
Faculty of Physics and Astronomy
University of Heidelberg

Diploma thesis
in Physics

submitted by
Rainer Schwemmer

born in Sulzbach-Rosenberg

March 2007

Commissioning of the LHCb Outer
Tracker Front-end electronics

This diploma thesis has been carried out by Rainer Schwemmer at the
Physical Institute

under the supervision of
Prof. Dr. Ulrich Uwer

Kurzfassung

Das Physikalische Institut der Universität Heidelberg ist maßgeblich an der
Entwicklung und Produktion des äußeren Spurkammersystems des LHCb Exper-
iments beteiligt. Dies beinhaltet den Entwurf und die Produktion der Ausle-
seelektronik.

Zur Überprüfung dieser Elektronik wurde ein automatischer Teststand en-
twickelt. Teil dieser Entwicklung war das eingliedern der Slow Control in die
bereits existierende FPGA Firmware. Weiterhin wurde die nötige Software für
die FPGA Kommunikation programmiert.

Als nächster Schritt wurde ein Steuerungsprogramm für das äußere Spurkam-
mersystem mit PVSS entwickelt. Dieses Programm war eines der ersten, mit
dem Zweck einen kompletten Subdetektor zu steuern. Diese wegweisende En-
twicklung führte zu wesentlichen Verbesserungen des allgemeinen LHCb Soft-
wareframeworks.

Das Programm erlaubte zum ersten mal die Steuerung eines erheblichen Teils
der Ausleseelektronik. Es bereitete den Weg für die Überprüfung des Systemver-
haltens mit der endgültigen Hardware. Neben anderen Untersuchungen erlaubten
die angesammelten Daten eine erste Analyse der Zeitkoordination der Hardware.

Abstract

The Heidelberg Institute of Physics is involved in the development and produc-
tion of the LHCb Outer Tracker system. This included the design and production
of readout electronic components.

In order to verify these components an automatic test system was developed.
This included the integration of the slow control into an existing FPGA firmware.
Furthermore the software to communicate with the FPGA was implemented.

As a next step a PVSS control system for the Outer Tracker was developed.
It was one of the first systems with the purpose of controlling a whole LHCB sub
detector. This pioneering work led to a number of improvements in the design of
the common LHCb software framework.

The control system allowed operating a significant fraction of the readout
electronics for the first time. It provided the opportunity to test system perfor-
mance with the final experiment hardware. Among other studies, the recorded
data allowed preliminary analysis of the time alignment procedure.

Contents

1 Introduction 1

1.1 LHC . 1

1.2 LHCb . 3

1.3 LHCb Outer Tracker . 4

2 Readout and Control electronics 7

2.1 LHCb DAQ and Slow Control System 7

2.1.1 Data Acquisition and Fast Control 7

2.1.2 Slow Control system . 8

2.2 Outer Tracker readout and Slow Control 9

2.2.1 Outer Tracker DAQ components 9

2.2.2 Outer Tracker Slow Control distribution 12

3 Mass production test 15

3.1 Setup for the GOL/AUX board test 15

3.2 Slow control for the front-end electronics 16

3.2.1 Specifications for the test 16

3.2.2 Differential I2C connection 17

3.3 Implementation of the I2C system 17

3.3.1 I2C standard . 17

3.3.2 Special considerations toward differential I2C 19

3.3.3 I2C interface design . 19

3.3.4 I2C-Master Core . 22

3.3.5 Input Control . 22

3.3.6 I2C Control Block . 23

3.3.7 Output Control . 24

3.3.8 Implementation tools . 26

3.3.9 Simulation and test . 28

3.3.10 Interface software . 30

3.4 GOL/AUX test using the I2C interface 30

3.5 Determining the influence of I2C traffic 31

i

ii CONTENTS

4 Outer Tracker Slow Control system 35
4.0.1 JCOP framework . 35
4.0.2 Finite State Machine tool 35
4.0.3 Distributed Information Management System 37
4.0.4 Configuration Database 38

4.1 SPECS . 39
4.2 Control scheme of the Outer Tracker 39
4.3 FSM Hierarchy and Objects . 40

4.3.1 Control Hierarchy . 40
4.3.2 Control Finite State Machine (FSM) Objects 42

4.4 Graphical User Interfaces . 44
4.5 Performance measurements . 48
4.6 Conclusion . 50

5 OT commissioning results 53
5.1 The Mini-DAQ system . 53
5.2 Test of the Mini-DAQ system . 56
5.3 Noise Measurements . 59
5.4 Test pulse system . 59

5.4.1 Channel sensitivity divergence 61
5.4.2 ASDBLR Asymmetry . 64

5.5 OTIS timing properties . 67
5.5.1 OTIS linearity . 67
5.5.2 Long-term stability . 70
5.5.3 Test pulse and TDC resolution 72

6 Conclusion 77

A PVSS 79
A.1 Supervisory Control and Data Acquisition Systems 79

A.1.1 SCADA tasks . 79
A.1.2 SCADA architecture . 79

A.2 PVSS as implementation of a SCADA system 80
A.2.1 PVSS Manager Concept 81
A.2.2 Event Manager (EM) . 82
A.2.3 Database Manager (DM) 83
A.2.4 Control manager (CM) . 84
A.2.5 User Interface Manager (UIM) 84
A.2.6 Distribution of a PVSS system 84
A.2.7 Data representation in PVSS 87

B Acronyms 89

Chapter 1

Introduction

The field of High Energy Physics deals with the analysis of the smallest known
entities in the universe. One goal is to comprehend the interaction between matter
and radiation.

The standard model of particle physics is the accepted explanation of mi-
croscopic interactions. According to the model, all physical processes can be
attributed to twelve elementary particles and their anti particles, as well as the
so called force carriers which propagate interactions between particles.

Particles come in two general types: Fermions and Bosons. Fermions are sub-
divided into three generations, each containing a group of two quarks, one lepton
and its associated neutrino. Fermions are the basis for everything tangible. Their
half numbered spin prohibits them to ever take the same quantum mechanical
state even without interaction through force carriers (Pauli principle).

Bosons are the propagators of the three forces: Strong, Electromagnetic and
Weak. Their associated particles are the Gluons, Photons and W and Z Bosons.
The gravitational force plays a special role. While it also is a kind of interaction,
its influence on the sub atomic scale is so small that it is negligible for particle
interactions.

Figure 1.1 shows an overview of the known elementary particles. The mass of
corresponding particles between two generations is increasing with each genera-
tion, with the heavier quarks reaching masses of up to 172GeV/c2.

While the standard model describes the sub atomic world in great detail and
verifiability, it is a model and not a theory, because it only describes how the
particles interact. It does not give any answers to why the particle’s properties
like mass, charge or flavour are the way they are or have the properties they have.

1.1 LHC

Due to the heuristic character of the standard model, it only describes processes
that have been observed before. It is the purpose of experimental machines like
the Large Hadron Collider (LHC) to expand the horizon of the standard model

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The standard model particles

and give access to new physical processes that are expected due to observations
made in nature.

LHC is a ring particle accelerator at the Conseil Européen de la Recherche
Nucléaire (CERN) at the Swiss-France border near Geneva. LHC is built under-
ground and is the successor of LEP, an electron positron collider.

Within its 27 km circumfering ring, two anti parallel proton beams are accel-
erated to energies of 7TeV each. The protons are brought to collision at four
interaction points. During collision, the protons released their energy as showers
of different particles described by the formula: E = m · c2. The high energies are
necessary to create large amounts of the more massive quarks and bosons.

Large particle detectors are built at each of the four interaction points to
investigate different aspects of these collisions.

• ATLAS and CMS are multipurpose detectors and are built to give access
to all of the available physical activities.

• LHCb is interested in rare B-meson decays to study CP violation and give
answers to the question about the ratio of matter and antimatter in the
universe.

• The ALICE experiment focuses on the detection of gluon plasmas in heavy
ion collisions. The LHC can be filled with lead and other ions instead of
protons for this experiment.

• TOTEM shares an interaction point with CMS and will measure the total
cross section as well as scattering and diffractive processes of proton-proton
interactions at low deflection angles.

1.2. LHCB 3

• LHCf will study the collision products at very small scattering angles. It is
ultimately trying to improve the models of showers originating from cosmic
particles colliding with the earth’s atmosphere. It shares an interaction
point with the ATLAS experiment.

1.2 LHCb

The main focus of the LHC beauty Experiment (LHCb) is to do precision mea-
surements of CP violating processes and rare decays in b-quark systems. [1]
The high energies of LHC give access to a full spectrum of b-quark particles.
The gluon fusion process responsible for the b-particle creation will eject them
predominantly in forward and backward direction, along the proton beams. To
take advantage of this process, the LHCb detector is designed as a single arm
spectrometer as seen in figure 1.2.

Figure 1.2: Side view of the LHCb detector

The detector is built from several sub components which all fulfil specific tasks.
The Vertex Locator (VELO) is used to determine the exact point of interaction
and any secondary decay vertices. It requires the best spatial resolution and is
built from silicon strip detectors.

Particles and their energies are identified by the Ring Imaging CHerenkov
(RICH) system, Electromagnetic and Hadronic Calorimeters (ECAL and HCAL)
and the Muon System.

A magnet is used to deflect the trajectory of charged particles and to de-
termine their momentum with the help of the tracking system. The tracking

4 CHAPTER 1. INTRODUCTION

system consists of four sub systems. The VELO and the Trigger Tracker (TT),
which are located near the interaction point and provide a first track segment
before the magnet. The Inner and Outer Trackers (IT and OT) are positioned
behind the magnet and are used to reconstruct the deflected track, performing
the momentum measurement.

1.3 LHCb Outer Tracker

The LHCb Outer Tracker is a detector built from drift chambers. The cham-
bers are made of so called straws that are 2.5m long and have a diameter of
5mm. Each straw contains a 25µm conducting wire, which is clamped inside the
straws and kept at a potential of 1550V. The straws themselves are coated with
conducting material on the inside to provide an anti pole for the wire.

If a charged particle passes through a straw, it will ionise the atoms of a special
counting gas1 inside the straw. The electrons produced during the ionisation
process will start to drift towards the wire in the middle of the straw. The
primary electrons will be accelerated towards the wire by the electric field. The
strong electric field around the wire will cause them to produce an avalanche of
secondary electrons.

The charge deposited on the wire produces an electrical signal which is ampli-
fied, shaped and discriminated. The time between the hit of the ionising particle
and the signal on the wire is proportional to the distance between hit and wire.
This allows for spatial resolutions of up to 200µm.

The Outer Tracker contains approximately 55.000 of these straws. They are
incorporated into so called modules. Each module is five meters long, 34 cm wide
and contains 128 straws. The straws are divided in the middle and can be read
out individually on both ends. This separation is done to lower the hit occupancy
for each straw.

The modules are combined to six by five meter wide layers. Four layers are
grouped into one tracking station. The modules in one station are arranged in a
way that puts the wires inside the front and back layers in a vertical position and
the wires inside the two middle layers ±5 ◦ tilted to the vertical position. This
geometry allows for best resolution along the bending axis of the magnet but also
medium resolution perpendicular to it. The vertical layers are called X-layers,
while the tilted layers are U- and V-layers.

The modules are supported by C-Frames. The frames are made from alu-
minium and house the necessary power and electronics infrastructure for the
modules. Two adjacent frames leave a hole around the beam pipe and carry two
of the aforementioned layers of modules on their front and back side respectively.

To allow a unique addressing of modules inside the detector, each layer is
subdivided into four quadrants which contain, the upper or lower half of one

1The proposed gas is ArCO2

1.3. LHCB OUTER TRACKER 5

layer on a C-Frame. This subdivision is illustrated in figure 1.3.

Figure 1.3: Outer Tracker detector layout. The detector is sub-
divided into three stations containing four layers each. The layers
themselves are subdivided into quadrants, dividing the modules at
the point where the straws inside the modules are subdivided.

Figure 1.4: A C-Frame on its way to the detector. It is the first
C-Frame, fully equipped with Front-end Boxes.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Readout and Control electronics

Since the readout and control components of LHCb, especially of the Outer
Tracker, are playing an integral part in this thesis, a short overview over the
control and Data Acquisition (DAQ) systems shall be given here.

2.1 LHCb DAQ and Slow Control System

2.1.1 Data Acquisition and Fast Control

The proton beams within the LHC ring are not continuous but are grouped in
packets or bunches. At the interaction point, these bunches will collide at a
constant rate of 40MHz. Multiplying this rate with the total number of data
channels from all sub detectors and one byte per channel yields a data rate of
approximately 40TB/s. A filtering scheme has to be used to reduce this rate into
the range where the data stream can be saved to hard drives. This filter network
is depicted in figure 2.1.

The idea is to do a coarse analysis of the data at high rates and trigger the
readout of an event only if it is interesting. This trigger decision is done on two
levels of the readout chain.

The highest instance of these triggers (L0) are distributed by the so called
Timing and Fast Control (TFC) system. It also supplies all front-end electronics
with the 40MHz clock signal that is synchronous to the collision frequency of the
beam.

The main component of this system is the Readout Supervisor (ODIN) [19].
It takes the L0 decisions from the trigger logic and broadcasts it to the front-end
electronics via an optical fibre network.

Each front-end component is equipped with a small buffer to store the data
for 4µs until the L0 decision arrives.

If an event is accepted by the L0 trigger, it is forwarded to the Trigger ELec-
tronics and Level 1 (TELL1) [3] boards via optical data fibres. Originally, a
second trigger was foreseen at this level to reduce the 1.1MHz event rate of the

7

8 CHAPTER 2. READOUT AND CONTROL ELECTRONICS

Figure 2.1: The LHCb event readout chain.

triggered L0 data stream to 40 kHz. With the arrival of faster networking tech-
nology, this level was made obsolete. The TELL1 is now primarily used to receive
the optical data stream from the front-ends and to combine it to network packets
that are sent to the readout farm.

The event is forwarded to a high speed computer network and processed by
higher level triggers that are completely implemented in software. These high
level triggers will decide if an event contains one of the interesting B-decays and
will save the data to hard drives.

