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Abstract

In this thesis we have reconstructed and studied the weak decays Ω− → Λ(pπ−)K− and
Ω+ → Λ̄(p̄π+)K+ of theΩ hyperons produced inRun 2 pp collisions at the centre-of-mass
energy

√
s = 13TeV.Wehave analysed thewholeRun 2 pp data samplewith selected 1.7·109

minimum bias events. We have observed that the hyperons gain an artificial positive offset to
their mean invariant mass values when the corresponding daughter particles are handled as
primary tracks by the standard Kalman tracking algorithm. The artificial mass offsets were
estimated for the Λ − Λ̄ and Ω± baryons. Their measured values are+292± 7 keV/c2 and
+195±5 keV/c2, respectively. We havemanaged to lower the invariantmass shifts by a factor
of two, i.e. 147± 10 keV/c2 and 98± 7 keV/c2 for the Λ and Ω hyperons, respectively. This
was done by re-tracking the secondary tracks with a right hypothesis of their origin being
the position of the secondary vertex. The invariant mass of 101452 Ω− and 104469 Ω+

baryons was determined in themomentum range 2 < pT < 6GeV/c with an unprecedented
precisionM(Ω−) = 1672.5364+0

−0.0500 ± (0.0061)stat ± (0.0049)syst MeV/c2 ( χ2red = 1.03 )
andM(Ω+

) = 1672.5439+0
−0.0500 ± (0.0060)stat ± (0.0100)syst MeV/c2 ( χ2red = 1.24 ). This

allowed us to perform the most precise test of CPT symmetry invariance in the Ω system
of Δ M/M= (−4.48+1.13

−0 ± 8.41) · 10−6 which is about a factor ten more precise than the
current world average value. Our result is consistent with CPT symmetry conservation.
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Zusammenfassung

In dieser Arbeit haben wir die schwachen Zerfälle Ω− → Λ(pπ−)K− und Ω+ → Λ̄(p̄π+)K+

rekonstruiert und untersucht. Dafür haben wir den kompletten Datensatz, welcher während des
LHCRun2 für Proton-ProtonKollision bei einer Schwerpunktsenergie von

√
s = 13TeVgesammelt

wurde, analysiert. Der Datensatz besteht aus 1.7 · 109 MB Events. Für den rekonstruierten Daten-
satz aus 101452 Ω− und 104469 Ω+ im Impulsbereich 2 < pT < 6 GeV/c haben wir beobachtet,
dass der KalmanAlgorithmus die Energien vonΩTöchterteilchen drastisch überschätzte, wenn diese
als primäre Teilchen angenommen wurden. Dies resultierte in eine positive Massenverschiebung von
+292± 7 keV/c2 bzw. +195± 5 keV/c2 für die rekonstruiertenMassen von Λ bzw. ΩTeilchen. Wir
haben geschafft, die Massenverschiebung zu minimieren, indem die Töchterteilchen mit einer richti-
genAnnahmeder sekundärenTeilchen”re-trackt”wurden. DieneuenWertebetragen 147±10keV/c2

bzw. 98±7 keV/c2 für die Λ bzw. ΩBaryonen. Die invarianteMasse vonΩ± Teilchenwurdemit der
höchsten Präzision bestimmt. Unser Ergebnis lautet M(Ω−) = 1672.5364+0

−0.0500 ± (0.0061)stat ±
(0.0049)syst MeV/c2 ( χ2red = 1.03 ) undM(Ω+

) = 1672.5439+0
−0.0500 ± (0.0060)stat ± (0.0100)syst

MeV/c2 ( χ2red = 1.24 ). Dies ermöglichte, einen präzisen Test der CPT-Invarianz mit Ω Teilchen
durchzuführen, Δ M/M= (−4.48+1.13

−0 ± 8.41) · 10−6. Das Ergebnis ist in Übereinstimmung mit
der CPT-Invarianz.

4



Contents

Abstract 3

1 Introduction 9

2 Discrete transformations
& symmetry violation 12
2.1 Discrete symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 CPT - exact symmetry of nature? . . . . . . . . . . . . . . . . . . . . . . 16

3 ALICE Detector System 20
3.1 Inner Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Time Projection Chamber . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Event and track selection 28
4.1 Data sets and event selection . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Track selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Cascade reconstruction 33
5.1 General cascade finding with ALICE . . . . . . . . . . . . . . . . . . . . 35
5.2 Reconstruction in Run II . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Topological selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Analysis 45

7 Systematics studies 58
7.1 Systematics in different periods . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Variation of track and topology selection . . . . . . . . . . . . . . . . . . 63

5



7.3 Λ mass dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.5 TPC related systematic studies . . . . . . . . . . . . . . . . . . . . . . . 70

8 Results and outlook 80

Appendix A Discrete Symmetries 83

Appendix B Event properties 85

Appendix C On covariance and correlation factors 87

Appendix D Λ mass dependence of the Ω mass spectrum 90

References 92

Acknowledgments 98

6





Listing of figures

1.1 Ω± signal measured by Chan et al. (1998) . . . . . . . . . . . . . . . . . 10

2.1 Overview of CPT test results performed for known systems using the com-
parison of measured masses for particles and their counterparts. For visibil-
ity some of the displayed error-bars have been enlarged by factors given in
brackets under the corresponding particle’s name. The central values were
not scaled. Data taken from (Tanabashi et al., 2018; Adam et al., 2015). . . 19

3.1 Overview of the ALICE detector system, Botta (2017) . . . . . . . . . . . 21
3.2 Layout of the Inner Tracking System, figure from Aamodt et al. (2010) . . 22
3.3 Properties of ITS (Contin, 2012). . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Sketch of the TPC field cage and principle of particle tracking . . . . . . . 24
3.5 Averagemomentumresolution for the selecteddaughter tracks coming from

cascade decay. The species types stand for corresponding particle hypoth-
esis: p - positive daughter of V0, π - negative daughter of V0, K - bachelor
track of the cascade. A similar definition is implemented for the anti-particles. 25

3.6 Themeasured specific energy loss dE/dx is depicted as a function of particle
momentum for various particle types. The solid lines show the theoretically
expected energy loss curves. The figure is taken from ALICE (2015). . . . 26

4.1 Distribution of spatial positions of the primary interaction vertex for se-
lected events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Schematic overview of PID capabilities of ALICE. . . . . . . . . . . . . . 34
5.2 Schematic visualisation of the topology in the V0 and cascade decays. . . . 35

6



5.3 Visualisation of topological properties which were corrected manually in
the Run 2 hyperon reconstruction. . . . . . . . . . . . . . . . . . . . . . 37

5.4 Schematic sketch of the estimation of the distance of closest approach be-
tween a charged particle’s track in a magnetic field and the primary vertex. . 38

5.5 Schematic decay of a particle into two daughter tracks (blue dotted lines)
is sketched. The momentum of the mother particle is p⃗ and the distance
D⃗ from the coordinate origin. The reconstructed position of the primary
vertex on an event-by-event basis is given by the vector D⃗PV. Note: the track
does not have to originate from the primary vertex. . . . . . . . . . . . . . 41

5.6 Cascade rejection. Invariant mass spectra of the Ξ/Ω particles . . . . . . . 43

6.1 Invariant mass spectrum of the Ω hyperons depicted for a selected pT-bin. . 47
6.2 Mean mass distribution of the Ω hyperons as a function of the transverse

momentum pT. The results are obtained for the initial Ω sample. . . . . . . 49
6.3 Mean mass distribution of the daughter Λ hyperons as a function of the

transverse momentum pT. The daughter particles are handled as primaries
by the Kalman tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Mean mass of the combined Λ and Λ̄ spectrum as function of transverse
momentum shown for different radial distances of the secondary Λ position. 51

6.5 Sketch of the energy correction procedure performed for the daughter tracks. 52
6.6 Studies of the energy loss correction dE in dependence on the particle mo-

mentum and pseudo-rapidity . . . . . . . . . . . . . . . . . . . . . . . . 53
6.7 The average energy loss ⟨dE⟩ as a two-dimensional function of the particle

momentum and the position of the secondary vertex. . . . . . . . . . . . 54
6.8 Energy corrected mean mass distribution of the daughter Λ hyperons. . . . 55
6.9 Width of themass peak σ, described by the Gaussian distribution, as a func-

tion of the particle momentum. The case when no energy loss correction is
done on the secondaries is compared to the case when the energy correction
is applied on the secondary particles. The analysed Λ hyperons are daugh-
ters of the Ω baryons. Hence, they (Λ) decay at larger radii than the mother
particle. This leads to a larger correction of the width of themass distribution. 56

6.10 Energy loss corrected mean mass distribution of the Ω± baryons as a func-
tion of the transverse momentum. . . . . . . . . . . . . . . . . . . . . . . 57

7.1 Plateau analysis for each data sample collected for each data taking period. . 62

7



7.2 Distribution of systematic uncertainty σ⟨Δμ⟩ obtained in themass analysis of
the Ω hyperons obtained on different data sub-samples using the variation
of topological cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Invariant mean mass spectra of the Ω baryons as a function of pT. Two dif-
ferent methods were used for the mass computation. The dark blue squares
represent the Ω mass values which were calculated using the world average
mass value of the Λ baryon. The light blue squares denote the reconstructed
Ωmass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Systematic studies of the Ω mass spectrum. . . . . . . . . . . . . . . . . . 66
7.5 Meanmass spectrumof theΩ+ particle as a function of themomentum pT,

plotted for two different magnetic field polarities. . . . . . . . . . . . . . . 69
7.6 Systematic studies of the Ω invariant mass dependence on the quality of

the PIDwith the TPC. The red arrow indicate the central cut value used for
the analysis. Every measurement is compared to the proper superset with
nσ(dE/dx < 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.7 Systematic studies of the Ω invariant mass dependence on the threshold
number of reconstructed track clusters inside the TPCNcls. The red arrow
indicate the cut value put on the allowed number of TPC clusters used in
the analysis. Each measurement is compared to that withNcls > 70. . . . . 73

7.8 Systematic studies of the Ω invariant mass dependence on the threshold ra-
tio of the number of reconstructed track clusters to the number of findable
clusters Ncls/Nfindable. Red arrow indicate the minimum allowed value of
Ncls/Nfindablewhichwasused in the analysis. Eachmeasurement is compared
to that withNcls/Nfindable > 70. The green vertical line atNcls/Nfindable =

90 shows where the discrepance between real data andMC becomes signif-
icant. See text for more detail. . . . . . . . . . . . . . . . . . . . . . . . . 74

7.9 Invariant mass spectrum of the Ω± hyperons for different cuts of the Ξ mass. 75
7.10 Distribution of themeanmass deviations (upper panels) and the computed

systematic uncertainty as a function of the width of the Ξ-mass rejection
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.11 Distribution of the systematic uncertainty due to cascade rejection. . . . . . 77

8



C.1 (a) General subsets with a non vanishing intersection U. (b) Independent
subsets. This can the case when studying sets dependent on different B field
polarities, different TPC counting gas etc.(c)Case of inclusion. This case is
studied by Barlow (2002). . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9



List of Tables

1.1 Properties of HyperCP and ALICE Ωmeasurements . . . . . . . . . . . 11

2.1 Summary of CPT tests performed in the strange particle sector. The value
marked with an asterisk stands for an estimate, Tanabashi et al. (2018). . . . 19

4.1 Track selection and analysis cuts . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Some properties for cascades and V0 particles. The shown decay channel
depicts daughter particles which are reconstructed in this analysis. . . . . . 42

5.2 Topological selection used during the pre-selection routine and in the anal-
ysis. The flag anymeans that no cut was done on a topological variable. . . 44

7.1 Values of topological cuts used for the analysis (central) and for the topolog-
ical variations. The latter are shown in the right two columns. Variables are
varied within a given value range in equidistant steps. Each value is chosen
randomly (flat distribution). The units of variables in each row are shown
in the left column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Data sub-samples split to account for the magnetic field. . . . . . . . . . . 68
7.3 Results obtained in the analysis of the energy rescaled Ω sample invariant

mass dependence on the polarity of the magnetic field. . . . . . . . . . . . 68
7.4 Data sub-samples split to account for the TPC counting gas composition. . 70
7.5 Results obtained in the analysis of the energy corrected Ω sample invariant

mass dependence on the TPC gas composition. . . . . . . . . . . . . . . . 70
7.6 Signal yields of the Ω± baryons for different mass window with of the Ξ

mass used for the cascade rejection. . . . . . . . . . . . . . . . . . . . . . 75

10



Page 8 of 99

7.7 Meanmass of theΩ± candidates in dependence on the radial decay position
of the daughter Λ baryon. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.8 Meanmass of theΩ± candidates in dependence of the radial decay position
of the mother Ω baryon. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1 Summary of the statistical and systematic uncertainties of theΩ± mass values. 81

A.1 Summary of action of discrete (inversion) symmetry operators: parity (P),
charge conjugation (C), time-reversal (T) and its combination, CPT, on dif-
ferent observables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.1 Periods’ and event information . . . . . . . . . . . . . . . . . . . . . . . 86

8





1
Introduction

The central objective of this work is the study of the decay Ω → ΛK → (pπ)K. The
Ω hyperon is a special particle in the particle zoo of the Standard Model. Its discovery by
Barnes et al. (1964) from a single event at the Brookhaven National Laboratory completed
the SU(3) classification scheme of hadrons introduced independently by Gell-Mann (1961),
Ne’eman (1961) and Zweig (1964). According to the theoretical predictions, the Ω baryon
is a ground state (JP = 3

2
+) of the baryon decuplet with strangeness S = −3, hypercharge

Y = −2 and a mass of∼ 1.672 GeV/c2. The discovery in turn justified the theory that not
only are the strongly interacting particles composite of elementary quarks but also that the
strange quark exists!

Since then the properties of theΩbaryonwere extensively studied by various experiments.
The biggest contribution to the estimation of parity (Lu et al., 2005) and CP violation (Lu
et al., 2006) inΩ decays was done by theHyperCP (E871) Collaboration at Fermilab, whose
initial goal was to studyCP violation in hyperon decays. TheHyperCP experiment collected
the largest hyperon samples during the runs in the years 1997 and 1999: 2.5billions ofΞ− and
Ξ̄+ events and∼ 10million of Ω− and Ω̄+ decays (White, 2001; Burnstein et al., 2005). For
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(a) Relaঞve momentum resoluঞon (b)Ω invariant mass signal

Figure 1.1: Ω± signal measured by Chan et al. (1998)

nearly 40 years the value of the Ω spin could not be determined experimentally because the
production mechanisms of the hyperon have not been clearly understood. Only the recent
study of exclusive decays Ω0

c → Ω−π+ and Ξ0
c → Ω−K+ by Aubert et al. (2006) shows

consistency with SΩ = 3
2 .

TheALICE andCMSExperiments at LHC,CERN, have analysed the yields of hyperons
(among themΩ) with a goal to study the strangeness productionmechanisms and collective
motion (such as elliptic flow) in heavy ion collisions (Sirunyan et al., 2020; Acharya et al.,
2020). The Ω baryon has been studied neither with LHCb nor with the ATLAS Experi-
ments. Hence, no precision measurements of intrinsic Ω± properties have ever been done
with LHC.

In this work we want to perform a CPT test by precisely measuring the hyperon mass. So
far the only CPT test via the measurement of Ω− − Ω+ mass difference was performed by
Chan et al. (1998) with the result ΔMΩ/MΩ = (1.44 ± 7.98) × 10−5. This result was
obtained in a fixed target experiment (p+ Be → Ω + X, Ep = 800 GeV) at Fermilab (E756
Collaboration), whose initial aim was to measure the Ω± magnetic moment and produc-
tion polarization of hyperons. The Ω−(Ω+) analysis sample consisted of 6323(2607) can-
didate events in a momentum range 250− 450GeV. The production of Ω̄+ was suppressed
by a non-vanishing strange baryon-chemical potential μS ≈ 420√sNN (GeV) MeV. Indeed, with
√sNN ≈ 40 GeV one can roughly estimate the suppression factor Ω̄+

Ω− = exp(− 6μS
T ) ≈ 0.6

with T ≈ 160MeV (Aggarwal et al., 2011; Gao et al., 2018). Moreover, particle and anti-
particle events were selected when applying opposite polarisations of magnetic field.
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Although, ALICE and HyperCP have nearly the same resolutions in invariant mass re-
construction (σΩ = 2.3MeV/c2), ALICE enables a CPT test in a high energy regime with
a vanishing baryo-chemical potential μ = 0. This implies that spectra of produced particle
and anti-particles have the same properties. Moreover, Ω− and Ω+ events are produced in
the same collision. This provides an important systematic check, as the analysis is performed
under same conditions. The momenta of the production yields are lower than at HyperCP
which allows one to test CPT symmetry in a different part of the parameter space.

In this analysis we study central proton-proton collisions at
√
s = 13 TeV. Although, the

strangeness yields are reduced in comparison to heavy-ion collisions (Hamieh et al., 2000),
the lower final state multiplicity allows for a cleaner tracking environment and an enhanced
signal-to-background ratio when compared to the p-Pb or Pb-Pb collisions.

Some properties of the HyperCP and ALICE experiments are summarised in table 1.1.

