
Department of Physics and Astronomy

University of Heidelberg

Master thesis

in Physics

submitted by

Christof Sauer

born in Fürth

2019

Towards a Data-Driven Simulation of QCD

Radiation with Generative Models utilizing

Machine Learning Methods.

This Master thesis has been carried out by Christof Sauer
at the

Physikalisches Institut Heidelberg

under the supervision of

Herrn Prof. Dr. André Schöning

Comment

The present document is a revised version of the original work that has been
submitted on August 30, 2019 as part of the fulfillment for the degree of Master
of Science in Physics at the University of Heidelberg. Further sugestions for
improvements as well as hints concerning mistakes of any kind are mostly welcome.
Regarding this matter, please contact: csauer@physi.uni-heidelberg.de.

CERN, Friday, 22th November 2019,

Christof Sauer

i

mailto:csauer@physi.uni-heidelberg.de

ii

Acknowledgements
This Master’s thesis owes its existence to the support, help, and inspiration of
several people who should be acknowledged at this occasion.

First and foremost, I want to express my sincere gratitude to my advisor,
Prof. Dr. André Schöning, for the great opportunity to complete my Bachelor’s
(2017) as well as my Master’s degree under his supervision in the ATLAS group
at the Physikalisches Institut at the Ruprecht-Karls-Universität, Heidelberg. Fur-
thermore, I would like thank him for his support regarding my future academic
career in his group for years to come. I must not forget to give thanks to Prof.
Dr. Monica Dunford for her willingness to be the second reviewer of this report.

Besides my advisors, I want to articulate my deepest sense of gratitude and
appreciation to Dr. Danilo Enoque Ferreira de Lima for his marvellous encour-
agement, guidance – without patronizing! –, and patience throughout the entire
duration of my stay. Our fruitful, professional, and personal conversations were
of inestimable value and will remain cherished memories. Today’s science always
is a joint effort; in my daily work in our research group, I have been blessed with
friendly and cheerful colleagues who heartily welcomed me in their community
among them and made my entire stay a very pleasant and enjoyable experience.
My thanks go to (in alphabetical order): Anjali Krishnan, Arthur Bolz, Dr.
Christoph Falk Anders, Dr. Louis Helary, Marta Czurylo, Dr. Mathis Kolb, Dr.
Mykhailo Lisovy, and Tamasi Kar.

I would like to thank the former school principal, Ursula Engelberger, for
her support in difficult phases of life and my maths teacher Alfons Frink. I also
want to express special thanks to my erstwhile physics teacher at the Gymnasium
am Römerkastell, Gudrun Hattemer, for her encouragement and confirmation to
study physics – a decision I have never regretted to the present day.

In my private surrounding, I want to thank Marius-Hergen and Björn-Arved
Rauch from the bottom of my heart for their long-standing loyal friendship and
mental support for more than eighteen years. In addition, my gratitude goes to
my friends and fellow students Alexander Uth, Markus Kardorff and my recent
acquaintance Nina Alisa Laura Oser for their support and friendship.

Last, but not least, I take the opportunity to express my profound, bound-
less gratitude and love to my parents, Ursula Elaine and Hubertus Udo Sauer,
who supported me throughout my entire life, spiritually and materially, and
encouraged me in all of my life decisions up to this very point.

iii

iv

Dedicated to my beloved parents, Hubertus Udo and Ursula Elaine Sauer.

v

vi

Zusammenfassung

Im Kontext dieser Masterthesis wurde die Applikabilität sog. »erzeugender«
bzw. »genererierender Modelle« (aus dem Englischen Generative Models) unter
Verwendung gegenwartsnaher Methoden des maschinellen Lernens – als wissen-
schaftlicher Teilbereich der »künstlichen Intelligenz« – zur Simulation von QCD
resp. Gluonen induzierter Bremsstrahlung untersucht. Abseits der prinzipiellen
Anwendbarkeit der o. g. Methoden lag das Hauptaugenmerk auf der direkten
Gegenüberstellung der beiden prominentesten Ansätze zu deren praktischen
Realisierung: (Gauß-)Variational Auto-Encoders (VAEs) sowie die auf der Earth
Mover’s Metrik basierenden, jüngsthin ersonnenen Wasserstein Generative Ad-
versarial Networks (WGANs). Die Vergleichsstudie offenbarte eine deutliche
Überlegenheit der Letztgenannten gegenüber den VAE im Bereich Qualität und
Diversität der simulierten Daten, und deckt sich somit in konsistenter Weise
mit ähnlichen Beobachtungen in anderen Anwendungsgebieten. Weiter wurden
sowohl Wasserstein GANs als auch VAEs mit Rekurrenten Neuronalen Netzwer-
ken (RNN) in Form von Long-Short-Term-Memory-Netzen (LSTM) verquickt,
um den sequentiellen Charakter des zugrundeliegenden Teilchenschauers mög-
lichst wirklichkeitsgetreu zu Modellieren. Wie sich jedoch herausstellte, konnte
durch die Hinzunahme von LSTM-Netzen keine nennenswerte Verbesserung
erzielt werden. Indes zeigte sich jedoch, dass die Faktorisierung der generativen
Modelle in Teilchenschauer und Matrix-Element qua bedingter neuronaler Netz-
werke der Leistung zuträglich ist, wobei die Netzwerke auf die Energie und die
Pseudorapidität des Teilchen-Jets konditioniert wurden.

vii

viii

Abstract

This master’s thesis studied the possible employment of generative models –
using state-of-the-art machine learning methods – concerning the simulation of
QCD- respectively gluon-induced radiation. Besides the principle applicability
and feasibility of the methods presented in the course this report, the main focus
of attention was on the direct comparison of the two most prominent approaches
regarding the implementation of generative models, i.e., (Gaussian) Variational
Autoencoders (VAEs) and the novel Wasserstein Generative Adversarial Networks
(WGANs) that are based on the earth mover’s distance. The comparative study
of the two paradigms revealed clear superiority of WGANs compared to VAEs
regarding not only the quality but also the diversity of the generated data.
This outcome is consistent with the results that have been obtained in similar
studies in other fields of application. Furthermore, both models have been
combined with Recurrent Neural Networks (RNNs) using Long Short-Term
Memory (LSTM) cells to mimic the underlying sequential character of the
particle shower. Yet, it turned out that the combination of generative models
and RNNs is disadvantageous and unsuited to model the actual splitting process
that is not directly present in the training data. However, it became apparent
that the conditioning of the model on the energy and the pseudorapidity of the
jet, i.e., the marginalization of the matrix element information has beneficial
effects on the model’s overall performance.

ix

x

Οἶδα οὐδὲν εἰδώς.

