculated in the asymptotic approximation, which is possible
due to a large number of points under consideration [76], as the background is large.
Limits are evaluated using the test statistic defined by the following one-sided profile
likelihood ratio:

qµ =




−2 ln

(
L
(
µ,

ˆ̂
θ(µ)

)
L(µ̂,θ̂)

)
0 6 µ̂ 6 µ

0 µ̂ > µ

(8.10)

where µ is the POI, the signal strength, and θ is the set of nuisance parameters.
L
(
µ,

ˆ̂
θ(µ)

)
is the conditional maximum likelihood fit with the NPs being set to their

profiled values represented by ˆ̂
θ. For ˆ̂

θ, the likelihood is maximized while the value
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of µ is fixed. L
(
µ̂, θ̂
)

is the unconditional likelihood fit, both µ and θ can vary,

while the overall likelihood is maximized for a pair µ̂ and θ̂. For µ̂ > µ, the test
statistic is zero, because the method of setting the upper limits is developed to test
signal strength µ against the alternative hypotheses which predict lower values of
µ.

To recapitulate, the statistical procedure of setting the upper limits on the signal
strength can be done in the following steps:

• Define a range of the signal strengths µ over which the limit setting scan will
be performed.

• At each point of this range, calculate the test statistic qµ given by Eq. 8.10.
Since this is done using the observed data, the final results are qµ,observed.

• Now the CLs(µ)+b and CLb can be calculated using Eq. 8.9 and their ratio can
be taken to obtain CLs(µ).

• Finally, exclude all signal strengths for which the calculated CLs(µ) < 0.05.
Namely, observing this data given the particular µ is the true signal strength,
has the probability of less than 5%: µ is excluded at 95% confidence level.

8.2 Implementation in the pyhf Framework

The profile likelihood method was implemented in the pyhf framework [78], [79].
The framework is the pure Python-based implementation of the HistFactory p.d.f.
template package1. The data, MC and NP histograms are first read by the frame-
work, which then creates a workspace for each specific combination of the coupling
values (κλ, κ2V , κV ), as described in Section 6.2.1, also including the NP variations.
Finally, the fitting procedure is performed in each workspace.

The final discriminating variable, the mHH , is represented by various histograms,
subsequently read by the framework. The types of histograms used are:

• background histogram - the reweighted 2 b-tagged data,

• data histogram - the 4 b-tagged data in the signal region,

• signal histogram - the MC generated signal for a given coupling values combi-
nation,

• NP variation histograms - to account for systematics.

All histograms are evaluated in the two |∆ηHH | categories and using the binning
method introduced in Section 6.10.

1Histfactory is usually used with ROOT and hence frameworks such as RooFit or RooStats.

108



Chapter 8 – Statistical Analysis

8.3 Uncertainties

The uncertainties are divided into the background uncertainties for the fully data-
driven background estimate, and the signal uncertainties for the Monte Carlo gener-
ated signal samples. The signal uncertainties include detector modelling, luminosity
and theory uncertainties. All uncertainties are evaluated as up and down varia-
tions of the Nuisance Parameters mHH histograms. For the uncertainties evaluated
specifically in the course of the analysis, as well as the luminosity and the theory
cross-section uncertainties, the total relative errors are quoted. The per-event trig-
ger scale factors and the related uncertainties as well as those derived by th ATLAS
Combined Performance groups (Jet Energy Scale, Jet Energy Resolution and flavour
tagging), are not quoted as they depend on the pT and η distributions. The ±1σ
uncertainty variations histograms of the scale factors for each event are evaluated
during the fitting procedure instead.

8.3.1 Summary of Background Uncertainties

The background uncertainties are discussed in Chapter 7. The total statistical
uncertainty consists of the 2b events uncertainty, the Poisson uncertainty, and the
statistical uncertainty of the weights, the bootstrap uncertainty. The total relative
statistical uncertainty is 9.1%, while the total relative background shape uncertainty
is 0.45%. The two uncertainties added in quadrature give the total background
uncertainty of 9.1%.

8.3.2 Summary of Signal Uncertainties

Luminosity

The LUCID-2 detector [80] in the LHC complex is responsible for the luminosity
studies. Based on the luminosity scale calibration, the uncertainty applied to the
total integrated luminosity is 1.7% [81].

Theory Uncertainties

The first theory uncertainty addresses the uncertainty of the underlying event and
parton shower modelling. The customary procedure, used in many ATLAS analyses
and recommended by [82] and [83], consists of a comparison of results produced
by two event generators, in which modelling of the underlying event and of parton
shower differ. The results from Pythia8 [65], used in the analysis, are compared to
the results from Herwig7 [84],[85]. The result of the comparison is a 10% impact
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on the VBF signal acceptance and none on the mHH shape. Detailed studies on the
parton shower uncertainties for this analysis are described in [6].

The factorization and renormalization scale uncertainty is evaluated by varying both
scales up and down by a factor of two. For this analysis, the uncertainty varies
between around 2% and up to 6%, more detailed studies are presented in [6]. The
PDF and αs uncertainties are assigned to evaluate the standard deviation of the
signal acceptance for the PDFs from the PDF4LHC_NLO_MC set [86]. The result
is 1 - 2 % relative error.

As each Higgs decays to a pair of bottom quarks, the H → bb̄ branching fraction
uncertainty of 1.7%, evaluated in [87], is doubled to obtain the total branching ratio
uncertainty of 3.4% for the HH. The uncertainty on the cross-section is related to
the PDF used and the αs variations, which impact the cross-section by 2.1% [87],
while the scale of the top-quark mass impacts the cross-section by 0.04% [87]. The
summary of the theory uncertainties can be found in Table 8.1.

Jet Energy Scale and Resolution (JES and JER)

The performance of the MC-simulated jets is compared to the performance recorded
in the data. The evaluation of the jet uncertainties is based on the prescription
given in [55]. To evaluate the uncertainty, calibrations are performed using the
in-situ methods: dijet η-intercalibration, Z+jet, γ+jet and the multi-jet balance.
The single particle uncertainties are used for the high pT regime. The calibration
plots for the MC jets to account for the performance of the PFlow jets can be
found in [55], for all the listed methods. The methods to evaluate the Jet Energy
Resolution uncertainties for the MC consist of the calibrations with the PFlow jets
using noise term evaluation from random cones in zero bias data and the dijet
pT balance asymmetry [55]. The analysis uses 24 JES NPs and 18 JER NPs, as
recommended by the ATLAS JES and JER recommendations internal TWiki [88].
All jet-related NPs are listed in Table 8.2.

Flavour Tagging

The b-tagging performance in the MC is calibrated with the b-tagging performance
in data resulting in an application of the scale factors to the MC weights provided
by the ATLAS Flavour Tagging group [89], [61]. For the used b-tagging working
point, the scale factors are close to 1, as discussed in more detail in Section 5.2.3.
All b-tagging, and c and light-flavour mistagging uncertainties used in the analysis
(13 NPs in total) are listed in Table 8.3.
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Table 8.1: List of all background and theory uncertainties used in the analysis.
Types and names of all uncertainties as well as total relative percent-
age values are presented.

Type of Uncertainty Name of NP Total relative value [%]

Background Uncertainties shape_N 0.34
shape_E 0.10
shape_S 0.15
shape_W 0.23

Total Statistical Uncertainty 9.1

Luminosity Uncertainty ATLAS_LUMI_Run2 1.7

Theory Uncertainties THEO_ACC_PS 10
THEO_ACC_SCALE 2 - 6

THEO_ACC_PDFalphas 1 - 2
THEO_BR_Hbb 3.4

THEO_XS_PDFalphas 2.1
THEO_XS_SCALEMTop 0.04

Trigger

The trigger scale factors correct the online (both L1 and HLT) efficiencies of recon-
structed jet kinematics as well as the online jet b-tagging as discussed in Section
6.3.1. Two Trigger NPs are listed in Table 8.3.

8.4 Results

The maximum likelihood fits are performed using the prescription from Eq. 8.8.
The Poisson distributions govern the event yields in each bin of each category, while
NPs corresponding to the systematic uncertainties are represented with the Gaus-
sian constraint functions. The majority of uncertainties: those related to the signal
modelling (JES, JER, b-tagging and trigger SFs, theory) and the background shape
systematic, are correlated across the two |∆ηHH | categories, which means that only
one NP of each type is used in the fit. The bootstrap uncertainty is used as an
uncorrelated NP, which means that for each |∆ηHH | category, independent NPs
are introduced. Since the bootstrap uncertainty describes the statistics-related un-
certainty, it is constrained using the Poisson constraint instead of the Gaussian
constraint.
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Table 8.2: List of all systematics NPs used in the fit. Since these NPs depend on
the kinematic variables such as pT or η no single values are given and the
uncertainties are evaluated by generating two NP histograms with +1σ
and −1σ.

Type of Uncertainty Name of NP

JES NPs JET_EffectiveNP_Detector1
JET_EffectiveNP_Detector2

JET_EffectiveNP_Mixed1
JET_EffectiveNP_Mixed2
JET_EffectiveNP_Mixed3

JET_EffectiveNP_Modelling1
JET_EffectiveNP_Modelling2
JET_EffectiveNP_Modelling3
JET_EffectiveNP_Modelling4
ET_EffectiveNP_Statistical1
ET_EffectiveNP_Statistical2
ET_EffectiveNP_Statistical3
ET_EffectiveNP_Statistical4
ET_EffectiveNP_Statistical5
ET_EffectiveNP_Statistical6

JET_EtaIntercalibration_Modelling
JET_EtaIntercalibration_NonClosure_2018data

JET_EtaIntercalibration_NonClosure_highE
JET_EtaIntercalibration_NonClosure_negEta
JET_EtaIntercalibration_NonClosure_posEta

JET_EtaIntercalibration_TotalStat
JET_BJES_Response

JET_Flavor_Composition
JET_Flavor_Response

JER NPs JET_JER_EffectiveNP_1
JET_JER_EffectiveNP_2
JET_JER_EffectiveNP_3
JET_JER_EffectiveNP_4
JET_JER_EffectiveNP_5
JET_JER_EffectiveNP_6
JET_JER_EffectiveNP_7
JET_JER_EffectiveNP_8
JET_JER_EffectiveNP_9

JET_JER_EffectiveNP_10
JET_JER_EffectiveNP_11

JET_JER_EffectiveNP_12restTerm
JET_Pileup_OffsetMu

JET_Pileup_OffsetNPV
JET_Pileup_PtTerm

JET_Pileup_RhoTopology
JET_PunchThrough_MC16
JET_SingleParticle_HighPt
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Table 8.3: Table 8.2 continued.

Type of Uncertainty Name of NP

Flavour Tagging NPs FT_EFF_Eigen_B_0
FT_EFF_Eigen_B_1
FT_EFF_Eigen_B_2
FT_EFF_Eigen_C_0
FT_EFF_Eigen_C_1
FT_EFF_Eigen_C_2
FT_EFF_Eigen_C_3

FT_EFF_Eigen_Light_0
FT_EFF_Eigen_Light_1
FT_EFF_Eigen_Light_2
FT_EFF_Eigen_Light_3
FT_EFF_extrapolation

FT_EFF_extrapolation_from_charm

Trigger SF NPs TRIG_L1_Jet
TRIG_HLT_Jet

8.4.1 Post-fit Background Distribution

Figure 8.1 shows the mHH distributions in the signal region in the two |∆ηHH |
categories after the background-only profile likelihood fit is performed. The expected
background is evaluated using the best-fit values of NPs from the background-only
fit to the data. The HH signal shapes for two coupling points, the SM point and
κ2V = 0 (with κλ and κV set to 1), are overlaid. Each signal shape is rescaled by an
integer for a better comparison with the data. The predicted background from the
2b to 4b reweighting is shown in yellow, while the 4b data points with the Poisson
uncertainty are shown in black. The bottom panel shows the ratio of data to the
prediction with the total background statistical and systematic error indicated as a
grey hatched area. The data agree well with the background-only hypothesis and
no excess is seen throughout in either category. The HH signal for the κ2V = 0
point can be compared to the SM signal. As discussed in Section 2.2.4, for the SM
point, the cancellation effects between the two Feynman diagrams influence the very
low number of the expected signal events. The cancellations do not occur for the
κ2V = 0 signal and therefore the signal yields obtained from simulations are greater
for κ2V = 0 signal as compared to the SM signal. As a result, this analysis is more
sensitive to the non-SM values of κ2V . The summary of the number of the observed
4b events and the number of the expected background and the SM signal (from
simulation) events is shown in Table 8.4.
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(a) |∆ηHH | ≤ 1.5 (b) |∆ηHH | > 1.5

Figure 8.1: mHH distributions in both |∆ηHH | categories for data (black points) and
expected background (yellow histogram) after background-only profile
likelihood fit is performed. Total statistical and systematic background
uncertainties are marked as grey hatched area, and statistical uncertain-
ties in 4b data are shown as black error bars. Best-fit values of the
nuisance parameters in the background-only fit to the data are used to
obtain the expected background distribution. The Standard Model and
the κ2V = 0 signal shapes are overlaid and scaled by integers for the
visibility on the plots. The lower panel shows the ratio of the 4b data to
the reweighted 2b background prediction.