Variable HyperCP E756 ALICE
Collision system p+ Be p+ p
Type of collisions fixed target, Ep = 800GeV central

√
s = 13TeV

Ωmomentum range 250− 450 GeV 0.6− 6.0 GeV
Number of Ω± events ∼ 9 · 103 ∼ 5 · 105
Yield ratio Ω̄+

/Ω− ∼ 0.4 ∼ 1.0
Magnetic field 2.1 T 0.5T ( and 0.2T)
Resolution, σΩ ∼ 2.3MeV/c2 ∼ 2.3MeV/c2

Table 1.1: Properঞes of HyperCP and ALICEΩ measurements

This thesis is structured as follows. Chapter 2 gives a brief theoretical overview of discrete
symmetries: parity (P), charge conjugation (C) and time reversal (T).Consequently, theCPT
symmetry, its possible observables and fundamental tests are discussed with pecial emphasis
on the system Ω → Λ(pπ)K analysed with ALICE. Chapter 3 outlines the ALICE detec-
tor system with a highlight on the Inner Tracking System and Time Projection Chamber,
which perform the tracking reconstruction and particle identification. Event and tracking
reconstruction are described in chapter 4. Chapter 5 deals with the topological selection of
Λ and Ω particles in detail. The central cut values on topological variables are summarised
therein. The strategy and performance of the analysis is the central topic of chapter 6. Chap-
ter 7 is dedicated to the description of related systematic uncertainties. A summary is given
in chapter 8.
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2
Discrete transformations

& symmetry violation

It ishardtounderestimate the rolewhich symmetries play in physics and, especially, in
particle physics. The study of symmetries has been the driving force in building up the Stan-
dard Model (SM). Besides the Lorentz covariance (energy-momentum conservation) and
global gauge invariance of the electromagnetic field (charge conservation), a few examples
are:

• The unification of electromagnetic and weak interactions incorporated in the Yang-
Mills fieldwith theunderlying electroweak symmetry groupUY(1)×SUL(2) (Glashow,
1961; Salam & Ward, 1964). This predicted the existence of the Z boson and the
strength of weak couplings. The spontaneous breaking of electroweak symmetry by
the Higgs mechanism gives rise to the mass of bosonsW±,Z and photons.

• Spontaneous breaking of theQCD chiral symmetry justifies the existence of three low
mass pions (Gell-Mann et al., 1968)

12
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• global SU(3) symmetry of QCD introduces structure into the zoo of strongly inter-
acting particles, grouping them into octets and decuplets, as well as predicting the ex-
istence of gluons (Gell-Mann, 1961; Berger et al., 1979).

• Spontaneous breaking of the vacuumgives rise to theHiggsmechanism (Higgs, 1964).

This chapter is dedicated to the three kinds of discrete symmetries: parity (P), charge con-
jugation (C), time reversal (T), as well as their combinations CP andCPT symmetries. Since
a vast amount of literature is dedicated to C, P and T symmetries, the focus of this chapter
is mainly on experimental aspects of discrete symmetries with emphasis on the weak decay
Ω → Λ(pπ)K. The Appendix A provides a brief theoretical overview.
The chapter is built up as following: section 2.1 concentrates on theP,C andT symmetries

and highlights the current results obtained in P, C and CP symmetry violation tests in the
Ω system. Section 2.2 is dedicated to the CPT symmetry, possible consequences of CPT
breaking are discussed. Consequently, a few possible CPT observables and test possibilities
are described. Particular emphasis is given to the strange particle sector. The current CPT
tests for stange particles are briefly discussed.

2.1 Discrete symmetries

Discrete symmetries are very special among other kinds of symmetries and are represented by
unitary transformationsU, i.e. U†U=UU†= 1, which in turn canbe linear or anti-linear due
to Wigner’s theorem (Wigner, 1959). Mathematically, the anti-linearity simply means that
all scalar factors are complex-conjugated under the corresponding transformation. Parity and
charge conjugation are described by linear operators, whereas the time-reversal - by the anti-
linear operator. The property of (anti-)linearity is deeply connected to a transformation itself
and cannot be chosen by hand (Sozzi, 2018).

The outlined transformations are also called inversions, as they return a given system back
to itself when applied twice, i.e. U2 = 1. For a quantum field φi this implies:

U†φi(x)U = ηUSijφj(x
′), (2.1)

where Sij is a matrix which acts on the fields φi and depends solely on the structure of the
fields. The factor ηU represents a bridge between theory and experiment: if a transforma-
tion U is a valid symmetry of a system described by a HamiltonianH, then [U,H] = 0 and
|ηU|

2 = 1; for eigenstates of U the latter property implies that only values ηU = ±1 are

13
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allowed. This gives rise to selection rules of transitions between states, which subsequently
can be tested in experiments. If a state is not an eigenstate then there is no general procedure.
Importantly, there is no analogue of the Noether theorem for discrete symmetries. This im-
plies that there can be no conserved quantities, even if a discrete symmetry holds in a given
system. (Sozzi, 2018).

Since the pioneering work byWu et al. (1957) various experiments have showed that C, P,
T as well as CP symmetries are broken in weak interactions only. It is appealing to search for
a possible violation of CPT symmetry in a weakly interacting system.

2.1.1 Parity symmetry

The action of the parity P operator is an inversion of spatial coordinates x⃗ → −x⃗. Any state is
transformed as P |⃗p, s, q⟩ = ηP |−p⃗, s, q⟩. For around 60 years it has been known that parity
is maximally violated by the weak interactions (Wu et al., 1957; Garwin et al., 1957). The
origin of violation is the V-A nature of the weak coupling. The weak decays Ω → ΛK with
consequent Λ → pπ are no exceptions. The P violation in these systems ismeasured in terms
of the asymmetry decay parameter α, which manifests itself as an anisotropy of the angular
distribution of the daughter proton in rest frame of daughter the Λ hyperon (Chen et al.,
2005; Lu et al., 2006; Ablikim et al., 2019)

dΓ
dΩ

∼ 1+ αΩαΛ cosΘ, (2.2)

where αΩ ∼ Re(P∗D) is a measure of the interference between P- and D-wave state ampli-
tudes, i.e. JP = 1− and JP = 2+, respectively. Analogously, one defines αΛ ∼ Re(S∗P)
with the S-wave state JP = 0+. The combined result αΩ = (1.80 ± 0.24) · 10−2 by Chen
et al. (2005) and Lu et al. (2006) confirms that parity is indeed violated in theΩ golden decay
channel.

2.1.2 Charge conjugation and CP symmetry

In quantum theory the charge conjugation operator C is defined by its action on the charge
operator Q, Q → QC = C†QC = −Q. The operator Q describes not only electric charge,
but also any internal charge (i.e. baryonnumber). The actionofCona statewithmomentum
p⃗, spin s and charge q is given by C |⃗p, s, q⟩ = ηC |⃗p, s,−q⟩.
The charge conjugation symmetryhasbeen tested tobe conserved in electromagnetic (Mills
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& Berko, 1967) and strong interactions (Pais, 1959; Dobrzynski et al., 1966) where it man-
ifests itself in various selection rules (Furry, 1937; Pais & Jost, 1952). On the contrary, this
symmetry is maximally violated in the weak interactions in a similar way to P symmetry. As
a consequence, one would not expect particles and anti-particles to have the same properties
solely on the grounds of C symmetry.

Practically, an experimental study of C violation implies a measurement of the phase ηC,
which can take values ±1 only in case of C eigenstates, e.g. photons. None of the involved
particles in this analysis is a C eigenstate. For these particles the number ηC is unphysical, its
value is free of choice and consequently it cannot bemeasured. In principle, the C symmetry
canbe tested indirectly. However, wewouldneed to prepare particle and anti-particle systems
in a way that all their initial quantum numbers are known in detail. This would be very
challenging for ALICE.

Instead of measuring C symmetry separately, one usually studies the combined CP sym-
metry. For hyperon decays, a standard procedure is to compare the decay parameters of
a particle α and its counterpart ᾱ. If CP is a valid symmetry, the partial decay widths of
Ω− → Λ(pπ−)K− and Ω+ → Λ̄(p̄π+)K+ must be equal and the relation must hold
α = −ᾱ (Pais, 1959). With unprecedented precision, CP symmetry is measured in the Ω±

system by Chen et al. (2005) and Lu et al. (2006)

αΩ− + ᾱΩ+

αΩ− − ᾱΩ+

= −0.016± 0.092(stat)± 0.089(syst) (2.3)

which indirectly proves that C symmetry is violated in Ω decays.
The action of theCPToperatormay be decomposed as an action ofCPwith a subsequent

action of the time-reversal operator T. Since CP symmetry is experimentally shown to hold
for Ω decay, one could try to prove T-violation (or conservation), which in turn wouldmean
violation (or conservation) of the combined CPT symmetry.

2.1.3 Time reversal

Operation of time reversal on a given system formally means the inversion of time t → − t.
Formicroscopic systemsdescribedby lawsofquantummechanics, one introduces theWigner
time reversal operator T. In comparison to P and C operators the time reversal T is anti-
unitary, i.e. unitary and anti-linear. Mathematically, anti-unitarity means a combination of
time inversion and charge conjugation i → −i, i.e. it → it, which preserves non-negativity
of energy eigenvalues. Experimentally, the anti-unitarity of the T operator is a complication.
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It can be shown that the scattering matrix S transforms as S → ST = T†ST = S−1 (Sozzi,
2018). Generally, S−1 ̸= S and hence [S,T] ̸= 0. The latter implies that even if time reversal
symmetry is valid, there are no conserved quantum numbers related to it. Moreover, it has
been theoretically proven that there are no vanishing observables if T symmetry holds, i.e. no
null experiment can be done (Arash et al., 1985).

If one tries to test T symmetry separately, one usually has two options at hand.
The first possibility would be to study the electric dipole moment (EDM) of the Ω

baryon which violates both P and T (Khriplovich & Lamoreaux, 1997). This would not be
an option for ALICE, since EDM searches demand the detailed and controlled knowledge
of the polarisation state of the studied system (Crivellin et al., 2018; Abel et al., 2020).

Another option would be a measurement of T-odd variables. If T symmetry is valid,
then the Hamiltonian which describes the system cannot depend upon any of the terms:
S1 · (S2 × S3), p · (S1 × S2), p1 · (p2 · p3) etc. Here Si and pi denote spins and momenta of
mother and daughter particles. Although it is possible to infer the longitudinal polarisation
of daughter Λ hyperons, we have no knowledge about the spin orientation of Ω baryons.
One could try to construct the T-odd variable exclusively out of momenta of involved par-
ticles. However, it would also result in an experimental complication since the presence of
the final state interactions between daughter hadrons (Λ and K± or p and π±) would affect
the observable T quantity (Sozzi, 2018). One usually studies three-body or rare four-body
decays of weakly interacting particles such asK+ → π0μ+νμ (Hasinoff et al., 2006), μ → eνν̄
(Burkard et al., 1985) orK− → π0e−ν̄eγ (Bolotov et al., 2005).

To conclude, anymeasurement of T symmetry inΩ system is extremely challenging at the
current state. Therefore, one is left with the only option - to focus on a CPT symmetry as a
whole and study the observables related to it.

2.2 CPT - exact symmetry of nature?

A subsequent action of the three symmetry operators C, P and T (in any order) results in
a CPT transformation. This transformation links charge conjugation, spin statistics and
Lorentz covariance (Lueders, 1954). The corresponding CPT theorem states that CPT is
the exact symmetry of nature and puts the following constraints on any quantum field the-
ory (QFT) Sozzi (2018):

• the LangrangianL of the QFT is Hermitian, local and normal-ordered;

• L preserves Lorentz symmetry;

16



2.2. CPT - EXACT SYMMETRY OFNATURE? Page 17 of 99

• L respects the commutation (bosonic fields) and anti-commutation (fermionic fields)
relations.

Generally, it is hard to construct a theory in which CPT symmetry is not conserved au-
tomatically (Sozzi, 2018). However, if CPT is found to be violated in any physical system,
completely new horizons will be opened in physics beyond the Standard model. One of the
main consequences of CPT symmetry violation is shown by Greenberg (2002): if CPT vi-
olation is present in an interacting field theory, then this theory is necessarily not Lorentz
invariant.

There are various ways how one could attempt to include CPT violation in SM. For ex-
ample, one could try to relax any of the assumptions listed above (Lehnert, 2016). Hawking
(1976) points out that a possible breakdown of CPT symmetry may happen if gravitational
effects modify laws of quantummechanics. Current theoretical work concentrates onmech-
anisms addressing spontaneous CPT symmetry breaking, e.g. is possible for open bosonic
strings in string theory (Kostelecky, 1998).

2.2.1 Tests of CPT symmetry

CPT symmetry may be tested experimentally. There are various consequences of the CPT
theorem. For instance,

1. even if C symmetry is broken, particles and and their anti-particles must exist;

2. particles and anti-particles have electromagnetic properties equal in magnitude but
opposite in sign (Sozzi, 2018). For practical purposes this motivates the precision tests
of fine- and hyperfine structures, Lamb shifts (both in composite systems), as well as
internal charges and magnetic moments;

3. the masses of stable particles and anti-particles are equal (Lueders & Zumino, 1957).
Stable particles |ψ⟩ and anti-particles |ψ̄⟩ are eigenstates of HamiltonianH. For states
at rest one can write H |ψ⟩ = m(ψ) |ψ⟩ and H |ψ̄⟩ = m(ψ̄) |ψ̄⟩. The action of CPT
operator on a state is CPT |ψ⟩ = ηCPT |ψ̄⟩ with |ηCPT|

2 = 1. If CPT is a symmetry,
then its operator commutes with the Hamiltonian and one obtains:

0 = [CPT,H] |ψ⟩ = ηCPT(m(ψ)−m(ψ̄)) |ψ̄⟩ , (2.4)

which justifies the above statement.
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4. Expectation values of masses and life-times are equal for particles and their charge
counterparts in case those are not stable. The non-relativistic Hamiltonian of decay-
ing particles (at rest) is generally given by H = M − i

2Γ, where the real matricesM
and Γ incorporate information about the mass and life-time, respectively. The expec-
tation value of theHamiltonian for a particle at rest would be ⟨ψ|H |ψ⟩ = λwith λ ∈
C. One therefore investigates expectation values of pole positions ⟨ψ| (H − λ)−1 |ψ⟩.
Lueders & Zumino (1957) show that ⟨ψ| (H− λ)−1 |ψ⟩ = ⟨ψ̄| (H− λ)−1 |ψ̄⟩, where
|ψ̄⟩ = CPT |ψ⟩. The core of derivation is the anti-linearity of CPT transformation
(due to the T operator), λ CPT−−→ λ∗.

This thesis is dedicated to test the CPT theorem on a hadronic system that decays via weak
interaction. For hadrons the number of physical CPT observables is generally limited. This
is mainly due to a lack of control over QCD effects. CPT observables can be introduced
at the quark level as contributions to transition matrix elements (Sozzi, 2018). This can be
viewed as a modification of values of Standard Model parameters. The problem arises when
these modifications need to be transferred to the energy scale of the observed particles. On
this scale QCD effects should be coped with in a non-perturbative regime. This can be done
via lattice calculations. The systematic uncertainties are still too high to detect tiny CPT
violation effects. This is the reason why this work deals only with the mass measurement of
the Ω± particle.

2.2.2 CPT in strange sector

The idea of measuring and comparing masses and/or life-times of a particle and its counter-
part is very simple. Harder is its realisation. How good has it been achieved in the strange
sector so far, i.e. for hadrons with at least one strange valence quark and/or lighter quarks?
Among 87 documented strange hadrons (including strange resonances), existence of only 49
is rather likely or certain (Tanabashi et al., 2018). TheCPT test could be performed to∼ 8%
of the latter - in exact numbers - only to 4 particles. The results are summarised in table 2.1.
TheCPT test based on themassmeasurement has been done only for 13 particles, see fig.2.1.
Generally, CPT symmetry is tested very precisely for systems composite of stable particles

and employs spectroscopic measurements of electromagnetic transitions. For instance, the
CPT test on electrons was done via positronium spectroscopy. Differences between energy
levels of ortho-positronium (23S1) and para-positronium (13S1) were compared with QED
predictions (Fee et al., 1993). The most stringent matter-antimatter symmetry test on pro-
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System Δm/m Δτ/τ
K0 < 6× 10−19 –
Λ (−0.1± 1.1)× 10−5 (−0.001± 0.009)
Ξ (−2.5± 8.7)× 10−5 (−0.01± 0.07)
Ω (−1.44± 7.98)× 10−5 (0.00± 0.05)*

Table 2.1: Summary of CPT tests performed in the strange parঞcle sector. The value marked with an asterisk stands for
an esঞmate, Tanabashi et al. (2018).

Figure 2.1: Overview of CPT test results performed for known systems using the comparison of measured masses for
parঞcles and their counterparts. For visibility some of the displayed error-bars have been enlarged by factors given in
brackets under the corresponding parঞcle’s name. The central values were not scaled. Data taken from (Tanabashi et al.,
2018; Adam et al., 2015).

tons was achieved by measuring the anti-proton to electron mass rationMp̄/me in low en-
ergy single photon transitions of antiprotonic helium p̄He+ ≡ p̄+He+2 + e− (Hori, 2018).
Although strange particles are not stable, the K0 system is exceptional. The study of the
strangeness oscillationsK0 − K̄0 yield the most accurate result ever measured in any physical
system (D’Ambrosio & Isidori, 2006), see table 2.1. For the Ω system the measured ΔM/M
is 14 orders of magnitude less precise than in kaon system. In this work we will try to push
this limit.
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3
ALICEDetector System

ALICE,ALarge IonColliderExperiment, is a unique detector at CERNLHCwhose aim is
to study ultra-relativistic heavy ion collisions (Kuijer, 2003). ALICE is the only experiment
at CERN which is utterly dedicated to deepen our understanding of strongly interacting
matter in extreme conditions of high temperature and/or pressure. Meanwhile, the other 3
LHC experiments also have an active heavy ion (HI) program. The experiment covers a large
physics program (Dainese, 2008). One of the avenues of research is a study of strange parti-
cles, e.g. investigation of intrinsic and collective properties, as well as strangeness production
mechanisms (Kraus, 2009; Vasileiou, 2020). Exploration of strangeness is attractive in itself
because there is no net strangeness in colliding particles, and is directly connected to the topic
of this thesis.