At this point the data rate will have been reduced from 40TB/s to a more
manageable level of 34MB/s.

2.1.2 Slow Control system

While the Fast Control (TFC) system controls the trigger process and keeps the
front-end electronics in sync with the LHC beam by providing an electronic clock
signal that is synchronous to the bunches in the beam, the Slow Control has to
manage the operating parameters of the front-end electronics.

Slow Control requirements

To allow for different operating modes and compensation of production variances
of the detector components, each front-end component can be adjusted with
individual parameters. These parameters are often only configured during start
up of the devices and don’t have to be touched afterwards.

2.2. OUTER TRACKER READOUT AND SLOW CONTROL 9

At the same time, each component will also offer status information and
counter variables that are essential for the correct operation of the devices, but
don’t have to be read at the full 40MHz of the detector.

The Slow Control system will do all these tasks and provide an interface for
the control of the experiment and its sub systems to the human operator(s).

Slow Control hierarchy

The LHCb slow control or Experiment Control System (ECS) is implemented as
a linear hierarchy structure. The top entity in this hierarchy has complete control
over all sub detectors. The sub detectors will report their status to this entity
and receive commands from it.

Each sub detector has its own sub systems that report to and receive com-
mands form their respective sub detector control entities on the second level.
This hierarchy is continued until the device level is reached with the leaves of the
hierarchy tree.

The flow of commands in the hierarchy is from top to bottom, while the flow
of process information from the hardware is from bottom to top.

LHCb appoints the upper levels of this hierarchy. Each of the sub detectors is
responsible for the creation of their respective control hierarchies and has control
over shape and partitioning of their hierarchies as long as certain guidelines are
adhered to.

2.2 Outer Tracker readout and Slow Control

The Outer Tracker readout and control system can be grouped into functional
units that build the structure of the entire sub detector. Figure 2.2 shows an
image of these units. Two times nine Front-end Boxes are connected to one
Distribution Box [4] and two TELL1 boards.

The Distribution Box converts the optical signal of the TFC system into elec-
trical signals and forwards them to the readout electronics. It is also responsible
for the distribution of the Slow Control. The connection between Distribution
Box and front-end electronics is established by SCSI cables. Each C-Frame con-
tains two Distribution Boxes. They control the upper and lower rows of Front-end
Boxes on the frame respectively.

The TELL1 board receives the L0 event data as optical signal and converts
it back into electrical signals.

2.2.1 Outer Tracker DAQ components

The readout or L0 electronics are realised as so called Front-end Boxes that
are mounted onto both ends of a wire chamber module. Amplifier Shaper Dis-
criminator with Baseline Restoration (ASDBLR) boards are used to amplify and

10 CHAPTER 2. READOUT AND CONTROL ELECTRONICS

Figure 2.2: Outer Tracker readout and control unit
Blue connections denote optical connections, black are electrical.

discriminate the wire signals before the drift time measurement is performed.
The ASDBLR measures the voltage across a capacitor that is charged by the
electrons deposited on the wire for this. If the voltage rises higher than a config-
urable threshold value, the ASDBLR will notify the OTIS chip.

The Outer-Tracker Time Information System (OTIS) Time to Digital Converter
(TDC) chip compares the time the ASDBLR signal arrives at with the clock sig-
nal from the TFC system, which is synchronous to the proton collisions. The chip
calculates the electron drift time from this information and outputs it as digital
signal. The OTIS subdivides the 25 ns clock signal into 64 time bins and has an
absolute drift time resolution of under 390 ps1.

The digitised drift time information of four OTIS boards is combined by a
Giga bit Optical Link (GOL) [6] chip and sent to the off-detector TELL1 board
via optical fibres. The GOL chip is mounted to the GOL/AUX board. This board
was designed and produced at the University of Heidelberg [7]. It combines the
drift time signals from the four OTIS boards and provides the Slow and Fast
Control distribution for all chips inside the Front-end Box.

An overview of all front-end components is shown in figure 2.3 and 2.4.
Eight preamplifier, four OTIS and one GOL board are connected together

and assembled to one Front-end Box. Each box can process the data of 128 straw
tubes.

1The LHCb specification requires this measurement to have a resolution of at least 1 ns

2.2. OUTER TRACKER READOUT AND SLOW CONTROL 11

Figure 2.3: Outer Tracker readout chain components

12 CHAPTER 2. READOUT AND CONTROL ELECTRONICS

Figure 2.4: Fully equipped Outer Tracker Front-end Box contain-
ing ASDBLR, TDC and GOL/AUX boards.

Since the boxes are directly connected to the detector, they are within the
radiation zone and all components have to be radiation tolerant. This is achieved
by utilising the 0.25µm process for the chips and redundant logic circuits that
control each other.

2.2.2 Outer Tracker Slow Control distribution

The distribution of the Outer Tracker Slow Control is done in parallel with the
Fast Control. To protect the computers hosting the Control Systems from radia-
tion, they are set up behind a radiation shield besides the detector. Fast and Slow
control are transported to the detector as optical respectively electrical signals
and have to bridge a total distance of approximately 70m.

After the control signals, coming from the ECS, reach the Distribution Box,
they are translated into an OT specific hardware communications protocol.

From the Distribution Box the signals are sent directly to the Front-end Boxes
by the same SCSI cables that are also transporting the TFC signals. Inside the
Front-end Boxes, the Slow Control is distributed further to the four OTIS chips
and the GOL chip.

As shown in figure 2.2 each Distribution Box within one control unit is con-
nected to 18 Front-end Boxes. The 18 boxes are again subdivided into two inde-
pendent domains which are responsible for the control of one quadrant.

2.2. OUTER TRACKER READOUT AND SLOW CONTROL 13

The Distribution Box itself also has components that have to be monitored
and adjusted. It is also connected to the Slow Control system. It is however not
part of the Front-end Box control domains but has it’s own.

14 CHAPTER 2. READOUT AND CONTROL ELECTRONICS

Chapter 3

Test setup for the mass
production test of the OT
readout electronics

The GOL/AUX board was developed and built by the Institute for Physics at
the University of Heidelberg. It connects the four OTIS boards to the GOL chip
and distributes Slow and Fast Control inside the Front-end Box.

Each board had to be tested after assembly. A setup was built to perform
these tests. At the same time, a copy of this test setup is used for the test of the
OTIS boards at NIKHEF in Amsterdam.

It was decided to enhance an existing test setup which was used for the mass
production test of the OTIS chip and already contained DAQ and TFC emulation
capabilities. [8][9].

3.1 Setup for the GOL/AUX board test

Figure 3.1 shows a schematic of the setup that had to be developed. It consists
of a Windows PC, four reference OTIS boards and the GOL/AUX board which
has to be tested. Inside the PC is an Altera Stratix-EP1S25 Field Programmable
Gate Array (FPGA) which is mounted on a PCI card. The FPGA is used as the
DAQ, Fast and Slow Control for the connected front-end boards.

The test had to verify the following functionalities of the GOL/AUX board:

• slow control distribution

• fast control distribution

• reset distribution

• power distribution and regulation

15

16 CHAPTER 3. MASS PRODUCTION TEST

Figure 3.1: GOL/AUX board test setup schematic

• functionality of the GOL serialser

• quality of the optical signal transmission.

At the same time, the test had to be user friendly because it was planned
to employ student assistants to perform it. It also had to be portable since a
duplicate of it had to be sent to Amsterdam for the OTIS board test.

As mentioned earlier, a similar setup already existed. The old setup used a
second PC as Slow Control interface while the TFC and DAQ were already imple-
mented on the FPGA. This made the setup complicated and hard to transport.

It was the purpose of this part of the project to integrate the slow control into
the FPGA firmware to allow better portability and automation of the test.

3.2 Slow control for the front-end electronics

3.2.1 Specifications for the test

The Slow Control for the OT electronics uses an I2C bus as it’s inter chip com-
munication medium. The front-end chips are grouped into several I2C control
domains. Each domain contains nine Front-end Boxes connected to two indepen-
dant Distribution I2C buses. Each chip has a unique I2C address inside these
domains which identifies its position within the domain and on the detector.

For the mass production test, the slow control had to be able to access and
modify all configuration registers of the following two chips:

OTIS Chip: This chip occupies only a single I2C address. The chip has 56
registers that contain one byte of configuration data each. In order to
address these registers the OTIS chip uses an internal register pointer that
determines which register is currently visible to the I2C bus.

3.3. IMPLEMENTATION OF THE I2C SYSTEM 17

After each read or write request, the register pointer is incremented by one.
This mechanism allows to program or read multiple consecutive registers
during one I2C access.

GOL Chip: The GOL chip has 5 configuration registers which are also selected
by a register pointer. Contrary to the OTIS Chip it occupies two consec-
utive I2C addresses. The lower of the two addresses is used exclusively to
change the register pointer, while the upper address represents the selected
configuration register.

The chip features no automatic incrementation of the register pointer, hence
every register has to be selected previously to accessing it.

3.2.2 Differential I2C connection

To get the I2C signal from the Distribution Box to the Front-end Boxes it has to
travel approximately six meters of cable. I2C was originally not designed for long
range transmission but rather interconnecting devices on a single printed circuit
board.

Another problem that had to be considered are grounding potential differences
and ground loops occurring between two electronic components at these distances.

The solution was to use Low Voltage Differential Signals LVDS as means of
transmission between Distribution Box and front-ends. A differential signal will
also cause less noise and signal power loss during transmission.

The test setup had to support this modified I2C version.

3.3 Implementation of the I2C system

Migrating the Slow Control to the FPGA firmware of the test setup was now a
matter of creating a PCI to differential I2C interface FPGA program and creating
a software for the test PC that would be able to access this interface.

3.3.1 I2C standard

The Inter-Integrated Circuits (I2C) bus is a serial data bus developed by Philips
Semiconductors during the 1980s [10]. Communication on this bus is achieved
by two bidirectional signal wires. The SDA line is used for the transmission of
data while the SCL line is as data clock for the receiving party. The bus is made
bidirectional by utilising an open drain circuit design. This architecture allows
for multiple outputs to be connected to the same wire.

The communication protocol is based on the master-slave paradigm, where
the master is the device that is currently in control of the clock line. Slaves are
all other devices that are not in control of the clock line. Each device is allowed
to act as master as well as slave. There can also be multiple devices on one bus

18 CHAPTER 3. MASS PRODUCTION TEST

trying to become a master. Care has to be taken that only one device is in control
of the bus at any time.

Arbitration logic is used to resolve collisions between two devices that are
trying to become the master. If a device tries to put the SDA line into a logic
high state and the line stays low, it knows that there is another device trying to
send. It will then wait until the current transfer is completed before making a
new attempt.

The advantage of this logic is that no data distortion takes place if a collision
occurs. As long as both devices are sending identical bits the data stays coherent.
If the data bits differ, the device whose (1) bit was overwritten by a (0) will
recognise this and retreat from the bus immediately. The data of the winner
stays intact.

Selection of a particular device on the bus is done via a seven bit address
pattern which has to be transmitted at the beginning of each read or write cycle.
To distinguish between read and write cycles, an eighth bit is appended to the
seven bit address.

Data can be transferred as an arbitrarily long stream of eight bit blocks during
one cycle. Each eight bit block has to be acknowledged by a ninth bit sent by
the receiving device.

The I2C protocol defines a number of states which the I2C bus can be in:

• Idle: Serial Data (SDA) and Serial Clock Line (SCL) are at logic high.

• Write: The current master is writing data to one or more slaves.

• Read: The current master is reading from one slave.

Transition between these states are actuated by the master by invoking certain
conditions:

• Start Condition: Marks the transition from Idle to Read or Write state.
The Read or Write states are selected by the eighth bit during target I2C
address selection. The target I2C address has to be written to the bus,
before any further reading or writing can be done.

• Repeated Start Condition: This condition takes the I2C bus from Read to
Write state or vice versa. It can also switch from Read to Read or Write to
Write state but for different I2C addresses. Again, the target I2C address
has to be written to the bus before any further read or write operation can
take place.

• Stop Condition: The master releases the I2C bus.

3.3. IMPLEMENTATION OF THE I2C SYSTEM 19

3.3.2 Special considerations toward differential I2C

The differential I2C method used for the front-end electronics needs some special
considerations. LVDS drivers and receivers only allow unidirectional signal lines.
The bidirectional I2C lines had to be split up into unidirectional lines before they
are fed to the LVDS drivers for transmission.

Since the OT front-end chips are all designed as I2C slaves while the only I2C
master per bus is located inside the Distribution Box, the SCL signal is only sent
into one direction and does not have to be separated. However, data needs to be
transmitted in both directions and needs special treatment.

Figure 3.2 shows a schematic of the required modifications. The split SDA line
can be connected together at the slave side after LVDS receival. On the master
side, the lines have to stay separated to avoid deadlocks by signal feedback from
the slave side.

This separation of the SDA line requires a modified kind of I2C master with
separated I/O ports.

Figure 3.2: Differential I2C distribution scheme for the final ex-
periment setup. The I2C signals for the front-ends are transmitted
as LVDS signals through six meters of SCSI cables. Each I2C mas-
ter controls nine Front-end Boxes

3.3.3 I2C interface design

Figure 3.3 shows a schematic of the old FPGA program. The sub systems like
TFC and DAQ were connected to a command bus that broadcasts 32 bit wide
data words from the PCI bus.

Data from the sub systems is transported to the PCI bus via independent
64 bit wide data buses.

The I2C interface had to be integrated into this structure and receive it’s data
via the 32 bit commands from the PCI bus and forward the received I2C data as
64 bit words to the PCI bus.

Figure 3.4 shows a block diagram of the created I2C interface. The interface
is subdivided into three functional blocks.

20 CHAPTER 3. MASS PRODUCTION TEST

Figure 3.3: FPGA sub system communications infrastructure.

The Input Control block receives the 32 bit commands from the PCI bus and
extracts the target I2C address from the command. It assigns a unique Ticket
ID to each I2C access and prepares the received 32 bit commands for execution
by the I2C Control block. It also keeps track of the register numbers that are
accessed and stores them in a FIFO buffer.