– Plato (Apol. 21d), “Apology of Socrates (Απολογία Σωκράτους)”

xi

xii

Contents

Page

List of Figures xvii

List of Plots xxi

Nomenclature xxviii

Introduction 1

Part I

1 Theory 5

1.1 The Standard Model of particle physics 6
1.1.1 History of the Standard Model 6
1.1.2 Elementary particle content 8
1.1.3 The Standard Model as a QFT 10
1.1.4 The QCD Lagrangian . 11

1.2 Perturbative QCD . 13
1.2.1 Renormalization and running coupling 13
1.2.2 Asymptotic freedom and colour confinement 14
1.2.3 Soft and collinear limits of QCD 16
1.2.4 Factorization theorem and DGLAP equations 17
1.2.5 Parton shower and Sudakov form factors 20

1.3 QCD phenomenology . 22
1.3.1 Jets in particle physics . 23
1.3.2 Infrared and collinear safety 24
1.3.3 Cone based algorithms . 25
1.3.4 Sequential recombination algorithms 26

The kt algorithm . 27
The Cambridge-Aachen algorithm 27
The anti-kt algorithm . 27

1.3.5 Jet-related observables . 28
Jet-shape . 28
Jet-width . 28
N-subjettiness . 29

xiii

2 Event Simulation in HEP 31

2.1 The “Monte Carlo” method . 31

2.1.1 Monte Carlo integration 32
2.1.2 Monte Carlo simulation 33

2.2 Monte Carlo event simulation . 34
2.2.1 The larger picture . 34
2.2.2 Fixed-order matrix element expansion 35
2.2.3 Parton shower simulation 36
2.2.4 Event simulation and event topology 37

2.3 Types and examples of MC event generators 39

2.4 Challenges in MC event generation 41
2.4.1 Double-counting . 41

Part II

3 Machine Learning 45

3.1 A brief history of neural networks 45

3.2 Trinity of machine learning . 49

3.3 Artificial neural networks . 49
3.3.1 Feed-forward neural networks 51
3.3.2 Recurrent neural networks 54

3.4 Training of neural networks . 56
3.4.1 The loss function . 57
3.4.2 Gradient descent and optimizers 57
3.4.3 The backpropagation algorithm 60
3.4.4 Training stability, regularization and normalization 60

3.5 Variational Autoencoders . 62
3.5.1 Latent variable models . 63
3.5.2 Gaussian Variational Autoencoders 65
3.5.3 Implementation . 67
3.5.4 Conditional variational autoencoders 68

3.6 Generative Adversarial Networks 69
3.6.1 GANs according to Ian Goodfellow et al. 69
3.6.2 Wasserstein GANs . 75

Conditional Wasserstein GANs 80
3.6.3 A kaleidoscope of GANs 81

4 Training Data and Preprocessing 83

4.1 Event simulation . 83
4.1.1 Underlying hard subprocess and parton shower 84

4.2 Data preprocessing . 87

4.3 “Invertible preprocessing” . 92

4.4 Training data . 95
4.4.1 Average jet image . 95
4.4.2 Information loss . 98

Part III

5 Jets with Gaussian Variational Autoencoders 107

5.1 Model architecture specification 107

5.2 Latent space and hyperparameter configuration 112

5.3 Unconditioned VAEs . 115
5.3.1 Samples and average jet images 116
5.3.2 Kinematic distributions and jet observables 120

5.4 Conditional VAEs . 124
5.4.1 Conditioning the model 125
5.4.2 Samples and average jet images 126
5.4.3 Conditioning of the model 129
5.4.4 Kinematic distributions 130
5.4.5 Other jet observables . 134
5.4.6 Why the model “fails” . 137

5.5 Conditioned VAEs with RNNs 138
5.5.1 Why generative models with RNNs? 138
5.5.2 Combining VAEs with RNNs 139
5.5.3 Samples, average jet image and jet observables 142

5.6 Final notes . 148

6 Jets with Wasserstein Generative Adversarial Networks 149

6.1 Architecture specification . 149

6.2 Hyperparameter configuration . 151

6.3 Unconditioned WGAN – another attempt 155
6.3.1 Linear versus logarithmic scale 156
6.3.2 Samples and average jet images 158
6.3.3 Kinematic distributions 159
6.3.4 Other jet observables . 161

6.4 Conditional WGAN . 163
6.4.1 Training and model convergence 163
6.4.2 Samples and average jet images 166
6.4.3 Kinematic distributions 170
6.4.4 Other jet observables . 173

6.5 Conditioned WGANs with RNNs 178
6.5.1 Training and convergence 178

6.5.2 Samples and average jet image 180
6.5.3 Kinematic distributions 182
6.5.4 Jet observables . 183

6.6 Final notes . 185

7 Conclusion 189

7.1 Discussion . 189

7.2 Future research suggestions . 192
7.2.1 Bayesian networks – “I know what I don’t know” 192
7.2.2 Image-to-image or jet-to-jet translation 193
7.2.3 RNNs for higher jet multiplicities 195

List of Figures

1.1 The basic building blocks of QCD Feynman diagrams: (left)
quark-gluon vertex (middle) three-gluon vertex (right) four-gluon
vertex. 12

1.2 Visualization of the factorization theorem for hadron-hadron in-
teractions (1.2a) and deep inelastic scattering (1.2b) with the
respective flavour-dependent PDFs fi/h. 18

1.3 Pictorial representation of the evolution of the parton distribution
functions via the DGLAP equations (adapted from Höche, 2014,
Fig. 1, p. 3). 19

1.4 Parton distribution functions (CTEQ6M) for different partons
at the energy scale Q = 2GeV (1.4a) and Q = 100GeV (1.4b)
(adapted from Pumplin et al., 2002, Fig. 1, p. 8). 19

1.5 The collinear factorization theorem for the example of a matrix
elementMn+2 of a given process with n+ 2 external legs and a
final state a that branches (splits) two times with ordered splitting
angles θ. 20

1.6 Left: a two-jet event with clear separation of the final state par-
ticles; right: a three-jet event with significant overlap among
radiation from two different sources. The dashed, blue line indi-
cated the direction of the respective underlying parton. 23

1.7 Visualization of infrared safety: the configuration of reconstructed
jets must not change with the emission of another soft particle. . 24

1.8 Visualization of collinear safety: the configuration of reconstructed
jets must not change with one particle replace by two collinear
particles. 25