Table 8.4: Counts of the observed and the expected events in the two |∆ηHH | cate-
gories of the 4b signal region.

Category Data Expected Background Expected VBF SM signal

|∆ηHH | ≤ 1.5 116 125 ±12 0.09
|∆ηHH | > 1.5 241 231 ±20 0.21
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Table 8.5: Observed and expected 95% confidence level upper limit on the signal
cross-section for the SM point in units of the theoretical Standard Model
cross-section. The 1 and 2 standard deviation error bands are quoted as
well. The result includes all background and signal uncertainties.

Observed −2σ −1σ Expected +1σ +2σ

132.3 71.3 95.7 132.8 192.0 277.9

8.4.2 95% CL Upper Limits

Figure 8.3 shows the observed and expected upper 95% CLs limits on the signal
strength µ as a function of the κ2V values. The red line represents the theoretical
prediction, which together with the observed limit is used to establish the excluded
κ2V values. If the observed (expected) limit on the cross-section is below the the-
oretical prediction line, the corresponding κ2V value is excluded at 95% CL. The
interval of the observed values of the κ2V which are not excluded is [0.09, 1.99],
while the expected interval is [-0.08, 2.16].

Table 8.5 presents observed and expected upper 95% CLs limits on the signal
strength µ = σVBF/σ

SM
VBF. The measured SM cross-section is factor 132.3 higher

than the theoretical prediction. The discrepancy between the prediction and the
measured limit can be explained by the worse acceptance times efficiency value at
the SM point compared to the non-SM coupling points shown in Section 6.9.

The results include all background and signal modelling uncertainties. The back-
ground uncertainties have the largest impact on the final result which is around 10%,
with the exact value depending on the κ2V point considered, based on the studies
detailed in [6]. The normalized pulls of all systematic uncertainties are calculated
as a ratio of the difference of the pre-fit and the post-fit NP value over the pre-fit
NP value itself. The pull equal to 0 means that the pre-fit value of the systematic
is correct. Figure 8.2 shows pulls of all NPs, in alphabetical order, after the fit is
performed. All pulls are of value 0, meaning that their pre-fit values were correctly
estimated.

Compared to the previous non-resonant 95% CL observed (expected) upper limits
set on the VBF SM cross-section of 840 (550) times the SM cross-section prediction
[3], the 6-fold improvement is observed coming purely from the analysis methods as
the total integrated luminosity of 126 fb−1 was used for both analyses.
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Figure 8.2: Pull plots for all systematic uncertainties NPs used in the analysis. The
NPs are correlated across categories therefore there are no separate NPs
for the two categories. The pulls order is alphabetical.
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Figure 8.3: Observed and expected 95% CL upper limits on the VBF cross-section
as a function of κ2V . The observed limit is indicated with the solid
black line, while the expected limit is indicated with the dashed black
line. Blue and yellow bands represent the ±1σ and ±2σ uncertainty
on the expected limit. The theory cross-section prediction is shown in
red with the cross-section uncertainty included, but its width is smaller
than the width of the plotted line. The SM point is indicated with a star.
The observed (expected) 95% CL upper limit on the SM cross-section is
228.9 (232.7) fb which corresponds to 132.3 (132.8) times the SM theory
prediction. The observed (expected) non-excluded κ2V interval is [0.09,
1.99], ([-0.08, 2.16]) when only the VBF signal is included.
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Chapter 9

HL-LHC and FCC Projection
Studies

This chapter presents a set of simplified projection studies. The simulated datasets,
produced assuming the future collider experimental conditions of the HL-LHC and
the FCC-hh, are explored in order to understand what could be achieved with the
larger centre of mass energy and luminosity, and the improved detector efficiencies
compared to the ATLAS Run 2 conditions.

9.1 Overview of the Considered Scenarios

The LHC Run 3 is scheduled to end in 2025. Therefore, a lot of effort has already
been put into what is coming next. The current LHC research programme will con-
tinue with the High Luminosity LHC (HL-LHC) which is scheduled to run between
2029 and 2040 at 14 TeV centre of mass energy and delivering the total integrated
luminosity of 3000 fb−1 [4]. Furthermore, given the complexity of any accelerator
experiment, the post-HL-LHC era plans have already started. One of the options is
the Future Circular Collider (FCC-hh) [5]. Its basic properties, most importantly
the centre of mass energy of 100 TeV and the total integrated luminosity of 30 000
fb−1, constitute the conditions used in the second futuristic scenario considered in
this chapter. Additionally, ATLAS Run 2 - like scenario is used as a test and vali-
dation of the simplified method compared to the main analysis described earlier in
the thesis. The list of important, especially in the context of this study, properties
for all scenarios is shown in Table 9.1.

119



Chapter 9 – HL-LHC and FCC Projection Studies

Table 9.1: Overview of the beam and detector properties, b-tagging efficiency and
the pre-selection cut for the three scenarios considered in this chapter.

ATLAS Run 2 HL-LHC FCC-hh
√
s [TeV] 13 14 100

Luminosity [fb−1] 139 3000 30000
Calorimeter Granularity (η × φ) 0.1×0.1 0.025×0.1 0.025×0.025
Tracking Radius [m] 1.2 1.2 2
B-field [T] 2 2 4
η range 4.5 4.5 6
b-tagging efficiency [%] 77 80 80
Jet pT cut for the MC BG sample [GeV] 10 10 20

9.2 Methods

9.2.1 MC Production Prescription

For each of the three scenarios, both signal and background samples, containing 0.5
and 10 million events respectively, are generated. The matrix element generation at
the leading order (LO) is done with Madgraph [63] after which events are showered
using Pythia8 [90]. The scaling factors to account for the lack of matrix element
generation at higher orders are discussed in Section 9.2.5.

Signal Samples

The signal samples are produced following the ATLAS recommendations [91], as
discussed in Section 6.2. The consistency between the main ATLAS analysis and
the analysis presented here is thereby maximized.

Only the SM signal is studied here, meaning that κλ, κ2V and κV are set to 1. The
process is generated in such a way that the contamination from the VHH process
is avoided by explicitly excluding diagrams with a photon exchange and an on-shell
vector boson1. For the

√
s = 100 TeV sample, the vertex displacement acceptance

is altered to 10 m from the 1 m set by default for 13 and 14 TeV cases, as with the
much higher centre of mass energy the b-jet can travel a longer distance from the
primary vertex before decaying. No cuts are set on any kinematic variables.

1The used Madgraph syntax: "generate p p > h h j j $$ z w+ w- /a j QED =4".
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Background Samples

Since background used in the main ATLAS analysis is fully data-driven, it can not
serve as the basis for the projection studies in this chapter. Instead, the simu-
lated datasets are also used for the background, despite the limitations discussed in
Section 2.2.6.

Generator-level di-Higgs VBF studies have been performed, in which a number of
Monte Carlo QCD background channels are considered, for example, in [25]. It has
to be highlighted that, at the time being, the QCD process in which six jets are
generated directly is not computationally beneficial, although in principle possible,
for example with the ALPGEN generator [92], which allows for the generation of up
to five jets [93]. Therefore, to study the six-jet QCD process, the four-jet final state
is first generated and the remaining jets are the product of a parton showering.

From the number of background channels discussed in [25], the 4b and 2b2j back-
ground samples contribute most significantly. Initially, both samples are produced
for this study, but the 2b2j sample does not imitate the di-Higgs background well,
meaning that no di-Higgs-like events are reconstructed. Therefore, only the 4b QCD
background sample is considered.

MadGraph version 2.6.7 [63] is used for the event generation. In order to set the
PDF set, the LHAPDF6 [94] is interfaced with MadGraph. The chosen PDF
set is NNPDF3.0NLO [95] with αs = 0.118 and the flavour scheme of 4. The re-
normalization and factorization scales are set to HT

2
, where HT is the total sum of

the transverse energies of all final state partons. The generated Les Houches event
(lhe) file is showered using Pythia8, version 8.307 [90].

The pre-selection cut on the quark pT is applied in order to efficiently generate
interesting events for the analysis. The pT pre-selection is set to 10 GeV for the
ATLAS Run 2 and HL-LHC scenarios, and to 20 GeV for the FCC scenario. The
cut is higher for the FCC scenario as with the increased centre of mass energy, the
pT of the interesting events is also increased.

9.2.2 Calorimeter Emulation, Jet Clustering and b-tagging

From the generator level consideration, we move to the detector level studies, where
objects such as jets, and b-jets in particular, have to be reconstructed. The calorime-
ter emulation is used to emulate the energy deposition instead of the full detector
simulations that exist for the current experiments, such as Geant4 [66]. The en-
ergy depositions are clustered into jets using the anti-kT FastJet jet clustering
algorithm [96] and are b-tagged using a simplified b-tagging approach.
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Calorimeter Emulation

The calorimeter towers can be represented on a two dimensional plane as a grid of
η×φ of a certain dimension. Following the design reports, the calorimetry starts at
a radius of 1.2 m in ATLAS [36] and HL-LHC [4], and of 2 m for the FCC [5]. The
surrounding magnetic field is 2 T for the first two scenarios, and it is 4 T for the
FCC. The η range is set to 4.5 for ATLAS and HL-LHC, while it is extended to 6 for
the FCC. The η distributions for the four b-quarks are shown in Figure 9.1 for the
signal and background samples, for both HL-LHC and FCC scenarios. Importantly,
with the η > 6 cut for the FCC scenario, not much signal is lost. In the case of the
HL-LHC scenario, only a minimal amount of signal, for the fourth leading b-quark,
is lost with the η > 4.5 cut.

Depending on the considered calorimeter system, η× φ dimensions, the granularity
of the detector, can differ resulting in a better or a worse resolution of the energy
deposition. Generally, with technological developments, more granular calorimeters
will be possible in the future. The granularity of 0.025×0.1 is used for the HL-LHC
and 0.025×0.025 for the FCC, while the nominal ATLAS granularity of 0.1×0.1
is used for ATLAS Run 2 - like scenario. Additionally, energy smearing of 50% is
applied to the jet energies in each of the η−φ cells, to account for detector resolution
effects. The same calorimeter emulation algorithm is used for all three scenarios.
The summary of the discussed parameter values can be found in Table 9.1.