The I2C Control block processes the prepared I2C statements from the Input
Control and passes them to an open source I2C-Master core that handles the
actual I2C I/O1 operations. The output of the core is analysed for any errors
which are immediately reported back to the PCI interface. If a read command
was sent, the received I2C data is sent to the Output Control.

The Output Control block merges the received I2C data with the Ticket ID,
I2C address and register number information memorised and provided by the
Input Control. These additional information bits are put into the output data to
allow exact identification of the origin of a specific I2C datum. The data is then
parallelised and stored inside a 64 bit wide Output FIFO until the PCI interpreter
is ready to pick up the data.

1Input/Output

3.3. IMPLEMENTATION OF THE I2C SYSTEM 21

Figure 3.4: I2C Interface Overview. I2C data enters the interface
as 32 bit command. The command is translated into I2C-Master
Core commands within the Input Control block. The core commands
are stored inside the Input FIFO until the command is ready for ex-
ecution. Execution is supervised by the I2C Control block. Received
data is merged with their ticket, register and I2C address identifiers
and stored inside the Output FIFO until they are collected by the
PCI Interpreter

22 CHAPTER 3. MASS PRODUCTION TEST

3.3.4 I2C-Master Core

The I2C-Master [11] core is an open source package developed for a library of
open source FPGA programs. All packages in this library use the Wishbone
[12] interface as their interconnect architecture. A major decision factor for us-
ing this core was that it supported the necessary splitting of the SDA channel.

Figure 3.5: I2C-Master Core
component.

The I2C-Master core translates 8 bit paral-
lel data words into serialised I2C data and
handles all the I2C protocol specific tasks.
Figure 3.5 shows an image of the compo-
nent’s interface. It is controlled by five in-
ternal registers (Table 3.1), that can be ac-
cesses by a single I/O port pair (wb dat i
and wb dat o). A specific register can be
selected by a third port (wb addr i).

I2C transfers are performed by first
writing a control command to the Com-
mand register. After that, the data to be
transmitted can be written to the Trans-
mit register. If the command was a read
request, the received data can be read from
the Receive Register.

Each received or transmitted 8 bit word
has to be accompanied by a core command.
Since the exact execution time of a partic-
ular command can not be determined, an
interrupt port (wb inta o) signals the com-
pletion of a command.

Name wb addr i purpose
PRERlo 0x00 Clock Scale low word
PRERhi 0x01 clock Scale high word
CTR 0x02 Activate/Deactivate Core
TXR/RXR 0x03 Transmit/Receive Register
CR/SR 0x04 Command/Status Register

Table 3.1: I2C Master Core registers [11]. The mode of the last
two registers depends on read or write access

3.3.5 Input Control

The first element in the communications chain from PCI Interpreter to I2C bus
is the Input Control subsystem. It is responsible for receiving data from the

3.3. IMPLEMENTATION OF THE I2C SYSTEM 23

command infrastructure of the superior FPGA program.
This infrastructure was originally not designed to handle the transfer of large

amounts of data. The infrastructure delivers data only in discrete 32 bit wide
words and does not provide data streams. A data format had to be devised to
allow I2C write cycles that consist of more than the 32 bits for a single command.

The data format subdivides the 32 bit commands into 3 sections. The four
Most Significant Bit (MSB) of the command are the magic pattern of the I2C
interface. This pattern can be configured externally and the interface will only
respond to commands containing this pattern. The next four bits identify one of
seven possible sub commands:

1. Read: reads up to 125 bytes of data from a specific I2C address and register

2. Write: writes one byte to a specific I2C address and register

3. Write Array: writes up to 125 bytes to a specific I2C address and register

4. Prescale: sets the clock ratio between the FPGA program and I2C SCL

5. Raw: allows direct control of the I2C-Master core

6. Enables/Disables the output of I2C data compatible to the LVDS transmis-
sion method

7. Enables/Disables an I2C compliant tri-state output

The rest of the 32 bit command contains the arguments to these sub commands.
Each sub command has its own state machine that processes the sub command

and its parameters. The output of these machines are 8 bit command/data pairs
that are understood by the I2C-Master core and are collected inside a 16 bit wide
and 128 bit deep FIFO buffer until they are ready for execution.

For read cycles the Input Control extracts the target I2C address from the
incoming commands. It stores the address together with a ticket number and the
list of register numbers that are going to be read from the target I2C address. The
ticket number is generated by a counter that is incremented for each I2C transfer.
This procedure is used to supply each received I2C byte with exact information
about its source.

3.3.6 I2C Control Block

This block controls the data flow between Input and Output control and the I2C-
Master Core. As soon as the Input Control has finished processing the current
command sequence, the state machine within this block starts processing the
accumulated core commands. Figure 3.7 shows a flowchart diagram of this state
machine.

24 CHAPTER 3. MASS PRODUCTION TEST

Figure 3.6: Raw and Write Array command structures.

After a core command and its data byte has been fetched from the Input
FIFO it is inspected if it is a read or write command. It is then forwarded to
the I2C-Master. The machine waits for the interrupt signal from the master and
verifies that the request was successful. If an error was encountered, the error
status is written to the status register and the process is aborted. If the core
command contained a read request, the received data is forwarded to the output
control. As long as there are more entries available from the Input FIFO, the I2C
Control block inhibits the acceptance of new commands to the input control.

3.3.7 Output Control

This sub program receives the I2C data from the Control Block. It processes and
buffers it until it is ready for pick up by the PCI Interpreter. The transmission
to the interpreter has to be done in 64 bit wide data words. It was decided to
embed each received I2C data byte into a 32 bit word, which contains additional
information about its origin. This was done because it could not be assured, that
data sent to the PCI Interpreter would appear in PCI memory in the same order.
Two of these 32 bit blocks are combined into a 64 bit word. If there is an uneven
amount of received I2C bytes, only bits [31:0] of the last 64 bit word are used.

The I2C Address, Ticket and Register number that is stored as additional
information within the 32 bit structure are supplied by the Input Control. The
Input Control collects and calculates these from the commands it receives and
stores them until the current I2C transfer is completed. Address and Ticket

3.3. IMPLEMENTATION OF THE I2C SYSTEM 25

Figure 3.7: I2C Control flowchart

Figure 3.8: Output Control data format. Each I2C byte is tagged
with its source I2C address and register number together with a
serial number to identify the transfer it belongs to.

number are stored in two registers, while the Register numbers are stored inside
the Register Pointer FIFO. A state machine merges the I2C bytes with their I2C
Address, Ticket and Register number and forwards them to the paralleliser.

After a successful transfer, the Output Control sends an interrupt to the PCI
Interpreter, signalling that new data is ready for pick up.

26 CHAPTER 3. MASS PRODUCTION TEST

3.3.8 Implementation tools

The design of the FPGA program was done with the Integrated Development
Environment (IDE) HDL-Designer 2005.1 of Mentor Graphics. The core of this
IDE is a program2, which allows the creation of virtual circuit diagrams in an
object modelling environment. An FPGA program is developed by placing and
connecting logic elements on the diagram. Figure 3.9 shows the virtual circuit of
the I2C interface within the object modelling environment.

After the circuit is completed, the program is translated it into VHDL code.
It can then be sent to a second program 3 within the IDE for simulation purposes.
During simulation, the states of all logic elements are calculated for incremental
time intervals. External signals can be applied to the inputs of the virtual circuit.
The resulting states at each node in the circuit will be calculated and can be
monitored.

After the circuit shows the expected behaviour, the VHDL code is compiled
into a form that is optimised for the FPGA (Stratix-EP1S25) by an external
application4 and uploaded to the chip.

2FPGA-Advantage TM

3ModelSim SE 6.0d TM

4Quartus 5.0 TM

3.3. IMPLEMENTATION OF THE I2C SYSTEM 27

Figure 3.9: Top level of the I2C Interface virtual circuit diagram.
The program is subdivided into logical block elements that are inter-
connected with signal lines, carrying information between the blocks.

28 CHAPTER 3. MASS PRODUCTION TEST

3.3.9 Simulation and test

Simulation plays an important role during development of FPGA software. Fig-
ure 3.11 and 3.10 shows a comparison between a simulation and an oscilloscope
recording of the simulated transfer. The example chosen is a transfer of three
data words to the I2C address 0x5C. The simulation and the measurement are in
perfect agreement.

Figure 3.10: Oscilloscope recording of the Write Array example
from figure 3.11. The small pauses between the individual write
requests are not visible here, because the simulation was done at a
higher SCL speed. The upper part shows the clock signal generated
by the master. The lower shows the data signal.

3.3. IMPLEMENTATION OF THE I2C SYSTEM 29

F
ig

u
re

3
.1

1
:

S
im

u
la

ti
on

of
a

W
ri

te
A

rr
ay

C
om

m
an

d
to

an
O

T
IS

C
hi

p.
T
he

u
pp

er
pa

rt
sh

ow
s
th

e
tr
an

sa
ct

io
n

fr
om

th
e

P
C
I-

co
m

m
an

d
bu

s
to

th
e

I2
C

in
te

rf
ac

e.
E
ac

h
co

m
m

an
d

re
ce

iv
ed

is
tr
an

sl
at

ed
in

to
I2

C
co

re
co

m
m

an
ds

an
d

ad
de

d
to

th
e

in
pu

t
F
IF

O
.

T
he

lo
w
er

pa
rt

sh
ow

s
th

e
I2

C
bi

t
st

re
am

cr
ea

te
d

by
th

e
m

as
te

r
co

re
.

A
ft
er

th
e

ta
rg

et
ad

dr
es

s
an

d
th

e
re

gi
st

er
po

in
te

r
ar

e
se

t,
th

re
e

da
ta

w
or

ds
ar

e
tr
an

sm
it
te

d.
E
ac

h
8

bi
t

w
or

d
se

n
t

by
th

e
m

as
te

r
is

ac
-

kn
ow

le
dg

ed
by

th
e

sl
av

e
w
it
h

an
ac

kn
ow

le
dg

e
bi

t.

30 CHAPTER 3. MASS PRODUCTION TEST

3.3.10 Interface software

To access the FPGA-I2C interface with the test software, the old FPGA driver
had to be enhanced with an I2C interface module.

The driver was implemented in C++ and consists of a general I2C interface
class. A GOL and OTIS class was added to hide the I2C implementation and
allow access to the registers of the chips without any knowledge about I2C. Figure
3.12 shows an UML diagram of the classes and their relation.

Figure 3.12: UML Diagram of the I2C C++ Class library. The
FPGAInterface class has more methods which have been skipped
here for clarity. The fpgaMemorySort class is a helper class that
allows sorting of the 32 bit data structure shown in figure 3.8 by
register pointer number.

The I2CInterface class connects to the FPGA through the already available
FPGAInterface class. It writes and reads data to and from the FPGA by invoking
the sendCommand() and getRegValue() methods.

The I2CInterface decomposes I2C read and write requests into 32 bit com-
mands and sends them to the I2C interface on the FPGA. Received data is
sorted by I2C register addresses and filtered by ticket number and requested I2C
address.

3.4 GOL/AUX test using the I2C interface

The GOL/AUX board test was performed during the fall of 2006. It helped
identify several boards with manufacturing errors. 87% boards passed the test so
far and another 8% are expected to pass after minor fixes.

It took three months to test 466 boards. The test of one board took approxi-
mately 15 minutes.

Figure 3.13 shows a screen shot of the program’s Graphical User Interface
(GUI). The program performed all necessary tests with minimal user interaction.

3.5. DETERMINING THE INFLUENCE OF I2C TRAFFIC 31

Figure 3.13: User interface of the GOL/AUX test program

3.5 Determining the influence of I2C traffic

The question arose if the process of reading the I2C-registers of the OTIS chips
would cause an unacceptable amount of noise. As a consequence, crosstalk be-
tween the I2C bus and the OTIS chip could lead to an increase in occupancy.

There are two possibilities of how I2C crosstalk noise can enter the drift time
measurement system.

1. The drift chambers can pick up the I2C signal from the service cables run-
ning from the Distribution Box to the Front-end Boxes.

2. The I2C signal is picked up directly by the electronics components in the
Front-end Box from the signal traces on the boards or from the inside of
the components themselves.

The first mechanism is very unlikely. The interference would not only have
to overcome the shielding of the SCSI cables and the shielding created by the
grounded aluminium C-Frames, in which the cables are held. The signal is also
sent as differential signal through twisted pair cables, which already reduces stray
radiation by a large amount.

The second scenario is more likely and a test was performed to measure the
actual noise contribution of I2C accesses to the Front-end Boxes during data
acquisition. The setup for this test consisted of:

• 6 Front-end Boxes

• 1 Distribution Box

• 1 TELL1-Board

32 CHAPTER 3. MASS PRODUCTION TEST

Figure 3.14: The lab setup in Dortmund consisting of two pro-
totype Front-end Boxes, four final boxes and one Distribution Box.
Only the four final boxes were taken into consideration for the noise
scan. The prototypes were only used as additional load for the PVSS
control system test

• 1 ODIN-Board

The Front-end Boxes were controlled, using the PVSS system introduced in chap-
ter 4. A similar program was used as control for the ODIN Readout Supervisor
[2] which was provided by the LHCb online group. Data acquisition was done on
a Linux farm node PC.

This was also the first setup containing all the final hardware components of
the Outer Tracker readout and control chain.

Figure 3.14 shows a picture of the laboratory setup in Dortmund which was
used for this test. There were no wire chambers connected to the boxes. In fact,
connecting chambers to the boxes might have increased the noise unrealistically
because the control cables were not shielded by a C-Frame.

The test was performed by repeating the following steps for different ASDBLR
threshold voltages between 500 and 900mV in 50mV intervals:

1. All ASDBLR boards are programmed with a common threshold value.

3.5. DETERMINING THE INFLUENCE OF I2C TRAFFIC 33

2. 10.000 random events are recorded for the threshold value set in step 1.

3. The number of “hits” for each OTIS chip is determined.

The test was performed twice; once with I2C access to the chips and once
without.