2.1 NLO Feynman diagrams contributing to the qq̄ annihilation cross-
section. 35

2.2 Individual components in the simulation chain of proton-proton
collisions: incoming parton densities heading towards each other
with the hard interaction indicated by the central red blob and a
second hard scattering (purple). The tree-like structure surround-
ing the hard interaction is bremsstrahlung simulated through
parton showers. The non-perturbative regime, i.e., the transi-
tion from partons to hadrons is depicted in light-green, which
is followed by the formation of excited states that further decay
to final-state particles measured in the detector (adapted from
Höche [2014], Fig. 3, p. 6). 37

xvii

2.3 Double counting at leading order. Along the horizontal axis, the
parton shower algorithm adds radiation; in doing so, it generates
diagrams which have an equivalent in leading order processes with
higher multiplicities. 42

3.1 The perceptron according to Frank Rosenblatt with bias term. . 46
3.2 “Shallow” feed-forward neural network with n inputs, one hidden

layer with k neurons, and m outputs. The trainable weights
of the networks are represented by the connections between the
individual neurons. 51

3.3 A recurrent neural network as a loop diagram (left) and its un-
folding in time sequences (right). 55

3.4 An LSTM cell and its weighted gates. 55
3.5 Fictional contour of a complicated non-convex loss function L(θ)

with θ ∈ RN for a two-dimensional subspace spanned by the
weights (R × R ⊂ RN). The trajectories represent two possible
paths of the gradient descent algorithm (different learning rates
and/or initial conditions) to reach the (local) minimum in this
subspace. 58

3.6 Feature map tensor with N batches, C channels and a spatial
dimension of H (height) and W (width) (adapted from [Wu and
He, 2018, Fig. 2, p. 3]). 62

3.7 Graphical model representation of a general latent space model
(left), a variational autoencoder (middle, section 3.5.2) and a
conditional variational autoencoder (right, section 3.5.4). In the
graphs, N refers to the number of times z and x are sampled,
while the parameters/weights θ(φ) remain fixed. The solid lines
indicate the path of the generative process, while the dashed lines
denote the variational approximation. 64

3.8 A generative model pictured as a smooth map gθ from a low-
dimensional coordinate space/representation Z to a high-dimensional
manifold X (adapted from Shao et al. [2017]). 64

3.9 The author being used as “guinea pig” to demonstrate the operat-
ing principle of a GVAE. The encoder network (inference network)
receives a set of images x and learns a hidden and compressed
representation of the data. In a GVAE, the latent space is con-
strained to be Gaussian (second term in Equation 3.40). The
decoder network (generative model) samples from a Gaussian
z ∼ N (0,1) and tries to reconstruct the input as close as possible
(regression task). Note: the array of images on the right side has
actually been generated by a neural network. 68

3.10 Graphical illustration of the training of generative adversarial
networks as proposed by Goodfellow et al. The discriminator
model/network fφ alternately receives real data from the training
set and fake data produced by the generator network gθ. The loss
function is evaluated, and the weights (trainable parameters) of
the networks are updated accordingly. The procedure is repeated
till convergences or termination of the training. 71

3.11 An two-dimensional example for a possible transportation plan
γ that corresponds to a joint probability distribution with the
marginal distributions Pr and Pg. 76

3.12 Graphical illustration of the training of generative adversarial
networks with the Wasserstein metric and gradient penalty as
introduced by Arjovsky et al., 2017. The critic model/network
fφ measures the Earth mover’s distance between the generated
distribution Pg and the real distribution of the training data Pr. 80

3.13 Graphical illustration of the training of conditional generative
adversarial networks with the Wasserstein metric and gradient
penalty. Both models, the generator and the critic, additionally
receive a list of conditioning label y1,y1, . . . ,yN 81

4.1 Overview of several cross-section measurements of selected Stan-
dard Model processes compared to the corresponding theoretical
expectations (adapted from Gemme, 2016, Fig. 1, p. 3). 84

4.2 Small selection of leading order tree-level Feynman diagrams for
the processes pp→ gq+0jets, pp→ qq+0jets, and pp→ gg+0jets
for strong interactions solely (see Section 1.2). 85

4.3 Example of the leading order Feynman diagram(s) for the hadronic
final state of the tt̄ system for different initial states and interactions. 85

4.4 First and second preprocessing step: a Lorentz boost as well
as a rotation in the transverse plane are applied to transform
the leading pT (sub)jet to the origin of the detector (0, 0) in the
η-φ grid. Afterwards, a small region of the detector is selected
according to condition 4.11 (adapted from Thaler and Van Tilburg,
2011, Fig. 1 (c,d), p. 4). 89

4.5 Third preprocessing step: the image is rotated by αPCrot such that
the first principal component axes points at at 12 o’clock (adapted
from Thaler and Van Tilburg, 2011, Fig. 1 (c,d), p. 4). 90

4.6 Overlaying pixels between the rotated and non-rotated image. . . 91
4.7 A parity transformation P is applied such that the Eimg

r > Eimg
l ,

i.e., the largest energy fraction is always on the right-half of the
plane (adapted from Thaler and Van Tilburg, 2011, Fig. 1 (c,d),
p. 4). 92

5.1 Network architecture of the variational autoencoder. 108
5.2 A simple residual block. 109
5.3 Convolutional and fully-connected layers. 110
5.4 The decoder combined with an RNN. As an input, the LSTM

layer receives two conditioning labels, jet energy Ejet and the
pseudorapidity ηjet, as well as the seed zt, which is different for
each time step t. The output for each time step, i.e., each loop
cycle, is a normalized vector and a scalar that corresponds to the
energy at time t. 140

7.1 Image-to-image translation with the condition of cycle-consistency
(adapted from Zhu et al. [2017] Fig. 1, p. 1). 194

7.2 Extrapolation from one class to several classes (adapted from Zhu
et al. [2017] Fig. 1, p. 1) . 194

List of Plots

1.1 Overview of several measurements of the running (strong) coupling
αs(Q) (adapted from Khachatryan and others, 2015, Fig. 7, p. 12). 15

1.2 N -subjettiness distribution τ2 (1.2a) and τ2 (1.2b) for QCD and
boosted W jets and a mass window 145GeV < mjet < 205GeV.
The discrimination power of this variable manifests it self in the
ratio τ32 := τ3/τ2 (1.2c). (adapted from (Thaler and Van Tilburg,
2011, Fig. 2(b,c), 3(b), p. 8). 29

3.1 The most frequently used activation functions σ in machine learn-
ing: sigmoid, hyperbolic tangent, and Rectified Linear Units. . . 51