Besides the analysis of nucleus-nucleus (Pb-Pb) collisions the physics program at ALICE
also includes the study of head-onproton-nucleus (p-Pb) andproton-proton (p-p) collisions.
The latter is mostly treated as a reference system in heavy ion physics (Monteno, 2005). The
design centre-of-mass energy of the pp system is

√
s = 14 TeV with the instantaneous lumi-

nosity L = 1030 cm−2s−1. In this work we focus on the study of pp collisions at highest
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achieved energy of
√
s = 13 TeV.

The experimental apparatus has beenbuilt as a general-purpose detector that is able to cope
with the highmultiplicity environment of the producedparticles, i.e. up to 8000particles per
pseudo-rapidity unit. Detectors are surrounded by the L3-Magnet (B=0.2 T or B=0.5 T).
The choice of sub-detectors is motivated to address various physics questions. The detector
overview is depicted in Fig. 3.1

Figure 3.1: Overview of the ALICE detector system, Bo�a (2017)

The following sections outline the main ALICE detectors which play a crucial role in this
analysis: the Inner Tracking System and the Time Projection Chamber.

3.1 Inner Tracking System

The innermostdetector of the central barrel which is the reached by particles produced
inbeamcollisions is the InnerTrackingSystem (ITS).Thedetaileddesigndescription is given
in Dellacasa et al. (1999). For thorough information about the ITS performance refer to
Contin (2012). In this section the main tasks of ITS are briefly outlined.

The detector consists of cylindrical coaxial semiconductor detectors which form six thin
layers of a totalmaterial budget ofX/X0 ≈ 6%, see Fig. 3.2. ITS employs unique technology
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Figure 3.2: Layout of the Inner Tracking System, figure from Aamodt et al. (2010)

Figure 3.3: Properঞes of ITS (Conঞn, 2012).

of silicon chip detectors and is built up out of two SiliconPixelDetectors (SPD), two Silicon
DriftDetectors (SDD) and Silicon StripDetectors (SSD).

The two innermost SPD layers have the highest granularity (i.e. active area per module
rφ× z) and the highest rφ resolution among other ITS layers. The properties are motivated
by the high particle density environment close to the primary vertex, table 3.3 . High tracking
capability of SPDs is used to estimate both the position of primary interaction vertex and
reconstruct vertices of pile-up events.

The drift detectors (SDD) and strip detectors (SSD) enable tracking with a resolution of
order rφ ∼ 70 μm. Furthermore, the four layers (SDD and SSD) are equiped with analogue
readout that enables identification of low energy particles (p ≤ 100 MeV/c2) via specific
energy loss.
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The utmost important task of ITS for the current work is the ability to reconstruct spatial
positions of secondary vertices of hyperon decays. Moreover, ITS improves the momentum
resolution of high energy tracks initially reconstructed by the Time Projection Chamber.

3.2 Time Projection Chamber

The core of the ALICE system is the Time Projection Chamber (TPC) which is the
main tracking detector (Massimo, 2007). The TPC plays a crucial role in our analysis. In
this sectionmain properties of the TPC are presented. More information about the detector
can be found in Alme (2010) and references therein.
The TPC is a 5 m long hollow cylindrical barrel detector with an inner radius of about

0.8 m and an outer radius - of ∼ 2.5 m. It provides momentum measurement of charged
particles in the range 0.2 − 50 GeV/c and particle identification via the specific energy loss
dE/dx in a full azimuth and a pseudo-rapidity range |η| < 0.9 (Garabatos, 2004).

The TPC is filled with 88 m3 counting gas. In order to provide stable operation, to min-
imize diffusion effect of drifting electrons and to maximize ion mobility, the quenching
gas composition was chosen to be Ne-CO2-N2 in relative proportions 90 : 10 : 5 (in the
year 2017) and Ar(88%) - CO2(12%) (in the years 2016 and 2018).

The TPC forms a field cage, its body is divided into two parts of equal volume by the
central electrode at the position z = 0, where a drift voltage of −100 kV is generated. This
results in a drift field with a value of 400 V/cm along the beam direction, see fig. 3.4a.
When a charged particle enters the active volume of the detector, it loses energy via electro-

magnetic interactionswith bounded electrons of gas atoms. During this process the electrons
are freed, and atoms are ionised. These primary electrons drift along the z-direction with a
constant velocity towards theTPC readout chambers. The latter aremulti-wire proportional
chambers (MWPC) and incorporate cathode pad readout technology, fig. 3.4b.

The moving electrons and positive ions in the gas induce mirror charges on the electrodes
of the pad planes, resulting in positive voltage signals. Amplitudes of such signals would be
of order 50 e−, and it would be impossible to distinguish the signal from the noise (700 e− –
1000 e−). That is why the anode wires are used, in whose vicinity the primary electrons build
up avalanches leading to the amplification (of factor∼ 5000− 6000) of the readout signal.
Usual drifting velocities for primary electrons are of order 3 cm/μs. This results in a fast

rising time of the induced signal. The ions drift 1000 times slower than the electrons. This
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(a) Schemaঞc view of the TPC field cage. The central elec-
trode at−100 kV subdivides the cage into two rooms of
equal volume with maximum dri[ length of 2.5 m. End-
plates are MWPC and enable tracking of charged parঞcles

(b) Schemaঞc representaঞon of the tracking inside TPC. The
primary ionisaঞon electrons are avalanched at the anode
wires and are accumulated at the pad plane.

Figure 3.4: Sketch of the TPC field cage and principle of parঞcle tracking

is the reason for the additional long tail of the order 100 μs in the readout signal. For the
readout signal, the method of truncated mean is used which cuts the ion long tail.

3.2.1 Position and momentummeasurements

A track of a charged particle traversing the TPC volume in a vicinity of magnetic field is de-
scribedby ahelix. Spatial points of this helix are found in the followingway. The z-coordinate
is obtainedby ameasurement of the drifting time of ionisation electrons reaching the readout
chamber with a constant drift velocity vdrift. The coordinate in the x-y-plane is obtained as a
centre-of-gravity of the corresponding charge cluster on the readout pads. The spatial point
resolution depends on various parameters (including gas composition, temperature, geom-
etry of readout and other parameters). An average position resolution achieved by TPC is
of order of 1 − 2 mm. The position resolution deteriorates with increasing drift length in-
side the TPC Ldrift (due to diffusion of electron cloud) and increasing inclination angle λ
(Lippmann, 2012).

The momentum resolution is usually given through the ratio of uncertainty and absolute
value of transversemomentum σpT/pT and is not a constant parameter. The resolution σpT/pT
is defined by the Gluckstern formula and is linearly proportional to pT, pad resolution σpad
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and inversely proportional tomagnetic field B and number of foundTPC clusters, ∼ N−0.5

(Gluckstern, 1963).

Figure 3.5: Average momentum resoluঞon for the selected daughter tracks coming from cascade decay. The species
types stand for corresponding parঞcle hypothesis: p - posiঞve daughter of V0, π - negaঞve daughter of V0,K - bache-
lor track of the cascade. A similar definiঞon is implemented for the anঞ-parঞcles.

Fig. 3.5 shows the average momentum resolution for combined (ITS+TPC) tracking in
Run2 measured for pre-selected daughter candidates of Ω/Ξ decays in pp collisions. The
uncertainties are statistical only. Although tracking inside ITS improves the overall resolu-
tion, the main pT-dependence is still dictated by capabilities of by TPC. It is important to
point out that the resolution deteriorates for low-energy tracks due to multiple scattering,
e.g. σpT

pT
(pT = 0.2GeV/c) ≈ 4− 6%. In a high energy regime, pT > 2GeV/c, the resolution

is the best with values in a range∼ 0.1− 0.2%

3.2.2 Particle identificationwith TPC

Electrically charged particles are identified inside the TPC by the characteristic ionisation
energy loss per unit length dE/dx which is described by the Bethe-Boch formula (Bethe &
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Ashkin, 1953):

Figure 3.6: The measured specific energy loss dE/dx is depicted as a funcঞon of parঞcle momentum for various parঞcle
types. The solid lines show the theoreঞcally expected energy loss curves. The figure is taken from ALICE (2015).

The energy loss depends only on the charge, the velocity of the particle and on physical
properties of the traversed medium. At ALICE one employs an empirical parameterization
of Bethe-Bloch formula given by the ALEPH equation:

F(βγ) =
P1

βP4
(
P2 − βP4 − ln(P3 + (βγ)−P5)

)
, (3.1)

where the parameters Pi depend on temperature, pressure and gas composition in the TPC
(Blum et al., 2008).
Particle identification (PID) becomes possible when one expresses the measured energy

loss signal (i.e. charge accumulated in pad clusters) as a function of particle momentum
p = βγ ·m. The ALICE TPC performance of energy loss measurement is shown in fig.3.6.
One can select species of a certain kind i by evaluating the number of standard deviations niσ
defined as

niσ ≡ niσTPC =
dE
dx

∣∣i
meas −

dE
dx

∣∣i
theo

σiTPC
(3.2)

where dE
dx

∣∣i
meas and

dE
dx

∣∣i
theo are measured and expected energy loss values for a certain particle
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species, σiTPC is the corresponding measured resolution. For this analysis we perform PID by
constraining |nσ| < 4.

The dE/dx resolution for hadronic observables such as protons, kaons, pions and their
anti-particles reaches theoretical limit of∼ 5% and decreases with increasing number of re-
constructed TPC clusters (Lippmann, 2012). The track matching for hadrons is performed
at 85− 95% efficiency level, dependent on the particle transverse momentum.
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4
Event and track selection

4.1 Data sets and event selection

For this work we analyse pp collisions at the centre-of-mass energy
√
s = 13 TeV. The data

was acquired in the second running period (Run2) during the years 2015–2018. The analysis
is performed completely with theEvent SummaryData (ESD), which stores event properties
and full information about tracks.

Our analysis begins with a selection of events. There are around 6.4× 109 recorded events
of pp collisions at a 13 TeV centre-of-mass energy. However, we pre-select only those events
for further analysiswhich surpass the standard selectionput byAliPhysics classAliEventCuts.
The constraints are the following:

1. Trigger: only minimum bias (MB) events are processed. The chosen MB trigger flag
is kINT7, i.e. event information is based on ameasurement with the VZERO counter
(Bhasin et al., 2010). This general purpose trigger has high efficiency for low and high
multiplicity events and stores information about diffractive events, too. Moreover,
events that originate due to beam-gas interactions in the beam pipe are vetoed, i.e.
only real pp-collisions are selected Conrad et al. (2005).
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(a) Posiঞon of z-coordinate of the primary vertex measured
for the period LHC16k. The mulঞ-vertex (MV) pile-up
events consঞtute∼ 5 − 10% fracঞon of the whole event
sample and are discarded in this analysis.

(b) Posiঞon of the primary vertex in the x-y plane as mea-
sured for the period LHC16k with subtracted MV-pile up
events. The lower le[ panel shows the whole measured
sample. The upper right plot depicts the zoomed region
(rectangle in lower panel) with 99.9% of the events

Figure 4.1: Distribuঞon of spaঞal posiঞons of the primary interacঞon vertex for selected events.

2. Vertex position: it is checked whether a vertex spatial position can be reconstructed
for a given event, i.e. if any trackletswere reconstructed by SPDs. In a positive scenario,
the z-coordinate is constrained to the central |z| < 10 cm, see Fig. 5.2a. No cuts are
applied on the vertex position in the x-y plane, see Fig. 5.2b.

3. Vertex properties: the z-coordinate needs to have a low dispersion σZ < 0.25 cm,
where σZ is the fit value of the standarddeviationof the zv distribution. The coordinate
zv is the intersection of the SPD tracklets with the beam axis (Report, 2005).

This procedure abandons nearly 70% ofMB events and nearly 1.7× 109 events may be used
for cascade finding. Among these events, around 10% are multi-vertex (MV) pile-up events.
In this work the MV pile-up events are disregarded.

4.2 Track selection

For each event stored in the ESD, there is an associated saved list of tracks (ESD tracks), aswell
as lists of V0 particles (e.g. Λ andK0

S) that are accessed via the classAliESDV0; and of cascade
candidates (e.g. Ξ± and Ω±) that are stored as objects of the class AliESDcascade. The se-
lected events (as described in previous section 4.1) are processed further by the classAliAnal-
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ysisTaskWeakDecayVertexer which refits the V0 and cascade events, see section 5.2. The refit
candidates are pre-selected by the task AliAnalysisTaskStrangeCascadesDiscrete, which was
written for this analysis and being a part of the AliPhysics library. The output file represents
a collection of event and cascade properties and has a structure of ROOT object TTree. Our
task is basedon the taskAliAnalysisTaskStrangenessVsMultiplicityRun2buthas a nestedout-
put TTree object, where nestedmeans that the basic object of the tree is a pp collision event
with all relevant information. For each event we save the information about the correspod-
ing cascade candidates. Our task demands that at least one cascade candidate (AliESDcascade
object) is stored in the event. Moreover, it imposes additional track and topology based selec-
tions in order to suppress misidentified hyperons. During the cascade pre-selection we used
slightly looser cuts than those for the analysis. Amotivation for this was to enable systematic
studies for a broader parameter space. While the topological cuts are subject of chapter 5, the
track-based selection is presented in this section.

The daughter particles are reconstructed in the central pseudo-rapidity range |η| < 0.8.
This ensures that track lengths of all charged daughter candidates lie inside the TPC active
volume. TheΩ candidates are reconstructed in themid-rapidity region |y| < 0.5. Themini-
mumtransversemomentumof thedaughter trackswas selected tobe at least pT ≥ 150 MeV/c.
No ITS-related cuts were applied in the daughter track pre-selection. However, we store

the ITS information for each track: hits on ITS layers, information about shared clusters
and layer status. For the analysis, the following ITS criteria were applied. If the radial decay
position R in the global coordinate frame of either Λ or Ω candidate lies within the ITS
SPD2 layer,R < 7.6 cm, the corresponding charged daughters need to be refitted inside the
ITS. The ITS-refit is crucial since it improves track momentum and position resolution and
suppresses background. If the radial position of secondary vertices is further away from the
primary vertex than the radius of the SSD2 layer,R > 43.1 cm, then no ITS-refit is required.
Alternatively, a false ITS-refit flag is required to be assigned to that track whose total number
of hits inside the ITSNhits is zero. Charged daughters originating at secondary vertices inside
the first SPD layer, R< 3.9 cm, need to have at least one hit in either of the SPD layers. For
secondaries with R> 3.9 we demand that the total number of hitsNhits is at least one.

It can occur that two tracks have one or more ITS clusters in common. These clusters are
called shared. We select only those secondaries with R< 3.9 that have at least two unshared
clusters. If the secondary decay vertex outside of the SPD2 layer and before the first SSD
layer, the charged track needs to have at least one unshared cluster. When the V0 or cascade
candidate decays radially further away than the SSD1 layer, the corresponding tracks must
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not have any shared clusters.
Furthermore, consistency cuts are implemented inorder todecrease thenumberofmisiden-

tified tracks. If a candidate (Λ orΩ) decays beyond the SPD1 layerR > 3.9 cm, there should
be no hits on this layer fired by corresponding charged daughters. Similarly, hits are found in
neither SPD1 or SPD2 layers if the decay vertex is further away than the SPD2 layerR > 7.6
cm.

All tracks are refitted in theTPC. Secondary trackswith a kink topology, e.g. semi-leptonic
decays of charged kaons or pions, are discarded. The number of reconstructed TPC clus-
ters is kept at least 70 out of possible 159. In the analysis, we used only those tracks with
at least 80 TPC clusters. This cut helps to reject fake tracks and to improve both the mo-
mentum resolution of high energy particles and the dE/dx resolution (Lippmann, 2012; AL-
ICE, 2020). The ratio of reconstructed TPC clusters to findable TPC clusters is kept at least
Ncls/Nfind > 0.6, where the number of the findable clusters is evaluated as a geometrically
possible number of TPC hits for a given track. For the analysis, we tightened this cut up to
Ncls/Nfind > 0.8. Moreover, the track quality was assured by imposing a selection cut on
the TPC tracking χ2/Nclusters < 4. The PID was performed by the TPC only. During the
candidate pre-selection, we constrained the number of dE/dx standard deviations to nσ < 4
for each daughter track. For the analysis, the cut was tightened to nσ < 3. The cuts used for
selection and analysis are summarized in table B.1.

31



4.2. TRACK SELECTION Page 32 of 99

Kinematics Selection Analysis

Pseudorapidity of daughter tracks |η| < 0.8 < 0.8
Rapidity of Ω candidate |y| < 0.5 < 0.5

Daughter momentum pT ≥ 150MeV/c pT ≥ 150MeV/c

ITS Selection Analysis

ITS refit flag TRUE, if R< 7.6 cm
any FALSE, if R> 43.0 cm

FALSE, if Nhits = 0

SPD1=1 or SPD2=1, if R< 3.9 cm
Hits in SPD layers any SPD1=0, if 3.9 cm<R< 7.6 cm

SPD1=0 and SPD2=0, if R> 7.6 cm

Nhits −Nshared ≥ 2 , if R< 3.9 cm
Shared clusters any Nhits −Nshared ≥ 1 , if 3.9 cm<R< 38 cm

Mshared = 0, if R> 38 cm

TPC Selection Analysis

TPC refit flag TRUE TRUE
Kink flag FALSE FALSE

Reconstructed TPC clustersNTPC > 70 > 80
Reconstructed to findable cluster ratio NTPC

Nfindable
> 0.6 > 0.8

Track quality χ2red < 4 < 4
TPC PID dE/dx nσ < 4 < 3

Table 4.1: Track selecঞon and analysis cuts
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5
Cascade reconstruction

TheΩhyperon is the objective of this work. TheΩ baryon decays entirely via the weak in-
teraction and therefore traverses rather long distances ( cτ = 2.43 cm) in the detector volume
before its subsequent decay into secondary particles. This is advantageous because the spatial
resolution of the ITS of order∼ 100 μm is enough to resolve the secondary decay vertex of
the Ω candidate.