Jet Clustering

Using the energy depositions obtained from the calorimeter emulation, jets are clus-
tered with the FastJet package [96]. The anti-−kt algorithm is employed with the
jet radius of 0.4 following the resolved ATLAS analysis.

b-tagging and c-mistagging

The last part of the object reconstruction method is the flavour tagging of the
clustered jets. As described in Chapter 5, the present-day flavour tagging algorithms
are extremely efficient, as they hugely benefit from machine learning techniques. In
this simplified study, a simple b-tagging algorithm is used. It is defined such that
if a truth b quark of pT > 15 GeV is within the 0.4 radius of the reconstructed jet,
then this jet is b-tagged. In order to follow the efficiencies of the current algorithms,
the probability of such tagging is set to 77% for the ATLAS Run 2 - like scenario
and 80% for the other two cases. It means that from all identified b-tagged jets,
23% (20%) are randomly rejected. The c-mistagging works in a very similar, but
reverse, way. Firstly, the c-tagging is performed, if a c-quark is within the 0.4 radius
of the jet, the jet is c-tagged. The c-mistagging means that some c-tagged jets are
identified as the b-tagged jets instead of the c-jets they really are. In the studies
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(a) SM signal (b) QCD background

(c) SM Signal (d) QCD background

Figure 9.1: η distributions for both signal and background samples for HL-LHC√
s = 14 TeV scenario (top row) and for the FCC scenario,

√
s = 100

TeV (bottom row).
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Figure 9.2: Flowchart of the analysis selections for all signal and background events
for all scenarios.

performed here, the c-mistag rate is considered as 10%. In the same way, but to a
significantly lesser extent, the light jet mistag rate is accounted for as 1%.

9.2.3 Simplified VBF Analysis Selection

After the object reconstruction, the analysis selections are performed. For a clearer
overview, th flowchart of the analysis selections is shown in Figure 9.2. The steps
are described below.

Object Selection

The analysis objects are chosen first. These are the central and the forward jets.
The first requirement is that events must have at least four central (|η| < 2.5) b-
tagged jets. Since the background samples are produced with the pT pre-selection
cut of 10 GeV (20 GeV for the FCC scenario), the same pre-selection cut is applied
to the signal events. The central jet pT distributions for the signal and background
samples for the FCC scenario after the pre-selection cut are shown in Figure 9.3.
The pT distributions of the signal jets are much harder compared to the background
jets’ pT distributions.

The second requirement is that events must have at least two, non-b-tagged forward
jets, with |η| > 2. The same pT pre-selection is applied to the forward jets. Out of
all forward jets, the two highest pT jets are chosen as the initial scattered jets.
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(b) QCD background

Figure 9.3: Central jets pT distributions after the pre-selection pT cut is applied to
all jets for the FCC scenario.

Event Selection

Not all events with four central b-jets and two forward jets are the di-Higgs VBF
events of interest. The event selection proceeds by requiring the VBF-specific con-
ditions. Namely, to ensure that the forward jets are in the opposite direction, ∆ηjj
is set as greater than 4, while the total invariant mass of the two VBF jets is greater
than 700 GeV.

In the main analysis, ∆ηjj is set as greater than 3. As discussed in Section 6.4, such
separation requirement allows to choose the VBF jets from both the non-b-tagged
central and forward jets; the selection of the VBF jets pair in which one jet is central
and one jet is forward is possible. The total number of the selected VBF events is
thereby increased, as studied in more detail in [6]. The approach is altered here for
simplicity.

In the main analysis, the invariant mass of the VBF jets condition, mjj > 1000
GeV, is much tighter compared to the mjj selection here. The looser cut allows to
efficiently study the MC generated signal and background samples. If too tight cuts
are set, very few background events are selected and no conclusions can be drawn
due to very low sample statistics.

The third VBF condition, the central jet veto, is introduced to reject events with the
significant kinematic activity in the central η region as this is not a characteristic
of the VBF process. The requirement is that the vector sum of pT of four b-tagged
jets and the two VBF jets is less than 65 GeV. The condition directly follows the
condition used in the main analysis.

The distributions of the three variables: mjj, ∆ηjj and the vector sum of six jets pT
are shown in Figure 9.4. The vertical lines indicate the position of the cut and the
arrows indicate which events are kept. Note that the background events are scaled
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(a) Vector ΣpT of 6 jets (b) |∆ηjj |

(c) mjj

Figure 9.4: The VBF variables distributions for the FCC scenario for both signal
and background samples. Cuts, as shown by the vertical lines with the
arrows indicating which events are kept, are performed on these variables
in order to select the VBF events.

by a factor of 10−6 in order to compare their shapes to the shapes of the signal
samples. Especially for the mjj cut, it can be clearly seen that a higher cut would
remove almost all of the background events, making it impossible to perform the
study.

Higgs Candidate Pairing

As was discussed in Section 6.5, many pairing algorithms are possible. A simplified
pairing method is chosen here.

Three different pairings of Higgs boson candidates are possible from four b-jets. An
event is accepted if at least one of these pairings results in the two Higgs Candidates
whose mass differs by no more than 30 GeV from the SM Higgs boson mass, taken
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here as 125 GeV. The higher pT reconstructed Higgs boson is the leading Higgs
boson, H1, while the other is the sub-leading Higgs boson, H2.

All three combinations are represented on the two-dimensional Higgs boson mass-
planes, shown for the FCC scenario in Figure 9.5. It can be observed that the
third pairing is chosen by the algorithm most often, i.e. the pairing in which the
leading Higgs boson is built from the first and the fourth leading b-jets, while the
sub-leading Higgs boson is built from the second and the third b-jets.

A circular area centred around 125 GeV indicates the presence of the most Higgs
boson pairs in the signal sample plots (left column), while the background samples
have a much more random distribution of the events. If more than one pairing
combination is possible for a given event, the combination in which both Higgs
candidates are closest to the SM Higgs mass is chosen.

9.2.4 Cut-flows

The impacts of the individual selection steps are presented in cut-flows. The bare
numbers of the remaining events after each selection, without accounting for any
normalization factors, are shown in Tables 9.2 - 9.5. Tables 9.2 and 9.3, present
selections for the category with the pre-selection pT cuts only. Tables 9.4 and 9.5
include tighter cuts on the VBF jets, namely, 30 GeV for the first two scenarios
and 50 GeV for the FCC, the pT threshold for the b-jets remains unchanged. The
number of the bare background events which are left after all selection cuts is 7 for
the HL-LHC scenario and 10 for the other two cases. Tightening the cuts further
would result in a category with very few background events, 1 or 2, which means
too much statistical uncertainty fluctuation for a reliable result.

Looking at the signal cut flows comparison from Table 9.2, one can note that the
actual number of the bare events, after the selection of four b-jets, is lower for the
FCC scenario than for the ATLAS Run 2 and HL-LHC cases. This can be explained
by the increased boosted regime activity at 100 TeV, which is illustrated in Figure
9.6. Peaks at around 125 GeV are clearly visible for the first two leading jets. In
that case, not one but two b-quarks lie within the required R = 0.4 cone making it a
doubly b-tagged jet, which is not recognised in the process of this resolved analysis.
The doubly b-tagged jet is still counted as a singly b-tagged jet, resulting in a loss
of events which do not have the total of the required 4 b-tagged jets. As expected,
this does not apply to the background events. It is an indication that performing
a boosted analysis may be crucial for using the full potential of the FCC data,
however, this is beyond the scope of this thesis.

In order to compare the general trend of the events reduction between signal and
background samples, we compare Tables 9.2 and 9.3 (or 9.4 and 9.5). For signal
samples, around 30% of events make it through the four b-jets selection, while for
the background samples, only between 2 − 5% of events pass this selection. For
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(a) mH1,12 vs mH2,34, signal
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(b) mH1,12 vs mH2,34, background
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(c) mH1,13 vs mH2,24, signal
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(d) mH1,13 vs mH2,24, background
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(e) mH1,14 vs mH2,23, signal
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(f) mH1,14 vs mH2,23, background

Figure 9.5: Massplanes of the leading and sub-leading Higgs Candidates for the three
possible pairing combinations for the FCC scenario. Left column shows
results for the signal sample, while the right for the background.
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the signal samples in Tables 9.2 and 9.4, after the VBF selections, around 4 − 8%
of events are left, while for the background in Tables 9.3 and 9.5, 0.01 − 0.05% of
events are left. Out of the selected VBF events, in the case of the signal samples,
around 56−68% of events pass the Higgs pairing algorithm, while for the background
sample, only 11− 18% of events pass the Higgs Candidate pairing. Thus it can be
stated that the analysis selection method is at its limit in terms of selecting VBF-like
events in the background sample.

Table 9.2: Cut-flows, pre-selection pT cuts: 10 (20) GeV for all jets, signal samples.

ATLAS Run-2 like HL-LHC FCC-hh

4 jets in event 499 685 499 628 489 461
4 b-jets, no pT , no η requirement 134 418 136 661 122 826
4 b-jets with pT requirement 80 343 90 263 49 873
2 VBF jets 56 969 64 642 32 421
η requirement VBF jets 46 349 52 399 24 946
mjj VBF >700 GeV 36 873 42 360 23 324
Vector

∑
pT of 6 jets <65 GeV 33 812 38 674 18 684

Two Higgs bosons per event 19 033 22 056 12 803

Table 9.3: Cut-flows, pre-selection pT cuts: 10 (20) GeV for all jets, background
samples.

ATLAS Run-2 like HL-LHC FCC-hh

4 jets in event 6 413 703 6 590 928 6 946 482
4 b-jets, no pT , no η requirement 167 804 204 804 299 268
4 b-jets with pT requirement 102 240 123 454 136 009
2 VBF jets 17 111 22 004 25 559
η requirement VBF jets 7 358 9 512 11 034
mjj VBF >700 GeV 685 832 4 856
Vector

∑
pT of 6 jets <65 GeV 579 691 3 227

Two Higgs bosons per event 66 81 567
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Table 9.4: Cut-flows, best category pT cuts: 10 (20) GeV for b-jets, 30 (50) GeV for
VBF jets, signal samples.

ATLAS Run-2 like HL-LHC FCC-hh

4 jets in event 499 685 499 628 489 461
4 b-jets, no pT , no η requirement 134 418 136 661 122 826
4 b-jets with pT requirement 80 343 90 263 49 873
2 VBF jets 30 267 34 643 13 784
η requirement VBF jets 27 223 31 133 11 633
mjj VBF >700 GeV 25 146 28 994 11 587
Vector

∑
pT of 6 jets <65 GeV 23 641 27 177 9 484

Two Higgs bosons per event 13 299 15 550 6 536

Table 9.5: Cut-flows, best category pT cuts: 10 (20) GeV for b-jets, 30 (50) GeV for
VBF jets, background samples.

ATLAS Run-2 like HL-LHC FCC-hh

4 jets in event 6 413 703 6 590 928 6 946 482
4 b-jets, no pT , no η requirement 167 804 204 804 299 268
4 b-jets with pT requirement 10 102 240 123 454 136 009
2 VBF jets 575 712 1640
η requirement VBF jets 193 219 534
mjj VBF >700 GeV 109 125 487
Vector

∑
pT of 6 jets <65 GeV 52 54 93

Two Higgs bosons per event 10 7 10
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Figure 9.6: First four leading jets mass distribution for both (a) SM signal and (b)
QCD background samples.
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Table 9.6: Cut-flows comparison of the signal sample at 13 TeV for the calorimeter
emulation and simplified analysis vs full simulation and full analysis.

Calo emulation, ATLAS full simulation,
simplified analysis [%] full analysis [%]

Initial count 100.00 100.00
VBF selections 27.94 18.72
4 b-jets, pT > 10 GeV 4.73 6.11
Higgs pairs 2.66 2.48

Brief Comparison to the Main ATLAS Analysis

The cut-flow analysis serves one more purpose, namely, assessing the agreement of
the calorimeter emulation with the full simulation. Table 9.6 shows a cut-flow com-
paring the efficiency of cuts (percentage of total yield passing a given cut) performed
on the signal events treated with the calorimeter emulation and simplified analysis,
to the events treated with the full detector simulation, as well as the full ATLAS
analysis. The signal sample for the full simulation was produced using the main
analysis framework with the same pre-selection pT jet cut of 10 GeV.