3.2 Discrimination boundary, which was learned by the neural network,
for the raw data (a) and its new representation in the transformed
coordinate system of the second hidden layer (b). 53

3.3 Failed classification due to inopportune set of hyperparameters. . 53
3.4 VAE trained on the MNIST data set. R2 latent space representa-

tion (left) where each different color corresponds to a digit in the
set {0, . . . , 9} and randomly generated data (right) (Taken from
Davidson et al. [2018] Fig. 2a, p. 5; Fig. 10. p. 18). 68

4.1 Distribution of pixel intensity values Epix for different scales. . . 93
4.2 Reconstructed average leading pT QCD jet for minimal prepro-

cessing (left) and full preprocessing (right) for 200, 000 events.
. 96

4.3 Three random QCD events. 96
4.4 Reconstructed average leading pT W jet for minimal preprocessing

(left) and full preprocessing (right) for 200, 000 events and a pT
cut pjetT ≥ 200GeV. 97

4.5 Three random W events. 97
4.6 Distribution of rotation angles αPCrot obtained from the PCA (4.2)

(left), parity values P as defined in Section 4.16 (middle) and the
correlation coefficient ραPC

rot ,P
between αPCrot and P (right). 98

4.7 Loss of information for the reconstructed jet mass for different
preprocessing configurations. 99

4.8 Comparison of the reconstructed jet mass in the Full Detector
(FD) and the Cut Window (CW). 100

4.9 Loss of information for the reconstructed τ1 for different prepro-
cessing configurations. 101

4.10 Loss of information for the reconstructed number of active pixels
Npix

0 for different preprocessing configurations. 102
4.11 Bin-to-bin-migration as a function of the energy threshold Epix

th . . 103

xxi

4.12 Number of active pixels Npix
Epix>Epix

th
for different threshold cuts. . 103

5.1 The ELBO and the KL-divergence (see Equation 3.41) versus the
number of training iterations for different dimensions of the latent
space dim(Z). 113

5.2 The ELBO versus the number of training iterations for different
learning rates αl (5.2a) and various optimization algorithms (5.2b).114

5.3 Three randomly simulated QCD jets. 116
5.4 Three randomly simulated W jets. 117
5.5 Occupancy according to Equation 5.2. 117
5.6 Average jet image for 50, 000 events and 40, 000 iterations. 118
5.7 nth statistical moment for generated QCD and W jets. 119
5.8 Reconstructed energy Eimg for 50, 000 events. 120
5.9 Energy distribution in a two-dimensional projection of the 100-

dimensional latent space Z. 121
5.10 Correlation between z̃ and the reconstructed energy Eimg. 122
5.11 The ELBO and its components. 123
5.12 Reconstructed mass spectrum mimg for 50, 000 events. 123
5.13 Correlation between the reconstructed average mass mimg and

the transverse momentum pimg
T for 50, 000 events. 124

5.14 Three randomly simulated QCD jets. 126
5.15 Three randomly simulated W jets. 127
5.16 Occupancy according to Equation 5.2. The reported errors δō are

statistical uncertainties based on “propagation of errors”. 127
5.17 Average jet image for 50, 000 events and 40, 000 iterations. 128
5.18 The ELBO (see Equation 3.39) and its components. 128
5.19 Input energy Ejet and reconstructed jet energy Eimg. 129
5.20 Correlations in the latent space. 130
5.21 Reconstructed jet mass mimg for 50, 000 events. 131
5.22 Pixel activation values on an event-on-event base for 50, 000 im-

ages/events and 40, 000 iterations. 132
5.23 Logarithmic representation of the pixel activation values on an

event-on-event base for 50, 000 events. 132
5.24 nth statistical moment for generated QCD and W jets for a

logarithmic scale (cf. Figure 5.7). 133
5.25 1-subjettiness for generated QCD and W jets. 134
5.26 2-subjettiness for generated QCD and W jets. 135
5.27 21-subjettiness for generated QCD and W jets. 135
5.28 Correlation between the reconstructed mass mimg and the trans-

verse momentum pimg
T for 50, 000 events. 136

5.29 Correlation between the reconstructed mass mimg and the average
momentum per constituent pimg

T
Npix

0

for 50, 000 events. 137
5.30 The softmax activation gives a discrete probability distribution

(in contrast to the continuous spectrum depicted) over the pixel
positions while the Gaussian activation selects one particular pixel
that corresponds to the highest probability – all other pixels are
highly suppressed (distributions not to scale). 141

5.31 The ELBO and the KL-divergence (see Equation 3.41) versus the
number of iterations parameterized for different numbers time
steps nT . 142

5.32 Three randomly simulated QCD jets. 143
5.33 Three randomly simulated W jets. 143
5.34 Average jet image for 50, 000 events and 40, 000 iterations. 143
5.35 Reconstructed jet mass mimg for 50, 000 events. 144
5.36 Reconstructed jet mass mimg for 50, 000 events. 145
5.37 Reconstructed jet mass mimg for 50, 000 events. 145
5.38 Pixel activation values on an event-on-event base for 50, 000 events.146
5.39 nth statistical moment for generated QCD and W jets. 146
5.40 Correlation between the reconstructed mass mimg and the trans-

verse momentum pimg
T for 50, 000 events. 147

5.41 Correlation between the reconstructed 1-subjettiness τ1 and the
transverse momentum pimg

T for 50, 000 events. 147

6.1 Modulus of the Wasserstein loss for different network architectures.150
6.2 The non-negative Wasserstein loss (6.2a) (earth mover’s distance)

and the gradient penalty term (6.2b) for different dimensionality
dim(Z) of the latent space Z for the same architecture. 152

6.3 The non-negative Wasserstein loss (6.3a) and its components
(6.3b) according to sup‖fφ‖L≤1 Ex∼Pr [fφ(x)] − Ez∼Pz [fφ(gθ(z))]
for different learning rates αl with the constraint αl := αc = αg. . 153

6.4 The non-negative Wasserstein loss for different “penalty factors”
λGP of the gradient penalty term (6.4a) and for different optimiz-
ers (weights’ update rule) used in the gradient descent algorithm
(6.4b). 154

6.5 Pixel activation values Epix on an event-on-event base for 50, 000
events. 156

6.6 Reconstructed jet mass mimg for a linear (6.6a) and a logarithmic
scale (6.6b) for 50, 000 events. 157

6.7 Average jet image for a linear (6.7a) and a logarithmic scale (6.7b).158
6.8 Three randomly simulated QCD jets after 40, 000 iterations. . . . 158
6.9 Three randomly simulated W jets after 40, 000 iterations. 158
6.10 Average jet image for 50, 000 events and 40, 000 iterations. 159
6.11 Reconstructed transverse momentum pimg