With almost 70% chance the Ω particle decays into a pair of strange particles - an electri-
cally chargedkaon and aneutralΛhyperon. TheΛhyperonpropagates straight line segments
of order ca. 10 cm completely invisible to the ITS and TPC and, with a branching ratio of
ca. 64%, decays weakly in a V-shaped pair of charged tracks - a proton and a pion. Particles
which decay in this manner are called V0’s, where 0 stands for the electric charge.
The reconstructionof theΩcandidates in the goldendecay channel, i.e. Ω− → Λ(pπ−)K−

and for the anti-particle Ω̄+ → Λ̄(p̄π+)K+, is performed by combining the ITS and TPC
tracking and PID capabilities and taking into account a pronounced decay topology.

Figure 5.1a depicts the PID capabilities of different detectors at ALICE. One can see that
generally the hadron separation π/K and K/p is possible only for low momenta up to ∼
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(a) Schemaঞc view of parঞcle idenঞficaঞon performance at
ALICE. This figure is taken and slightly adapted from Bo�a
(2017).

(b) Esঞmaঞon of strategy for reconstrucঞon of differ-
ent baryons with ALICE. This figure is taken and slightly
adapted from Kraus (2009).

Figure 5.1: Schemaঞc overview of PID capabiliঞes of ALICE.

0.6 GeV/c and 1 GeV/c, respectively. This is due to an overlap of the characteristic dE/dx
curves of different particle species. In principle, a clean particle separation could be possi-
ble if additional information provided by the Time-Of-Flight (TOF) detector could be used.
However, TOF is calibrated to detect particles coming from the primary vertex and not from
secondary vertices of hyperon decays (Carnesecchi, 2019). Furthermore, the TOF detector
has a lower acceptance, i.e. this lowers the signal yield. Therefore, we neglect any measure-
ment with the TOF detector in current analysis. What makes the reconstruction of the Ω
baryons possible even for high momenta, is the prominent decay topology, see Fig. 5.2. The
reconstruction of hyperons strongly relies on the reconstruction of the secondary vertex, Fig.
5.1b. The efficiency of the cascade finding depends drastically on other topological variables,
too.

This chapter is dedicated to the topological variables and the selection of corresponding
values, and is structured as follows. Section 5.1 outlines the strategy of the cascade find-
ing at ALICE. Section 5.2 describes special features of the hyperon reconstruction inRun 2.
Section 5.3 is dedicated to the detailed description of various topological observables. A sum-
mary table 5.2 with the values of topological variables used for the pre-selection and the anal-
ysis encloses this chapter.
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(a) Decay of theΛ hyperon into a proton and a pion in the
vicinity of the magneঞc field. The daughter tracks curl in
the magneঞc field and therefore have some (non-negligible)
distance (d−, d+) to the primary vertex.

(b) Decay of theΩ hyperon intoΛK. The le�ers in bracket
denote the related cascade decay Ξ → Λπ which has a
similar topology.

Figure 5.2: Schemaঞc visualisaঞon of the topology in the V0 and cascade decays.

5.1 General cascade findingwith ALICE

In this work we deal with the cascade reconstruction which is done off-line. The hyperon
finding procedure is performed on an event-by-event basis and begins with a finding of V0
candidates. One proceeds in the following way. A general V0 particle decays in a pair of op-
positely charged tracks. To find the V0 candidate, one combines positive and negative tracks
in a combinatorial manner. Primary particles are rejected by selecting only those tracks that
have the distance of closest approach (DCA) to the primary vertex larger than some prede-
fined value. Then, each two V0 candidates are propagated to each other, i.e. to their DCA
dpn. The maximum cut-off value of dpn is usually dictated by the spatial resolution of the
DCA σpn, i.e. dpn < 1 − 2 σpn. The position of the V0’s secondary vertex R⃗V0 in the global
coordinate frame is evaluated as the weighted mean of the tracks’ spatial points propagated
to the corresponding DCA (dpn). The impact parameter dV0 is calculated as a DCA between
the reconstructed vertex position and a prolongation of V0 track (a straight line). The in-
formation about each V0 is saved to the ESD as members of the AliPhysics software class
AliESDV0.

When allV0 candidates have been reconstructed for a given event, the cascade finding takes
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over. The algorithm searches for a bachelor track candidate, i.e. K± in case of Ω±. A bach-
elor track is a secondary particle and hence its DCA to the primary vertex db is bigger than
some predefined value. The impact parameter between each pair of a bachelor track and a
V0 candidate dbV0 is smaller than a cut value. The decay position of the resulting cascade
candidate is therefore determined as a weighted mean of the bachelor and V0 tracks’ posi-
tion at the DCA dbV0. The charge of the cascade is fixed by the charge of the corresponding
bachelor daughter. The cascade candidates are saved to the ESD. Information about them
can be obtained via accessing objects of the AliPhysics class - AliESDcascade.

5.2 Reconstruction in Run II

InRun2, it was shown that the properties of the off-line reconstructed cascades did not agree
with those predicted byMC simulations.

The major problem was the erroneous determination of the impact parameter between
positive and negative tracks. When the distance between centers of helix curves in the x-y-
plane is smaller than the corresponding sum of radii, two minima are possible, see Fig. 5.3a.
At one minimum the positive and negative tracks propagate away from each other. One

calls it a sailor configuration. At another minimum the tracks are curved towards each other
- this is a cowboy configuration. Since all particle tracks are saved closest to the primary vertex,
the standard V0 reconstruction routine would result in an overabundance of cowboy tracks.

In order to obtain a corrected sample of candidates, we needed to recreate (= reset and
revertex) the V0s and cascade lists by running the task AliAnalysisTaskWeakDecayVertexer
before the actual analysis task. Apart from doing the sailor-cowboy fix, this script propagates
the bachelor track along the helix curve (a propagation along the straight line is used per de-
fault) and therefore identifies theΩ decay vertexmore precisely. The latter plays a crucial role
when reconstructing the Ω baryons with large transverse momenta and/or those candidates
which propagate long distances before subsequent decays.

5.3 Topological selection

5.3.1 Distance of closest approach

In order to find the DCA between a track and any other object, be it a primary vertex or
another track, one needs to propagate the track to the object. Equations 5.1-5.2 show how
the DCA to the primary vertex is found for a charged track inside a magnetic field and for a
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(a) Schemaঞc representaঞon of the cowboy-sailor topology.
The points A and B depict the DCAs of the corresponding
tracks of a π−i and p to the primary vertex. A minimizaঞon
algorithm searches for the DCA between the tracks starঞng
from the points A and B. The first (closest to the primary
vertex) found minimum is assigned as the DCA.

(b) Correct propagaঞon of the bachelor track. Point A de-
notes the spaঞal point of the DCA of the bachelor track to
the primary vertex. If the bachelor track is propagated along
the straight line, the cascade decay vertex is reconstructed
as the point B. However, the right decay posiঞon given by
the point C is usually smaller, and is obtained when the
curvature of the bachelor track is taken into account.

Figure 5.3: Visualisaঞon of topological properঞes which were corrected manually in the Run 2 hyperon reconstrucঞon.
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straight line track (e.g. V0 candidate). It is practical to differentiate between the transverse
component of the DCA dt and the z-component dz because the ITS-TPC spatial and mo-
mentum resolution in the transverse plane is substantially better than along the beam axis. In
this work we refer to the cut values on different DCAs as cuts on the transverse components
only, it not stated explicitly otherwise.

dT(rφ) =

ρ−
√
(x0 − xv)2 + (y0 − yv)2, |Q| ≥ 1

(R⃗− R⃗v)× p̂T, Q = 0
(5.1)

dz(z) = ztrack − zv, (5.2)

where Q is the charge of the track in units of the elementary charge; (xv, yv, zv) and R⃗v =

(xv, yv, 0) is the position vector of the reconstructed primary vertex; (x0, y0) is the centre of
the track in the transverse plane to the beam direction, R⃗ is the radial position of the track
in the global coordinate frame, p̂T is the direction vector of the transverse momentum; ρ is
the curvature of the track given by the bending radius in the magnetic field; and ztrack is the
z-coordinate of the track propagated to the point of closest approach, see Fig. 5.4.

Figure 5.4: Schemaঞc sketch of the esঞmaঞon of the distance of closest approach between a charged parঞcle’s track in
a magneঞc field and the primary vertex.

In the pre-selection procedure we constrained the transverse component to dT > 0.03 cm
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for all charged tracks. For the analysis the cuts were tightened. The meson daughter of the
Λ particle carries less momentum than the baryon daughter. Thus, the meson has a smaller
bending radius in the magnetic field than the baryon track, and consequently a larger value
of the DCA. We set dmeson > 0.20 cm, dbaryon > 0.10 cm and dbachelor > 0.05 cm. The
threshold value of DCA of the bachelor track is chosen to be the smallest as the bachelor
daughter is produced closest to the primary vertex. No cuts were set on the values of the total
DCA between the Λ particle and the primary vertex dV0 during the pre-selection routine.
However, in the analysis we constrained the values of dV0 to be larger than 0.04 cm. Setting
this cut helps to reject primary V0 candidates.

The DCA between two tracks is determined as a minimum of the weighted distance

d2tracks = min
3∑

i=1

ωi(rAi − rBi )2

ωi
(5.3)

where superscripts A and B stand for two tracks, the index i goes through the spatial coordi-
nates (1=”x”, 2=”y”, 3=”z”). The weights ωi are defined as 1

ωi = σ2A,i + σ2A,i where σ2A,i and
σ2B,i are the variances of spatial coordinate i of the corresponding tracks A and B. The vari-
ances are extracted from the track covariance matrix. It is assumed that ω1 = ω2 holds. For
the estimation of the distance dtracks a minimization algorithm is used which implements the
Newton’s optimization method.

For our pre-selection we chose the following values: dpn < 1.4 σpn for the DCA between
positive and negative tracks, with σ2pn = σ2A + σ2B. In the analysis we tightened the value up to
dpn < 1.0 σpn. The value of the total DCA between the bachelor track and the V0 candidate
was constrained by an upper limit dbV0 < 1.0 cm.

5.3.2 Secondary vertex and decay radius

Multi-strange particles decay weakly, hence they traverse distances which generally can be
resolved by the detector system. The position of the secondary vertex D⃗decay is evaluated as
a spatial point of the DCA of decay products in the global coordinate frame. In order to
account for the real flight distance, one needs to shift the D⃗decay by the position of the primary
vertex D⃗PV in case of a cascade candidate, and - by the position of the cascade decay - in case
of the Λ candidate.
Due to the spatial resolution, one usually studies the decay radii in the transverse plane

rather than decay distances. The radial distanceR of theΩ andΛparticles are then calculated
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as:

RΩ = |R⃗decay,Ω − r⃗PV| (5.4)

RΛ = |R⃗decay,Λ − R⃗decay,Ω|, (5.5)

where r⃗PV = (xPV, yPV, 0).
It is important to point out that the track of the Ω particle is bent in the vicinity of the

magnetic field. Rigorously, one should account for this effect when calculating the decay
radius and the total flight distance. However, it can be shown that the ratio of the approx-
imated (a straight line trajectory) RΩ to the real bent radial flight distance Rreal is given by

RΩ

Rreal
= sinc

(α
2

)
, α =

0.3B
MΩ

cτexp
[
GeV
T ·m

]
(5.6)

where m, B and τexp are the central mass, the magnetic field and the determined proper life
time, respectively. For example, if we demand a cut cτexp < 3 · cτ and useMΩ = 1.672GeV/c2

and B = 0.5 T, we obtain a mean distance difference < |RΩ − Rreal| > ≈ 1 μm for all pre-
selected Ω candidates. This difference still cannot be resolved by the ITS. Thereupon, we
neglect the bending of the charged mother hyperon in our analysis.

When selecting the candidates, we demand that the secondary vertices of the Λ and Ω
baryons are at least 1.1 cm and 0.6 cm away from the primary vertex, respectively. The mini-
mal decay length is controlled by the radius of the beam pipe∼ 0.6 cm. The cascade recon-
struction efficiency drops drastically therein.

5.3.3 Cosine of pointing angle

In order to quantify whether a particle comes from the primary vertex or not, one usually
determines a pointing angle which is defined as the angle between a particle momentum p⃗
and the flight distance from primary vertex. The flight distance vector is determined as the
difference between the reconstructed decay position D⃗ and the reconstructed position of the
primary vertex D⃗PV. It is practical to work with the cosine of the pointing angle, expressed as

cos Θpointing =
p⃗ · (D⃗− D⃗PV)

|⃗p| · |D⃗− D⃗PV|
(5.7)

One expect cos Θpointing ≈ 1 for particles originating from the primary vertex and for those
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the bending in the magnetic field can be neglected, see Fig. 5.5. Since the cascades are pro-
duced at the primary vertex, we constrained the cosine of pointing angle cos ΘΩ > 0.95. For
the analysis, we tightened up the value up to cosΘΩ > 0.99.

Figure 5.5: Schemaঞc decay of a parঞcle into two daughter tracks (blue do�ed lines) is sketched. The momentum of the
mother parঞcle is p⃗ and the distance D⃗ from the coordinate origin. The reconstructed posiঞon of the primary vertex on
an event-by-event basis is given by the vector D⃗PV. Note: the track does not have to originate from the primary vertex.

Wealso accounted for the pointing angle of the Λ candidate. Since it is a secondary particle
and does not need to point back to the primary vertex (especially at lowmomenta), the lower
cut on the pointing angle was chosen to be looser than that of Ω baryon. For the candidate
pre-selection we use cos ΘΛ > 0.90; in the analysis, we cut at cos ΘΛ > 0.95.

5.3.4 Proper life-time

The mean life-time of decaying particles τexp can be determined as

cτexp =
mL
p

=
mR
pT

, (5.8)

wherem is central mass value of the particle under consideration, L and R are the total and
the radial distances (from creation vertex to the decay vertex), respectively; p and pT are the
total and transverse momenta, respectively. In this analysis, we decided to put constraint on
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the mean time of the Λ and Ω candidates to be smaller than 4 · cτΛ and 3 · cτΩ, where the
values of masses and mean life time τ are taken from Table 5.1.
The cut on the proper life time helps to reject misidentified hyperon candidates, especially

those mismatches which occur at large distances from the primary vertex.

5.3.5 Cascade rejection

The Λ and Ω hyperons are not the only particles which possess the special topology dis-
cussed in chapter 5. The Ξ± baryon decays in a very similar manner to the Ω particle, i.e.
Ξ− → Λ π− with the corresponding branching ratio equal to 99.9%. The decay K0

S →
π+π− has a similar topology to that of the Λ decay studied in this analysis. Table 5.1 summa-
rizes the properties of weakly decaying strange baryons.

Hadron Valence quarks Mass [MeV/c2] Decay channel BR [%] cτ [cm]
Ω− sss 1672.45 ΛK− 67.8 2.43
Ξ− dss 1321.71 Λπ− 99.9 4.92
Λ uds 1115.68 pπ− 63.9 7.89
K0

S
d̄s−d̄s√

2 497.65 π+π− 69.2 2.67

Table 5.1: Some properঞes for cascades and V0 parঞcles. The shown decay channel depicts daughter parঞcles which
are reconstructed in this analysis.

A clear Ξ/Ω and Λ/K0
S separation would be only possible if p/K and π/p (or π/K) sepa-

rations could be done in the whole energy range. Due to the limited PID capabilities of the
ITS+TPC detector system, it is not possible, see Fig. 5.1a. Therefore, one needs to deal with
a hyperon hypothesis. For a general V0 candidate (K0

S or Λ), we calculate the invariant mass
as:

Minv(V0) =
[
(
√

m2
pos + p⃗2pos +

√
m2

neg + p⃗2neg)2 − (⃗ppos + p⃗neg)2
] 1

2
(5.9)

where lower superscripts pos and neg stand for the positive and negative daughters of V0.
If the hypothesis of the V0 candidate is the Λ particle, then the mass of the positive track is
equal to the mass of positive kaon, the mass of the negative track - to the mass of negative
pion. For the anti-particle Λ̄ the mass assignments of the negative and positive tracks are
interchanged. In case the V0 candidate is hypothesized to be aK0

S candidate, both tracks are
assigned the mass of the charged pion.
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(a) Invariant mass spectrum of the Ξ parঞcles. The signal is
fit with a Gaussian and a linear background funcঞon. The
esঞmated width of the peak, σ, is used further as a central
measure for the Ξ rejecঞon.

(b) Invariant mass of theΩ parঞcles as a funcঞon of the
reconstructed invariant mass of the Ξ candidates. The pink
region depicts the area of invariant mass space which is
rejected when performing analysis on theΩ hyperons.

Figure 5.6: Cascade rejecঞon. Invariant mass spectra of the Ξ/Ω parঞcles

The mass of a general cascade candidate (Ξ± or Ω±) is determined in a similar way:

Minv(Casc) =
[
(
√

m2
Λ + p⃗2V0 +

√
m2

bach + p⃗2bach)
2 − (⃗pV0 + p⃗bach)2

] 1
2

, (5.10)

where p⃗V0 = p⃗pos+ p⃗neg, the massmΛ is the central (pdg) mass of the Λ hyperon. Themass of
the bachelor trackmbach is either chosen to be that of the kaon (Ω hypothesis) or - of the pion
(Ξhypothesis). In order to select a clean signal sample,we select theΛ andΩcandidates in the
masswindows |Minv(Λ)−1116MeV/c2| < 8MeV/c2 and |Minv(Ω)− 1672MeV/c2| < 100 MeV/c2,
respectively.