Since the Slow Control system only allows a minimal polling interval of 1
second, it had to be modified to run in an endless loop. This modification made
it possible to read from all subscribed devices in a continuous mode without any
pauses between the I2C accesses.

The I2C speed was set to 128 kbit/s. The random trigger rate was approxi-
mately 110Hz.

The results for the four Front-end Boxes can be seen in figure 3.15. In this
plot the number of hits on all 32 channels of the four OTIS-Chips were summed
up and plotted against the programmed threshold voltage.

While there is a clear difference visible at lower voltages, it is diminishing at
higher levels and vanishes completely at the foreseen working point of 750mV.
The increase in occupancy at lower thresholds is approximately a factor of four.

For the final experiment the Front-end Boxes will be polled in intervals of min-
utes rather than milliseconds. This will greatly reduce the observed I2C crosstalk
effect.

In conclusion, I2C accesses can crosstalk to the drift time measurement system,
but the effect is completely gone at the foreseen working point.

34 CHAPTER 3. MASS PRODUCTION TEST

Figure 3.15: Comparison of the noise levels of the four Front-end
Boxes with and without I2C.
Blue: with I2C access
Green: without I2C

Chapter 4

First implementation of a Slow
Control system for the LHCb
Outer Tracker

The hardware and systems for each of the LHC experiments are highly specialised
and individual. It was decided to allow each experiment, and subsequently their
sub-projects, to design their own control systems. It was decided to use a com-
mercial Supervisory Control and Data Acquisition (SCADA) product for the
development of these systems. CERN performed a survey of available products
and selected PVSS as a common base for all experiments. A general introduction
to PVSS and its philosophy is given in appendix A.

In addition, certain guidelines and tools have been developed by CERN and
LHCb to ensure interoperability between these individual developments.

4.0.1 JCOP framework

The Joint COntrols Project (JCOP) framework is the main set of rules which
all developers of sub detector control systems have to regard. It also provides a
collection of standardised PVSS panels and programs that can be used to solve
common implementation problems. After all sub systems are integrated into
the framework, it will form the control hierarchy of the experiment. [17] The
hierarchy is designed as a tree structure. The root of the tree is the highest level
control instance while the leaves are the devices that are being controlled. A
cut-out of the LHCb tree can be seen in figure 4.1.

4.0.2 Finite State Machine tool

The Finite State Machine is a tool within the JCOP framework that is used to
model and operate this tree. The upper part of a hierarchy is defined by JCOP.
The sub detectors are responsible for implementing the leaves of this super tree.

35

36 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

Figure 4.1: The LHCb state machine hierarchy. The green nodes
are defined by JCOP. Each detector is responsible to build its own
hierarchy at the leaves of this hierarchy.

The nodes within the tree are FSM objects. There are three kinds of objects:

Device Units (DU): Device Units are the leaves of the tree and each Device
Unit is associated with a device or a group of devices that are combined to
a logical device.

Logical Units (LU): Logical Units are nodes within the tree that are used to
group Device Units or other Logical Units into logical groups.

Control Units (CU): If a Device Unit or Logical Unit and its sub tree can be
separated from the main hierarchy and controlled on its own it is called a
Control Unit.

Each FSM object is a small state machine with configurable states. The states
are calculated from the states of either the children, if it is a Logical Unit, or the
associated device, if it is a Device Unit. If a state transition takes place in one of
the nodes, the transition is reported to the parent node which will recalculate its
state depending on the new child state.

The FSM states are defined rather coarse. A device is merely described in
terms of working, not working or error states rather than a detailed analysis of
what it is exactly doing. This simplification is done because the detector operators
won’t be detector experts and only need to know if something is working or not.
It is the duty of a detector expert to find and fix errors that can not be resolved
by the state machines logic.

The JCOP framework defines a number of standard states for the higher levels
of the detector hierarchy. They are shown in figure 4.2. The sub detectors are

37

responsible to translate the states of their own trees to the standard states at the
transition node from sub detector to the superior hierarchy. The translation is
done within a Logical Unit.

Figure 4.2: Standard FSM states

FSM objects also have to accept commands which can be processed by the
node and are, by default, also passed on to their children. Commands are kept
simple too and are only used to signal starts, stops or configuration requests. It
is the duty of the FSM nodes of the sub detectors to know what to do if they
receive a start, stop, etc. command.

JCOP defines a number of standard commands that all sub detector hierar-
chies have to be able to understand. They initiate the transitions between states
seen in figure 4.2. If a transition really occurs depends on the outcome of the
command forwarded to the child nodes and ultimately by the response of the
hardware to that command.

All FSM objects are described by a special programming language and are
running in an interpreter program outside of PVSS. A state machine manager is
used to connect PVSS to the FSM program. The FSM objects are exported as
virtual devices to PVSS, which acts as the control system for these objects.

4.0.3 Distributed Information Management System

Distributed Information Management System (DIM) is a an inter process messag-
ing protocol. It is used as the primary interface between PVSS and the drivers for
the detector hardware. It can be regarded as the communications link between
the data servers and the hardware drivers in the generic SCADA model. It is also
used as the interface between PVSS, the FSM and other software programs.

DIM, like most communications systems, is based on the client/server paradigm
[18]. A DIM server offers named data services, which can be accessed via TCP/IP.
A DIM Name Server (DNS) is used to administer the names and server addresses
of these services.

A DIM client can access the name server and browse the list of available
services. It can subscribe to services on a server and will be notified by the server

38 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

when the service is updated with new values. A client can also send messages
(commands) to motivate the server to perform some action.

Figure 4.3 shows how servers, clients and name server interact.

Figure 4.3: DIM messaging design.

The DIM protocol is available for C, C++ and other programming languages
and has been used to implement communication between PVSS and the commis-
sioning tools for the Mini DAQ system introduced in chapter 5.

A DIM-PVSS manager allows the direct mapping of DIM services to PVSS
data points. If a DIM service is updated, the corresponding PVSS Data Point
will be updated. If the Data Point is changed by PVSS, it will be forwarded to
the DIM server as DIM command.

4.0.4 Configuration Database (Config DB)

The Configuration Database is a relational database within the JCOP framework
tool used for the configuration of hardware and software devices. It is supposed to
save static as well as dynamic configuration data. Static data contains everything
that is necessary to rebuild the FSM hardware tree and to map PVSS Data Points
to their respective devices. Dynamic data contains the information necessary to
configure the hardware itself.

Dynamic device configuration information is saved to the database as so called
recipes. A recipe contains the information necessary to configure all devices
within the recipe for a certain task. For example, the recipe “Cosmics” would
contain the configuration data for a data acquisition run with cosmic particles.

The Configuration DB keeps data in two locations. Dynamic and Static con-
figuration data is saved in an external OracleTM database. This database is used
as backup and to keep track of different versions of configuration properties.

The second storage location is a cache implemented in PVSS itself. The cache
only hosts dynamic configuration data and is the preferred data source because
it can be accessed much faster than the OracleTM database.

At the time of this thesis only the configuration cache was available for testing.

4.1. SPECS 39

4.1 SPECS

The Serial Protocol for the Experiment Control System (SPECS) [5] is a serial,
master-slave bus protocol similar to I2C but without acknowledgements for better
throughput. Like the LVDS I2C protocol introduced in chapter 3 it is split up
into receiving and transmitting clock and data lines.

SPECS data is transmitted as short messages or frames. Each frame has
strong redundancy mechanisms to detect data corruption. This is necessary be-
cause the hardware components used for the SPECS transmission will be exposed
to radiation.

Its main purpose is the picka-back transport of other protocols from the con-
trol system to the detector hardware. This implementation was chosen because
the detector consists of many components of different origin. These components
use different hardware communication systems like I2C, JTAG, Parallel Bus, etc.
Moreover, there are several different flavours of implementation for certain pro-
tocols. The SPECS hardware transmits all these different communication types
to the detector in a unified way. At the detector a rad hard mezzanine board
decodes the SPECS messages and transmits them to the detector components via
their respective communication standards.

The hardware components of SPECS consist of a master card which is a PCI
card connected to an ordinary PC. The mezzanine is the slave and is connected to
the master via twisted pair CAT 5 network cables and to the detector components
via individual, sub detector specific connections. The typical distance between
SPECS master and slave will be 70m in the experiment.

4.2 Control scheme of the Outer Tracker

The first implementation of a control system for the Outer Tracker was one of
the main goals of this thesis. This assignment contained the following tasks:

• Determining a control hierarchy with sensible partitions and implementing
them with the FSM tool.

• Defining state machine objects and incorporating them into the FSM hier-
archy.

• Creating graphical user interfaces and control routines for the utilised hard-
ware

• Tests and benchmarks for increasing system sizes.

The Outer Tracker Control Scheme is using PVSS as Slow Control and SPECS
as the communications link between the hardware and the control system. The
detector is subdivided into two physically distinct halves on both sides of the

40 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

beam pipe. Each of these halves is controlled by an individual PVSS system
consisting of twelve Distribution Boxes or 1100 hardware items of GOL, OTIS
and Distribution Box devices. The two systems can be operated from a higher
level control instance in the hierarchy. Since these two systems are independent
of each other and running in parallel it is enough to develop a control system for
one half of the detector. The other half can be controlled by a copy.

4.3 FSM Hierarchy and Objects

4.3.1 Control Hierarchy

The Outer Tracker addressing scheme divides the sub detector into Stations,
Layers and Quadrants, as seen in figure 1.3. This division was adapted almost
completely as control hierarchy, which is shown in figure 4.4.

The hierarchy contains Command Units for the two sides of the detector,
for single Tracking Stations and Distribution Boxes. The Distribution Box level
replaces the Layer level of the physical partitioning. This had to be done because
one Distribution Box controls two layers, one on the front and one on the back
side of a C-Frame, and certain control functions of the box affect both layers at
once. The Distribution Box level was also chosen as the last Control Unit level
because of this reason.

The further partitioning contains the two Quadrants on the front and back
side of a C-Frame that is associated with a Distribution Box and at the bottom
the Front-end Boxes and the front-end electronics devices themselves.

4.3. FSM HIERARCHY AND OBJECTS 41

Figure 4.4: Outer Tracker FSM hierarchy. The hierarchy mir-
rors the hardware hierarchy. An exception are the DistributionBox-
Domains. They are inserted because certain commands affect all
front-end boxes connected to one distribution box.
Each command Unit can be separated from the tree and controlled
on its own. The Distribution Box level is the minimum Control
Unit because of the aforementioned shared commands.
Only one instance of the sub tree is expanded on each level for better
clarity.

42 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

4.3.2 Control FSM Objects

As explained earlier, each node within the FSM tree is a state machine object
that represents a summary of the state of its children and defines commands that
are used to control it. A state logic and commands had to be defined for the
different device types. The states should reflect the general condition of a device
rather than a detailed description. They are only required to give an idea if the
device is operational or not.

States

Figure 4.5 shows a diagram of the state machine logic implemented for all chips.
It has been decided to use the same states for all types of chips, because they all
behave the same from a working/not working point of view.

Figure 4.5: Outer Tracker front-end electronics FSM states

The different states perform the following tasks:

Unconfigured: This is the default state, after a reset has occurred or the
devices have been powered up. It signals, that the device has been found
on the I2C bus and that it is responsive to I2C read/write requests. The
configuration registers are in an unknown state.

Configured: This state signals that the device is configured and that data
acquisition can take place. This state corresponds to the Running state of
the global control hierarchy.

Misconfigured: If a device has been programmed with a certain configuration,
but the actual configuration on the chip is different, it will migrate into
this state. The user has the option to issue a Reconfigure command. If the
reconfigure fails too, the device will go into error.

4.3. FSM HIERARCHY AND OBJECTS 43

Unresponsive: The device could not be reached via the I2C bus. I.e. it is not
responding to I2C requests. This state is explicitly not an error because
errors should be recoverable by a Recover or Reset command. If the device
is not connected to the system it can not be reset.

Error: The device is responsive, but an error has been detected. This state
depends on the chips status register or if it was repeatedly misconfigured.

The state of a device is saved as a single integer variable inside the device’s
PVSS data point. The states correspond to different values of this variable. This
was mainly done to allow easier debugging of problems. The state variable is
recalculated every time the SPECS server’s monitoring algorithm updates the
properties of a device in PVSS.

Commands

The device state machines support the following commands:

Configure: This command is used to initialise all devices into a certain detector
run mode. The argument of the command is a string denoting the configu-
ration name that should be used. When the command is issued, each Device
Unit fetches the recipe for the particular run mode from the configuration
database. The devices are then programmed with the configuration data.

After the configuration has been written, each device is read again to ensure
that the configuration has been accepted. If the configuration is correct,
the device will migrate into the Configured state.

Reset: This command is not directly supported by the OTIS and GOL chips.
A reset signal can only be sent by the Distribution Box and will affect
all 18 connected Front-end Boxes and the Distribution Box itself. The
command is only accepted by the Distribution Box Device Unit. It performs
a power up reset and sets the states of all connected Front-end Boxes and
the Distribution Box to Unconfigured.

Recover: The Recover command is used if an error is detected. It should try
to perform an automated recovery of the error condition, i.e. acknowledge
and reset error status bits etc. However, most of these operations require a
L0 reset signal which can not be issued by the Outer Tracker system itself
but has to be issued by the TFC system. Until this issue is resolved, the
Recover command will behave like the Reset command.

Reconfigure: This command can be issued to a device that is in a Misconfigured
state. It will try to program the device a second time. If the command is
unsuccessful, the device will go into Error.

44 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

4.4 Graphical User Interfaces

Graphical User Interfaces (GUI) are the interaction point between user and hard-
ware. The design philosophy behind the GUI created for the Outer Tracker con-
trol was to have PVSS panels on every level of the FSM hierarchy that would
allow detailed control at the lowest level of the tree and coarse control at the
upper levels. In return, the upper levels of the hierarchy would be able to control
many devices at the same time.

Another important aspect taken into account was that certain settings should
not be immediately uploaded to the hardware as soon as a change is detected
on the panel’s widgets. I.e. certain panels can affect a large number of devices
simultaneously. To prevent accidental misconfiguration, the user always has to
press an Upload button before those changes become active.