T for 50, 000 events. . . . 160
6.12 Reconstructed jet mass mimg for 50, 000 events. 160
6.13 Correlation between the reconstructed average jet mass mimg and

the transverse momentum pimg
T for 50, 000 events. 161

6.14 Correlation between the reconstructed average 1-subjettiness τ img
1

and the transverse momentum pimg
T for 50, 000 events. 162

6.15 Correlation between the reconstructed average 1-subjettiness τ img
1

and the mass mimg for 50, 000 events. 162
6.16 The Wasserstein loss (6.16a) and its components (6.16b) for QCD

jets. 164
6.17 The Wasserstein loss (6.17a) and its components (6.17b) for W jets.164
6.18 The distribution of the critic’s weights (without biasesW = P \B)

for different iterations (6.18a) and the distribution of biases (6.18b).165
6.19 The distribution of the generator’s weights (without biases W =

P \B) for different iterations (6.19a) and the distribution of biases
(6.19b). 165

6.20 Three randomly simulated QCD jets after 40, 000 iterations. . . . 166
6.21 Three randomly simulated W jets after 40, 000 iterations. 166

6.22 Average jet image for 50, 000 events and 40, 000 iterations. 167
6.23 “Energy correlation” between pixel no. 312 and pixel no. 337 for

the training data (6.23a) and the generated distribution (6.23b).
The correlated pixels have been highlighted in the subfigure in
the left corner. 168

6.24 The first nine statistical moments according to Equation 5.3 for
the training data and the generated distribution of the generative
model. In case of QCD, the two distributions almost perfectly
coincide, which is why other instances of the neural network
(besides the one corresponding to 40, 000 iterations) have been
included to illustrate the progression of the model. 168

6.25 Correlation between the unique seed z̃ and the reconstructed
energy Eimg for an unconditioned (6.25a) and an conditioned
(6.25b) Wasserstein GAN. 170

6.26 Correlation between the reconstructed jet energy from the gener-
ated image Eimg and the conditioning label Ejet for a logarithmic
energy scale and 50, 000 events. 170

6.27 Correlation between the reconstructed jet energy from the gen-
erated image Eimg and the conditioning label Ejet for a linear
energy scale and 50, 000 events. 171

6.28 Pixel activation values Epix on an event-on-event base for 50, 000
events. 171

6.29 Reconstructed transverse momentum pimg
T /Eimg for 50, 000 events.172

6.30 Reconstructed jet mass mimg for 50, 000 events. 173
6.31 Reconstructed leading energy fraction f img

1 for 50, 000 events. . . 174
6.32 Reconstructed subleading f img

2 for 50, 000 events. 174
6.33 Correlation between the reconstructed average mass mimg and

the transverse momentum pimg
T for 50, 000 events. 175

6.34 Correlation between the reconstructed average mass mimg and the
mean transverse momentum per constituent pimg

T /Npix
0 for 50, 000

events. 175
6.35 Reconstructed 1-subjettiness τ img

1 for 50, 000 events. 176
6.36 Reconstructed 21-subjettiness τ img

21 for 50, 000 events. 176
6.37 Correlation between the reconstructed average 1-subjettiness τ img

1

and the transverse momentum pimg
T for 50, 000 events. 177

6.38 Correlation between the reconstructed average 1-subjettiness τ img
1

and the mass mimg for 50, 000 events. 177
6.39 The Wasserstein loss (6.39a) and its components (6.39b) for QCD

jets. 179
6.40 The Wasserstein loss (6.40a) and its components (6.40b) for W jets.179
6.41 Three randomly simulated QCD jets after 40, 000 iterations. . . . 180
6.42 Three randomly simulated W jets after 40, 000 iterations. 180
6.43 Average jet image for 50, 000 events and 40, 000 iterations. 181
6.44 The first nine statistical moments according to Equation 5.3 for

the training data and the generated distribution of the generative
model. 181

6.45 Pixel activation values Epix on an event-on-event base for 50, 000
events. 182

6.46 Reconstructed jet mass mimg for 50, 000 events. 182
6.47 Reconstructed leading energy fraction f img

1 for 50, 000 events. . . 183

6.48 Correlation between the reconstructed average mass mimg and
the transverse momentum pimg

T for 50, 000 events. 184
6.49 Correlation between the reconstructed average 1-subjettiness τ img

1

and the transverse momentum pimg
T for 50, 000 events. 184

6.50 Correlation between the reconstructed average 1-subjettiness τ img
1

and the mass mjet for 50, 000 events. 185
6.51 “Benchmark test” of the performance of several generative models

on CPUs and GPUs compared to the standard method of event
simulation through Monte Carlo generators for a different number
of CPU cores. 187

Nomenclature

Reserved Greek letters
ε Small non-negative real number.
λ Penalty factor, e.g., λGP for Wasserstein GANs.
φ Weights of the discriminator/critic (GAN) or endcoder (VAE).
θ Weights of the generator (GAN) or decoder (VAE).

Reserved Other Symbols
N (µ, σ2) Gaussian distribution with mean µ and standard deviation σ.
Pg, Pθ Underlying probability distribution of generated data.
fφ, gθ Two functions implemented via neural networks.
Pr Underlying probability distribution of the training data.
U(x0, x1) . . . Uniform distribution between x0 and x1.

Reserved Roman Letters
B Set of trainable biases.
P Total set of trainable parameter P =W ∪ B.
W Set of trainable weights.
D Data set for training with (x,y) ∈ D.
P A probability distribution.
X ,Y Space (manifold) of input/output data.
L Meaning context-dependent: Lagrangian density in particle

physics; loss-, cost- or objective function for neural networks..
x Input data.
y Label associated with x (see D).
ŷ Prediction of neural netwok for x.
x̂ Generated data point (e.g. a jet image).
W Weight matrix (neural network’s parameters).
z Random latent space/noise vector.

Reserved Subscripts
t Time step in RNNs.

Reserved Superscripts
img Indicates that the respective quanity/figure of merit (e.g. Eimg,

ηimg, τ img
N etc.) has been evaluated for data simulated with the

trained model.

xxvii

pix Indicates that the respective quanity/figure of merit has been
evaluated for each pixel individually (e.g. Epix

ij denotes the energy
deposition in pixel (i, j) ∈ N× N).

jet Indicates that the respective quanity/figure of merit (e.g. Ejet,
ηjet, τ jetN etc.) has been evaluated for the training data, i.e., the
data generated with MadGraph5_aMC@NLO and Pythia8.2.