The K/π misidentification plays a crucial role in the analysis of the cascade mass spectra.
The Ξ−Ω baryon mass difference is nearly the same as the difference of the corresponding
bachelor particles, i.e. mΩ − mΞ± ≈ mK − mπ = 350 MeV/c2. This implies, that
misidentified bachelor pions which originate from real Ξ± decays can ”echo” in the invariant
mass distribution of Ω.

Figure 6.1b shows thedetermined invariantmass of a cascade candidatewith theΩ-hypothesis
as a function of the mass evaluated with the Ξ-hypothesis. One can see that there is a region
inM(Ω) −M(Ξ) space where a cascade candidate cannot be identified. The admixture of
Ξ candidates in the Ω candidate sample contribute around 1 − 2% to the clean Ω signal at
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pT > 2 GeV/c. For our precision measurement the purity of the Ω signal is essential. There-
fore, we need to perform a cascade rejection. We reject all tracks which contribute both to the
Ξ± andΩmass peaks. This is done by imposing the cut |Minv(Ξ) −MPDG,Ξ| < 8MeV/c2.
The threshold value of 8MeV/c2 is chosen as a 4·σ deviation from theΞ invariantmassmean
value, see Fig. 6.1a.
We face a similar situation when dealing with Λ/K0

S misidentification which in turn arises
in regime where p/π separation is not possible with TPC, i.e. for momenta p > 2 GeV/c.
The K0

S yields are low in comparison to those of Λ due to the Λ-mass window selection.
Hence,theK0

S-rejection is not performed for the analysis but is left as a subject for systematic
studies.

Topological variable Pre-selection Analysis

DCA of the baryon track to PV, dbaryon > 0.03 cm > 0.10 cm
DCA of the meson track to PV, dmeson > 0.03 cm > 0.20 cm
DCA of the bachelor track to PV, db > 0.03 cm > 0.05 cm

DCA of V0 to PV, dV0 any > 0.04 cm
DCA positive to negative tracks, dpn < 2.0σ < 1.0σ
DCA of the bachelor track to V0, dbV0 < 2.0 cm < 1.0 cm

Λ decay radius,RΛ > 0.6 cm > 1.1 cm
Ω decay radius,RΩ > 0.6 cm > 0.6 cm

Λ cosine of pointing angle, cosPAΛ > 0.90 > 0.95
Ω cosine of pointing angle, cosPAΩ > 0.95 > 0.99

Λ proper life-time, cτexp,Λ any 4 ·cτΛ
Ω proper life-time cτexp,Ω any 3 · cτΩ

Λ-mass window, |Minv(Λ)− 1116MeV/c2| < 8MeV/c2 < 6MeV/c2
Ω-mass window, |Minv(Ω)− 1672MeV/c2| < 100MeV/c2 < 100MeV/c2

Competing Ξ-rejection, |Minv(Ξ)− 1321 MeV/c2| any > 8MeV/c2
CompetingK0

S-rejection, |Minv(K0
S)− 498MeV/c2| any any

Table 5.2: Topological selecঞon used during the pre-selecঞon rouঞne and in the analysis. The flag any means that no cut
was done on a topological variable.
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6
Analysis

The aim of this ananlysis is to extract the invariant mass of the Ω− and Ω̄+ baryons with an
unprecedented precision and, subsequently, perform the CPT test.

The invariant mass spectrumMinv is assumed to be described by a Gaussian distribution
with amean value μ = MΩ and standard deviation σ; the latter is regulated completely by the
detector response. There are no contributions from theWigner energy distribution because
ΓΩ = ℏ

τΩ
≈ 1 μeV which cannot be resolved by the ALICE detectors.

Performing a single Gaussian fit on the whole collected Ω sample is not suitable for our
precisionmeasurement because σ of the distribution is not a constant parameter. This would
result in a distribution with non-vanishing higher order moments (skewness, kurtosis etc.)
which generally might shift the position of the mean value and are not easy to be accounted
for when a rigorous mathematical description of the distribution is needed. Instead, we sub-
divide our collected sample in smaller ”portions”. We perform a pT-dependent invariantmass
fit. In order to do this, we fit the invariant mass spectrum in subsequent pT-bins of the Ω
candidate. The Ω candidates are reconstructed in the range pT ∈ [0.6, 6]GeV/c. The first
pT-bin starts at 0.6 GeV/c and has the width of 200MeV/c. All other pT-bins are 100MeV/c
wide, which results in a total number of 53 bins.
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The track and topological cuts appliedon the candidates are those given in the right columns
of tables B.1 and 5.2 and are treated as momentum and energy independent quantities. We
refer to these values as central cuts.

For each pT-bin, we fit the invariant mass spectrum with a function which is a sum of
a Gaussian curve and a background function. The latter is defined as a polynomial of the
second order. When fitting data with the Software ROOT, it is important to estimate the
fitting parameters before the actual fit. In case of the Gaussian distribution, we first make a
”guess” of the central (mean) mass value μ0 and the standard deviation σ0. In the Ω analysis
we set μ0 = M(Ω)PDG = 1672.5 MeV/c2 and σ0 = 2.0 MeV/c2. In order to estimate the
parameters of the background function, we first set all the parameters equal to zero and fit
the background in the range:

Background range: (μ0 − 10σ0, μ0 − 6σ0)÷ (μ0 + 6σ0, μ0 + 10σ0) (6.1)

The estimated parameters from this procedure are used further to perform the combined fit
of the signal and background which is done in the range:

Signal range: (μ0 − 4σ0, μ0 + 4σ0) (6.2)

In order to ensure the stability of the fitting procedure, we allow the estimate of the mean
value μ̂ to deviate by 0.1% from the μ0 and use integrals of fitting function in corresponding
bins instead of estimating the function value at the correspondingbin center. Thefit employs
the least square minimization (MLS) algorithm. The uncertainties of each bin are given by
the square root of the bin content. When the fitting is performed successfully, the signal is
refitted by setting the fit values μFIT and σFIT into the ranges according to Eqs. 6.1 and 6.2.

The total signalT is extracted as a sum of bin contents in a range μFIT±3σFIT. The (clean)
signal yield S is determinedby subtracting the background function estimated at the center of
the bins from the content of the corresponding bins. The background estimate isB = T−S.
Plot 6.1 shows an example of the fit in a given pT-bin. The statistical uncertainty of the mean
is defined by σ̄FIT = σFIT√

S , S ≫ 1.
As a next step, we plot the set of mean values {μFIT ± σ̄FIT} as a function of pT, setting the

central pT value to be the center of the corresponding momentum bin. The result thereof
is depicted in Fig. 6.2. One can see that the invariant mass values rise with increasing pT
in the range 0.6 − 2 GeV/c with a subsequent mass plateau pT ∈∼ [2, 6] GeV/c. The
”mass rising” effect originates both from an increased energy loss of low energy particles (–
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(a)Mass spectrum of theΩ− baryons (b)Mass spectrum of the Ω̄+
baryons

Figure 6.1: Invariant mass spectrum of theΩ hyperons depicted for a selected pT-bin.
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dE/dx ∼ 1/β2) in a material and from the multiple scattering. In order to account for the
multiple scattering, one describes the angle scattering with two Gaussian distributions with
differentwidths. TheGaussian distributionwhich corresponds to themultiple scattering has
a substantially wider width for low-momentumparticles than for high-momentumparticles.
For the latter the multiple scattering becomes negligible. This introduces an asymmetry into
the invariant mass distribution of the low-momentum particles and hence, - a shift of the
mean mass values towards smaller values.

Currently, the effect of multiple scattering cannot be fixed. Therefore, we ignore the mass
values in the range 0.6 − 2 GeV/c. The mass plateau region 2 < pT < 6 GeV/c is fit with a
constant parameter C,M(pT) = C, by employing the MLS method. The estimate of value
Ĉ and its uncertainty σĈ are hence computed as:

Ĉ =

∑
i μi/σ̄

2
i∑

k 1/σ̄2k
(6.3)

σ2Ĉ =
1∑

k 1/σ̄2k
, (6.4)

with μi = μi,FIT and σ̄i = σ̄i,FIT are the fitmean and the standard deviation; the indices i and k
run over the pT-bins falling into the (chosen) plateau region (Cowan, 1998). The final result
is obtained by settingMΩ = Ĉ and σΩ = σĈ. Figures 6.2a and 6.2b depict the intermediate
results obtained for the Ω± candidates of the whole collected data sample. The collected
clean sample of the Ω− and Ω+ events used for the fit in the plateau range is 101452 and
104469, respectively.

The average weighted mass of the Ω baryon obtained by the fit in the plateau region is
M̄Ω−+Ω̄+ = 1672.5934±0.0061MeV/c2, where theweighting factors are chosen to beωi =

1/σ2i , i ∈ {Ω−, Ω̄+}. The deviation between the determined averagemass value and the cen-
tralworld average value, i.e. nouncertaintyof the latter considered, isΔMΩ = 163±6 KeV/c2.
This positive mass offset motivated us to analyse its origin in more detail.

In order to analyse the invariant mass bias, we proceeded as follows. If the mass offset is
present due to an ill-defined track reconstruction procedure or any detector calibration ef-
fects, the meanmass of other particles determined by the fit in a plateau range should also be
shifted in a similar manner. The best candidate to analyse is the Λ hyperon because its mass
is measured with a much higher precision than those of the Ω and Ξ baryons. Therefore, we
performed the similar fitting procedure on the sample of the daughter Λ + Λ̄ baryons, see
Fig. 6.3. For the Λ analysis, we chose the pT-bin width to be 200 MeV/c. It is straightfor-
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(a) Invariant mass spectrum of theΩ− baryons (b) Invariant mass spectrum of theΩ+
baryons

Figure 6.2: Mean mass distribuঞon of theΩ hyperons as a funcঞon of the transverse momentum pT. The results are
obtained for the iniঞalΩ sample.

ward to see that the positive shift in the invariant mass spactrum is present in the Λ sample,
too. Consequently, one deals with a systematic bias. Moreover, the determined average mass
M̄Λ+Λ̄ = 1115.9751± 0.0040MeV/c2 deviates from the so far best measured average Λ mass
by ΔMΛ = 292 ± 7 keV/c2, where the uncertainty σΔM is evaluated as a square root of a
quadratic sum of individual uncertainties. The deviation ΔMΛ is significant. This encour-
aged us to try to fix this bias.

Figure 6.4 shows themeanmass spectrum of the Λ and Λ̄ samples combined as a function
of the Λ momentum pT, plotted for different radial positions of the Λ decay vertex in the
global coordinate frame. The left panel 6.4a depicts the case when the mass bias is present.
The right panel 6.4b shows the mass spectrum after the correction of the bias has been ap-
plied. One can clearly infer from Fig.6.4a that the mass offset depends on the radial position
of the secondary vertex of Λ candidates. Only if the Λ candidate decays before the first SPD
layer, the mass plateau reaches the world average Λ mass value. Moreover, the dramatic mass
dependence on the radial distance of the low-energy Λ candidates (pT ≤ 1 GeV/c) indicates
that we deal with an effect due to a possible energy loss correction.

Indeed, the observed behaviour might be explained as the correction of energy loss dE/dx
in the ITS and the beam pipe. A general track reconstruction routine uses the Kalman algo-
rithm and starts at the outer wall of the TPC where tracking seeds are searched for (Belikov

49



Page 50 of 99

(a) Invariant mass spectrum of theΛ hyperons (b) Invariant mass spectrum of the Λ̄ hyperons

Figure 6.3: Mean mass distribuঞon of the daughterΛ hyperons as a funcঞon of the transverse momentum pT. The
daughter parঞcles are handled as primaries by the Kalman tracker.

et al., 1997). The track is then propagated inwards to the primary vertex. The first estimate
of the particle momentum is done during the first stage of the track reconstruction inside
the TPC. The default tracking algorithm considers each particle to be a primary particle and
thus corrects for the energy loss dE/dx in the ITS material and the beam pipe material.

If the energy of a particle inside TPC is given by E0, then the energy E1 at the primary
vertex is estimated as E1 = E0 + dE, where dE is the value of the energy lost along the whole
track length inside the ITS. Accordingly, the momentum of the track is scaled by a factor f:

f =
|⃗p1|
|⃗p0|

=

√
1+

dE(2E0 + dE)
p20

≥ 1, (6.5)

where |⃗p0| and |⃗p1| are the total particle momenta as reconstructed by the TPC and rescaled
when propagating to the primary vertex, respectively. Since the total energy loss of a track
inside the ITS cannot be measured by all 6 layers, the value of dE is estimated as:

dE =
dE
dx

· ⟨ρ⟩ · L, (6.6)

where dE
dx is the average energy loss per distance in silicon, ⟨ρ⟩ is the mean length-density of

material ”seen” by a track and L is the length segment of the track inside the ITS. The value
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(a) Daughter parঞcles are handled as primaries by the
Kalman tracker

(b)Momenta of the daughter parঞcles are rescaled as to
account for overesঞmated energy loss correcঞon inside the
ITS material

Figure 6.4: Mean mass of the combinedΛ and Λ̄ spectrum as funcঞon of transverse momentum shown for different
radial distances of the secondaryΛ posiঞon.

of L is calculated as the length of a straight line. The track mass hypothesis, needed for the
calculation of E0, is based on the PID information measured by the TPC. Furthermore, it is
assumed that the energy loss affects every component of a particle’s momentum in the same
way, i.e. one scales every component of p⃗0 with the factor f and direction is not changed.

Although this procedure is reasonable for primaries, it is not applicable for secondary
tracks originating atmeasurable distances away from the primary vertex. Therefore, we try to
correct the energy loss scaling. We proceeded as follows. We assumed that all three daughter
tracks were correctly assigned to a cascade candidate and there was no need to perform a cas-
cade finding from scratch because the expected energy rescaling is a minor effect on a decay
topology and the secondary vertex position should not change significantly. We start with a
positive-negative track pair and perform the following steps:

• We propagate each track to the primary vertex and store the total momentum p and
the spatial Xprimary coordinate of the track at the DCA to the primary vertex. No mo-
mentum rescaling is performed at this point.

• Both tracks are propagated to each other to the point of DCA with momenta p1. Im-
proved propagation as described in section. 5.2 is implemented. At this step we store
information about the coordinate Xsecondary.

• Each track is propagated from Xprimary to Xsecondary using the method of the AliPhysics
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class AliTrackerBase: AliTrackerBase::PropagateTo. When tracks are propagated out-
wards, i.e. Xsecondary > Xprimary which is our case, the sign of the total energy loss is
reversed dE → −dE, see Fig.6.5a. This is reasonable because we subtract the amount
of energy once added manually to the track. Hence the right decay momentum (re-
ferred to as real in Fig. 6.5)) is determined as:

p⃗real = p⃗1 · fcorr = p⃗1 ·

√
1− dE(2E1 − dE)

p21
≤ 1 (6.7)

• the energy-rescaled tracks are propagated their DCA with real momenta starting at
the DCA to the primary vertex, see Fig.6.5b. No further energy corrections are done
at this step. The newly obtained V0 (member ofAliESDv0) is saved and used further
for the energy loss corrections of the Ω particles.

(a) In the first step we determine the DCA of a track to
the primary vertex dprimary and DCA of this track to the
secondary decay vertex dsecondary. When propagaঞng the
track to the DCA of the secondary vertex, we subtract the
energy dE which was iniঞally added to the track by the
default tracking algorithm.

(b) A[er the energy dE is esঞmated and subtracted, we
start again at the DCA of the primary vertex, however, with
rescaled momentum preal for each track. Generally, preal is
smaller or equal to the iniঞal momentum. A new value of
the DCA of two tracks is determined.

Figure 6.5: Sketch of the energy correcঞon procedure performed for the daughter tracks.

Consequently, we need to apply energy corrections also on the bachelor track. The steps
are analogous to those described above:

• First of all, the bachelor track is propagated to the primary vertex and the Xprimary co-
ordinate is stored.
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• From the primary vertex, the bachelor is propagated to the newly built V0 candidate
and Xsecondary is obtained. Again, the improved procedure (as outlined in section 5.2)
is used.

• ThemethodAliTrackerBase::PropagateTo corrects theoverestimated energyof thebach-
elor track when propagating it from Xprimary to Xsecondary.

• An energy-corrected cascade candidate is built and stored as theAliESDcascade object.

The energy correction procedure is done for all periods, for all saved candidates with kine-
matic and topological cuts of the pre-selection stage, i.e. left columns of tables B.1 and 5.2.
Consequently, the values of kinematic and topological variables are recalculated and set to
central cut values.

(a) Energy loss as a funcঞon of parঞcle momentum. (b) Energy loss as a funcঞon of pseudo-rapidity.

Figure 6.6: Studies of the energy loss correcঞon dE in dependence on the parঞcle momentum and pseudo-rapidity

In order to check, whether the energy correction procedure is coherent, we studied some
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properties of the total energy loss dE = E1 − Ereal. The left panel of Fig. 6.6 shows the total
energy loss as a function of particle momentum.

The energy loss takes the highest values for low-momentum particles, as one would expect
from the dependence −dE/dx ∼ 1/β2. The values of dE saturate at around 2 MeV for
protons and pions of p = 1 − 2 GeV/c and p = 0.4 − 0.5 GeV/c, respectively. For
kaons, the saturation happens at values very close to 0 MeV; this could happen due to the
position of theΩ secondary vertex being close to the primary vertex. The energy loss becomes
higher with increasing particle momentum. This effect might come both from the form of
the characteristic Bethe-Bloch curve and from the fact that high-energy daughters come from
the high-energy mother particles which, on average, traverse longer distances, i.e. cross more
material, before the subsequent decay.