It can be stated that the calorimeter emulation method agrees to an acceptable
extent with the full simulation. The biggest difference is for the VBF selection.
However, as detailed in Section 9.2.3, the mjj and ∆ηjj cuts differ between the two
scenarios. The tighter mjj cut removes a significant number of VBF events in the
case of the main analysis. The final yield of events that contain Higgs pairs agrees
within 10%.

9.2.5 Scaling Factors

Before evaluation of the final results, the scaling factors, the NLO-to-LO k-factors
and cross-section normalization, are applied to the event counts2.

k-factor Studies for the Background Samples

The k-factor studies are performed using the MG5@NLO framework [63] together
with Pythia8 parton shower matching technique [90].

2Note that in all distributions presented earlier in this chapter, normalizations and scaling factors
have already been applied for plotting, however, up until now they played no major role in the
discussion.
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The nominal calculation of the k-factor is:

k =
σNLO
σLO

, (9.1)

where both σ’s are the total cross-sections. For both LO and NLO samples, 100
000 events are generated 3, using the run parameters summarized in Table 9.1. The
global k-factor of 2.7 is applied for all scenarios. The simplified global k-factor is
chosen as no dependence on the kinematic variables such as jets pT was established.

Normalization Calculation

The total cross-section is computed at the leading order in the generation process,
as explained in Section 9.2.1. The normalization factor is applied to all background
samples as:

norm =
L× σLO × k

Ntot

, (9.2)

where L is the integrated luminosity, σLO is the leading order cross-section, k is a
scaling factor between LO and NLO cross-sections and Ntot is the total number of
the MC events used.

As discussed in Chapter 2, for the VBF signal the total N3LO cross-section is avail-
able [24]. Since only the 4b final state is considered, the total cross-section is multi-
plied by the 4b branching fraction, in the same way as in the main analysis, giving:

σsignal = σ3NLO ×BR = σ3NLO × 0.582. (9.3)

The summary of the cross-sections pre- and post-scaling factor application is pre-
sented in Table 9.7.

3Since the NLO generation is very computationally expensive, the factor of 10 reduction in the
study samples size is introduced.

132



Chapter 9 – HL-LHC and FCC Projection Studies

Table 9.7: Cross-section values for all three scenarios considered in the projection
studies. Calculation of the values used in the analysis for both signal and
background events is outlined in the text.

ATLAS Run-2 like HL-LHC FCC-hh

Nsig 500 000 500 000 500 000
Total σsig, N3LO [24] [fb] 1.726 2.055 82.84
σsig used in analysis [fb] 0.58 0.69 27.87
Norm factor (signal) 1.614× 10−4 4.148× 10−3 1.672

NBG 9 990 000 10 000 000 9 971 039
σBG, LO [fb] 1.22×107 1.42×107 3.16×107

k-factor (background) 2.7 2.7 2.7
σBG used in analysis [fb] 3.29×107 3.83×107 8.53×107

Norm factor (background) 456 11 499 256 643

9.3 Results

9.3.1 Signal Significance Studies

Signal significance is a measure of how well a signal can be separated from a back-
ground. We have N total observed events, B expected background events and
S = N − B signal events. The signal significance z relates to the probability of S,
given the null hypothesis:

p =
1− erf(z/

√
2)

2
, (9.4)

where p is the p-value and erf(α) is the standard error function given by:

erf(α) =
2√
π

∫ α

0

e−β
2

dβ. (9.5)

As was discussed in Chapter 8, the case here is a counting experiment, described by
the Poisson distribution. Therefore, assuming a null hypothesis with only B events
expected, z becomes:

z =
N −B√

N
=

S√
N
≈ S√

B
, (9.6)

with S
B
� 1 and the known B. From the above equations, it can be inferred that

the greater the significance, the smaller the p-value, meaning the probability of S
being only a statistical fluctuation of a null hypothesis is very small for a large z.
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As discussed in Section 6.10, event categorization in a kinematic variable allows for
an improved total significance. The cumulative significance is computed as:

Z =
√∑

z2
i , (9.7)

with zi computed using Eq. 9.6.

Categorization

One of the main selections is the pT cut on both central b-jets and the VBF jets. It
was shown that depending on the pT cut of the VBF jets, the number of background
events can significantly decrease. Therefore, the categorization is performed in the
pT of the VBF jets primarily. Additionally, where statistically possible the cate-
gorization in the central jets pT is performed as well. Statistically possible means
that each category must have at least 5 bare events, the limiting factor being the
statistics of the background events. The categories are exclusive and independent.
For the proper computation of significances, the bare signal and background events,
as from the cut-flow tables, are first multiplied by the scaling factors from Section
9.2.5. Tables 9.8 - 9.10 show the computed significances per pT category.

The significances in each table are summed using Eq. 9.7. The results, compared
with the significances computed without any pT categorization, are shown in Table
9.11.

The highest, 4-fold, gain from the pT categorization is obtained for the FCC scenario.
For the ATLAS Run 2 - like scenario, it is a gain of factor 1.8, while for the HL-LHC,
it is a factor of 2.4.
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Table 9.8: Significance in categories for the ATLAS Run 2 - like scenario.

VBF jet pT [GeV]
10 – 20 20 – 30 >30

b-
je
t
p T

[G
eV

] 10 – 20 0.0005 0.0015

0.031820 – 30 0.001
0.0094

>30 0.0019

Table 9.9: Significance in categories for the HL-LHC scenario.

VBF jet pT [GeV]
10 – 20 20 – 30 >30

b-
je
t
p T

[G
eV

] 10 – 20 0.0022

0.0471 0.227320 – 30 0.0051

30 – 40 0.0062

>40 0.0044

Table 9.10: Significance in categories for the FCC-hh scenario.

VBF jet pT bins [GeV]
20 – 30 30 – 40 40 – 50 >50

b-
je
t
p T

[G
eV

] 20 – 30 0.1498 0.2875 0.6074

6.821730 – 40 0.1673 0.5106

0.542440 – 50 0.1682 0.6906

>50 0.2609
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Table 9.11: Total significance for all scenarios. Comparison is made for the cases
without and with the categorization (as shown in Tables 9.8 - 9.10
above). In the latter case, the total significance is calculated using Eq.
9.7.

ATLAS Run-2 like HL-LHC FCC-hh

Z (no categorization) 1.77× 10−2 9.48× 10−2 1.77
Z (with categorization) 3.32× 10−2 2.32× 10−1 6.94

Evaluation of the Analysis Gain Factors

The analysis gain factors are evaluated for the higher energetic scenarios compared
to the lower energetic scenarios. Namely, for the HL-LHC (FCC), the gain factor
compared to ATLAS is evaluated as:

GF c.f. ATLAS =
ZHL-LHC (FCC)

ZATLAS
, (9.8)

and analogously, for the FCC compared to the HL-LHC,

GF c.f. HL-LHC =
ZFCC

ZHL-LHC
. (9.9)

The results are presented in Table 9.12. For simplicity, the cross-sections are nor-
malized to the luminosity. The left column shows the expected gain factors before
the analysis is performed, based on the cross-sections from Table 9.7, row: σsig/BG
used in analysis. Based on the cross-sections only (before the analysis), the FCC
result is 30 times better than the ATLAS Run 2 - like result. To assess the impact of
the analysis, the post-analysis gain factors are evaluated in the right column. Post
analysis, the FCC result is only 14 times better than the ATLAS result. This means
that the analysis worsens the FCC performance by a factor of 2.

Performing the same comparison for the HL-LHC, before the analysis (noting no
inclusion of luminosity), the gain factor compared to ATLAS is 1, meaning no gain,
no loss, while after the analysis the gain factor is 1.5, meaning the analysis improves
the HL-LHC performance by 50%.

In summary, the simplified analysis is optimised for the ATLAS Run 2 scenario in
which the resolved channel is dominant. The analysis improves the significance of
the HL-LHC scenario, but an ameliorated analysis technique for the FCC scenario
is required. For instance, the boosted analysis should be explored.
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Table 9.12: The significance gain factors (GF) for HL-LHC and FCC scenarios: be-
fore (left) and after (right) the analysis.

Before Analysis After Analysis
ATLAS HL-LHC FCC ATLAS HL-LHC FCC

Z, L = 1 fb−1 1× 10−4 1× 10−4 3× 10−3 3× 10−3 4× 10−3 4× 10−2

GF c.f. ATLAS 1 30 1.5 14
GF c.f. HL-LHC 27 10

9.3.2 mHH Distributions

No Categorization

Figure 9.7 shows the mHH distributions for all three scenarios for the signal and
background events when no categorization is performed. The width of bins is chosen
as 20 GeV. The indicated error bars are the statistical Poisson errors,

√
N .

The peaks of the signal distributions are at around 300 GeV for the low energetic
scenarios and at around 350 GeV for the FCC, as with the higher centre of mass
energy, the constituent jets are also more energetic. All distributions demonstrate
high background concentration in the low mHH region.

Best Category

For each scenario, the total significance is driven by the highest pT category, referred
to as the best category. The further study focuses on the events from the best
category alone.

Given only 7 - 10 bare background events pass selections in the best categories of
each scenario, a proposed mHH binning for the first two scenarios is 4 bins in the
range of 0 - 1400 GeV. For the FCC scenario, the mHH range of 0 - 1600 GeV is
split into 5 bins. The mHH distributions with coarse binning for all scenarios are
shown in Figure 9.8.

There are no background events in the two highest mHH bins of the ATLAS Run 2 -
like and the HL-LHC mHH distributions. In both cases, the second bin is extended
to the maximum mHH range to include the remaining signal events. For the FCC
scenario, the three highest mHH bins are added together instead. The final binning
scheme is summarized in Table 9.13.
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(a) ATLAS Run 2 - like (b) HL-LHC

(c) FCC

Figure 9.7: Normalized di-Higgs invariant mass distributions for ATLAS Run 2 -
like, HL-LHC and FCC. Background distributions are downsampled by
a factor of 10−4 for a better comparison.
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(a) ATLAS Run 2 - like
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(b) HL-LHC
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(c) FCC

Figure 9.8: Normalized di-Higgs invariant mass distributions for all scenarios in the
best pT category (VBF jets cut at 30 (50) GeV) with coarse binning.
Background samples are downsampled by a factor of 1000 (ATLAS Run
2 - like) or 100 (HL-LHC and FCC).

9.3.3 95% CL Expected Upper Limit

The limit-setting procedure is performed with the signal and background events
from the best pT category. In the main analysis, the hypothesis was tested based
on the observed events against the expected counts of the signal and background
events. Here, no real observed events are available and the analysis is based on the
expected MC events only.

A systematic uncertainty is assigned to both signal and background events. Fol-
lowing [25], an approach is proposed in which the relative signal uncertainty is 10%
and the relative background uncertainty is 15%. Both uncertainties are uncorrelated
across the bins. It is a conservative treatment compared to the main ATLAS Run
2 analysis as the main systematic in the main analysis, the background modelling,
is around 9%.
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Table 9.13: Final binning scheme of the mHH distribution. From the 4 (5) bins
shown in Figure 9.8, only 2 (3) bins are populated with the background
events. The unpopulated bins are added to the populated bins.

Bin 1 [GeV] Bin 2 [GeV] Bin 3 [GeV]

ATLAS Run-2 like 0 - 350 350 - 1400 –
HL-LHC 0 - 350 350 - 1400 –
FCC-hh 0 - 320 320 - 640 640 - 1600

As in the main analysis, the pyhf framework [78] is used to set the expected 95%
upper limits on the signal strength µ. Table 9.14 shows the expected limits for
the three scenarios, evaluated in the best category. For the ATLAS Run 2 - like
scenario and the HL-LHC, this is the category with the b-jets with pT > 10 GeV
and VBF jets with pT > 30 GeV, while for the FCC the two cuts are 20 and 50 GeV
respectively. For the first two scenarios events are split into two bins of the mHH

spectrum, while for the FCC scenario, events populate three bins.

Table 9.14: Limits on the signal strength µ. The comparison of the three scenarios
considered in the projection studies to the final limit of the ATLAS
Run 2 analysis is presented.