Roman and Greek letters
M This is a set.
M Bold, capital letters are matrices.
m,µ Bold, minuscle letters are vectors.
m,µ Non-emphasized letters are scalars.
M , N , n A non-negative integer number denoting the quantity or cardi-

nality of something to be specified by the sub- resp. superscript.

General Comments

First of all, the nomenclature introduced above is not set in stone but is con-
sidered to be a guiding principle, which might be abandoned if the situation is
opportune without the likelihood of confusion.

It is very important to clearly distinguish between probability densities and
probabilities. The probability of a random variable X with particular realization
x is given by p(x) := P (X ∈ [x, x + dx)) = P(X ∈ [x, x + dx)) = fX(x) dx,
whereby fX denotes the respective probability density function.

Throughout this report, the two notation Pg and Pθ, which denote the prob-
ability distribution that has been learned by the generative model Pg := Pθ =
gθ(Pz), are used interchangeability based on phonetic and esthetic criteria.

The choice of whether an abbreviation, an acronym or the full form of a word,
term or expression is used, is based on esthetic criteria with a view to smooth
reading fluency. This means in particular that abbreviation and full form should
be treated as such and read accordingly.

All logarithms in this report (without exception) are the natural logarithm,
the logarithm to the base e.

Furthermore, natural units are used (c = 1 and ~ = 1) through this report
such that [E] = [p] = [m] = GeV and [T] = GeV−1 for time.

Introduction

With “big data analysis” and so-called “artificial intelligence” continuously taking
on greater significance, today’s society gradually starts to experience what will
likely be an enormous upheaval of their innermost structure that has virtually
no equal in more recent contemporary history. Indeed, it might be reasonably to
assume that almost all decisive spheres of human life will be affected in some way
or another by the inexorable forthcoming change of paradigm – for the better or
for the worse.

Machine learning is one possible approach to bring artificial intelligence into
being, however, it has already been firmly established among many natural
sciences as a powerful tool that allows researchers to handle the steadily increas-
ing amount of data available. With successively growing understanding of the
underlying mechanisms that govern neural networks over the past few decades,
the wandering “spectre” of what was long disreputable known as the so-called
“black box” (which still haunts many discussions though) has gained acceptance
to a great extent.

A matter of particular interest over the past few years is the implementation
of generative models using machine learning methods or, to be more precise, deep
(structured) learning. The two most prominent representatives of (deep) genera-
tive models are the already well-established autoencoders based on variational
Bayesian inference and the more recent generative models through adversarial
networks; both methods differ significantly concerning their underlying mathe-
matical principles. Especially Generative Adversarial Networks (GANs) have
proven themselves capable of generating data of excellent quality and diversity,
however, they are also dreaded for their notorious instabilities and ubiquitous
convergence problems. Those issues are addressed by a novel generation of GANs
that introduce a new metric based on the earth mover’s distance, also known as
Wasserstein metric, to measure the similarity between two probability density
functions.

All deep learning models have in common that they rely on rather large data
volumes in order to deliver meaningful results and to correctly learn the under-
lying structure of the training data. Fortunately, high-energy particle physics
provides a highly suitable environment for the utilization of neural networks,
for which reason they have been in use for many years, e.g., for the purpose of
event selection or within high-level triggers. With an abundance of recorded
data available, one trend is going towards the application of generative models
in the context of particle physics. This thesis is part of this recent tide and
dedicated to the implementation of state-of-the-art machine learning methods
in the context of event simulation/generation in high-energy particle physics
through the two aforementioned approaches to generative models.

1

Nowadays, event generation and background estimation in particle physics
mostly is a hybrid between Markov Chain Monte Carlo simulation and their
adjustments to data. This particular approach has proven itself in many ap-
plications over many years, however, its precision is limited primarily by the
fixed-order matrix element calculation of the hard subprocess in the perturbative
expansion and the double-logarithmic approximation of the Sudakov form factors
in the parton shower model. On the contrary, the employment of generative
models could possibly allow for a solely data-driven approach to event simulation
in high-energy particle physics that is – at least theoretically – precise to all
orders in perturbation theory and, furthermore, provides an almost perfect detec-
tor simulation for the respective measuring apparatus. This idea is particularly
appealing within the field of particle searches that look for rare processes and
hence rely on very precise background predictions/estimations.

The methods presented within the scope of this thesis are still beyond any
practical application in a “real-world analysis”; notwithstanding, it might be
yet another step “towards a data-driven simulation of QCD radiation through
generative models.” The objective as part of this report is to examine the
principle applicability and feasibility of Gaussian Variational Autoencoders and
Wasserstein GANs. Moreover, both methods are confronted with the same tasks,
i.e., the simulation of QCD and W initialized jets and subsequently compared
with respect to their performance. As part of the study, the event generation
has been factorized into matrix element and the simulation of QCD radiation
with the aid of conditioned generative models through the marginalization of the
matrix element information. Additionally, in an attempt to model the underlying
sequential character of the particle shower, which is not directly present in the
time-projected training data, a combination of generative models with recurrent
neural networks through standard LSTM units was used.

With regards to the thesis’ structure, the written report is subdivided into
three superordinate parts consisting of six chapters in total: first (I), a rather
superficial introduction into the foundations of the Standard Model of particle
physics (1.1), perturbative QCD (1.2) and its phenomenological aspects (1.3)
(chap. 1) as well as the basics of the “Monte Carlo method” and event simulation
in high-energy particle physics (chap. 2); second (II), a methodical introduction
into machine learning and (deep) neural networks (chap. 3) with an emphasis
on generative models, i.e., Gaussian VAEs (3.5) and Wasserstein GANs (3.6)
followed by a step-by-step explanation of preprocessing procedure applied to the
training data (chap. 4); third (III) and finally, the presentation of the actual
results that have been obtained with Gaussian VAEs (chap. 5) and Wasserstein
GANs (chap. 6) as well as their foregoing mentioned variations.