It is appealing to study the corrected energy loss dE as a function of the track inclination
angle Θ, too. The motivation here is that tracks with bigger values of Θ cross more material
and hence one needs to correct for a larger amount of energy loss. One would expect the de-
pendence dE ∼ 1/ cosΘ = 1/ sinh η, where η is the pseudo-rapidity of the track. However,
the dE values do not decrease with higher values η and stay constant over the whole region,
which is illustrated in Fig. 6.6b.

Figure 6.7: The average energy loss ⟨dE⟩ as a two-dimensional funcঞon of the parঞcle momentum and the posiঞon of
the secondary vertex.

In order to investigate the combined dependence of the energy loss on the radial distance
of the secondary vertex R and particles momentum p, we created the dEmaps, see Fig. 6.7.
For the map creation we used the data sample with pre-selection cuts as to ensure a higher
quality (statistics) of the maps. The minimum value of the depicted average ⟨dE⟩ is set to
0.1 MeV. One can easily notice that the bigger dE-correction indeed is applied for the tracks
with higher values of radial positionsR and higher momenta p.
The mean mass of the energy loss corrected Λ candidates as a function of the momen-
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tum pT is shown in Fig. 6.4b. The mass values decrease dramatically, 400− 700 keV/c2, for
pT < 2GeV/c and take on values very close to the world averageMΛ. For the high-energy Λ
candidates, the invariant mass values decrease slightly by 100− 200 keV/c2. The begin of the
plateau region starts at pT = 5 GeV/c for the corrected spectrum instead of the previously
chosen pT = 2 GeV/c. The overall mean mass of the Λ hyperon in the plateau region turns
out to beMcorrected,Λ = 1115.8297± 0.0081MeV/c2, which is around 150 keV/c2 lower than
the meanmass value evaluated for the Λ spectrumwithout dE/dx correction. The difference
betweenMcorrected,Λ and the world averagemass value is still significant. We discuss this result
in chapter 7 where we treat it as a mass offset.

(a) Invariant mass of the daughterΛ parঞcles (b) Invariant mass of the daughter Λ̄ parঞcles

Figure 6.8: Energy corrected mean mass distribuঞon of the daughterΛ hyperons.

Although our momentum rescaling procedure is not enough to correct the Λ mass suf-
ficiently, there is still an advantage present in performing the dE/dx rescaling; namely, the
resolution of the invariant mass peak. Figure 6.9 illustrates how the width σ of the invari-
ant mass distribution of the Λ and Ω particles changes when the dE/dx-correction is done.
It is interesting to note that the overall dependence of the mass resolution on momentum
follows the track momentum resolution, see Fig. 3.5. In case of the Λ hyperons, the width
decreases in the range pT ∈ [0.5− 3]GeV/c. For higher momenta no clear statement can be
made due to the lack of statistics. In case of the Ω baryons, the resolution does not change
significantly. A possible explanation could be that the momentum of daughter kaons is not
rescaled sufficiently to cause a significant improvement.

55



Page 56 of 99

(a)Width distribuঞon of the combined daughterΛ + Λ̄
sample.

(b)Width distribuঞon of the combinedΩ− + Ω̄+
spec-

trum.

Figure 6.9: Width of the mass peak σ, described by the Gaussian distribuঞon, as a funcঞon of the parঞcle momentum.
The case when no energy loss correcঞon is done on the secondaries is compared to the case when the energy correc-
ঞon is applied on the secondary parঞcles. The analysedΛ hyperons are daughters of theΩ baryons. Hence, they (Λ)
decay at larger radii than the mother parঞcle. This leads to a larger correcঞon of the width of the mass distribuঞon.

We proceeded with the analysis of the Ω mass spectrum. The corrected mean mass of the
Ω± candidates become M̄corrected,Ω−+Ω+ = 1672.5402 ± 0.0061 MeV/c2, where the given
uncertainty is statistical. This is still 18 standard deviations (σMcorrected) away from the central
mean world average value. Nevertheless, we consider this value as the result of this work.
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(a) Invariant mass spectrum of theΩ− parঞcles (b) Invariant mass spectrum of theΩ+
parঞcles

Figure 6.10: Energy loss corrected mean mass distribuঞon of theΩ± baryons as a funcঞon of the transverse momen-
tum.
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7
Systematics studies

This chapter is dedicated to the evaluation of the systematic uncertainties and conduction of
the systematic checks of the Ω mass measurement.

Generally, a systematic uncertainty is determined via quantitative comparison of (at least)
twomeasured values obtained from any (at least) two data samples, say S and T. In this anal-
ysis for each sample, the set of themeanΩmass values in different pT bins {μi± σ̄i}pT bins and
themeanmass in the plateau region M̄fit(Ω)± σ̄fit for bothΩ− and Ω̄+ events aremeasured,
where the latter is computed with the values of the pT-set:

M̄fit(Ω) =

∑
i μi/σ̄

2
i∑

k 1/σ̄2k
(7.1)

σ2fit =
1∑

k 1/σ̄2k
, (7.2)

which is equivalent to the fit with a polynomial of zeroth order.
In terms of the properties of the data samples, we can differentiate two general cases: the

samples can be either independent or dependent on each other.
For the case of independent samples the evaluationof systematic uncertainty is the follow-
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ing. We compare the values M̄fit(Ω) directly with each other, i.e. we compute the difference
ΔMfit = M̄fit(Ω)|S − M̄fit(Ω)|T with the combined uncertainty σ2Δ|S∩T=∅ = σ2fit|S + σ2fit|T.
If the relationΔMfit < 3·σ2Δ holds, we consider bothmeasured values to be consistent. No

systematic uncertainty is needed to be computed. If, on the contrary, ΔMfit > 3 · σ2Δ, then
we assume that the values M̄fit(Ω)± σ̄fit are described by a Gaussian distribution alone and
investigate whether these individual distributions overlap within 3 standard deviations. If
the distributions do overlap, we do not calculate any systematic uncertainty, i.e. σsyst|S∩T=0.
For the case when both Gaussian distributions do not overlap we compute the systematic
uncertainty as the minimal distance needed to ensure the overlapping. Mathematically, this
can be summarized as:

σsyst(S ∩ T = ∅) = (MS − 3 · σS)− (MT + 3 · σT), (7.3)

where we assumewithout loss of generality that themeanmass valuemeasured on the subset
S is larger than that measured with the sample T.

Any two samples S and T are dependent when S ∩ T ̸= ∅. This is usually the case when
one studies the systematic effects via variation of kinematic and/or topological cuts. In the
scenario of the dependent samples we need to proceed differently. It is worth noting that the
systematic uncertainty evaluation according to Eq.7.3 will generally result in an underesti-
mate of the underlying systematic effect. This comes from the fact that the estimated values
will usually be consistent within their statistical uncertainties because a common shared sub-
sample was used for their determination. In order to account for the common statistics, we
proceed in steps described below.

1. For two samples S andTwe perform themass analysis in pT bins in the central plateau
region pT ∈ [2, 6] GeV/c using the same fitting properties for both samples, i.e. the
bin number and widths, signal extraction regions, background function etc.

2. The two obtained sets of values in pT bins {μS ± σ̄S}pT bins and {μT ± σ̄T}pT bins are
compared. Thismeans that for each bin iwe determine the deviationΔμi = μS,i−μT,i
and the combined uncertainty σΔi given by the derived formula:

σ2Δi = σ̄2S,i +
(
1− 2 ·

σ2S,i
σ2T,i

)
σ̄2T,i, (7.4)

where σS(T),i denote the width of the corresponding Gaussian distribution. For the
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full derivation, see Appendix C. We note that Eq.7.4 is consistent with the method
described by Barlow (2002). However, we include the dependence on the width of
the Gaussian distribution.

3. We fit the set {Δμi± σΔi}with a constant parameter in the pT-range used for the mass
plateau analysis. As a result we get the mean mass deviation ⟨Δμ⟩ > ±σ<Δμ>. The
same values of the latter can also be evaluated by Eq.7.1 and 7.2. This calculation is
coherent since the values in any two different pT bins are independent from each other.

4. We checkwhether the value ⟨Δμ⟩ is consistent with zero within the 3 intervals in units
of the statistical uncertainty 7.2. If the deviation is significant, the systematic uncer-
tainty σsyst is evaluated as

σsyst(S ∩ T ̸= ∅) = |⟨Δμ⟩| − 3 · σ⟨Δ⟩ > 0. (7.5)

Otherwise, the systematic uncertainty is set to 0.
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7.1 Systematics in different periods

The first systematic check which we decided to do was to investigate each data sample in in-
dividual data taking periods. This is motivated by the fact that the properties of the detector
system (calibration, mechanical alignment, magnetic field and others) may be different be-
tween each two periods. We fit the invariant mass of the Ω± baryons in the pT-range from 2
GeV/c up to 6 GeV/c. We could not perform the plateau analysis for each period the way we
did for the total collected data sample because the samples are different in size. In order to
minimize possible contributions from the statistical fluctuations to themeasuredmeanmass
values we decided to ignore the samples with the clean signal yields S at pT > 2 GeV/c with
S < 200.

We were left with 25 period samples (out of 34) which surpass the signal criterion above.
For periods with 1 · 103 < S < 5 · 103, we did not perform the plateau fit but instead fit
the whole signal in the given pT range. Thus we accounted for possible statistical fluctuations
which could affect the fit result, although thewidth of the invariantmass peak is not constant
over the pT range. The plateau analysis was done for each period with S > 5 · 103. Here we
differentiated two cases: if S < 1. · 104, we set the pT-bin width to 500 MeV/c2; in case
S > 1. · 104, the bin width was chosen to be 250MeV/c2.

The fit mean mass values are depicted in Fig. 7.1. No outlier was found when compar-
ing the evaluated mass values with the world average mass of the Ω hyperonMPDG(Ω): all
obtained values lie within the total uncertainty (red band in Fig. 7.1) of theMPDG(Ω) value.
As a next step, we needed to compare the analysis in individual periods with the results

of the plateau fit on the whole sample. To do this, we determined the weighted mean value
Mperiods(Ω) of themass sample shown in Fig. 7.1. Theweightsωi are chosen to beωi = 1/σ̄2i ,
where barσ2i are the statistical uncertainty of the mean values and the index i runs over the
whole analysed sample. The standard deviation of theMperiods(Ω) was evaluated according
to Eq. 7.2.
The estimated mean valueMperiods(Ω) lies within the statistical uncertainties of the value

Mfit(Ω)which we obtained in our analysis. The insignificant deviation between both mean
mass values indicates that the contribution of the other 9 periods (which were included in
the analysis sample) is negligible.
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(a) Analysis with theΩ−-sample. (b) Analysis with theΩ+
-sample.

Figure 7.1: Plateau analysis for each data sample collected for each data taking period.
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7.2 Variation of track and topology selection

In our analysis we set the values of the topological variables to the central values. However,
there is no unique recipe how to make the best choice of these cantral values. Variations of
the cut values on topological variables is therefore possible. In this section we estimate the
systematic uncertainty related to the topological variations. We proceed as follows. A cut
variation means that we change the threshold values of a given topological variable within a
specified value range using equidistant steps in a randommanner (flat distribution), seeTable
7.1. The tightest cut values were chosen in a way that when applied together there is a 25%
drop in clean Ω± signal in the plateau region pT > 2 GeV/c.

Variable Central Interval Step
DCAmeson to PV (cm) > 0.20 [ 0.05− 0.20 ] 0.05
DCA baryon to PV (cm) > 0.10 [ 0.05− 0.15 ] 0.05
DCA bachelor to PV (cm) > 0.05 [ 0.04− 0.12 ] 0.04

DCAV0 to PV (cm) > 0.04 [ 0.02− 0.06 ] 0.02
DCA bachelor to V0 (cm) < 1.0 [ 0.4− 1 ] 0.2

DCA negative to positive (cm) < 1.0σ [ 0.6− 1.4 ] σ 0.4σ
Cos(PAΛ) > 0.95 [ 0.98− 0.99 ] 0.01
Cos(PAΩ) > 0.99 [ 0.98− 0.995 ] 0.005
RΛ (cm) > 0.6 [ 0.6− 1.4 ] 0.4
RΩ (cm) > 1.1 [ 0.6− 1.2 ] 0.6
cτexp/cτ|Λ < 4 [ 1− 3 ] 1
cτexp/cτ|Ω < 3 [ 1.5− 3.5 ] 0.5

Table 7.1: Values of topological cuts used for the analysis (central) and for the topological variaঞons. The la�er are
shown in the right two columns. Variables are varied within a given value range in equidistant steps. Each value is cho-
sen randomly (flat distribuঞon). The units of variables in each row are shown in the le[ column.

For each set of varied cut values we determine the mean mass values of Ω± particles using
the same properties of bins and fitting procedure. It is clear that any two data sub-samples
on which we reconstruct the Ω mass are dependent. Rigorously, the proper superset T is
that sample with the loosest cuts. However, since the value ranges are generally tight we can
assume for each sub-sample S that S ∩ T ≈ T. Therefore, we decided to compare results
obtained in eachmeasurement on a varied sample with themeasuredmass values determined
with the Ω sample on which the central cut values were applied.

A complete set of variations with all values given in Table 7.1 would result in perform-
ing the plateau analysis ∼ 106 times. For the reasons of CPU limits, we decided to make
an estimate of the systematic uncertainty on a much smaller sample of 3000 variations. We
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computed the mean mass deviation ⟨Δμ⟩ ± σ⟨Δμ⟩ according to the prescription given in the
introductory part of this chapter. The average systematic uncertainty σΩ is determined as the
mean of the σ⟨Δμ⟩ distribution. If any obtained result was consistent with that evaluated with
the central cuts, σ⟨Δμ⟩ = 0, then this result was not used for the estimation of the systematic
uncertainty. First of all, we performed the analysis on theΩ− sample and recorded the values
of topological variables in each variation. Then the Ω+ analysis was done using the recorded
set of the cut values. The results are depicted in Fig. 7.2.

(a) Analysis with theΩ−-sample. (b) Analysis with theΩ+
-sample.

Figure 7.2: Distribuঞon of systemaঞc uncertainty σ⟨Δμ⟩ obtained in the mass analysis of theΩ hyperons obtained on
different data sub-samples using the variaঞon of topological cuts.

For the final result, we conclude that the mean systematic uncertainty due to topological
cut variations is σsystΩ− = 3.8keV/c2 and σsyst

Ω+ = 4.1keV/c2
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7.3 Λ mass dependence

For the calculation of the invariant mass of the Ω± candidates, we use the central mass of the
Λ baryon in Eq. 5.10. However, one could also determine the mass of the baryons using the
kinematic information about each charged daughter track. For the Ω baryons the formula
is:

Minv(pπK) =
(
(Ep + Eπ + EK)

2 − p2Ω
) 1

2 (7.6)

The method to determine the invariant mass with the equation above is connected to the
values of the invariant mass of the Λ baryon and thus is more sensitive to the track recon-
struction effects, i.e. energy scaling etc., than the method employing Eq. 5.10.

Figure 7.3 depicts the mean mass distribution the Ω particles as a function of transverse
momentum comparing the invariant massMinv(Ω) andMinv(pπK). For visibility, we anal-
ysed the combined Ω− + Ω+ sample. The invariant mass fit in the plateau region pT ∈
[2, 6]GeV/c yields the valueMinv(pπK) which deviates from the central result of this analy-
sis by around 56± 7 keV/c2, see chapter 6. Although this deviation is significant, we cannot
compute the systematic uncertainty according to Eq. 7.3 and 7.5.

Figure 7.3: Invariant mean mass spectra of theΩ baryons as a funcঞon of pT. Two different methods were used for the
mass computaঞon. The dark blue squares represent theΩ mass values which were calculated using the world average
mass value of theΛ baryon. The light blue squares denote the reconstructedΩ mass.

We note that two methods for the mass determination differ in their sensibility on the
value of the Λ mass. This can be seen as follows. Let the deviation (in this work: the positive
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mass offset) of the measured Λ massMinv(Λ) and the world average massMΛ be ΔMΛ =

Minv(Λ) − MΛ; let the world average mass of the Ω baryons beMΩ; let the Ω mass deter-
mined by Eq. 5.10 and Eq. 7.6 be Minv(Ω) and Minv(pπK), respectively. Then there is a
connection between the values expressed by:

Minv(pπK) = Minv(Ω) + ΔMΛ · MΛ

MΩ
+ ζ, (7.7)

where the term ζ depends on themomenta of the daughter particles. For the exact derivation,
see appendix D. In particular, the formula above implies that Minv(pπK) < Minv(Ω) for
pT < 2 GeV/c as the mass shift ΔMΛ is negative in that momentum range, see Fig. 6.8 and
7.3; and analogously, one expects thatMinv(pπK) > Minv(Ω) for pT > 2 GeV/c.
Inorder to comparebothmass evaluationmethodsquantitatively,we correct theMinv(pπK)

distribution for the shift ΔMΛ. To do this, we fit the invariant Λ mass spectrum in pT bins.
For each bin i we determine the shift term ΔMΛ(i bin). For the Ω analysis we choose the
same properties of the bins as for the Λ analysis.

(a) Invariant mass of theΩ− hyperons. (b) Invariant mass of theΩ+
hyperons.

Figure 7.4: Systemaঞc studies of theΩ mass spectrum.