−2σ −1σ Expected +1σ +2σ

ATLAS Run 2 Analysis 72 96 133 192 278

ATLAS Run-2 like 237 314 430 589 778
HL-LHC 137 182 248 340 448
FCC-hh 10 13 18 26 34

9.3.4 Discussion of Results

As can be seen in Table 9.14, the expected result coming from the full Run 2 ATLAS
analysis is three times better compared to the result from the simplified analysis.
However, given the number of simplifications throughout the analysis presented in
this chapter, and also throughout the statistical treatment, this is understandable.
The quoted ATLAS limit, as explained in Chapter 8, is based on two categories in
|∆ηHH |, while here only the best category is taken. Moreover, for the main analysis,
the number of bins in the mHH spectrum which are populated is greater than in the
case of this simplified method. The more granular binning allows for better signal to
background discrimination and hence the improved limits. Lastly, the conservative
treatment of systematics also has a non-negligible impact on the final result.
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The more general limitations of the analysis method contain all the simplifications
made throughout. Firstly, to a large extent, the use of the MC background simula-
tion for the six jets in the final state process with the production of the only four-jet
final state and the other jets coming from the showering procedure, and consider-
ation of only one type of the QCD background, constitutes the weakest point of
the procedure. As was shown throughout Section 9.2.3, the selections section, the
tighter cuts on the kinematic variables were not possible due to the limiting number
of background events. With the real experimental data available, this method will
either be replaced by a data-driven technique, similar to what was done in the main
Run 2 ATLAS analysis when data became available, or the more accurate MC cal-
culations will be available for the multi-jet QCD background processes. Secondly,
as explained earlier, the used reconstruction algorithms, namely the calorimeter em-
ulation and the b-tagging, were simplified for the projection studies. Lastly, the
boosted and semi-boosted regimes are not considered here, while they become much
more important with the increasing centre of mass energy of the experiment.
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Conclusion

In this thesis, the non-resonant Vector Boson Fusion production of the Higgs bo-
son pairs decaying to the bb̄bb̄ final state is studied. The analysis of the Run 2
data collected with the ATLAS detector at

√
s = 13 TeV with the total integrated

luminosity of 126 fb−1 results in the observed (expected) 95% CL upper limit on
the SM cross-section of 132.3 (132.8) times the SM cross-section. This is a 6-fold
improvement compared to the limit of 840 (550) times the SM cross-section set by
the previous HH → bb̄bb̄ VBF analysis [3], which used the same total integrated
luminosity of 126 fb−1. The κ2V interval is constrained at [0.09, 1.99], compared to
the interval of [-0.55, 2.72] from the previous publication [3], [26].

The search for the non-resonant Higgs pair production is motivated by the aspiration
to know the shape of Higgs potential, leading to a statement on vacuum stability
and, possibly, an insight into the electroweak baryogenesis. The main goal of study-
ing the VBF channel is to gain information on the quartic coupling between two
vector bosons and two Higgs bosons represented with a coupling strength modifier
parameter κ2V . Measurement of κ2V = 1 would confirm the SM prediction. The bb̄bb̄
final state has the highest branching ratio among all di-Higgs decays. However, since
it has a fully hadronic final state, the estimation of the dominant QCD background
is non-trivial. A fully data-driven neural network-based method is employed for the
background estimation in the analysis.

The analysis is improved compared to the previous VBF HH → bb̄bb̄ analysis [3] in
many aspects. Particle flow objects and a new, improved b-tagging algorithm, the
DL1r algorithm [59], are used for the first time. The analysis events are triggered by
the b-jet triggers of types 2b2j and 2b1j. The Higgs Candidates pairing strategy is
based on the ∆R separation between jets of the leading Higgs Candidate. In addition
to selecting events with the four b-tagged jets, events with exactly two b-tagged jets
are selected for the data-driven background estimation purpose. The selection steps,
except for the number of the b-tagged jets, remain the same for the 4b and the 2b
events. The 2b and the 4b events are assumed to be kinematically similar, and
the differences are accounted for by applying event weights to the 2b events. The
weights are derived in the control region using neural network reweighting and are
applied to the 2b data in the signal region, resulting in the 4b background prediction
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in the signal region. The reliability of the background estimate is confirmed by the
good agreement between the 2b and the 4b distributions for a number of kinematic
variables in the control regions. Additionally, the method is validated by applying
background reweighting to the events vetoed by the analysis selections.

The limitations of the ATLAS Run 2, regarding both the centre of mass energy
and the luminosity, motivate to improve the sensitivity of Higgs pair production
in future experiments, namely, the HL-LHC at

√
s = 14 TeV and the FCC-hh at√

s = 100 TeV. Even with a factor of 10 higher luminosity at the HL-LHC, the
SM couplings will not be precisely tested, motivating the need for the FCC-hh. A
simplified analysis is performed on the Monte Carlo simulated data to study the
Standard Model di-Higgs VBF production in the HL-LHC and the FCC-hh. The
treatment is simplified in many aspects; a calorimeter emulation is used instead of
a full detector simulation, b-tagging is simplified and background is estimated using
the simulation of the 4b QCD processes instead of the data-driven technique.

A benchmark study of the ATLAS Run 2 - like scenario is performed. The same
analysis selections are applied to the signal samples from the calorimeter emulation
and the full ATLAS simulation. The number of selected di-Higgs events agrees
within 10%. The final result of the simplified analysis is the expected 95% CL
upper limit of 430 times the SM cross-section prediction. This is three times worse
compared to the main analysis result, indicating the negative impact of the employed
background prediction method in the simplified study.

The expected 95% CL upper limit on the VBF di-Higgs SM cross-section for the HL-
LHC scenario is set at 248 times the SM cross-section using the simplified analysis.
For the FCC-hh the expected 95% CL upper limit is set at 18 times the SM cross-
section. The VBF HH → bb̄bb̄ generator-level projection study in [25] results in the
expected 95% CL upper limit of 49 times the SM for the HL-LHC scenario and 12
times the SM for the FCC-hh scenario. These results are factors of 5 and 1.5 better
compared to the results obtained in the simplified analysis here. The two better
results can be explained by the use of the background samples with higher event
statistics (hence with the reduced statistical uncertainties), the consideration of the
semi-boosted and boosted regimes in addition to the resolved analysis, and lastly,
the lack of consideration of the detector effects.

It is difficult to predict the results of the HL-LHC or the FCC-hh real-data analy-
ses. Even though with more available data the data-driven techniques’ performance
should improve, the scaling of the systematic uncertainties of the data-driven meth-
ods in the future can only be estimated. The HL-LHC projection studies were
performed based on rescaling of the early Run 2 ggF analysis results [97]. Focus-
ing on the background uncertainties only, the best-case scenario assumes that the
background uncertainty could scale down to

√
L0

L
, where L0 is the total integrated

luminosity of the ATLAS Run 2 (the reference luminosity) and L is the total inte-
grated luminosity of the new scenario, as studied and prescribed in [98]. This means,
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for the HL-LHC with L = 3000 fb−1, the background uncertainty could be as low as
20% of the current background uncertainty, while the worst case scenario would be
to retain the current uncertainty values. The data-driven methods are used for the
background estimation because the Monte Carlo estimation of the QCD background
is not reliable at the moment. However, work on the improvements in calculations
has already started [99]. The ideal case would be the one in which data-driven meth-
ods for the QCD background modelling are reliably and independently cross-checked
with the theoretical predictions, as for now only the data-driven validation and the
consistency checks are possible.

To summarize, the ATLAS analysis presented in this thesis improves the previous
result 6-fold, because of the improved background modelling, the event categoriza-
tion and the reconstruction algorithms ameliorations. The simplified study shows
the potential of exploring the VBF production mode of Higgs pairs decaying to the
4b final state, when the higher total luminosities (3000 and 30 000 fb−1) and the
centre of mass energies (14 and 100 TeV) are available. Although it is not possible
to make a precise projection of the uncertainties of the HL-LHC upgrade experi-
ment or of the proposed FCC-hh collider experiment, the increased luminosities and
the collision energies will help to significantly reduce the statistical and systematic
uncertainties in the HH → bb̄bb̄ analysis and thereby better constrain the di-Higgs
couplings.





Bibliography

[1] The ATLAS Collaboration. Observation of a new particle in the search
for the Standard Model Higgs boson with the ATLAS detector at the
LHC. Physics Letters B, 716(1):1–29, Sep 2012. ISSN 0370-2693.
doi:10.1016/j.physletb.2012.08.020. URL http://dx.doi.org/10.1016/j.
physletb.2012.08.020.

[2] The CMS Collaboration. Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC. Physics Letters B, 716(1):30–61, Sep
2012. ISSN 0370-2693. doi:10.1016/j.physletb.2012.08.021. URL http://dx.
doi.org/10.1016/j.physletb.2012.08.021.

[3] The ATLAS Collaboration. Search for the HH → bbbb process via vector-
boson fusion production using proton-proton collisions at

√
s = 13 TeV with

the ATLAS detector. Journal of High Energy Physics, 2020(7), Jul 2020. ISSN
1029-8479. doi:10.1007/jhep07(2020)108. URL http://dx.doi.org/10.1007/
JHEP07(2020)108.

[4] Aberle O. et al. High-Luminosity Large Hadron Collider (HL-LHC): Tech-
nical design report. CERN Yellow Reports: Monographs. CERN, Geneva,
2020. doi:10.23731/CYRM-2020-0010. URL https://cds.cern.ch/record/
2749422.

[5] Mangano M. et al. Physics at the FCC-hh, a 100 TeV pp collider. CERN Yellow
Reports: Monographs. CERN, Geneva, Jun 2017. doi:10.23731/CYRM-2017-
003. URL https://cds.cern.ch/record/2270978.

[6] Abbott D. et al. Supporting Document: The Search for Non-Resonant ggF
and VBF HH Production Decaying to the 4b Final State Using the Full Run-2
Data. Technical report, CERN, Geneva, 2021. URL https://cds.cern.ch/
record/2780536.

[7] The ATLAS Collaboration. Search for non-resonant pair production of Higgs
bosons in the bb̄bb̄ final state in pp collisions at

√
s = 13 TeV with the ATLAS

detector. Technical report, CERN, Geneva, 2022. URL https://cds.cern.
ch/record/2811390.

[8] The ATLAS Collaboration. The ATLAS Fast TracKer system. Journal of In-
strumentation, 16(07):P07006, jul 2021. doi:10.1088/1748-0221/16/07/P07006.
URL https://dx.doi.org/10.1088/1748-0221/16/07/P07006.

147

https://doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1007/jhep07(2020)108
http://dx.doi.org/10.1007/JHEP07(2020)108
http://dx.doi.org/10.1007/JHEP07(2020)108
https://doi.org/10.23731/CYRM-2020-0010
https://cds.cern.ch/record/2749422
https://cds.cern.ch/record/2749422
https://doi.org/10.23731/CYRM-2017-003
https://doi.org/10.23731/CYRM-2017-003
https://cds.cern.ch/record/2270978
https://cds.cern.ch/record/2780536
https://cds.cern.ch/record/2780536
https://cds.cern.ch/record/2811390
https://cds.cern.ch/record/2811390
https://doi.org/10.1088/1748-0221/16/07/P07006
https://dx.doi.org/10.1088/1748-0221/16/07/P07006


[9] Thomson M. Modern particle physics. Cambridge University Press, New York,
2013. ISBN 978-1-107-03426-6.

[10] Purcell A. Go on a particle quest at the first CERN webfest. Le premier
webfest du CERN se lance à la conquête des particules. page 10, 2012. URL
https://cds.cern.ch/record/1473657.

[11] Englert F. and Brout R. Broken Symmetry and the Mass of
Gauge Vector Mesons. Phys. Rev. Lett., 13:321–323, Aug 1964.
doi:10.1103/PhysRevLett.13.321. URL https://link.aps.org/doi/10.
1103/PhysRevLett.13.321.