2

Part I

3

Chapter 1

Theory

The Standard Model (SM) of particle physics is the fundamental theoretical model with an
underlying, spontaneously broken SU(3)c × SU(2)L × U(1)Y symmetry that encapsulates
the gathered knowledge of elementary particle physics in a fertile interplay between theory
and experiment. It provides an incredibly precise description of the elementary particles
known to mankind (see, e.g., Grunewald [2006]) and their mutual interactions that are
governed by the fundamental forces occuring in nature: the electromagnetic, the weak,
and the strong force – with the gravitational force withstanding a consistent quantum
field-theoretical description and, therefore, not being incorporated into the theory so far.
The tumultuous history of the Standard Model, a name that has been given in the ’70s,
is rich and goes back to the origin of modern particle physics at the beginning of the
previous century. As the hour of birth, one could take the unification of the electromagnetic
and the weak force by Sheldon Glashow, Abdus Salam, and Steven Weinberg in the ’60s
[Glashow, 1961, Salam, 1968, Weinberg, 1967]. Ever since, the Standard Model has been
tested in numerous experiments around the world, providing an accurate description of the
microscopic world of elementary particles (making it the most accurate scientific theory
known to humankind to the present day). This culminated in the successful discovery of
the Higgs boson at the Large Hadron Collider (LHC) near the French-Swiss border in
2012 [Aad and others, 2012]; finally, making the Standard Model a self-consistent (albeit
inherently incomplete [Ellis, 2002]) theory of nature.

The purpose of this very first chapter is to serve as a general introduction into the topic
area of the Standard Model of particle physics. A comprehensive introduction into the
subject is, of course, beyond the scope of this work; hence, the focus lies on the fundamental
aspects of the theory as well as the milestones in its history.

The first section (1.1) gives a outline of the Standard Model’s history (1.1.1) as well as
its elementary particle content (1.1.2). This is followed by a very brief introduction into
the fundamental concepts behind Quantum Field Theory (QFT) (1.1.3). Equipped with
the necessary foundations, the Lagrangian of the Standard Model along with its individual
terms is introduced with a focus on the strong sector of the theory (1.1.4). The subsequent
section is dedicated to the domain of perturbative Quantum Chromodynamics (pQCD)
and key concepts like the running coupling constant (1.2.1) and factorization theorems in
QCD (1.2.2, 1.2.4). The second section also introduces the so-called Sudakov form factors
(1.2.5) that are the essential ingredient in the simulation of parton showers, which are the
subject of chapter 2. This chapter closes with a careful look at some phenomenological
aspects of QCD by means of the important concept of a particle jet (1.3.1, 1.3.2) and its
reconstruction using different reconstruction algorithms (1.3.3, 1.3.4).

5

1.1 The Standard Model of particle physics

This section roughly sketches the historical development of the Standard Model with
the objective to embed the theoretical concepts, which are introduced in the following
section 1.2, into its relative historical context and background. Furthermore, it introduces
the known elementary particles and their associated properties that are described by the
Standard Model.

1.1.1 History of the Standard Model
He who encounters the state-of-the-art Standard Model of particle physics for the first time
might be dazzled and overwhelmed by its complexity and the diverse (partially counter-
intuitive) physical phenomena it is able to accurately describe. However, to understand
and appreciate this highly advanced theory of nature, it is vital to reflect its historical
development over the last decades, starting from the ’30s of the previous century until
today. Therefore, it is even more surprising that the history of the Standard Model is
virtually never part of its introduction.

The Standard Model’s history is an adventurous story full of misconceptions and em-
broilments, all of which represent steps on the path to higher knowledge. It’s a beautiful
story; but unfortunately, too long to tell. Within the context of this thesis, only an
incomplete overview of the milestones in the history of the Standard Model – according to
the author’s personal view! – is given.

It is quite simple to set a starting point for the historical development of the Standard
Model. At the beginning of the 20th century, the world was more or less classical and
described by classical fields as in Maxwell’s laws of electromagnetism [Maxwell, 1865] and
Einstein’s theory of gravitation [Einstein, 1916] that replaced Netwon’s theory of gravity
[Newton et al., 1729]. Both theories at that time accurately described the two fundamental
forces that are daily experienced by human beings in their macroscopic world – and one of
them still does. This was the situation roughly up to the year 1930, when new discoveries
and insights had changed the fundamental understanding of nature, with an enhanced
understanding of Quantum Mechanics (QM) leading the charge. With the discovery of
the neutron [Bothe, 1930] – which was initially mistakenly assumed to be γ-radiation –,
the postulation of weak interaction by Fermi to solve the puzzle of the continuous energy
spectrum of the electron emitted in the beta-decay in his revolutionary essay “[t]entativo
di una teoria dellaemissione di raggi β” (Fermi [1933]) (“tentative theory of beta-decay”) as
well as the invention of Quantum Electrodynamics (QED) [Kramers, 1938] by quantizing
Maxwell’s equations, the foundations of the Standard Model were laid. With the procedure
of renormalization – invented in 1947 –, QED agreed with astonishing accuracy with the
experiments (cf., e.g., measurement of the anomalous magnetic dipole moment) and quickly
became the most well-tested theory in physics. After World War II, when many scientists
ended their rendezvous with the military and returned to their actual studies, the number of
known particles significantly increased, creating a zoo of hundreds of apparently elementary
particles; it was necessary to make sense out of this mess. This ordering was partially
achieved by the observation of apparent similarities between the different particles (e.g.
mass, spin, electric charge, etc.) and the discoveries of (approximate) symmetries such as
the famous “eight-fold way” [Gell-Mann, 1961] to name only one out of many. It was a
major crisis, when it became clear that most symmetries only represent an approximation.
The existence of numerous approximate symmetries confronted physicist with a daunting

6

1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

problem of interpretation.
A brilliant idea, which was independently developed by Murray Gell-Mann and Georg

Zweig in 1961 [Gell-Mann, 1964, Zweig, 1964], gradually lifted the curtain of confusion:
the so-called parton model pictures hadrons as a collection of point-like, i.e., elementary
particles, which today are associated with the elementary quarks and gluons. It revealed an
underlying structure of known (composite) particles and reduced those to a small number
of elementary constituents of material being – the actual atomos. The parton model played
a similar role in the development of modern particles physics like Pauli’s exclusion principle
did for chemistry in explaining the ordering of the elements in the periodic table.

Alongside the aforementioned parton model, the systematic development of gauge
symmetry (also known as local gauge symmetry) was yet another important step in the
evolution of the Standard Model. Although classical Electrodynamics may also be regarded
as a gauge theory that is based on the U(1)Q symmetry group. The first methodical
contribution in this matter came from Chen Ning Yang (楊振寧/杨振宁) and Robert
Laurence Mills [Yang and Mills, 1954] who constructed a theory that was based on the
non-Abelian group SU(2) with non-commuting “charges”. The objective was to build a
theory of the strong interaction; however, it was later applied to weak interactions that
were already known to be a mixture of vector and axial-vector interactions.