We calculate the invariant mass values according to Eq. 7.6, consequently fit the invari-
ant mass spectrum of the Ω baryons and finally subtract the terms ΔMΛ · MΛ/MΩ bin-
wise. The values ΔMΛ = μi,Λ −MPDG(Λ) are calculated for each pT bin i where μi,Λ is the
mean value of the fit Λ mass distribution. For the invariant mass spectra of the Ω− and Ω+

candidates we differentiate between the mass distributions of the Λ and Λ̄ particles, respec-
tively. The corrected spectrum is compared to theMinv(Ω) distribution: the plateau analysis
in pT ∈ [2, 6] GeV/c is performed and the obtained fit values are quantitatively compared.
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Figure 7.4 illustrates our results. The difference in the mean mass values betweenMinv(Ω)

distribution and the corrected mass spectrumMcorr
inv (Ω) are ΔM(Ω−) = 20.5± 8.6 keV/c2

and ΔM(Ω+
) = 18.2 ± 8.3 keV/c2. The variance of the mass difference is computed as

the quadratic sums of the individual uncertainties. Both values ΔM(Ω−) and ΔM(Ω+
)

are consistent within 3σ intervals and are considered to be non-significant. Hence we con-
clude that two methods for the Ω mass estimation are consistent with each other up to the
systematic bias which manifests itself in the offset of the Λ mass.

It has been shown in this analysis that both the Λ and the Ω baryon have a systematic
mass offset. The determined Ω± mass values lie within the total uncertainty of the world
averageΩmass, and hence it is not sufficient to extrapolate the value of the shift ΔMoffset(Ω)

just from the Ω mass values. We rely more on the measurement with the Λ particle, whose
reconstructed mean mass value deviates significantly from the world average Λ mass. Since
themass offsets of the Λ andΩ particles are connected through Eq.7.7, we evaluate the value
ΔMoffset(Ω) as:

ΔMoffset(Ω) = ΔMoffset(Λ) · MΛ

MΩ
(7.8)

With ΔMoffset(Λ) = 157 ± (6 ⊕ 8) keV/c2 and ΔMoffset(Λ̄) = 136 ± (6 ⊕ 8) keV/c2, we
obtain using the equation above:

ΔMoffset(Ω−) = 105± 7 keV/c2 (7.9)

ΔMoffset(Ω+
) = 91± 7 keV/c2 (7.10)

Both values above are consistent within the total uncertainty. We estimate the mean mass
offset for the Ω± particles to be ΔMoffset(Ω) = 98± 7 keV/c2.
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7.4 Magnetic field

For each period we recorded the magnitude and the polaraity of applied magnetic field. This
allows us to perform a systematic check based on magnetic field effects. Our complete data
sample can be split in three subgroups of periods, see table 7.2.

For the period LHC17gwhere themagnetic field B = −0.2Twas applied we do not have
enough statistics to perform a consistent systematic check with the precision of ∼ 1 − 10
keV/c2 when analysing the Ω sample. Consequently, we cannot make any statement about
the impact of the magnitude of the magnetic field on the reconstructed Ω mass. Therefore,
we decided to perform a systematic check of the properties of the Ω± signal in dependence
on the B-field polarity.

B [T] Periods S(Ω−)(pT > 2 GeV/c) S(Ω̄+)(pT > 2 GeV/c)
LHC16(h,j,k,l,o,p)

+ 0.5 LHC17(f,j) 45120(220) 46720(220)
LHC18(g,i,m,n,o,p)

LHC16(d,e,g)
– 0.5 LHC17(c,e,h,i,k,l,m,o,r) 51840(230) 53290(230)

LHC18(b,d,e,f,h,j,k,l)
– 0.2 LHC17g 436(21) 466(22)

Table 7.2: Data sub-samples split to account for the magneঞc field.

B [T] Mfit(Ω−) [MeV/c2] [MeV/c2] Mfit(Ω̄
+
) [MeV/c2]

+ 0.5 1672.316(90) 1672.5104(90)
– 0.5 1672.441(80) 1672.5696(79)
– 0.2 1672.61(15) 1672.51(15)

Table 7.3: Results obtained in the analysis of the energy rescaledΩ sample invariant mass dependence on the polarity
of the magneঞc field.

For each of the sub-samples we extrapolate the mean invariant mass and its statistical un-
certainty in the plateau analysis. Since each data sub-sample (B = +0.5 T and B = −0.5 T)
is around a half of the total sample (B = ±0.5T andB = −0.2T combined), we double the
size of pT-bin width, i.e. each bin is 200MeV/c wide. Thus we try to keep the same order of
the statistical fluctuations in each pT bin. The results obtained for the energy rescaled sam-
ple are shown in table 7.5. In case of the Ω− baryons the deviation between mass values is
ΔM(Ω−) = M(B = −0.5T)−M(B = +0.5T) = 13±12 keV/c2, where the uncertainty
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Figure 7.5: Mean mass spectrum of theΩ+
parঞcle as a funcঞon of the momentum pT, plo�ed for two different mag-

neঞc field polariঞes.

σ2ΔM = σ2B=−0.5T+ σ2B=+0.5T because the samples are independent from each other. In case of
the Ω+ hyperons, the analogous calculation of the deviation results in ΔM(Ω̄+

) = 60± 12
keV/c2 which is significant. Furthermore, theΩ+measuredmeanmass values do not overlap
within the 3σ uncertainty range, i.e. the values are discrepant. Figure 7.5 illustrates the mean
mass spectrum of the Ω+ baryon for two polarities of the magnetic field.
A possible dependence of the energy loss correction on the secondary tracks, which we

performed in the analysis, on the magnetic field polarity is excluded since also for initial (not
corrected) sample the deviations for the Ω− and Ω̄+ baryons are ΔMinitial(Ω−) = 9 ± 12
keV/c2 and ΔMinitial(Ω̄

+
) = 58± 12 keV/c2, respectively. This result was tested to be inde-

pendent on the choice of the bin width, signal extraction region or the choice of the plateau
region. We calculate the systematic uncertainty due to the polarity of the magnetic field σB
only for the Ω̄+ candidates. We calculate the value σB according to Eq.7.3:

σB(Ω
+
) = (MB=−0.5T − 3 · σB=−0.5T)|Ω+ − (MB=+0.5T + 3 · σB=+0.5T)|Ω+ = 8.8 keV/c2

(7.11)
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7.5 TPC related systematic studies

7.5.1 TPC counting gas

The choice of the counting gas inside theTPCactive volumemayhave an impact on the track-
ing reconstruction efficiency. During Run 2 two gas compositions were used, see table 7.4.
In this section we perform the systematic check based on the choice of the gas composition.
We subdivided the total collected sample into two sub-samples, performed the mean mass
analysis for each of the samples using the bin width of 200 MeV/c2 in the whole pT ∈ [2, 6]
GeV/c and finally compared the results.

TPC gas composition Periods S(Ω−)(pT > 2 GeV/c) S(Ω̄+)(pT > 2 GeV/c)
Ar-CO2 (88%− 12%) LHC 16, 18 71990(270) 74100(270)
Ne-CO2-N2 (90 : 10 : 5) LHC 17 36020(190) 36990(190)

Table 7.4: Data sub-samples split to account for the TPC counঞng gas composiঞon.

TPC gas composition Mfit(Ω−) [MeV/c2] [MeV/c2] Mfit(Ω̄
+
) [MeV/c2]

Ar-CO2 (88%− 12%) 1672.5283(83) 1672.5250(83)
Ne-CO2-N2 (90 : 10 : 5) 1672.5520(110) 1672.5717(107)

Table 7.5: Results obtained in the analysis of the energy correctedΩ sample invariant mass dependence on the TPC gas
composiঞon.

The deviation of the Ω− mean mass values for the two gas compositions is found to be
ΔM(Ω−)TPC gas = M̄(Ar) − M̄(Ne) = 23 ± 14 keV/c2. This deviation is insignificant.
For the Ω+ particles the similar calculation yields a significant deviation ΔM(Ω+)TPC gas =

47 ± 14 keV/c2. However, since the measured values overlap within the ranges of the 3σ
uncertainties, they are considered to be consistent. Hence, no systematic uncertainty should
be determined in this case.

7.5.2 Particle identification

We investigated how the PID quality of the TPC influence the measurement of the Ωmass.
To do this, we varied the number of the standard deviations σdE/dx from the expected dE/dx
value for individual daughters while keeping other kinematic and topological cuts at the cen-
tral values. In this case we deal with dependent data samples. The proper superset T is given
by all daughters with nσ(dE/dx) < 4.. This implies that each measurement obtained in each
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variation (i.e. on the subset S) is compared to the proper superset T according to Eq.7.4.
We vary the values of nσ(dE/dx) in the range [2, 4] in equidistant steps Δnσ(dE/dx) = 0.2. For
each variation the mean mass deviation ⟨Δμ⟩ is determined, see Fig. 7.6. One can infer from
Fig. 7.6 that for cases with varied nσ(dE/dx) close to 4 the sets S and T do not differ substan-
tially from each other, hence ⟨Δμ⟩ is close to 0 as expected. For the cases when we select
daughter sample with nσ(dE/dx) < 1−2 the statistical uncertainty of themeanmass deviation
becomes large. This can be explained by decreased statistics of the Ω± mass-spectrum and
hence - by larger statistical fluctuations in individual pT-bins. The systematic uncertainty due
to TPC PID is determined as the mean of the σ⟨Δμ⟩ distribution, see Eq. 7.5. The total un-
certainty σΩ(TPC PID) = ⟨σmeson⟩ ⊕⟨σbaryon⟩ ⊕⟨σbachelor⟩. We evaluate σΩ−(TPC PID) =

0.1⊕ 0.1⊕ 0.4 keV/c2 = 0.4 keV/c2 and σΩ+(TPC PID) = 0.2⊕ 0.2⊕ 0.4 keV/c2 = 0.5
keV/c2. We keep the values for the record.

7.5.3 Number of clusters

A track of a chargedparticlemayhave up to 159 reconstructed clusters inside theTPC.Tracks
with higher number of the TPC clusters have higher overall position and momentum reso-
lution, i.e. they are of high quality. It is tempting to investigate how the kinematic quality
of the tracks influence the mass measurement. Here, similar to section 7.5.2, we vary the
number of cluster and compare each mass measurement with that done on the proper su-
perset T, where T consists out of tracks with Ncls > 70. The variation range lies between
70 and 120 clusters with an equidistant step of ΔNcls = 1. Figure 7.7 shows the result. The
mean systematic uncertainty is calculated in the samemanner as in section 7.5.2. We evaluate
σΩ−(Ncls) = 0.2 keV/c2 and σΩ+(Ncls) = 1.0 keV/c2.
We also investigated another variable which controls the reconstruction quality of the

tracks, i.e. the ratio of the number of reconstructed clusters to the number of findable clus-
ters. When this ratio is close to unity then the quality of track is the best. However, it was
shown that at ratios higher than 90% the data no longer agree with MC. For this reason, we
vary the values of the ratioNcls/Nfindable in the range [0.7, 0.9]with a step of 1%. The nom-
inal set is that with Ncls/ Nfindable > 0.7 and every measurement is compared to it, see Fig.
7.8. The systematic uncertainties are determined estimated to be σΩ−(Ncls/Nfindable) < 0.1
keV/c2 and σΩ+(Ncls/Nfindable) = 0.4 keV/c2.
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Figure 7.6: Systemaঞc studies of theΩ invariant mass dependence on the quality of the PID with the TPC. The red
arrow indicate the central cut value used for the analysis. Every measurement is compared to the proper superset with
nσ(dE/dx < 4.
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Figure 7.7: Systemaঞc studies of theΩ invariant mass dependence on the threshold number of reconstructed track
clusters inside the TPCNcls. The red arrow indicate the cut value put on the allowed number of TPC clusters used in
the analysis. Each measurement is compared to that withNcls > 70.
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Figure 7.8: Systemaঞc studies of theΩ invariant mass dependence on the threshold raঞo of the number of recon-
structed track clusters to the number of findable clustersNcls/Nfindable. Red arrow indicate the minimum allowed value
ofNcls/Nfindable which was used in the analysis. Each measurement is compared to that withNcls/Nfindable > 70.
The green verঞcal line atNcls/Nfindable = 90 shows where the discrepance between real data and MC becomes
significant. See text for more detail.
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7.5.4 Cascade rejection

We reject the Ξ± → Λ + π± events from our Ω± → Λ + K± sample to keep it clean
from misidentified π/K particles. The presence of the Ξ± candidates in the Ω contributes
a large part to the background distribution in the Ω invariant mass spectrum, see Fig. 6.1b.
Therefore, we dedicate this section entirely to the cascade rejection.

The cascades Ξ± are rejected in this work by accepting only those Ξ-hypothesismass values
Minv(Ξ) which lie outside of a given mass window MΞ

window away from the world average
mass valueMΞ = 1.321 GeV/c2, i.e. accept an event if |Minv(Ξ) − MΞ| >MΞ

window. Table
7.6 summarizes how the width of the mass window MΞ

window affects the Ω± baryon yields,
including the central cut used in the analysis MΞ

window = 8MeV/c2.

MΞ
window [MeV/c2] S(Ω−)(pT > 2 GeV/c) S(Ω̄+)(pT > 2 GeV/c)

0 104432 107829
2 104432 107829
4 104386 107771
6 103553 106705
8 102751 105909

Table 7.6: Signal yields of theΩ± baryons for different mass window with of the Ξ mass used for the cascade rejecঞon.

Table 7.6 shows the clean signal yields for the Ω± events in dependence of the Ξ-mass
window width. Even for the widest window (i.e. tightest cut) the clean signal loss is just
1− 2%.

Figure 7.9: Invariant mass spectrum of theΩ± hyperons for different cuts of the Ξ mass.
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Although only a tiny fraction of the signal is lost after the cascade rejection, the admixture
of the cascades in the sample changes the shape of the background under the Ωmass peak as
is illustrated in Fig. 7.9. The change of the form of the background may shift the estimated
fit mean mass value.

We evaluate the systematic uncertainty using the prescription for the dependent samples.
The total set T is the sample which includes all cascades MΞ

window = 0. Every sample S after
the application of the cut MΞ

window > 0 becomes an inclusion of T. The upper panels of Fig.
7.11 show the mean mass deviation ⟨Δμ⟩ as a function of the Ξ mass window. For values of
the mass window lying within the resolution (1σΞ) of the Ξ mass spectrum, the background
shape under theΩ peak does not changemuch and this yields consistentMinv(Ω) values. As
more cascades are being rejected, themore does the background shape influence the fit values
Minv(Ω). For MΞ

window ≥ 4MeV/c2, the mean mass deviation becomes significant.

(a) Analysis with theΩ−-sample (b) Analysis with theΩ+-sample

Figure 7.10: Distribuঞon of the mean mass deviaঞons (upper panels) and the computed systemaঞc uncertainty as a
funcঞon of the width of the Ξ-mass rejecঞon window.

The lower panels of Fig. 7.11 show the evaluated systematic uncertainties σsyst according to
Eq.7.5 for theΩ± events as a function of the cascademasswindow. Each determined value of
σsyst is coupled to the uncertainty of the fit. In order to decouple the fitting uncertainty from
the uncertainty due to the cascade rejection, we determine themean value ⟨σsyst⟩ as evaluated
from the set of 60 measurements in the range MΞ

window ∈ [6, 12]MeV/c2 with an equidistant
mass window step ΔMΞ

window = 0.1 MeV/c2. In the given range we do not have any cascade
candidates, and only insignificant amount of background is rejected. This implies that the
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statistical spread of the values ⟨σsyst⟩ is only due to uncertainty of the fit. The distributions
of the systematic uncertainties ⟨σsyst⟩ is illustrated in Fig.7.11.

(a) Analysis with theΩ−-sample. (b) Analysis with theΩ+-sample.

Figure 7.11: Distribuঞon of the systemaঞc uncertainty due to cascade rejecঞon.

Hence,we conclude that the systematicuncertaintydue to the cascade rejection is 3.1 keV/c2

and 2.2 keV/c2 for the Ω− and Ω+ candidates, respectively.
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7.5.5 Quality of energy scaling

In this section we test how good the dE/dx scaling of the momenta of the daughter particles,
which we performed in the analysis, actually is. We found out that the largest correction
was done on the protons (due to its large mass) and pion (due to low momentum) of the
decay daughter decay Λ → pπ. Furthermore, we found out that the correction depends not
only on the momentum itself but also on the radial distance of the secondary vertex from
the primary vertex. That is why we analysed the Ω invariant mass spectrum in dependence
of the radial decay position of the daughter Λ baryon RΛ. We split our Ω candidate sample
in two independent sub-samples: one contained only those Λ candidates that decay before
the second SPD layer, i.e. RΛ ≤ 7.9 cm; for another sub-sample we demanded RΛ > 7.9
cm. For a possible cross-check, we performed the analogous analysis on the sample for which
no dE/dx rescaling on the secondaries was applied. The results of such analysis are shown in
Table 7.7.

Sample Minv(RΛ ≤ 7.9 cm) [MeV/c2] Minv(RΛ > 7.9 cm) [MeV/c2]
Ω−, dE/dx rescaled 1672.5590(82) 1672.5011(93)
Ω+, dE/dx rescaled 1672.5709(82) 1672.5053(90)

Ω−, dE/dx NOT rescaled 1672.5775(82) 1672.5998(93)
Ω+, dE/dx NOT rescaled 1672.5859(81) 1672.6069(91)

Table 7.7: Mean mass of theΩ± candidates in dependence on the radial decay posiঞon of the daughterΛ baryon.