[12] Higgs P. W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev.
Lett., 13:508–509, Oct 1964. doi:10.1103/PhysRevLett.13.508. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.13.508.

[13] Valente M. The Standard Model of Particle Physics. Springer International
Publishing, Cham, 2022. ISBN 978-3-030-94047-8. doi:10.1007/978-3-030-
94047-8. URL https://doi.org/10.1007/978-3-030-94047-8.

[14] Tanabashi M. et al. Review of Particle Physics. Phys. Rev. D, 98:030001, Aug
2018. doi:10.1103/PhysRevD.98.030001. URL https://link.aps.org/doi/
10.1103/PhysRevD.98.030001.

[15] Kanemura S. et al. Can WIMP dark matter overcome the nightmare scenario?
Phys. Rev. D, 82:055026, Sep 2010. doi:10.1103/PhysRevD.82.055026. URL
https://link.aps.org/doi/10.1103/PhysRevD.82.055026.

[16] The LHCb Collaboration. Test of lepton universality in beauty-quark de-
cays. Nature Physics, 18(3):277–282, mar 2022. doi:10.1038/s41567-021-01478-
8. URL https://doi.org/10.1038%2Fs41567-021-01478-8.

[17] Cline J. M. Baryogenesis, 2006. URL https://arxiv.org/abs/hep-ph/
0609145.

[18] Bass S. D. et al. The Higgs boson implications and prospects for future
discoveries. Nature Reviews Physics, 3(9):608–624, Sep 2021. ISSN 2522-
5820. doi:10.1038/s42254-021-00341-2. URL https://doi.org/10.1038/
s42254-021-00341-2.

[19] Servant G. Electroweak baryogenesis. 2022. URL https://cerncourier.com/
a/electroweak-baryogenesis/.

[20] Branco G. C. et al. Theory and phenomenology of two-Higgs-
doublet models. Physics Reports, 516(1):1–102, 2012. ISSN 0370-
1573. doi:https://doi.org/10.1016/j.physrep.2012.02.002. URL https://www.
sciencedirect.com/science/article/pii/S0370157312000695.

https://cds.cern.ch/record/1473657
https://doi.org/10.1103/PhysRevLett.13.321
https://link.aps.org/doi/10.1103/PhysRevLett.13.321
https://link.aps.org/doi/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
https://doi.org/10.1007/978-3-030-94047-8
https://doi.org/10.1007/978-3-030-94047-8
https://doi.org/10.1007/978-3-030-94047-8
https://doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.82.055026
https://link.aps.org/doi/10.1103/PhysRevD.82.055026
https://doi.org/10.1038/s41567-021-01478-8
https://doi.org/10.1038/s41567-021-01478-8
https://doi.org/10.1038%2Fs41567-021-01478-8
https://arxiv.org/abs/hep-ph/0609145
https://arxiv.org/abs/hep-ph/0609145
https://doi.org/10.1038/s42254-021-00341-2
https://doi.org/10.1038/s42254-021-00341-2
https://doi.org/10.1038/s42254-021-00341-2
https://cerncourier.com/a/electroweak-baryogenesis/
https://cerncourier.com/a/electroweak-baryogenesis/
https://doi.org/https://doi.org/10.1016/j.physrep.2012.02.002
https://www.sciencedirect.com/science/article/pii/S0370157312000695
https://www.sciencedirect.com/science/article/pii/S0370157312000695


[21] Randall L. and Sundrum R. Large Mass Hierarchy from a Small
Extra Dimension. Phys. Rev. Lett., 83:3370–3373, Oct 1999.
doi:10.1103/PhysRevLett.83.3370. URL https://link.aps.org/doi/
10.1103/PhysRevLett.83.3370.

[22] Grazzini M. et al. Higgs boson pair production at NNLO with top quark mass
effects, journal=Journal of High Energy Physics. 2018(5):59, May 2018. ISSN
1029-8479. doi:10.1007/JHEP05(2018)059. URL https://doi.org/10.1007/
JHEP05(2018)059.

[23] Coleppa B. et al. Constraining type II 2HDM in light of LHC
Higgs searches. Journal of High Energy Physics, 2014(1), jan 2014.
doi:10.1007/jhep01(2014)161. URL https://doi.org/10.1007%2Fjhep01%
282014%29161.

[24] Dreyer F. et al. Vector-boson fusion Higgs pair production at N3LO. Physical
Review D, 98(11), Dec 2018. ISSN 2470-0029. doi:10.1103/physrevd.98.114016.
URL http://dx.doi.org/10.1103/PhysRevD.98.114016.

[25] Bishara F. et al. Higgs pair production in vector-boson fusion at the
LHC and beyond. The European Physical Journal C, 77, 11 2016.
doi:10.1140/epjc/s10052-017-5037-9.

[26] The ATLAS Collaboration. Erratum to: Search for the HH → bbbb process via
vector-boson fusion production using proton-proton collisions at

√
s = 13 TeV

with the ATLAS detector. Journal of High Energy Physics, 2021(5):207, May
2021. ISSN 1029-8479. doi:10.1007/JHEP05(2021)207. URL https://doi.
org/10.1007/JHEP05(2021)207.

[27] The CMS Collaboration. Search for higgs boson pair production in the four
b quark final state in proton-proton collisions at

√
s = 13 TeV. Physical

Review Letters, 129(8), aug 2022. doi:10.1103/physrevlett.129.081802. URL
https://doi.org/10.1103%2Fphysrevlett.129.081802.

[28] The CMS Collaboration. Search for nonresonant pair production of highly
energetic higgs bosons decaying to bottom quarks, 2022. URL https://arxiv.
org/abs/2205.06667.

[29] The ATLAS Collaboration. Search for pair production of Higgs bosons in
the bbbb final state using proton-proton collisions at

√
s = 13 TeV with the

ATLAS detector. Journal of High Energy Physics, 2019(1), Jan 2019. ISSN
1029-8479. doi:10.1007/jhep01(2019)030. URL http://dx.doi.org/10.1007/
JHEP01(2019)030.

[30] The ATLAS Collaboration. Search for resonant pair production of Higgs bosons
in the bbbb final state using pp collisions at

√
s = 13 TeV with the ATLAS de-

tector. Physical Review D, 105(9), may 2022. doi:10.1103/physrevd.105.092002.
URL https://doi.org/10.1103%2Fphysrevd.105.092002.

https://doi.org/10.1103/PhysRevLett.83.3370
https://link.aps.org/doi/10.1103/PhysRevLett.83.3370
https://link.aps.org/doi/10.1103/PhysRevLett.83.3370
https://doi.org/10.1007/JHEP05(2018)059
https://doi.org/10.1007/JHEP05(2018)059
https://doi.org/10.1007/JHEP05(2018)059
https://doi.org/10.1007/jhep01(2014)161
https://doi.org/10.1007%2Fjhep01%282014%29161
https://doi.org/10.1007%2Fjhep01%282014%29161
https://doi.org/10.1103/physrevd.98.114016
http://dx.doi.org/10.1103/PhysRevD.98.114016
https://doi.org/10.1140/epjc/s10052-017-5037-9
https://doi.org/10.1007/JHEP05(2021)207
https://doi.org/10.1007/JHEP05(2021)207
https://doi.org/10.1007/JHEP05(2021)207
https://doi.org/10.1103/physrevlett.129.081802
https://doi.org/10.1103%2Fphysrevlett.129.081802
https://arxiv.org/abs/2205.06667
https://arxiv.org/abs/2205.06667
https://doi.org/10.1007/jhep01(2019)030
http://dx.doi.org/10.1007/JHEP01(2019)030
http://dx.doi.org/10.1007/JHEP01(2019)030
https://doi.org/10.1103/physrevd.105.092002
https://doi.org/10.1103%2Fphysrevd.105.092002


[31] The ATLAS Collaboration. Constraining the Higgs boson self-coupling from
single- and double-Higgs production with the ATLAS detector using pp col-
lisions at

√
s = 13 TeV. Technical report, CERN, Geneva, 2022. URL

https://cds.cern.ch/record/2816332.

[32] The CMS Collaboration. A portrait of the Higgs boson by the CMS experi-
ment ten years after the discovery. Nature, 607(7917):60–68, Jul 2022. ISSN
1476-4687. doi:10.1038/s41586-022-04892-x. URL https://doi.org/10.1038/
s41586-022-04892-x.

[33] CERN. CERN’s accelerator complex. https://home.cern/science/
accelerators/accelerator-complex. Accessed: 2022-09-26.

[34] Mobs E. The CERN accelerator complex - 2019. Complexe des accélérateurs
du CERN - 2019. Jul 2019. URL https://cds.cern.ch/record/2684277.

[35] The ATLAS Collaboration. Total Integrated Luminosity and Data Quality in
2015-2018. https://atlas.web.cern.ch/Atlas/GROUPS/DATAPREPARATION/
PublicPlots/2018/DataSummary/figs/intlumivstimeRun2DQall.png, . Ac-
cessed: 2022-09-26.

[36] The ATLAS Collaboration. The ATLAS experiment at the CERN large
hadron collider. Journal of Instrumentation, 3(08):S08003–S08003, aug
2008. doi:10.1088/1748-0221/3/08/s08003. URL https://doi.org/10.1088/
1748-0221/3/08/s08003.

[37] Pequenao J. Computer generated image of the whole ATLAS detector. 2008.
URL https://cds.cern.ch/record/1095924.

[38] Schott M. et al. Review of single vector boson production in pp
collisions at

√
7 TeV. The European Physical Journal C, 74(7), jul

2014. doi:10.1140/epjc/s10052-014-2916-1. URL https://doi.org/10.1140%
2Fepjc%2Fs10052-014-2916-1.

[39] The ATLAS Collaboration. Experiment Briefing: Keeping the ATLAS Inner
Detector in perfect alignment. 2020. URL https://cds.cern.ch/record/
2723878.

[40] Vigani L. et al. Study of prototypes of LFoundry active and monolithic CMOS
pixels sensors for the ATLAS detector. Journal of Instrumentation, 13, 10 2017.
doi:10.1088/1748-0221/13/02/C02021.

[41] Capeans M et al. ATLAS Insertable B-Layer Technical Design Report. Tech-
nical report, 2010. URL https://cds.cern.ch/record/1291633.

[42] Pequenao J. Computer Generated image of the ATLAS calorimeter. Mar 2008.
URL https://cds.cern.ch/record/1095927.

[43] Pequenao J. Computer generated image of the ATLAS Muons subsystem. Mar
2008. URL https://cds.cern.ch/record/1095929.

https://cds.cern.ch/record/2816332
https://doi.org/10.1038/s41586-022-04892-x
https://doi.org/10.1038/s41586-022-04892-x
https://doi.org/10.1038/s41586-022-04892-x
https://home.cern/science/accelerators/ accelerator-complex
https://home.cern/science/accelerators/ accelerator-complex
https://cds.cern.ch/record/2684277
https://atlas.web.cern.ch/Atlas/GROUPS/DATAPREPARATION/PublicPlots/2018/DataSummary/figs/intlumivstimeRun2DQall.png
https://atlas.web.cern.ch/Atlas/GROUPS/DATAPREPARATION/PublicPlots/2018/DataSummary/figs/intlumivstimeRun2DQall.png
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08003
https://cds.cern.ch/record/1095924
https://doi.org/10.1140/epjc/s10052-014-2916-1
https://doi.org/10.1140%2Fepjc%2Fs10052-014-2916-1
https://doi.org/10.1140%2Fepjc%2Fs10052-014-2916-1
https://cds.cern.ch/record/2723878
https://cds.cern.ch/record/2723878
https://doi.org/10.1088/1748-0221/13/02/C02021
https://cds.cern.ch/record/1291633
https://cds.cern.ch/record/1095927
https://cds.cern.ch/record/1095929


[44] The ATLAS Collaboration. Operation of the ATLAS trigger system in
Run 2. Journal of Instrumentation, 15(10):P10004–P10004, oct 2020.
doi:10.1088/1748-0221/15/10/p10004. URL https://doi.org/10.1088%
2F1748-0221%2F15%2F10%2Fp10004.