To be more flexible in panel design, all panels have been broken down into
sub panels which fulfil a certain, specific purpose and can be included on other
panels. This modularisation allows the quick development of new panels that can
control the Outer Tracker from different perspectives.

Panels are categorised into different kinds:

• Single Target Panels: These panels are designed to affect only one device
type, but allow control of this one device in great detail.

• Multi Target Panels: These panels can control a whole array of devices
of the same type, but allow control of common functions only. These panels
require a list of compatible devices during their instantiation. All changes
on the panel are then propagated to the whole device list.

• Composite Panels: Composite panels are built up from single and multi
target panels. They are used to control collections of devices that belong
to a logical unit like a C-Frame or everything connected to a Distribution
Box.

An example of a single target panel for the OTIS chip is given in figure 4.7.
Figure 4.6 shows the multi target version. Figure 4.8 finally shows a composite
panel for one front-end box consisting of the multi target OTIS config, OTIS
status panels and GOL panels.

4.4. GRAPHICAL USER INTERFACES 45

Figure 4.6: Example of a multi target panel. When instantiating
a multi target panel a list of compatible devices can be passed to it.
All settings on that panel will then be applied to all devices on that
list.

46 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

Figure 4.7: Detailed configuration panel for the OTIS chip. The
panel is subdivided into readings on the right and writings on the
left. The user enters the necessary settings on the left, uploads them
to the chip and verifies the settings on the right.
A list of all available OTIS devices was inserted on the left to allow
for quick configuration of an arbitrary selection of chips.

4.4. GRAPHICAL USER INTERFACES 47

Figure 4.8: Control panel for one front-end box. The panel is
completley modularised and built up from reusable components.
1: State machine summary of child devices.
2: GOL single target status component.
3: GOL single target configuration readout.
4: GOL multi target configuration.
5: Distribution box function panel.
6: Multi target OTIS configuration, as seen in figure 4.6.
7: 4 x OTIS status panels.

48 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

4.5 Performance measurements

To allow smooth operation of the detector, the control system should be able to
perform tasks like detector configuration or transitions between run modes within
acceptable time frames. JCOP suggests “several minutes” as upper limit for a
reasonable start up time.

To evaluate the time it will take to fully configure the Outer Tracker front-
end electronics, several run time tests were done with increasing numbers of FSM
objects. Since there was not enough hardware available to actually test a complete
half of the detector at that time, all device units were mapped to one physical
Front-end and Distribution Box.

Since the control system is split up into two parallel systems it is enough to
do performance measurements for one half of the detector only.

To see if the system could actually handle the enormous amount of Control
Units, the first test was done with only the Device Units of two tracking stations
installed. One half station was configured repeatedly to get an average time per
station.

After it was determined that the system would run stable, the third track-
ing station was also installed and the configuration of one tracking station was
repeated.

The results of the two measurements are summarised in table 4.1.

Run Number time [s]

1 42
2 45
3 42
4 42
5 44
6 39
7 42
8 48

Average 43.0 ± 2.7

(a) Two half stations installed

Run Number time [s]

1 62
2 63
3 60
4 61
5 68
6 60
7 67
8 63

Average 63.0 ± 3.0

(b) Three half stations installed

Table 4.1: Configuration time for one half station depending on
the number of installed half stations. Note that the configuration
time increases by 3

2
from two to three half stations.

From these results the following conclusions can be drawn:

1. The total configuration time for the front-end electronics will be at least

Tconf = 3 · 63.0 s = 189 s

4.5. PERFORMANCE MEASUREMENTS 49

2. The size of the system influences the configuration time per element of the
system

3. The increase in configuration time by a factor of 3
2

per element when increas-
ing the system size by 3

2
seems to hint at a proportional relation between the

number of elements in the system and the configuration time per element.
This would lead to an O(n2) behaviour for total configuration time.

While the 189 seconds of configuration can still be considered within the
“several minutes” frame suggested by JCOP, the fact that the configuration time
seems to increase quadratically with the number of devices might be considered
problematic. At the same time it would also offer the possibility of substantial
improvement in configuration time if the number of elements could be reduced.

Since two measurement points are not enough to decide if the behaviour is
really quadratic, further analysis with finer granularity was performed and the
process that contributed most to the configuration time was searched.

The main contributor to the total run time was found to be a function that
searches the configuration data for a certain chip within the recipe database.
Figure 4.9 shows a performance analysis of this function for the retrieval of the
configuration data for one chip depending on the total number of devices in the
recipe. For each of the measurement points the function was called 10.000 times
and its mean value and RMS were determined. With the fully installed number
of chips, this function takes up approximately

ηgetRecipe =
140 s

189 s
=̂77.8%

of the total configuration time.
During configuration, this function is performing a linear search on the data

array containing the configuration data for each Device Unit in the system. With
every added Device Unit the configuration time per device increases by O(n)
causing the total run time to increase by O(n2).

A possible strategy for improving performance in this case is to split the data
array into several smaller arrays. While the total amount of data stays constant,
the total run time for each array decreases by a factor of

tpart = (
1

nparts

)2 · tunparted

with a netto gain in speed of

ttotal = (
nparts

n2
parts

) · tunparted =
1

nparts

· tunparted

The Configuration Database offers the possibility to define more than one
recipe cache per system. By creating a separate recipe cache per Distribution

50 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

Box, the size of the configuration data array per recipe can be reduced by a
factor of 12.

Performing the run time test for three stations again resulted in a total run
time of

ttotal ≈ 70 s

which is not even close to the expected performance increase of a factor of 12,
pointing to another, different bottleneck. It was found to be related to the fact
that each Device Unit spawns a pseudo thread within PVSS. The synchronisation
overhead of the enormous amount of threads causes this new bottleneck.

Figure 4.9: Run time of the configuration data searching function
depending on the number of devices inside a recipe. The time per
device increases linearly with the number of devices. Since all de-
vices have to be searched for a complete configuration, the total run
time increases quadraticaly.

4.6 Conclusion

An improvement, which was not completely tested by the time of this writing,
was to reduce the number of Device Units by combining all the chips within one
Front-end Box into one Device Unit. This modification would reduce the number
of Device Units by a factor of five and speed up the configuration time by reducing
the number of configuration threads and recipe array entries.

Furthermore, it was proposed to redesign the way devices are configured.
Instead of having each device look for its configuration in a list, the list should

4.6. CONCLUSION 51

be processed entry by entry. During a full configuration each entry has to be
uploaded to a device anyway, making a search unnecessary. This suggestion was
being worked on by the creators of the JCOP framework at the time of this
writing.

A lot of pioneering work has been done with the development of the Outer
Tracker control system since it was one of the first sub detectors in LHCb to start
development on a control system. A lot of feedback has been exchanged with
the creators of the JCOP framework and bugs and design issues were identified
and worked out. While the current control system was already a success during
commissioning tests, the final system can be expected to perform significantly
better.

52 CHAPTER 4. OUTER TRACKER SLOW CONTROL SYSTEM

Chapter 5

Commissioning results of the
Outer Tracker readout electronics

During the commissioning phase of the detector, all components of the Outer
Tracker electronics are tested again to evaluate their behaviour outside the labo-
ratory and under the aspects of being integrated into a large system.

A number of tests were performed at CERN with 1
12

th of the Outer Tracker
front-end electronics to verify lab results and to study the behaviour of a large
system.

These tests included but where not limited to:

• Verifying the functionality of the readout chain from front-end electronics
to DAQ farm.

• Determining the noise levels of the Front-end Boxes when connected to the
modules.

• Testing the calibration/test pulse system

• Comparing the OTIS’s time properties to measurements done in the lab.

• Looking for any general effects that can be explained by running a large
system instead of individual components.

5.1 The Mini-DAQ system

To test the electronics on a medium scale, a setup at CERN, denoted the Mini-
DAQ system, was built. The Mini-DAQ contains all components of the final
Outer Tracker read-out and control hierarchy.

The Front-end Boxes were mounted to their final positions on one of the C-
Frames and connected to the wire chambers and the C-Frame’s TFC, Readout
and Slow Control infrastructure.

53

54 CHAPTER 5. OT COMMISSIONING RESULTS

The Run Control and DAQ for this system was provided by the LHCb Online
Group in terms of a Commissioning Rack (CRack). The CRack is a mobile,
miniaturised version of the final LHCb online system. The components and their
function are listed in table 5.1.

The Slow Control system introduced in chapter 4 was installed on the Win-
dows PC, together with the Fast Control system for the ODIN board [2].

Component Function

2 x TELL1 Board Acquisition of data from the front-ends
ODIN Fast Control distribution and Readout Supervi-

sor
Windows PC Control PC running multiple PVSS systems for

Slow and Fast Control
Linux PC Control PC running the DIM DNS node and the

boot server for all other components
4 x Linux PC Farm nodes used for data acquisition
Linux PC Control PC for the four farm nodes. It contains

one hard drive which is shared among the node
PCs as network share.

Table 5.1: Commissioning Rack components

Figure 5.1: Schematic of the Mini-DAQ setup

5.1. THE MINI-DAQ SYSTEM 55

The functional scheme of the setup is displayed in figure 5.1 and resembles
the final composition of components.

The Front-end Boxes are connected to the fast and slow control system via
the Distribution Box. They are connected to the Distribution Box with SCSI
cables. The Distribution Box receives the Fast Control signals from the ODIN
through an optical link and the Slow Control signals via CAT5 SPECS cable.

The drift time data is sent to the TELL1 board via an optical fibre. The
TELL1s are connected to the DAQ computers by gigabit Ethernet cables.

Figure 5.2: Commissioning Rack provided by the LHCb Online
group.

56 CHAPTER 5. OT COMMISSIONING RESULTS

5.2 Test of the Mini-DAQ system

To test the functionality of the Mini-DAQ setup, especially the data acquisition
aspect, several tests of the data transfer process from front-end electronics to
the DAQ nodes of the CRack were performed. One particular test of the data
distribution system is presented here as an example.

The trigger rates for the test setups presented in this document are all in
the order of a few hundred Hertz up to one kHz. This rate will be increased to
1.1MHz, once the experiment is fully operational. To be able to cope with the
enormous rate at which data is generated from all detector components, LHCb
had to develop a concept to distribute the load of data acquisition to a computer
farm.

In case of the Outer Tracker, each event contains a four bit number (EventID)
which is sent along with the event data. The TELL1 board receives this data
and combines the event fragments from all connected OTIS chips into a so called
Multi Event Package (MEP). These MEPs are sent to their destination computer
via a gigabit Ethernet link. The MEP is encapsulated into a common IP frame
and sent to the IP address of the target DAQ computer.

MEPs can contain the data of multiple events at the same time to reduce
network header overhead. For this test the packing density was set to one event
per MEP.

It is the responsibility of the TFC system to make the TELL1 board aware
of the destination each MEP should be sent to. To do this, the ODIN Readout
Supervisor keeps an internal list of possible destination MAC addresses and can
be programmed to assign MEPs by a round robin policy1.

To verify the functionality of this distribution policy, the following test was
carried out.

Three Front-end Boxes were connected to the TELL1 board and configured
with default values. The ODIN was programmed with the IP addresses of the four
farm nodes of the CRack and destination assignment was enabled. The round
robin scheduler was configured to assign only one MEP to a particular farm node
before switching to the next node.

If the system works properly, the EventID between any two consecutive events
should always increase by four on a particular node. Since 16 values are possible
for the EventID and there are four nodes, each node should always receive events
with the same four IDs. Figure 5.3 shows histograms of the EventID distribution
on all four nodes. As expected, each node saw the same four IDs, for the most
part. The small bars besides the main peaks hint to something unexpected.

Inspecting the ID difference between two consecutive events in figure 5.4 re-
veals that there are several occurrences where two consecutive events would not

1Round robin is a scheduling policy, where a limited resource (MEPs) is assigned to clients
(DAQ nodes) in portions of equal size. MEPs are limited here because there is always only one
MEP available for distribution.

5.2. TEST OF THE MINI-DAQ SYSTEM 57

Figure 5.3: Example EventID distribution for Node1-Node4 for
OTIS chip 0x544. The EventID increases by one for each node.
The small side peaks are caused by the skipping of Node3. The shift
happened very early during data acquisition. The small bars are the
original counting sequence.

have a spacing of four. This can be traced back to two distinct effects:

All the multiple of four entries can be explained by dropped MEPs. The
program used for the DAQ could not keep up with the rate the MEPs arrived
at the Ethernet port and had to discard those packets. This behaviour was
expected, because the DAQ program was a prototype and did a lot of analysis
on the received data at run time.

Part of this data is debug and error information, causing a lot of network
overhead. This overhead is another source of dropped packets related to the
networking hardware. Since the MEPs are sent as Ethernet packets, the switch
forwarding the MEPs to the farm nodes is allowed to discard those packets if
it can’t keep up with the rate at which network packets arrive. In case of the
LHCb DAQ network protocol a discarded packet is lost permanently because
acknowledgements for MEPs were sacrificed for higher throughput rates. This
problem is prevented in the final setup by utilising network switches with 80MB
of packet cache per channel.

The occurrences of differences of three and seven are harder to explain. Table

58 CHAPTER 5. OT COMMISSIONING RESULTS

Figure 5.4: EventID difference for all DAQ nodes and OTIS chips

5.2 shows an excerpt of the data stream at the point in question. It seems that the
ODIN skipped node three in its distribution cycle at one point. This is causing
the jump of seven events on that node and the shift of three on all the other nodes.
It is proposed that the ODIN will take DAQ node occupancy into account when
assigning events later. This mechanism might have already been implemented
but not documented in the utilised ODIN firmware.

This example shows that the transport from the front-end electronics to the
farm is working as expected. The encountered effects are either noncritical or
known and expected.

N
o
d
e

1

N
o
d
e

2

N
o
d
e

3

N
o
d
e

4

0xD 0xE 0xF 0x0
0x1 0x2 0x3 0x4
0x5 0x6 → 0x7
0x8 0x9 0xA 0xB
0xC 0xD 0xE 0xF
...