One can infer from the table above that the valuesMinv(RΛ ≤ 7.9 cm) andMinv(RΛ >

7.9 cm) are consistent within the fit uncertainty in case of the not rescaled dE/dx sample for
both the Ω− and Ω+ candidates. For the dE/dx scaled samples we see that the values are
discrepant. This discrepancy could come from the daughter kaons, Ω → ΛK, whose energy
was most of the times not rescaled especially if they originate from the Ω decay vertex close
to the primary vertex. This significant Ω mass difference is not expected to come from the
energy rescaling done on the daughter protons or pions alone since the invariant Λ mass is
shown to be independent on the radial distance, see Fig. 6.4b.
In order to check if the dominant contribution comes from the daughter kaons, we split

our total sample again in two independent sub-samples. However, this time the boundary
is set by the radial distance of the Ω decay vertex RΩ ≤ 4 cm and RΩ > 4 cm. The value
RΩ = 4 cm is chosen in such a way that two sub-samples are in proportion 1 : 1. Since the
properties of theΩ− andΩ+ spectra are substantially the same, i.e. distribution of the decay
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radius, and the dE/dx rescaling on the kaon directly depends on the value of RΩ, we would
expect the same mass differences for the Ω− baryon and its anti-particle.

Sample Minv(RΩ ≤ 4 cm) [MeV/c2] Minv(RΩ > 4 cm) [MeV/c2]
Ω−, dE/dx rescaled 1672.5620(92) 1672.5116(83)
Ω+, dE/dx rescaled 1672.5686(91) 1672.5189(81)

Table 7.8: Mean mass of theΩ± candidates in dependence of the radial decay posiঞon of the motherΩ baryon.

The mass deviations are calculated to be ΔM(Ω−) = ΔM(Ω+
) = M(RΩ < 4cm)

−M(RΩ > 4cm) = 50 ± 12 keV/c2. Consequently, the effect is indeed due to the energy
rescaling of kaon tracks. We need to admit that there is a radius dependent mean mass shift
in theΩ reconstructedmass spectrum. However, since the bothGaussian distributions with
themean and standard deviation given by the values in Table 7.8 overlap, we cannot estimate
the systematic uncertainty in this case.

Consequently, we introduce an upper limit of 50 keV/c2 on the estimated mean mass of
the Ω baryon. We understand it as the non-vanishing mass shift due to energy scaling and
handle the value as an asymmetric uncertainty.
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8
Results and outlook

The goal of this thesis was to reconstruct the Ω± hyperons in the golden decay channel
Ω− → Λ(pπ−)K− andΩ+ → Λ(p̄π+)K+ and determine the invariant mass with unprece-
dented precision. We analysed the whole data sample of pp collisions at

√
s = 13 TeV which

was collected during Run 2 in the years 2016 − 2018. The invariant mass was measured in
themomentum range of the Ω hyperons 2GeV/c< pT < 6GeV/c where themeanmass dis-
tribution is described by a plateau which we fit with a constant parameter. Our fit result for
the sample of 101452Ω− and 104469Ω+ particles isMfit(Ω−) = 1672.5364± (0.0061)stat
MeV/c2 ( χ2red = 1.03 ) andMfit(Ω

+
) = 1672.5439 ± (0.0060)stat MeV/c2 ( χ2red = 1.24 ),

respectively. The weighted average Ω mass is henceMfit(Ω) = 1672.5402 ± (0.0043)stat
MeV/c2. The weights are given by the reciprokes of the statistical variances of individual val-
ues.

In this analysis we have shown that the hyperons artificially receive a positive offset to the
mean invariant mass when the corresponding charged daughter particles are reconstructed
with a primary track hypothesis. The latter means that the momentum of the particles was
corrected for the specific energy loss dE/dx inside the ITS and beam pipe material. For the
Λ − Λ̄ and Ω± baryons the mean mass shifts were estimated to be +292 ± 7 keV/c2 and
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+195± 5 keV/c2 when compared to the world average Ω mass, respectively,.
We tried to correct for this effect by re-tracking the daughter particles with the correct

assumption of their origin being the corresponding position of the secondary vertex. The re-
tracking algorithm subtracted an amount of ”fake” energy on a straight line segment connect-
ing the spatial positions primary vertex and the secondary vertex, and rescaled themomenta of
particles accordingly. Our correction did not make the mass offset vanish completely. Nev-
ertheless, we managed to decrease its value by nearly a factor of two. For the Λ− Λ̄ and Ω±

particles the values of the mass offset dropped to 147± 10 and 98± 7 keV/c2, respectively.
Another goal of this thesis was to perform the CPT test in the Ω system. To do this, we

needed to evaluate the total uncertainty of the corresponding mass measurement. Table 8.1
summarizes the values of both the statistical fit and systematic uncertainties of various kind.

Type σΩ− [keV/c2] σΩ+ [keV/c2]
Fit (statistical) 6.1 6.0
Magnetic field 0 8.8

Topological variations 3.8 4.1
Cascade rejection 3.1 2.2
TPC PID nσ(dE/dx) 0.4 0.5

TPCNcls 0.2 1.0
TPCNcls/Nfindable 0 0.4

dE/dx in the ITS and beam pipe 0 0
Total systematic 4.9 10.0

Total 7.8 11.7

Table 8.1: Summary of the staঞsঞcal and systemaঞc uncertainঞes of theΩ± mass values.

In order to obtain the total variancewe add individual values of uncertainty in quadrature.
The mass shift due to the energy scaling of the charged daughter tracks builds the upper
limit on the determined Ω mass and is included in the result as the asymmetric uncertainty
δM−

offset = −50 keV/c2. Our result is

MΩ− = 1672.5364+0
−0.0500 ± (0.0061)stat ± (0.0049)syst MeV/c2

MΩ+ = 1672.5439+0
−0.0500 ± (0.0060)stat ± (0.0100)syst MeV/c2

The mass difference ΔM is therefore

ΔM = MΩ− −MΩ+ = −7.5± (8.6)stat ± (11.14)syst keV/c2,
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where individual uncertainties of the Ω− and Ω+ are added in quadrature and the common
mass shift due to energy scaling cancels out. The CPT test is then performed

ΔM
Mfit(Ω)

= (−4.48+1.13
−0 ± (5.14)stat ± (6.66)syst) · 10−6

where thepositivepart of the asymmetric uncertainty accounts for themass offset of themean
valueMfit(Ω)which is given by δM−

offset. Adding the statistical and systematic uncertainties
in quadrature leads to the result

ΔM
M(Ω)

∣∣∣∣
result

= (−4.48+1.13
−0 ± 8.41) · 10−6

ΔM
M(Ω)

∣∣∣∣
PDG

= (1.44± 7.98) · 10−5,

where ΔM
M(Ω)

|PDG is the currentworld average of theCPT test and is givenhere for comparison.
Our result is around one order ofmagnitudemore precise than the recentworld average. The
improved value is still consistent with the CPT symmetry.

The momentum rescaling of the secondary particles which we have done in this work is
the first measurement of this kind ever performed with ALICE. Further investigations and
improvements are still needed to make the values of the mass offset in the hyperon sector be-
come consistentwith zero. Moreover, it is needed to be studiedwhether our energy re-scaling
procedure is compatible withMCdata. We note that importance of the energy rescalingmay
become apparent for the future precision measurements in upcoming Run 3 and Run 4. In
Run3, the upgrade of theTPCdetectorwill enable a factor 100more statistics to be collected
since a new readout capability of around 3.5 kHz instead of 300Hz in Pb-Pb collisions is ex-
pected (Lippmann, 2014). Furthermore, the upgrade of the ITS2 detector will increase the
resolution of the secondary vertex reconstruction as the first detecting layer of the ITS2 is
closer to the beam pipe than the current SPD1. For the particle tracking and energy scaling,
a decrease of the material budget by a factor of seven will play a crucial role as this improves
both the impact parameter and the momentum resolutions. (Abelev et al., 2014). Due to
the lower material budget of the future ITS2 (and ITS3 in Run4, (Adamová et al., 2019)) it
will be possible and of high interest not only to test CPT invariance in the Ω system in the
currently unacceptable momentum range pT < 2 GeV/c but also reconstruct the invariant
mass with unprecedented precision and free of any systematic biases (such as mass offsets).
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A
Discrete Symmetries

Operation of the discrete symmetries on different operators, also known as inversions, is sum-
marised in the table below. The operators in bold denote the 3-vectors, s and Q have one
component and x stands for 4-vector.
The matrices SP,C,T which act on spinor fields satisfy the following conditions:

S−1
P γμSP = γμ ⇒ SP = γ0 (A.1)

S−1
C γμSC = −(γμ)T ⇒ SC = γ2 (A.2)

S−1
T γμST = γμ ⇒ ST = iγ1γ3 (A.3)

(A.4)
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Observable Operator P C T CPT
spatial coordinate x −x x x −x
3-Momentum p −p p −p p

orbital angular momentum L = x× p L L −L −L
projected component of spin s s s −s −s

charge Q Q −Q Q −Q
scalar field φ(t, x) ηPφ(t,−x) ηCφ

†(t, x) ηTφ(−t, x) ηCPTφ
†(−x)

EM field Aμ(t, x) +Aμ(t,−x) −Aμ(t, x) +Aμ(−t, x) −Aμ(−x)
fermionic field, s = 1

2 ψ(t, x) ηPSPψ(t,−x) ηCSCψ̄
T(t, x) ηTSTψ(−t, x) ηCPTγ5γ0ψ̄

T(−x)
general tensor Tμνρ...(t, x) ηPTμνρ...(t,−x) ηCT

†(μνρ...)(t, x) ηTTμνρ...(−t, x) ηCPTT
†μνρ...(−x)

Table A.1: Summary of acঞon of discrete (inversion) symmetry operators: parity (P), charge conjugaঞon (C), ঞme-reversal
(T) and its combinaঞon, CPT, on different observables.
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Event properties
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Period Nruns B [T] Interaction rate [kHz] TPC gas Events selected [106] Events analysis [106]
16d 10 -0.5 1.5 – 5.5 14.4 0.01
16e 11 -0.5 5 – 600 47.0 0.05
16g 17 -0.5 75 – 120 25.0 0.19
16h 67 +0.5 120 – 200 (∼130) 65.0 1.23
16j 34 +0.5 ∼ 240 Ar - CO2 41.8 0.90
16k 194 +0.5 ∼ 120 88%-12% 139 4.51
16l 58 +0.5 ∼ 120 27.7 1.38
16o 71 +0.5 ∼ 120 30.8 1.11
16p 42 +0.5 120 19.2 1.19
17c 5 -0.5 1–45 8.63 0.007
17e 5 -0.5 5 – 200 9.45 0.01
17f 5 +0.5 4 – 22 9.05 0.01
17g 31 -0.2 4 – 70 88.4 0.14
17h 88 -0.5 100 – 200 112.2 2.21
17i 52 -0.5 190 Ne-CO2-N2 41.7 1.29
17j 10 +0.5 10 – 50 90%-10%-5% 36.9 0.03
17k 105 -0.5 190 87.7 3.70
17l 127 -0.5 190 65.6 4.82
17m 108 -0.5 190 92.3 4.87
17o 148 -0.5 190 94.0 6.26
17r 28 -0.5 50 23.5 1.48
18b 25 -0.5 2 – 80 168.6 0.22
18d 44 -0.5 195 37.1 1.63
18e 41 -0.5 195 37.3 1.51
18f 59 -0.5 195 50.0 4.06
18g 11 +0.5 20 – 160 7.55 0.04
18h 2 -0.5 195 3.42 0.30
18i 9 +0.5 20 49.7 0.05
18j 1 -0.5 190 Ar - CO2 0.080 0.006
18k 12 -0.5 20 – 160 88%-12% 9.0 0.52
18l 76 -0.5 190 58.2 4.81
18m 242 +0.5 190 – 250 170.8 14.4
18n 2 +0.5 12 3.18 0.004
18o 39 +0.5 10 – 50,160 – 250 29.2 4.04
18p 79 +0.5 250 59.25 10.8

Table B.1: Periods’ and event informaঞon
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C
On covariance and correlation factors

Consider two samples S and T with a general condition S ∩ T = U, where one can think of
S, T andU as collections of cascade candidates in context of this work. 1

Figure C.1: (a) General subsets with a non vanishing intersecঞonU. (b) Independent subsets. This can the case when
studying sets dependent on different B field polariঞes, different TPC counঞng gas etc.(c) Case of inclusion. This case is
studied by Barlow (2002).

Say, we measure some quantity X (mass, life-time etc.) on the sub-samples with averages
1Generally, if any daughter track is assigned to multiple cascade candidates, then one needs to consider the

cascades are no longer independent. However, in this analysis we have on average one cascade pro event and
hence, Ω candidates are viewed as independent events.
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a:

aS =
1
NS

∑
S

xS, aT =
1
NT

∑
T

xT, aUNU =
∑
U

xU (C.1)

and uncertainties of the mean σ̄:

σ̄2S =
σ2S
NS

, σ̄2T =
σ2T
NT

, σ̄2UNU = σ2U, (C.2)

where σ2 stands for the standard deviation. In the case of intersection sample U, we avoid
usingNU in denominator, asNU can be 0 in general. One can think ofNi as signal yields in
a corresponding subsample i.
If one wants to compare the two measurements aS and aT with each other, a straightfor-

ward procedure is to calculate the difference Δa = |aS − aT|. According to propagation of
errors, the uncertainty of Δa is given by:

σ2Δ = σ̄2S + σ̄2T − 2 · cov(aS, aT), (C.3)

where the covariance betweenmeans aS and aT defined as:

cov(aS, aT) =
1
n

n∑
i=1

ai,T · ai,T − μSμT, (C.4)

whereμ= 1
n
∑

ai. Herewe consider thatNS,NT ≫ 1 and, therefore, assume thatai,(S,T) = a(S,T) = μ(S,T)
for ∀i. Generally, we cannot put the same assumption on U. Consequently, estimate of the
mean aU may have some deviation from μU, we may express it as δμU = aU − μU. Here, aU is
the value obtained from a (any) single measurement.

One can decompose the sums as

NS · ai,S = NU · ai,U + (NS · ai,S −NU · ai,U) = (C.5)

= NU · ai,U + (NS · μS −NU · aU) ⇒ (C.6)

ai,S =
NU

NS
· ai,U + aU − NU

NS
μS (C.7)
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and similarly, one obtains the same expression for the sample T:

ai,T =
NU

NT
· ai,U + aU − NU

NT
μT (C.8)

Inserting results from C.7 and C.8 in C.4 leads to:

cov(aS, aT) =
NU

NS ·NT
σ2U +NU · δμU ·

[
μS
NS

+
μT
NT

]
+

N2
U

NS ·NT
· (δμU)

2 (C.9)

In the equation above we used 1
n
∑

a2i,U = σ̄2U + μ2U. In case, whenNU/NS,T ≪ 1 (almost
independent S and T, S ∩ T ≈ ∅), the covariance vanishes. If on contrary, NU,S,T ≫ 1,
then δμU → 0 and the covariance reduces to cov(aS, aT) = NU

NS·NT
σ2U. Moreover, if say, S is an

inclusion of T, i.e. S ⊂ T⇐⇒ S ∩ T = S, then the covariance is given by a result obtained
by Barlow (2002), i.e. cov(aS, aT) = NS

NS·NT
σ2S =

NS
NT
σ̄2S. In summary, we may approximate σΔ

as follows

σ2Δ =

σ̄2S + σ̄2T , if S ∩ T = ∅

σ̄2S + (1− 2 · σ2S
σ2T
)σ̄2T , if S ∩ T = S

(C.10)

In the latter case, one can approximate even further with σ2Δ = σ2S−σ2T, when σS ≈ σT, which
for instance would be the case when width of the peak is given solely by detector resolution.
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D
Λmass dependence of the Ωmass spectrum

Here the derivation of equation 7.7 is presented.
For each cascade candidatewe can consider the following. The invariantmass theΩbaryon

Minv(pπK) calculated by Eq. 7.6 will have a shift from the world average central mass value
ΔMpπK = Minv(pπK)−MΩ. Analogously, the shift for the mass valueMinv(Ω) computed
with Eq.5.10 will have a shift ΔMΩ = Minv(Ω)−MΩ; and the Λmass computed with Eq.
5.9 has a general shift ΔMΛ = Minv(Λ) −MΛ. When all mass shifts ΔM are small (which
is the case in this analysis, ΔM/M ∼ 10−5 we can approximate:

Minv(pπK)2 = (Ep + Eπ + EK)
2 − p2Ω ≈ M2

Ω + 2MΩ · ΔMpπK (D.1)

Minv(Ω)2 = (EΛ + EK)
2 − p2Ω ≈ M2

Ω + 2MΩ · ΔMΩ (D.2)

Minv(Λ)2 = (Ep + Eπ)
2 − p2Λ ≈ M2

Λ + 2MΛ · ΔMΛ, (D.3)
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where EΛ = sqrtM2
Λ + p2Λ. Subtracting Eq. D.3 from Eq. D.1 we get

Minv(pπK)2 −Minv(Ω)2 = 2MΩ(ΔMpπK − ΔMΩ)

= (Eπ + Ep)
2 − E2

Λ + 2EK(Eπ + Ep − EΛ)

= Minv(Λ)2 −M2
Λ + 2EK(Eπ + Ep − EΛ)

= 2MΛ · ΔMΛ + 2EK(Eπ + Ep − EΛ)

or equivalently

ΔMpπK = ΔMΩ + ΔMΛ
MΛ

MΩ
+ ζ (D.4)

The last term ζ = EK(Eπ+Ep−EΛ)
MΩ

vanishes for the Ω candidates in the limit of very high energy
EΩ. Hence, for the calculated masses we get (addingMΩ to both sides of Eq.D.5)

Minv(pπK) ≈ ΔMinv(Ω) + ΔMΛ
MΛ

MΩ
(D.5)
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