[45] The ATLAS Collaboration. The ATLAS Data Acquisition system in LHC
Run 2. Technical report, CERN, Geneva, 2017. URL https://cds.cern.
ch/record/2244345.

[46] Raschka S. Introduction to Deep Learning Lecture Notes, 2021. URL https:
//sebastianraschka.com/blog/2021/dl-course.html.

[47] Raschka S. et al. Python Machine Learning - Third Edition. Packt Publishing,
Dec 2019.

[48] IBM Cloud Education. Neural Networks. 2020. URL https://www.ibm.com/
cloud/learn/neural-networks.

[49] Ersoy S. et al. Automatic decision making system with environmen-
tal and traffic data. Mathematical Models in Engineering, 7, 06 2021.
doi:10.21595/mme.2021.22020.

[50] Cacciari M. et al. The anti-ktjet clustering algorithm. Journal of High En-
ergy Physics, 2008(04):063–063, Apr 2008. ISSN 1029-8479. doi:10.1088/1126-
6708/2008/04/063. URL http://dx.doi.org/10.1088/1126-6708/2008/04/
063.

[51] Marzani S. et al. Looking Inside Jets. Lecture Notes in Physics, 2019.
ISSN 1616-6361. doi:10.1007/978-3-030-15709-8. URL http://dx.doi.org/
10.1007/978-3-030-15709-8.

[52] Salam G. P. Towards jetography. The European Physical Journal C, 67(3-4):
637–686, may 2010. doi:10.1140/epjc/s10052-010-1314-6. URL https://doi.
org/10.1140%2Fepjc%2Fs10052-010-1314-6.

[53] The ATLAS Collaboration. Topological cell clustering in the ATLAS calorime-
ters and its performance in LHC Run 1. The European Physical Journal C,
77(7), jul 2017. doi:10.1140/epjc/s10052-017-5004-5. URL https://doi.org/
10.1140%2Fepjc%2Fs10052-017-5004-5.

[54] The ATLAS Collaboration. Jet reconstruction and performance using particle
flow with the ATLAS Detector. The European Physical Journal C, 77(7), jul
2017. doi:10.1140/epjc/s10052-017-5031-2. URL https://doi.org/10.1140%
2Fepjc%2Fs10052-017-5031-2.

[55] The ATLAS Collaboration. Jet energy scale and resolution measured
in proton-proton collisions at

√
s = 13 TeV with the ATLAS detector.

The European Physical Journal C, 81(8):689, Aug 2021. ISSN 1434-6052.

https://doi.org/10.1088/1748-0221/15/10/p10004
https://doi.org/10.1088%2F1748-0221%2F15%2F10%2Fp10004
https://doi.org/10.1088%2F1748-0221%2F15%2F10%2Fp10004
https://cds.cern.ch/record/2244345
https://cds.cern.ch/record/2244345
https://sebastianraschka.com/blog/2021/dl-course.html
https://sebastianraschka.com/blog/2021/dl-course.html
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://doi.org/10.21595/mme.2021.22020
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1007/978-3-030-15709-8
http://dx.doi.org/10.1007/978-3-030-15709-8
http://dx.doi.org/10.1007/978-3-030-15709-8
https://doi.org/10.1140/epjc/s10052-010-1314-6
https://doi.org/10.1140%2Fepjc%2Fs10052-010-1314-6
https://doi.org/10.1140%2Fepjc%2Fs10052-010-1314-6
https://doi.org/10.1140/epjc/s10052-017-5004-5
https://doi.org/10.1140%2Fepjc%2Fs10052-017-5004-5
https://doi.org/10.1140%2Fepjc%2Fs10052-017-5004-5
https://doi.org/10.1140/epjc/s10052-017-5031-2
https://doi.org/10.1140%2Fepjc%2Fs10052-017-5031-2
https://doi.org/10.1140%2Fepjc%2Fs10052-017-5031-2


doi:10.1140/epjc/s10052-021-09402-3. URL https://doi.org/10.1140/epjc/
s10052-021-09402-3.

[56] The ATLAS Collaboration. Configuration and performance of the ATLAS b-
jet triggers in Run 2. The European Physical Journal C, 81(12):1087, Dec
2021. ISSN 1434-6052. doi:10.1140/epjc/s10052-021-09775-5. URL https:
//doi.org/10.1140/epjc/s10052-021-09775-5.

[57] The ATLAS Colaboration. ATLAS b-jet identification performance and effi-
ciency measurement with tt̄ events in pp collisions at

√
s = 13 tev. 79(11), nov

2019. doi:10.1140/epjc/s10052-019-7450-8. URL https://doi.org/10.1140%
2Fepjc%2Fs10052-019-7450-8.

[58] The ATLAS Collaboration. Identification of Jets Containing b-Hadrons with
Recurrent Neural Networks at the ATLAS Experiment. Technical report,
CERN, Geneva, 2017. URL https://cds.cern.ch/record/2255226.

[59] The ATLAS Collaboration. Monte Carlo to Monte Carlo scale factors for flavour
tagging efficiency calibration. Technical report, CERN, Geneva, 2020. URL
https://cds.cern.ch/record/2718610.

[60] The ATLAS Collaboration. Expected performance of the 2019 ATLAS b-
taggers, 2019. URL http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/
PLOTS/FTAG-2019-005/. Accessed: 2022-11-20.

[61] The ATLAS Collaboration. ATLAS b-jet identification performance and
efficiency measurement with tt̄ events in pp collisions at

√
s = 13

TeV. The European Physical Journal C, 79(11), Nov 2019. ISSN 1434-
6052. doi:10.1140/epjc/s10052-019-7450-8. URL http://dx.doi.org/10.
1140/epjc/s10052-019-7450-8.

[62] The ATLAS Collaboration. Flavour-tagging efficiency corrections for the 2019
ATLAS PFlow jet and VR track jets b-taggers with the full LHC Run II
dataset, . URL http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/
FTAG-2021-001.png.

[63] Alwall J. et al. The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to parton
shower simulations. Journal of High Energy Physics, 2014(7), jul 2014.
doi:10.1007/jhep07(2014)079. URL https://doi.org/10.1007%2Fjhep07%
282014%29079.

[64] Ball R.D. et al. Parton distributions for the LHC run II. Journal of High
Energy Physics, 2015(4), apr 2015. doi:10.1007/jhep04(2015)040. URL https:
//doi.org/10.1007%2Fjhep04%282015%29040.

[65] Sjöstrand T. et al. An introduction to PYTHIA 8.2. Computer Physics
Communications, 191:159–177, jun 2015. doi:10.1016/j.cpc.2015.01.024. URL
https://doi.org/10.1016%2Fj.cpc.2015.01.024.

https://doi.org/10.1140/epjc/s10052-021-09402-3
https://doi.org/10.1140/epjc/s10052-021-09402-3
https://doi.org/10.1140/epjc/s10052-021-09402-3
https://doi.org/10.1140/epjc/s10052-021-09775-5
https://doi.org/10.1140/epjc/s10052-021-09775-5
https://doi.org/10.1140/epjc/s10052-021-09775-5
https://doi.org/10.1140/epjc/s10052-019-7450-8
https://doi.org/10.1140%2Fepjc%2Fs10052-019-7450-8
https://doi.org/10.1140%2Fepjc%2Fs10052-019-7450-8
https://cds.cern.ch/record/2255226
https://cds.cern.ch/record/2718610
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005/
https://doi.org/10.1140/epjc/s10052-019-7450-8
http://dx.doi.org/10.1140/epjc/s10052-019-7450-8
http://dx.doi.org/10.1140/epjc/s10052-019-7450-8
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2021-001.png
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2021-001.png
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007%2Fjhep07%282014%29079
https://doi.org/10.1007%2Fjhep07%282014%29079
https://doi.org/10.1007/jhep04(2015)040
https://doi.org/10.1007%2Fjhep04%282015%29040
https://doi.org/10.1007%2Fjhep04%282015%29040
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016%2Fj.cpc.2015.01.024


[66] Agostinelli S. et al. Geant4—a simulation toolkit. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 506(3):250–303, 2003. ISSN 0168-
9002. doi:https://doi.org/10.1016/S0168-9002(03)01368-8. URL https://www.
sciencedirect.com/science/article/pii/S0168900203013688.

[67] Albrand S. et al. The AMI Database Project: Atlas Data Challenge Bookkeep-
ing, and the Tag Collector, a new tool for Release Management. eConf, 0303241
(hep-ex/0304029):MONT003. 10 p, Apr 2003. URL https://cds.cern.ch/
record/613910.

[68] L. S. Borgna. Search for pair production of Higgs bosons decaying to four
bottom quarks with data collected by the ATLAS detector, 2021. URL https:
//cds.cern.ch/record/2812193.

[69] Carvalho A. et al. Higgs pair production: choosing benchmarks with clus-
ter analysis. Journal of High Energy Physics, 2016(4):1–28, apr 2016.
doi:10.1007/jhep04(2016)126. URL https://doi.org/10.1007%2Fjhep04%
282016%29126.

[70] Rogozhnikov A. Reweighting with Boosted Decision Trees. Journal of Physics:
Conference Series, 762:012036, oct 2016. doi:10.1088/1742-6596/762/1/012036.
URL https://doi.org/10.1088/1742-6596/762/1/012036.

[71] Kanamori T. et al. A Least-Squares Approach to Direct Importance Estimation.
J. Mach. Learn. Res., 10:1391–1445, December 2009. ISSN 1532-4435.

[72] Freedman D. et al. Statistics (international student edition). 2007.

[73] Cowan G. Statistical data analysis. Oxford University Press, USA, 1998.

[74] Efron B. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7
(1):1–26, 01 1979. doi:10.1214/aos/1176344552. URL https://doi.org/10.
1214/aos/1176344552.

[75] Read A. L. Presentation of search results: the CLs technique. Journal of
Physics G: Nuclear and Particle Physics, 28(10):2693–2704, 2002. ISSN 0954-
3899. doi:10.1088/0954-3899/28/10/313.

[76] Cowan G. et al. Asymptotic formulae for likelihood-based tests of new
physics. The European Physical Journal C, 71(2), 2011. ISSN 1434-6052.
doi:10.1140/epjc/s10052-011-1554-0.

[77] Cranmer K. et al. HistFactory: A tool for creating statistical models for use
with RooFit and RooStats. Technical report, New York U., New York, 2012.
URL https://cds.cern.ch/record/1456844.

[78] Heinrich L. et al. pyhf: v0.6.3. URL https://doi.org/10.5281/zenodo.
1169739. https://github.com/scikit-hep/pyhf/releases/tag/v0.6.3.

https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://cds.cern.ch/record/613910
https://cds.cern.ch/record/613910
https://cds.cern.ch/record/2812193
https://cds.cern.ch/record/2812193
https://doi.org/10.1007/jhep04(2016)126
https://doi.org/10.1007%2Fjhep04%282016%29126
https://doi.org/10.1007%2Fjhep04%282016%29126
https://doi.org/10.1088/1742-6596/762/1/012036
https://doi.org/10.1088/1742-6596/762/1/012036
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://cds.cern.ch/record/1456844
https://doi.org/10.5281/zenodo.1169739
https://doi.org/10.5281/zenodo.1169739


[79] Heinrich L. et al. pyhf: pure-Python implementation of HistFactory
statistical models. Journal of Open Source Software, 6(58):2823, 2021.
doi:10.21105/joss.02823. URL https://doi.org/10.21105/joss.02823.

[80] Avoni G. et al. The new LUCID-2 detector for luminosity measurement and
monitoring in ATLAS. Journal of Instrumentation, 13(07):P07017–P07017,
jul 2018. doi:10.1088/1748-0221/13/07/p07017. URL https://doi.org/10.
1088/1748-0221/13/07/p07017.