Table 5.2: Event Number discrepancy. The assignment of data to
node three is being skipped causing all other nodes to see an event
difference of three for the next four events. After that, the difference
is back to four again. Data was not lost but rather rescheduled to a
different node.

5.3. NOISE MEASUREMENTS 59

5.3 Noise Measurements

The time measurement performed by the OTIS chip determines the drift time of
electrons inside the straw tubes relatively to the Bunch Crossing signal of LHC.
Each electron cascade caused by a passing particle contains a certain charge which
is deposited on the wire and fed into the ASDBLR chip for pre-amplification.
Since the system ultimately measures the voltages across a capacitance, the fol-
lowing measurements are using units of voltages rather than charges. Equation
5.1 is an empirical formula that can be used to convert from one system to the
other [24].

Cthr[fC] = e(−1.25+0.0033∗Vthr[mV]) (5.1)

Since the straw tubes are acting as a large capacitance and antenna, they are a
big source for noise. The following measurement was done to determine the noise
level when the Front-End boxes are connected to the modules and assembled into
a large system. The measurement is performed similar to the I2C measurement
explained in chapter 3.

The sensitivity of each ASDBLR chip can be adjusted by an external, ana-
log signal provided and configured on the OTIS chip. It denotes the threshold
voltage/charge at which the ASDBLR discriminates the input pulses.

This threshold was varied between 500mV and 900mV in steps of 25mV.
10.000 events were recorded for each setting. The number of registered “hits” for
one OTIS were summed up and plotted against the configured threshold voltage.
The red data points in figure 5.5 show the result of this test for one Front-end
Box. The foreseen working point for the modules is around the 750mV setting.
At this point the occupancy through noise has already dropped under

ηnoise ≤ 0.1%

This is a very good result, taking into account that the final grounding scheme
was not applied in this test. As comparison, the I2C noise measured in Dortmund
was also inserted into the diagram (blue) to emphasise the noise that is caused
by attaching the Front-end Boxes to the modules.

5.4 Test pulse system

The test pulse system is supposed to be a tool for testing and monitoring the
Outer Tracker electronics [22]. Among others, it provides the following function-
alities:

• Being a tool for testing the functionality of the complete read out chain and
all electronics components on the chain.

• Providing a stable phase with respect to the Bunch Crossing signal to allow
measurements of the time resolution of the channels.

60 CHAPTER 5. OT COMMISSIONING RESULTS

Figure 5.5: Wire chamber noise measured at CERN (red). The
noise levels is under 0.1% at the foreseen working point of 750mV.
The I2C noise measurement has been inserted to allow a qualitative
comparison between the boxes in the laboratory and connected to the
wire chambers on the C-Frame.

• Determining the sensitivity of the individual channels on the detector.

The system allows the injection of charge pulses into the pre-amplifier ASD-
BLR chips. The pulses simulate the signals from electron charges deposited on
the module wires.

Two kinds of pulses are available:

• Test pulse High: This is a 14 fC pulse with low jitter. It was designed to
test the timing alignment and channel separation.

• Test pulse Low: This is a 7 fC pulse. It was designed to check the ASDBLR
behaviour at the foreseen working point.

Each test pulse can be sent to either odd or even channels. This separation is
done to detect channels which are causing crosstalk to neighbouring channels.
Each of the following tests has been done for even and odd test pulse signals.
The results are shown for odd test pulses only for brevity.

Pulse distribution can be coupled to the TFC system’s calibration pulse [19].
It allows the generation of pulses which are phase locked to the Bunch Crossing
signal of LHC. The relative phase to the bunch signal can also be adjusted by
the TFC system.

5.4. TEST PULSE SYSTEM 61

5.4.1 Channel sensitivity divergence

Ideally, microchips coming out of mass production should behave identically and
have identical properties. This is never the case due to inhomogeneities in the
materials used, position of the chip on the wafer and other effects. It is especially
problematic for analog circuits.

The ASDBLR chip is an analog to digital converter and suffers from these
effects. Each input channel of the ASDBLR has a slightly different sensitivity.
During production of the ASDBLR boards only chips with a maximum difference
of 50mV between each channel have been used. This value results from the
requirement of the Outer Tracker to have a charge resolution of at least 0.3 fC.

Figure 5.6: Two sample test pulse threshold distributions. An
Ideal distribution would be a step function. Noise is softening the
step. Each of these distributions (over 1200) is fitted with a Fermi
function to determine V 50%

Thr

A threshold scan of pulses with known charge can be used to measure the
relative sensitivity of all channels on one ASDBLR board. These measurements
have been carried out before for the pre selection of ASDBLR chips [23] [24] [25].
Later, they were repeated with the Mini-DAQ setup to verify the correct function
of the boards in a large system.

The threshold scan is performed by activating the test pulses for all Front-end
Boxes and varying the ASDBLR threshold voltage around the expected test pulse
voltage. 10.000 random trigger events are recorded for each threshold. The result
is a distribution similar to figure 5.6 for each channel. When the threshold value
reaches the level of the test pulse, the number of “hits” starts to diminish.

62 CHAPTER 5. OT COMMISSIONING RESULTS

Under ideal conditions this distribution would be a step function. Electrical
noise causes a softening of the edge due to noise increasing or decreasing the
height of the test pulse signal. The Fermi function:

f(x) = A · 1

e(x−B
C

) + 1
(5.2)

was used to fit the distribution, which is an adequate choice here as demonstrated
in figure 5.6.

Parameter B denotes the point at which the sensitivity of the channel equals
50%. This point is considered as the real test pulse height and is used to determine
the sensitivity of each channel. The threshold voltage difference for two channels
on a chip should be limited to 50mV due to the selection done on the chips.

A histogram for the maximal difference between any two channels on one chip
is shown in figure 5.7 for high and low test pulse levels. Most chips are within the
expected margin and the distribution is similar to the pre selection distribution
from [25].

Figure 5.8 shows the same data as deviation from the chip wide average for
each channel, for high and low test pulse levels. The distributions are also well
within the ±25mV limit.

Figure 5.9 shows the absolute value of V 50%
Thr for high and low test pulse levels.

It demonstrates the necessity to distinguish between chip wide variances and
detector wide variances. During calibration of the detector this measurement can
be used to find individual threshold settings for each ASDBLR chip to normalise
the sensitivity of all chips across the entire Outer Tracker.

Figure 5.7: Maximum difference between two channels within one
ASDBLR chip. Each entry corresponds to one ASDBLR chip.
Green: Odd High test pulse
Blue: Odd Low test pulse

5.4. TEST PULSE SYSTEM 63

Figure 5.8: Channel deviation from the average threshold value
per ASDBLR chip. Each entry corresponds to one channel. Well
above 90% fulfil the ±25mV specification.
Green: Odd High test pulse
Blue: Odd Low test pulse

Figure 5.9: Absolute threshold for each channel. Each entry cor-
responds to one channel. The different number of channels for high
and low test pulses is a result from cutting off unresponsive chan-
nels.
Green: Odd High test pulse
Blue: Odd Low test pulse

64 CHAPTER 5. OT COMMISSIONING RESULTS

5.4.2 ASDBLR Asymmetry

Another property of the front-end electronics can be observed within the test pulse
threshold scan data. It was originally discovered when conducting threshold scans
of pure noise as seen in figure 5.10. It shows the sum of all hit masks of all 18
Front-end Boxes for pure noise, recorded at a threshold of 500mV.

Each OTIS chip is connected to two ASDBLR boards, which are equipped
with two ASDBLR chips each. Each ASDBLR has eight input channels which
are connected to the detector straws.

Looking at figure 5.10, an asymmetric tendency between the right and left
chip on the ASDBLR boards can be observed. There are always groups of eight
(one ASDBLR chip) channels which receive more or less hits.

Figure 5.10: ASDBLR asymmetry between right and left ASD-
BLR boards for a pure noise measurement at a threshold voltage of
500mV. The total number of Front-end Boxes for this test was 18.
All boxes were connected to the straw tube modules.

Summing up all left and right ASDBLR chips results in figure 5.10 and map-
ping them to a channel interval of [0..7], a clear left/right asymmetry and also
an even/odd channel asymmetry can be observed. The even/odd asymmetry was
already known and expected.

Since a threshold value of 500mV is very low2 and not realistic for the exper-

2The foreseen working point is approximately 750 mV

5.4. TEST PULSE SYSTEM 65

Figure 5.11: Channel hit mask from fig. 5.10 sorted by left and
right ASDBLR chips and mapped to channels 0-7. The maximum
possible occupancy of one channel is 10.000 Hits or 0,1 in units of
the shown Y-Axis. The data shown is the sum of 144 ASDBLR
chips for each side (light blue = left chips; dark blue = right chips)

iment, the noise measurement alone does not have any significance. To enforce
this finding for realistic thresholds, the test pulse data presented in section 5.4.1
has been analysed for this effect.

If the two ASDBLR chips on an ASDBLR board really have different sensitiv-
ities, sorting the data in figure 5.9 by left and right ASDBLR chips should yield
two slightly separated distributions. The mean for the right channels should be
lower than for left channels because left channels have higher sensitivity and need
a higher threshold setting to diminish the test pulse “hit” rate to 50%.

This analysis of the histogram data for figure 5.9 has been done and the results
are shown in figure 5.12. As suspected, right channels have a tendency for lower
threshold values than left channels. This is true for low (upper histogram) as well
as for high (lower histogram) level test pulses.

This effect will have to be taken into consideration during calibration of the
detector electronics. Different threshold voltages can be assigned to each individ-
ual ASDBLR chip.

66 CHAPTER 5. OT COMMISSIONING RESULTS

Figure 5.12: Absolute values for V 50%
Thr for odd low/high test pulses.

The channels have been sorted by left (red) and right (blue) ASD-
BLR chips.
Upper histogram: Odd Low test pulse
Lower histogram: Odd High test pulse

5.5. OTIS TIMING PROPERTIES 67

5.5 OTIS timing properties

5.5.1 OTIS linearity

The OTIS chip’s function within the LHCb experiment is to measure the drift
times of electron clusters within the Outer Tracker straw tubes in respect to
the rising edge of LHC bunch crossing signal. The bunch crossing signal is syn-
chronous to the collisions of the proton bunches within the beam which phase
locks it to the transition of particles through the detector.

The linearity of this mapping procedure was tested with the test pulse system.
The test pulse signal can be shifted in 240 intervals with a step size of 104.17 ps,
relatively to the 40MHz bunch clock. This measurement was done in the labo-
ratory before and was repeated here with the complete electronics to study any
system effects.

Figure 5.13: Sample test pulse time measurement for the linearity
measurement. A total of approximately 277.000 of these histograms
were fitted with a Gaussian to obtain channel plots like figure 5.14.
The X-Axis has been expanded to make the fit visible.

The test was done by recording 10.000 events for each of the 240 intervals.
Each recorded data set is similar to figure 5.13 and shows a very narrow peak
around the configured test pulse delay. The peak is then fitted with a Gaussian
and the mean is plotted against the configured test pulse delay as shown in figure
5.14. The resulting distribution should be a straight line with a slope of 64

240
which

is the ratio of the resolution of the OTIS chip and the test pulse system.
Closer examination (figure 5.16) reveals small deviations from a straight line

in form of a step-like structure. The steps begin and end at the borders of an
OTIS time bin. This structure is caused by two effects.

68 CHAPTER 5. OT COMMISSIONING RESULTS

Figure 5.14: Example linearity plot for OTIS 0x422, Channel 17.
There is no visible deviation from the optimal behaviour.

The first results from the fact that the test pulse delay has a higher resolution
than the OTIS time measurement system. Whenever the delay is moved across
the border between two OTIS time bins, the measured mean of the pulse suddenly
shifts from one time bin to the next.

The second effect is caused by the layout of the OTIS time bins themselves.
The bins sizes are alternating between a short and long bins. This also causes a
step like effect because the long time bin can contain more delay settings than
the short bin, making the slope of short bins steeper than long bins.

By combining two consecutive OTIS time bins, the long-short effect can be
overcome. This has been done for the plot in figure 5.15. The distribution is much
smoother now, showing that the long-short bin effect is dominating in figure 5.14.

This effect is well known and documented [20][9][8]. To correct it, the TELL1
board will have a look-up table for each channel with corrections for the measured
drift times.

In closing, the linearity of all OTIS chips could be verified. The results ob-
tained from the measurements are consistent with previous measurements per-
formed on the OTIS chips in the lab.

5.5. OTIS TIMING PROPERTIES 69

Figure 5.15: Example linearity plot for OTIS 0x422, Channel 17
after merging two consecutive OTIS time bins. The step structure
from figure 5.14 has almost completely vanished, leaving only the
binning effect of the higher resolution test pulse delay.

Figure 5.16: Higher resolution plot of the step structure in figure
5.14

70 CHAPTER 5. OT COMMISSIONING RESULTS

5.5.2 Long-term stability

To validate the stability of the distribution system, a long term test was per-
formed on the setup. This test was supposed to find any clock drifts or other
abnormalities that are only visible after a long time span. The idea was to acquire
test pulse events over a very long time and check if the measured OTIS time or
the shape of the pulse changes.

The usual test pulse setup was modified by injecting the test pulse into the
Distribution Box as external signal instead of TFC calibration commands. The
reason for this change was to have an unbiased reference signal. The external
test pulse signal is only forwarded by the Distribution Box FPGA without any
refurbishing while the TFC calibration command is passing at least one synchro-
nisation circuit for the phase shifted clock from the TTC receiver chip (TTCrx).

The test pulse signal was obtained by connecting the ODIN Orbit3 signal
output to the external test pulse input of the Distribution Box. The signal was
passed through a NIM discriminator module to convert the ODIN output signal
(ECL) to Distribution Box logic signal levels (NIM). A schematic of the setup
can be seen in figure 5.17.

Figure 5.17: Rewired CRack setup for the stability Measurement.
The Orbit signal is extracted from the ODIN board and fed as ex-
ternal test pulse into the Distribution Box.

The data acquisition was done by an automated script. It was programmed
to acquire 10.000 Events every 10 minutes. Odd High was chosen as test pulse
type, because high level test pulses have less noise and jitter. After all properties

3The Orbit signal corresponds to the time a proton bunch needs to orbit around LHC.

5.5. OTIS TIMING PROPERTIES 71

Figure 5.18: Example stability plot for OTIS 0x408, channel 27.
Each entry corresponds to 10.000 events taken in 10 minute inter-
vals. The error bars are RMS values rather than the sigma of Gauss
fits.

were configured, the program was started and left running for approximately 14
hours.

Figure 5.18 shows an example plot of the data gathered for one OTIS channel.
For each of the 86 data samples (10.000 events) the average measured time was
determined. The resulting values were plotted versus elapsed time of the test.

The measured times are very stable over the 14 h time span. The drift time
RMS stays stable during the whole measurement. This means that the clock
jitter stays steady too. A fitted first order polynomial shows that there are also
no tendencies for a long term drift of the signal.

Figure 5.19 shows a histogram of the fitted polynomial slopes for all channels.
The slopes of all channels are consistent with zero. They are in fact all within
the same histogram bin at zero.

The histogram has a resolution of 200 bins from -1 to 1. Since the test was
conducted over a time span of 14 hours the range for possible drifts can be limited
to:

maximumDrift ≤ 0.3
ps

h
(5.3)

72 CHAPTER 5. OT COMMISSIONING RESULTS

Figure 5.19: Histogram of all odd channels slopes for the long
term stability test. All slopes values are within the same bin which
restricts any long term drifts to under 0.3 ps per hour.

5.5.3 Test pulse and TDC resolution

The resolution of a time measurement for the test pulse signal depends on the
influence of two parameters:

• The jitter introduced by the test pulse and TFC distribution system (σ2
TP).

• The resolution of the TDC system inside the OTIS chip (σ2
TDC).

The overall error for the measured time can be calculated as:

σ2
tot = σ2

TP + σ2
TDC (5.4)

Since the test pulse and TFC signals are split up in the Distribution Box and
then sent to the Front-end Boxes they have a strong correlation when arriving.
If the signal jitters by an arbitrary time ∆t on one channel, it will also jitter by
∆t on all other channels.

This strong correlation can be used to disentangle equation 5.4 and determine
the values for σ2

TP and σ2
TDC .

If t1 and t2 are the measured times of test pulse “hits” on two different chan-
nels, their respective errors are calculated by:

σ2
t1

= σ2
TP + σ2

TDC1
(5.5)

σ2
t2

= σ2
TP + σ2

TDC2
(5.6)

5.5. OTIS TIMING PROPERTIES 73

Adding and subtracting the measured times of the two channels and taking the
correlation into account, the total error for the sum and difference is:

σ(t1 + t2)
2 = (σTP + σTP)2 + σ2

TDC1
+ σ2

TDC2
(5.7)

σ(t1 − t2)
2 = (σTP − σTP)2 + σ2

TDC1
+ σ2

TDC2
(5.8)

Subtracting 5.8 from 5.7 yields:

σ(t1 + t2)
2 − σ(t1 − t2)

2 = 4 · σ2
TP (5.9)

Inserting 5.9 in 5.5 or 5.6 allows the determination of σ2
TDC1

and σ2
TDC2

respec-
tively. σ2

t1
and σ2

t2
can be obtained directly by histograming a large enough

number of measurements for t1 and t2 while σ(t1 + t2)
2 and σ(t1 − t2)

2 can be
obtained by histograming the sum and difference of the measured times of two
channels.

The data gathered from the linearity test from chapter 5.5.1 represents a good
sample of measured test pulse times for all time bins of the OTIS chip and can
be used to determine σ2

TP and σ2
TDC .

The first step to do this is to determine σ2
TP with equation 5.9. Figure 5.20

shows the two histograms for t1 − t2 (top) and t1 + t2 (bottom) gathered for
one record of the linearity measurement (10.000 events) for channel 3 and 1 of
OTIS 0x509. From the Gauss fits one can determine the variances of the two
distributions and calculate an approximate value for σTP of:

σTP =

√
1.252 − 0.962

4
≈ 0, 4[OtisT imeBins]

To gather more statistics this whole procedure was repeated for all possible
channel combinations of all 240 records of the linearity test for OTIS 0x509 and
histogramed in figure 5.21. Fitting a Gauss function yields a total error of

σTP = 0.32± 0.07[OtisT imeBins] =̂ 0.13± 0.03 ns

for the correlated uncertainty introduced to test pulse and TFC by the distribu-
tion mechanism.

74 CHAPTER 5. OT COMMISSIONING RESULTS

Figure 5.20: Example for the difference and sum histograms.
These histograms are created for each possible channel combination
of OTIS 0x509 (only odd channels).

5.5. OTIS TIMING PROPERTIES 75

Figure 5.21: Combined distribution system uncertainty for Otis
0x509. Each entry corresponds to one channel combination for each
of the 240 linearity test records.

76 CHAPTER 5. OT COMMISSIONING RESULTS

Chapter 6

Conclusion

Summary

This thesis describes the testing and commissioning of parts of the Outer Tracker
Front-end Electronics.

In the first part, a test bench for the GOL/AUX board was developed. The
setup was used to verify the functionality of the boards after their production.
The development was based on an earlier setup for the test of the OTIS chip. It
included the implementation of a PCI to I2C interface on an Altera Stratix FPGA
and the creation of software that allows the control of GOL and OTIS chips. The
implementation accounts the specific needs of a differential I2C connection.

In the second part of the thesis the first implementation of a Slow Control
system for the Outer Tracker front-end electronics based on PVSS was performed.
The project combined the following tasks:

• PVSS panels that allow control of every function of the Outer Tracker elec-
tronics.

• Implementation of a control hierarchy within the LHCb Finite State Ma-
chine and controls hierarchy.

• Testing the performance of the created control system especially in respect
to total configuration time of the system.

• Implementation of automated measurement tools for the commissioning
phase.

During the final stages of the project, a data acquisition setup was built at
CERN. It was the first setup consisting completely of the final readout compo-
nents. The setup, denoted Mini-DAQ, contained up to 1

12
th of the final electronics.

It was used to study the dynamics of a medium sized system of Outer Tracker
components. In particular, these studies covered:

77

78 CHAPTER 6. CONCLUSION

• The succesfull validation of the front-end to DAQ farm readout path.

• The behaviour of noise in the final system. Especially the validation of
acceptable noise levels at the foreseen module working point.

• A first study using the test pulse system to time align all electronic com-
ponents on a large scale.

• Evaluating the test pulse system as a mean for normalising the sensitivity
of all ASDBLR chips across the detector.

• The verification of previous studies concerning the timing properties of
OTIS chips and their behaviour and stability in the large system.

Outlook

The developed PVSS control system was one of the first systems written for the
purpose of controlling a whole LHCb sub detector. The pioneering work on this
project, especially the performance tests of the Finite State Machine and the
SPECS system in general, led to a number of improvements in the design of
these software components.

While the control system is only a first iteration and not completely ready
to be used by the end-user yet, it offers a solid basis for future developments.
Especially the modular panel design will help in expanding and customising it to
the required needs.

Appendix A

PVSS

A.1 Supervisory Control and Data Acquisition

Systems

A.1.1 SCADA tasks

With the increase of complexity and scale in today’s industrial processes and
work flows, the need for systems allowing easy surveillance and control of theses
processes arises. As the acronym already suggests, SCADA systems are a type
of software that is capable of:

• collecting data from hardware

• exerting a limited amount of control over the hardware

• do the above from and to remote locations

This sets SCADA systems apart from similar concepts like telemetry which
only allow monitoring. “Limited” means that personnel will still have to investi-
gate critical failures at the remote site, should they occur.

Another task of SCADA systems, which has emerged over the past years, is to
hide the complexity of the system they control from the operator. The operator
should be concerned with managing the work flow, not the hardware.

A.1.2 SCADA architecture

Figure A.1 shows an example of a typical SCADA architecture as described in
[15].

Since SCADA applications are supposed to exert remote control they neces-
sarily have to be divided into at least two components, or layers in software terms.
These two layers form the end points in a client-server model and are called the
client and server layers.

79

80 APPENDIX A. PVSS

On the server side, Remote Terminal Units (RTU)s are connected to the
hardware and act as data servers for the state information of the hardware. Ad-
ditionally they allow the input of control commands from the local side.

On the client side, operator interfaces are used as interfaces to the human
controller. The operator can enter commands for the hardware on the client side
and also monitor the state data generated by the hardware, which is relayed by
the RTUs.

Figure A.1: Typical architecture of a SCADA application. Client,
processing and server layer are separated by communication chan-
nels. The SCADA system itself is independent of the hardware it
controls. It merely connects to the hardware and is used to relay,
filter and manage the information gathered from it.

A third (processing) layer between clients and servers is inserted to manage
the data flow between operator and hardware. It is responsible for filtering in-
formation, performing automated or scheduled tasks and do logging and general
data storage.

Another advantage of having a processing layer is the ability to keep the data
displayed on the different operator interfaces synchronous. It is easier to collect all
data in one central location and then forward it to anyone who might be interested
instead of connecting directly to the hardware and manage synchronisation there.

A.2 PVSS as implementation of a SCADA sys-

tem

PVSS1 is a commercial software package chosen by CERN to be the recommended
SCADA system to manage the LHC accelerator itself as well as the associated
experiments.

1Process visualisation and control system

A.2. PVSS AS IMPLEMENTATION OF A SCADA SYSTEM 81

It was chosen over other products or self made software, because of its generic-
ity and scalability. According to the IT-CO-BE group at CERN [16] its strengths
that make it interesting for High Energy Physics (HEP) are:

• It can run in a distributed manner with any of its components running in
a distributed manner

• It is possible to integrate distributed systems

• It has multi-platform support (Linux and Windows)

• It is device oriented with a flexible data point concept

• It has advanced scripting capabilities

• It has a flexible Application Programming Interface allowing access to all
features of PVSS from an external application

To get a better understanding for the control system developed for this project,
a short introduction to PVSS is given here.

A.2.1 PVSS Manager Concept

In PVSS, work is delegated to specialised programs that are specific for certain
tasks. These programs are called managers.

PVSS provides several prefabricated managers (e.g. user interface, archivers,
drivers, data acquisition, etc.). Furthermore, the manufacturer2 supplies the user
with the Application Programming Interface that was used for the development
of the provided managers. It allows the user of PVSS to develop additional
managers that have full access to the functionality of PVSS.

Managers are able to communicate with each other via the TCP/IP protocol.
This method allows for interesting distribution concepts of a PVSS system which
will be shown in section A.2.6.

Figure A.2 shows a schematic of a typical PVSS system. The system is sub-
divided into four layers.

User Interface Layer: This layer is responsible for interaction with the user. It
contains managers that display data or are accepting user input.

Processing Layer: The processing layer allows to run automated scripts that can
handle non critical errors or other tasks that do not require user interaction.
The Application Programming Interface (API) manager depicted here is a
different, more lightweight interface to PVSS. It allows limited access to
PVSS features for the trade off of simplicity.

2ETM professional, Austria

82 APPENDIX A. PVSS

Figure A.2: Structure of a PVSS system.

Communication and Memory Layer: This layer is the heart of a PVSS system.
The Event and Database manager are the bare minimum components that
are required for a operable PVSS system.

Driver Layer: The hardware communication layer. PVSS comes with a rich
assortment of industry standard drivers like OPC3, CAN4 bus, PROFIBUS
etc. Drivers are the equivalent to data servers in the SCADA architecture.

The second and third layer correspond to the processing layer of the generic
SCADA application.

A.2.2 Event Manager (EM)

As mentioned earlier, the Event Manager, together with the Database Manager
is the central component of each PVSS system. All other managers are connected
to the EM and all communication between managers is handled by the EM.

As the name of this manager already suggests, PVSS is an event driven system.
This means that, contrary to procedural systems, PVSS will only react to state
changes imposed from the outside instead of acting on its own. State changes
can be caused by user input, the change of state in some kind of hardware, or a
timer that is set to trigger at a specific time. The last possibility, while available,
should be used cautiously because excessive use would contradict the purpose
of the event driven architecture, which is an integral part of PVSS’s scalability
scheme.

3Object Linking and Embedding for Process Control
4Controller Area Network

A.2. PVSS AS IMPLEMENTATION OF A SCADA SYSTEM 83

Figure A.3: Example of a simple PVSS system with only a user
interface and a volt meter connected.

To further understanding of this concept, and because it is one of the core
aspects of PVSS, a short example of is shown in figure A.3. An operator is
interested in the state of a certain piece of equipment. A device to measure
voltages in this case. The Driver Manager that connects the voltmeter to PVSS,
registers itself with the Event Manager. The driver (not PVSS itself) polls the
voltmeter for changes of its state in regular intervals. If a significant change is
detected, the driver will forward this change to the EM. The EM will then notify
all parties that are subscribed to the state of the voltmeter about the change and
tell them the new value. In our example, the operator is the only interested client
so the Event Manager will only notify the User Interface Manager of the operator.

A consequence of this is, that a PVSS system can only have one Event Man-
ager. This is of course a problem because it introduces a single point of failure
to the system. The solution to this problem is to have two PVSS systems that
are running in parallel as redundant system.

A.2.3 Database Manager (DM)

The Database Manager is another integral component of PVSS. Its main purpose
is to keep an image of the current process in its memory. Additionally all value
changes are written to a high speed file database. This database only contains
the current values of all monitored variables.

Archiving of process variables is also done by the Database Manager to so
called archive files. Variables can be provided with attributes that tell the Archive
Manager if a variable should be archived or not. This behaviour, again, shows
the philosophy of PVSS of only doing work when necessary.

If a piece of hardware, for example the voltmeter from our previous example,
changes its state, the Event Manager will automatically pass this information
to the Database Manager which will store the new information. If a manager
becomes interested in the value of the voltmeter it can ask the Event Manager

84 APPENDIX A. PVSS

for the current value. The Event Manager in turn will ask the Database Manager
for the last known value of the device and will pass it on to the interested manager.