[81] The ATLAS Collaboration. Luminosity determination in pp collisions at√
s = 13 TeV using the ATLAS detector at the LHC. Technical report, CERN,

Geneva, 2019. URL https://cds.cern.ch/record/2677054.

[82] Dao V. Parton Shower Uncertainties in Higgs Measurements, AT-
LAS treatment, 2019. URL https://indico.cern.ch/event/827858/
#3-atlas-treatment. Accessed: 2022-11-25.

[83] The ATLAS Collaboration. Theory systematics, 2019. URL https://twiki.
cern.ch/twiki/bin/view/LHCPhysics/TheorySystematics. Accessed: 2022-
11-25.

[84] Bähr M. et al. Herwig++ physics and manual. The European Physical Journal
C, 58(4):639–707, nov 2008. doi:10.1140/epjc/s10052-008-0798-9. URL https:
//doi.org/10.1140%2Fepjc%2Fs10052-008-0798-9.

[85] Bellm J. et al. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C, 76(4):
196, 2016. doi:10.1140/epjc/s10052-016-4018-8.

[86] Butterworth J. et al. PDF4LHC recommendations for LHC Run II .
Journal of Physics G: Nuclear and Particle Physics, 43(2):023001, jan
2016. doi:10.1088/0954-3899/43/2/023001. URL https://doi.org/10.1088%
2F0954-3899%2F43%2F2%2F023001.

[87] CERN. CERN Yellow Reports: Monographs, Vol 2 (2017): Handbook of LHC
Higgs cross sections: 4. Deciphering the nature of the Higgs sector, 2017. URL
https://e-publishing.cern.ch/index.php/CYRM/issue/view/32.

[88] The ATLAS Collaboration. Jet Uncertainties Package, 2018. URL
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/
JetUncertaintiesRel21Summer2018SmallR?rev=11.

[89] The ATLAS Collaboration. Tagger Calibrations Recommendation,
2021. URL https://twiki.cern.ch/twiki/bin/view/AtlasProtected/
BTagCalibrationRecommendationsRelease21?rev=60#Recommendation_
April_2021.

[90] Bierlich C. et al. A comprehensive guide to the physics and usage of PYTHIA
8.3, 2022. URL https://arxiv.org/abs/2203.11601.

https://doi.org/10.21105/joss.02823
https://doi.org/10.21105/joss.02823
https://doi.org/10.1088/1748-0221/13/07/p07017
https://doi.org/10.1088/1748-0221/13/07/p07017
https://doi.org/10.1088/1748-0221/13/07/p07017
https://cds.cern.ch/record/2677054
https://indico.cern.ch/event/827858/#3-atlas-treatment
https://indico.cern.ch/event/827858/#3-atlas-treatment
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TheorySystematics
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TheorySystematics
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://doi.org/10.1140%2Fepjc%2Fs10052-008-0798-9
https://doi.org/10.1140%2Fepjc%2Fs10052-008-0798-9
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/10.1088/0954-3899/43/2/023001
https://doi.org/10.1088%2F0954-3899%2F43%2F2%2F023001
https://doi.org/10.1088%2F0954-3899%2F43%2F2%2F023001
https://e-publishing.cern.ch/index.php/CYRM/issue/view/32
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/JetUncertaintiesRel21Summer2018SmallR?rev=11
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/JetUncertaintiesRel21Summer2018SmallR?rev=11
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BTagCalibrationRecommendationsRelease21?rev=60#Recommendation_April_2021
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BTagCalibrationRecommendationsRelease21?rev=60#Recommendation_April_2021
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BTagCalibrationRecommendationsRelease21?rev=60#Recommendation_April_2021
https://arxiv.org/abs/2203.11601


[91] The ATLAS Collaboration. Internal Twiki: VBF Production Pre-
scription. https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/
HowToVBF, . Accessed: 2022-09-20.

[92] Mangano M. et al. ALPGEN, a generator for hard multiparton processes in
hadronic collisions. Journal of High Energy Physics, 2003(07):001–001, jul
2003. doi:10.1088/1126-6708/2003/07/001. URL https://doi.org/10.1088/
1126-6708/2003/07/001.

[93] Alwall J. et al. The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to parton
shower simulations. Journal of High Energy Physics, 2014(7), jul 2014.
doi:10.1007/jhep07(2014)079. URL https://doi.org/10.1007%2Fjhep07%
282014%29079.

[94] Buckley A. et al. LHAPDF6: parton density access in the LHC precision era.
Eur. Phys. J. C, 75(132), 2015. doi:https://doi.org/10.1140/epjc/s10052-015-
3318-8.

[95] Ball R. D. et al. Parton distributions with LHC data. Nu-
clear Physics B, 867(2):244–289, 2013. ISSN 0550-3213.
doi:https://doi.org/10.1016/j.nuclphysb.2012.10.003. URL https:
//www.sciencedirect.com/science/article/pii/S0550321312005500.

[96] Matteo C. et al. FastJet user manual. The European Physical Journal C, 72
(3), mar 2012. doi:10.1140/epjc/s10052-012-1896-2. URL https://doi.org/
10.1140%2Fepjc%2Fs10052-012-1896-2.

[97] The ATLAS Collaboration. Measurement prospects of the pair production and
self-coupling of the Higgs boson with the ATLAS experiment at the HL-LHC.
Technical report, CERN, Geneva, 2018. URL https://cds.cern.ch/record/
2652727.

[98] The ATLAS Collaboration. Expected performance of the ATLAS detector at
the High-Luminosity LHC. Technical report, CERN, Geneva, 2019. URL http:
//cds.cern.ch/record/2655304.

[99] Buckley A. et al. Monte Carlo event generators for high energy particle physics
event simulation, 2019. URL https://arxiv.org/abs/1902.01674.

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HowToVBF
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HowToVBF
https://doi.org/10.1088/1126-6708/2003/07/001
https://doi.org/10.1088/1126-6708/2003/07/001
https://doi.org/10.1088/1126-6708/2003/07/001
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007%2Fjhep07%282014%29079
https://doi.org/10.1007%2Fjhep07%282014%29079
https://doi.org/https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2012.10.003
https://www.sciencedirect.com/science/article/pii/S0550321312005500
https://www.sciencedirect.com/science/article/pii/S0550321312005500
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140%2Fepjc%2Fs10052-012-1896-2
https://doi.org/10.1140%2Fepjc%2Fs10052-012-1896-2
https://cds.cern.ch/record/2652727
https://cds.cern.ch/record/2652727
http://cds.cern.ch/record/2655304
http://cds.cern.ch/record/2655304
https://arxiv.org/abs/1902.01674




Acknowledgments

I would like to thank professor André Schöning for his guidance throughout my PhD, and
his patience, especially in the last few weeks of consultations and corrections. I was inspired
and motivated to keep improving as a physicist, researcher and, in the last few months, a
more concise and less vague writer. I hope this was achieved, at least to some extent.

I would also like to thank professor Monica Dunford for agreeing to be the second referee
of this thesis. I am very grateful to the Research Training Group in Heidelberg, Physics
Beyond the Standard Model, for funding my research and allowing me to meet a number
of amazing fellow PhD students.

It was a pleasure to work with all the Heidelberg colleagues, both from ATLAS and Mu3e. I
will always remember you as a cool bunch of smart and quirky people, who know lots about
physics, but who also know how to enjoy life (#Bosseln). Cheers! Big kudos to Tamasi
for the massive amount of constructive support in this whole process and an even greater
amount of thesis corrections up until the very end. I would also like to thank Luigi for
being the Bellini coffee card correspondent, those lungos were very much needed, especially
in the last few weeks. Kudos to Christof for many fruitful analysis-oriented discussions and
to Joachim and Sebastian for many on-point analysis clarification questions in our weekly
meetings and proofreading chapters of this thesis.

I would also like to thank the whole 4b analysis team, especially, the analysis contacts,
Max and Rafael, and the VBF Push team. Although to a large extent online, throughout
the pandemic, it was great to work on this challenging analysis with you.

My PhD would have not been the same without the pre-pandemic time I spent at CERN.
I would like to thank my postdoc, Louis, for all the help and advice very much needed,
especially at the beginning, and the whole FTK team I worked with while in Geneva. I
also made a bunch of amazing friends. Special thanks go to Amar and Pedja on whom
I can always count, no matter what or when, you guys are the best! And to my fellow
physicist in training (from the 2nd best experiment), Rhys, for all the inter-experimental
support.

Thank you (so much) Annie and Tamasi, you have been much more than colleagues. You
guided me through all the intricacies of living in Germany at the beginning and became
my Heidelberg family soon after. This family would not be complete without my German
Mama Anna, and our private photographer Arturo (I really hope to see all those pictures
one day. . . ). Thank you guys for simply being there!

I want to thank my closest friends based all over the world for their support at all stages
of my PhD and for keeping in touch when I continued moving to new countries. Last but
not least, none of this would have been possible without my Family.

Pragnę podziękować Rodzicom, Dziadkom, Bratu i całej Rodzinie za od zawsze otrzymy-
wane wsparcie. Dodatkowo dziękuję Dziadkowi Dzidkowi i Ś.P. Wujowi Rafałowi za in-
spiracje do podążania drogą naukową, oraz Tymonowi za wiele dyskusji o tym, że fizyka
w swojej szerokiej perspektywie jest naprawdę cool.


	Introduction
	Theory
	The Standard Model
	Structure of the Standard Model
	QCD
	Electroweak Unification
	The Higgs Mechanism
	Phenomena Unexplained by the SM

	Higgs Pair Production
	Shape of Higgs Potential
	Electroweak Baryogenesis
	gluon-gluon Fusion
	Vector Boson Fusion
	bb Decay Channel
	Monte Carlo Modelling of Signal and Background
	Di-Higgs Searches Status


	LHC and ATLAS detector
	The Large Hadron Collider
	Luminosity

	The ATLAS experiment
	Coordinate System of the Detector
	Inner Detector
	Calorimeter
	Muon Spectrometer
	Triggering and Data Acquisition


	Machine Learning
	Supervised Learning
	Neural Networks

	Analysis Relevant Objects
	Jets
	The anti-kt Algorithm
	Jets in ATLAS
	Jet Calibrations and Corrections

	b-tagging
	Algorithms in ATLAS
	Working Points
	Offline Flavour Tagging Calibrations


	Event Selection
	Data Samples
	Monte Carlo Samples
	2V Reweighting

	Triggers
	b-jet Trigger Efficiency Correction
	Trigger Bucket Algorithm

	VBF Event Selection
	Nomenclature of the Analysis Jets
	Steps of the Event Selection

	Higgs Candidate Pairing
	Overview of Considered Algorithms

	Top veto for the Background Reduction
	Kinematic Regions Definitions
	Cut-flows
	Acceptance times Efficiency
	Discriminating Variable

	Background Estimation
	Method of Event Reweighting with Bins
	2b to 4b Event Reweighting

	2b to 4b Neural Network Reweighting
	Neural Network Reweighting in Practice
	Network Input Variables
	Network Architecture

	Background Estimate Uncertainties
	Statistical Uncertainty and Bootstrapping
	Shape Systematic Uncertainty

	Performance of the Reweighting in the Control Regions
	Validation of the Background Estimate
	3b1f Region Validation
	Shifted Kinematic Regions Validation

	Background Prediction in the 4b Signal Region

	Statistical Analysis
	Mathematical Methods
	Hypotheses of the Experiment
	Likelihood
	Profile Likelihood Method

	Implementation in the pyhf Framework
	Uncertainties
	Summary of Background Uncertainties
	Summary of Signal Uncertainties

	Results
	Post-fit Background Distribution
	95% CL Upper Limits


	HL-LHC and FCC Projection Studies
	Overview of the Considered Scenarios
	Methods
	MC Production Prescription
	Calorimeter Emulation, Jet Clustering and b-tagging
	Simplified VBF Analysis Selection
	Cut-flows
	Scaling Factors

	Results
	Signal Significance Studies
	mHH Distributions
	95% CL Expected Upper Limit
	Discussion of Results


	Conclusion
	Bibliography