A.2.4 Control manager (CM)

The Control Manager is the part of PVSS where a great part of its expandability
comes from. A special, ANSI-C compatible programming language called Control
was integrated into the PVSS. Programs written in this language can be run
within an instance of the Control Manager and have full access to all process
variables.

Control has been used to write most of the higher level functionality of PVSS.
It offers the ability to aggregate commonly used functions in libraries, which can
be shared between CMs. Functions can be registered with the Event Manager
and are called when a chosen datum changes its value. This feature is again one
of the core functionalities of PVSS, because it is the point where data and data
handling logic are joined.

Another feature of Control is the ability to import functions from Windows
Dynamic Link Libraries or Linux Shared Object Libraries into PVSS. This allows
for the creation of light weight drivers, which do not need access to the full
functionality of the PVSS API. This feature was used to access the C++ library
presented in chapter 3 to gain access to the front-end hardware, when the final
communications hardware was not yet available.

A.2.5 User Interface Manager (UIM)

The User Interface Manager is a generic shell from which custom made user
interfaces, so called PVSS panels, can be displayed. These panels can be created
within a graphical editor and are stored as ASCII text files. This allows them to
be easily ported from one operating system platform to another.

The developer can place widgets, representing process information, on the
panels and connect these widgets to functions written in Control. This connection
allows the panels to access process data. A command to a widget on the panel is
sent to the function(s) connected to it. After being processed by the function, it is
forwarded as event to the Event Manager, which forwards it to any manager that
might be interested in it. Similarly, events happening anywhere within the system
can be subscribed by call back functions within the panel which can update the
widgets on the panel.

A.2.6 Distribution of a PVSS system

PVSS distinguishes between two different kinds of distribution: Scattered Sys-
tems and Distributed Systems.

A.2. PVSS AS IMPLEMENTATION OF A SCADA SYSTEM 85

Scattered Systems

A Scattered System is still only a single PVSS system, i.e. one Event Manager.
As mentioned earlier, communication between managers is realised by TCP/IP,
which means they do not have to run all on the same computer. Managers do not
even have to run on the same kind of operating system. As long as a manager
program can be compiled and the core PVSS Application Programming Interface
is available for a certain platform, a manager can run on a completely different
platform than the rest of the system.

Figure A.4 shows an example for a Scattered System.

Figure A.4: It has been determined, that the Linux implementa-
tion of PVSS performs better and faster, than its windows coun-
terpart. Certain drivers, like OPC, or GUI options, like ActiveX,
are only available on windows platforms though. The solution is to
run the core components of the PVSS system (EM, DM, CM) on
a Linux server, while running the OPC driver and User Interface
Manager on Windows machines.

Distributed (single) System

While a scattered system consists only of one PVSS system, a distributed system
is the combination of multiple PVSS systems into a larger unit. Special Distribu-
tion Managers are used to build point to point connections between two systems
via TCP/IP. The Distribution Managers will forward subscription requests to
process variables between the two systems. If one of the subscribed process vari-
able changes, the Event Manager will notify the Distribution Manager which will
forward the change to the other PVSS system.

86 APPENDIX A. PVSS

The important information here is that only subscribed data is exchanged
between the two systems. This can be used to share load and also allows a
kind of encapsulation of information. Figure A.5 shows the ECS scheme for the
Outer Tracker front-end electronics. Two independent PVSS systems are used to
manage the approximately 1100 electronic devices on each side of the detector.
A third system is used as a supervisory system for the two systems connected
to the hardware. If a hardware component on side A changes its state, only the
Event Manager on side A will be notified of the change by the drivers.

If the superior system is interested in that particular component, the Distri-
bution Manager will forward the information to the upper system. On the other
hand, A and C side do not know anything about each other because they are not
directly connected. The Event Manager on side A doesn’t need to concern itself
with events on the C -side, splitting the load on the two systems in half.

Figure A.5: Outer Tracker electronics control scheme. The de-
tector is divided into Cryo (C)-Side and A-Side. Each side controls
three SPECS-Master PCI cards which are connected to approxi-
mately 1100 devices per side. The System has been disconnected
from the rest of the LHCb hierarchy and is connected to a Windows
control PC instead.

A.2. PVSS AS IMPLEMENTATION OF A SCADA SYSTEM 87

A.2.7 Data representation in PVSS

So far only the data processing logic has been presented. This section will deal
with the representation of data objects in PVSS.

PVSS organises its data in so called data points (DPs). A data point is a
concrete instance of a data point type (DPT). Data point types and data points
are very similar to Classes and their instances in Object Oriented Programming.

The reason for this structure is to allow the grouping of process variables into
logical units that belong together. Process variables are saved in so called Data
Point Elements (DPE)s. Data Point Elements can be floats, integers, strings and
other primitive data structures known from common programming languages.

PVSS also allows the use of complete Data Point Types as Data Point Ele-
ments. This can be used to not only group variables together, but also arrange
them in hierarchies for better clarity5.

To revisit the volt meter example from above, a more generalised instrument
could be used to measure voltage, current and phase shift. This instrument
type would be represented by a Data Point Type “Multi Meter” that comprises
the data point elements: voltage, current and phase shift. Each instrument in
the setup, which should be monitored, would then be assigned to a Data Point
instance of the instrument’s Data Point Type.

Finally, each Data Point and Data Point Element can be assigned a so called
config. Configs are used as switches to:

• assign a certain DP to a concrete hardware device via a driver.

• signal that a certain value should be archived and how it should be archived.

• connect them to other variables. I.e. if a variable changes, a function
calculates and updates the value of a different variable.

• set alert limits for variables.

• etc.

5This principle is similar to the concept of “composition” in Object Oriented Design.

88 APPENDIX A. PVSS

Appendix B

Acronyms

API Application Programming Interface

ASDBLR Amplifier Shaper Discriminator with Baseline
Restoration

CERN Conseil Européen de la Recherche Nucléaire

CRack Commissioning Rack

DAQ Data Acquisition

DIM Distributed Information Management System

ECS Experiment Control System

FIFO First-In-First-Out

FSM Finite State Machine

FPGA Field Programmable Gate Array

GOL Giga bit Optical Link

HEP High Energy Physics

JCOP Joint COntrols Project

LEP Large Electron-Positron collider

LHC Large Hadron Collider

LHCb LHC beauty Experiment

LVDS Low Voltage Differential Signal

MEP Multi Event Package

89

90 APPENDIX B. ACRONYMS

MSB Most Significant Bit

NIM Nuclear Instrumentation Module

ODIN Readout Supervisor

OTIS Outer-Tracker Time Information System

PCI Peripheral Component Interconnect

PVSS Prozess Visualisierungs und Steuerungs System

RMS Root Mean Square

SCADA Supervisory Control and Data Acquisition

SCL Serial Clock Line

SCSI Small Computer System Interface

SDA Serial Data

SPECS Serial Protocol for the Experiment Control System

TDC Time to Digital Converter

TELL1 Trigger ELectronics and Level 1

TFC Timing and Fast Control

TTCrx TTC receiver chip

Bibliography

[1] ”‘The LHCb Experiment”’, K.A.Gerorge, on behalf of the LHCb Collabo-
ration,
Czechoslovak Journal of Physics, Vol.53 (2003),Suppl.A

[2] Richard Jacobsson,
“Controlling Electronics Boards with PVSS, ICALEPCS 2005”

[3] Guido Haefeli, Aurelio Bay, Federica Legger, Laurent Locatelli,
Jorgen Christiansen, Dirk Wiedner.
“Specification for a common read out board for LHCb”,
Version 3.0, LHCb 2003-007 IPHE 2003-02 September 2, 2003

[4] Albert Zwart,
“Control-Box for the Outer Tracker Detector”,
Version 2

[5] Dominique Breton, Daniel Charlet,
“SPECS: the Serial Protocol for the Experiment Control System of LHCb”
Version 2.0, LHCb DAQ 2003-004

[6] P. Moreira, T. Toifl, A. Kluge, G. Cervelli, A. Marchioro, and J. Chris-
tiansen
”GOL Reference Manual, Gigabit Optical Link Transmitter manual”,
CERN - EP/MIC, Geneva Switzerland March 2001 Version 0.1.

[7] Dirk Wieder,
“Aufbau der Ausleseelektronik für das äußere Spurkammersystem des
LHCb-Detektors”

[8] Jan Knopf,
“Aufbau eines Auslesesystems
für die Äußeren Spurkammern
des LHCb-Detektors”,
Physikalisches Institut Heidelberg 2004

[9] Ralf Muckerheide, “Entwicklung eines Serientests für den TDC-Auslesechip
der LHCb Spurkammern”

91

92 BIBLIOGRAPHY

[10] Philips Semiconducters,
“The I2C-bus specification”,
version 2.1, January 2000

[11] Richard Herveille,
“I2C-Master Core Specification Rev 0.9, www.opencores.org”

[12] Richard Herveille,
“WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores”

[13] Altera Corporation.
“Stratix PCI Developement Board Data Sheet”,
Version 2.0, September 2003

[14] Altera Corporation.
“PCI Compiler Users Guide”

[15] Stuart A. Boyer,
“SCADA: Supervisory Control and Data Acquisition”

[16] http://itcobe.web.cern.ch/itcobe/Services/Pvss/whatAreScadaAndPvss.html

[17] JCOP Architeture Group,
“JCOP Glossary”

[18] http://dim.web.cern.ch/dim/dim intro.html

[19] Z. Guzik and Richard Jacobsson,
“LHCb Readout Supervisor ’ODIN’ - Technical reference”

[20] Harald Deppe, Uwe Stange , Ulrich Trunk, Ulrich Uwer
Physikalisches Institut University at Heidelberg
“The OTIS Reference Manual”,
Version 1.1 , 02.02.2004.

[21] Jorgen Christiansen et al.,
“TTCrx Reference Manual,
A Timing, Trigger and Control Receiver ASIC for LHC Detectors”

[22] U. Uwer, A. Zwart
“Test Pulse System for the LHCb Outer Tracker Detector”

[23] Study of the Global performance of an LHCb OT Front-End Electronics
Prototype, LHCB-2004-120

BIBLIOGRAPHY 93

[24] Noise Studies with the LHCb Outer Tracker ASDBLR Board, LHCB-2004-
117

[25] Signal Output Uniformity of the ASDBLR - Nikhef March 31, 2005

94 BIBLIOGRAPHY

Danksagung

An dieser Stelle möchte Ich meinen Dank gegenüber den Personen zum Ausdruck
bringen, die zum gelingen dieser Arbeit beigetragen haben.

An erster Stelle gebührt mein ausdrücklicher Dank Herrn Professor Ulrich
Uwer für die Möglichkeit, diese Arbeit durchzuführen, sowie für die gute Betreu-
ung und geleisteten Hilfestellungen.

Ganz besonderer Dank gilt Jan Knopf und Dirk Wiedner, die mir bei allen
Fragen und Problemen mit Soft- und Hardware immer kompetente Hilfe geleistet
haben und daß sie mir die zahlreichen 17 Bit Erlebnisse die Ich im Laufe der Zeit
verursacht habe nicht übel genommen haben.

Desweiteren möchte Ich mich bei Clara Gaspar für die Unterstützung in
Sachen PVSS und SPECS bedanken. Möge sie mir die vielen Bugreports und
Feature Requests verzeihen.

Weiterhin möchte Ich mich bei allen Mitgliedern der HE Gruppe für die gute
Laune und die zahlreichen Süßigkeiten bedanken.

Mein Dank gilt auch den Kollegen vom NIKHEF in Amsterdam, am CERN
und an der Universität Dortmund.

Bedanken möchte Ich mich auch bei den Korrekturlesern, Gregor Seidel, Manuel
Schiller, Joshua Fisher, Marc Deissenroth und Johannes Albrecht

Ganz besonderer Dank gebührt Kerstin Bauer, die mir vor allem in der letzten
Phase der Arbeit beigestanden und mich immer unterstützt hat, vielen Dank.

Zu guter Letzt möchte Ich meinen Eltern Sonja und Hans Schwemmer danken,
die immer an mich geglaubt und mir dieses Studium ermöglicht haben.

Heidelberg den 20.3.2007

95

96 BIBLIOGRAPHY

Erklärung

Ich versichere, dass ich diese Arbeit selbständig verfaßt und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 20. März 2007

	Introduction
	LHC
	LHCb
	LHCb Outer Tracker

	Readout and Control electronics
	LHCb DAQ and Slow Control System
	DAQ! and Fast Control
	Slow Control system

	Outer Tracker readout and Slow Control
	Outer Tracker DAQ! components
	Outer Tracker Slow Control distribution

	Mass production test
	Setup for the GOL/AUX board test
	Slow control for the front-end electronics
	Specifications for the test
	Differential I2C connection

	Implementation of the I2C system
	I2C standard
	Special considerations toward differential I2C
	I2C interface design
	I2C-Master Core
	Input Control
	I2C Control Block
	Output Control
	Implementation tools
	Simulation and test
	Interface software

	GOL/AUX test using the I2C interface
	Determining the influence of I2C traffic

	Outer Tracker Slow Control system
	JCOP! framework
	FSM! tool
	DIM!
	Configuration Database

	SPECS!
	Control scheme of the Outer Tracker
	FSM Hierarchy and Objects
	Control Hierarchy
	Control FSM! Objects

	Graphical User Interfaces
	Performance measurements
	Conclusion

	OT commissioning results
	The Mini-DAQ system
	Test of the Mini-DAQ system
	Noise Measurements
	Test pulse system
	Channel sensitivity divergence
	ASDBLR Asymmetry

	OTIS timing properties
	OTIS linearity
	Long-term stability
	Test pulse and TDC resolution

	Conclusion
	PVSS
	SCADA! Systems
	SCADA! tasks
	SCADA! architecture

	PVSS! as implementation of a SCADA! system
	PVSS! Manager Concept
	Event Manager (EM)
	Database Manager (DM)
	Control manager (CM)
	User Interface Manager (UIM)
	Distribution of a PVSS! system
	Data representation in PVSS!

	Acronyms