The ’50s, as well as the ’60s, were eventful times full of revolutionary ideas and
discoveries. Another notable one was the concept of intermediate or mediator particles,
respectively, vector bosons to be more precise. This idea was independently developed by
several scientists like Julian Seymour Schwinger [Schwinger, 1957], Sheldon Lee Glashow
[Glashow, 1961] and in joint work between Abdus Salam (ÐC�Ë@ YJ.«) and Ward John
Clive [Salam and Ward, 1964]. It had a tremendous impact on our understanding and
interpretation of the fundamental nature of forces in nature as being transmitted by
vector (and possibly tensor) bosons in contrast to the rather “vague” concept of (classical)
potentials.

The Standard Model at that time was already able to describe a large range of
phenomena; especially QED had proven as most accurate theory in physics, with the
theoretical predicted electromagnetic fine-structure constant agreeing with the measured
one within ten-parts-per-billion (1ppb= 10−9) [Hanneke et al., 2008]. But despite these
resounding successes and the improved understanding of the subatomic world, the Standard
Model (at that time) had an apparent flaw: the requirement of local gauge invariance
culminated in a theory with solely massless particles – which is in clear contradiction to
the obvious massive particles measured in the experiments. This situation was a highly
unsatisfactory since it caused inconsistencies in the Standard Model between predictions
and observations – the merciless guillotine in physics that without hesitation beheads even
the most elegant theories if they disagree with observations. Full of despair, physicist
had to put in masses by hand; but, in doing so they accepted reduced predictability and
predictive power of the theory and, additionally, made the theory non-renormalizable! A
“novel” idea finally brought the long-awaited breakthrough with the desired way out of the
dilemma: the concept of Spontaneous Symmetry Breaking (SSB), which is the final part of
this summary.

The path to SSB was paved with obstacles. The problem was that it was proven by
Goldstone, Salam and Weinberg that for each exact symmetry that is spontaneously broken
there must be a massless and spinless (scalar- resp. pseudoscalar) particle. At this time,
a large number of approximate symmetries have been known, e.g., isospin symmetry or
the aforementioned eight-fold way. But, besides the photon, no massless particle had been
discovered (the gluon was yet unknown). In the end, one problem was replaced by another.

7

At that time, Peter Ware Higgs [Higgs, 1964] arrived on stage. He (and others) tried to
find a way out of the Goldstone theorem and its ominous mass- and spinless particles. He
realized that the Goldstone theorem does not apply for local gauge symmetries, which are
spontaneously broken. In this case, the Goldstone bosons do not manifest as real particles
but remain in the theory and turn into the helicity-zero component of the gauge bosons
(see Higgs-Kibble-Dinner). This not only gets rid of the non-observed Goldstone particles
but simultaneously results in a mass for the gauge bosons and hence creates a theory of
massive mediators (Higgs’ idea was contemporaneously also discovered by the collaboration
between Englert and Brout [Englert and Brout, 1964] and Guralnik, Hagen and Kibble
[Guralnik et al., 1964] – therefore also the somewhat cumbersome name Englert-Brout-
Higgs-Guralnik-Hagen-Kibble mechanism, usually just called Higgs mechanism). With the
spontaneous breaking of the symmetry SU(2)L × U(1)Y , the Higgs mechanism could also
explain the masses of the fundamental fermions in the Standard Model; finally making it a
consistent and (even more) predictive theory. Besides explaining the masses of massive
vector bosons and fermions, the Higgs mechanism also predicted the presence of a new
particle that is the quantum excitation of the respective Higgs field. This particle was
predicted to be massive; hence, it could have escaped detection due to limited energies
in particle colliding experiments at that time (e.g. at LEP at CERN). This was indeed
the case. It took more than 50 years to finally discover the Higgs boson in 2012. A great
example of human willpower.

Besides the discovery of the Higgs, the Standard Model has proven its validity and
predictive power in a variety of other experiments. For example, the Standard Model
predicted the existence of the W± and Z bosons in electroweak interactions, with the
first observations of neutral currents in 1973 at the Gargamelle bubble chamber at CERN
[Hasert and others, 1973, Hasert et al., 1973] and the discovery of the actual particles
back in 1983 that have been observed in 1986 for the very first time at the Super Proton
Synchrotron also at CERN [Watkins, 1986]. Or, the discovery of the gluon in 1979 with
the PLUTO and TASSO experiment at DESY [Barber and others, 1979, Berger and others,
1979, Brandelik and others, 1979]. And, not to forget, the several quark flavours predicted
by the Standard Model all that have been observed later in the experiment, like the charm
and top quark [Archambault et al., 2003, Campagnari and Franklin, 1997].

The Higgs mechanism finishes the journey through the history of the Standard Model.
Of course, there would be far more to tell. However, it would be a mistake to think that
these concepts have matured in an “ivory tower”. On the contrary, the evolution of the
Standard Model is a perfect example of how the interaction and mutual pollination of
theoretical and experimental physics leads to a path of higher knowledge and a better
understanding of the world around us. [Weinberg, 2004].

1.1.2 Elementary particle content
As a quantum field theory, all the fundamental particles in the Standard Model are
associated with a certain quantum field, more precisely, the quantum excitations that
manifest as fundamental particles of the respective field. Roughly speaking, the elementary
particles in the Standard Model can be subdivided into fermions (half-integer spin particles
that obey the Fermi-Dirac statistic), vector (tensor) bosons (integer spin particles that
mediate the fundamental forces), and one pseudoscalar particle, the Higgs, whose field
plays an important role in the essential Higgs mechanism and the Yukawa interaction. The
known fundamental fermions in the Standard Model are summarized in Table 1.1.

8

1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Flavour Mass Qel TL3 Discovery

Leptons

νe < 2.2 eV 0 + 1
2 1956

e 0.511± 10−8 MeV -1 − 1
2 1897

νµ < 0.19MeV 0 + 1
2 1962

µ 105.7± 4× 10−6 MeV -1 − 1
2 1936

ντ < 18.2MeV 0 + 1
2 2000

τ 1776.86± 0.12MeV -1 − 1
2 1975

Quarks

u 2.3± 0.7MeV + 2
3 + 1

2 1968
d 4.8± 0.5MeV − 1

3 − 1
2 1968

c 1.275± 0.025GeV + 2
3 + 1

2 1974
s 95± 5MeV − 1

3 − 1
2 1968

t 173.2± 0.9GeV + 2
3 + 1

2 1995
b 4.18± 0.03GeV − 1

3 − 1
2 1977

Table 1.1: Fermions (subdivided into leptons and quarks) in the Standard Model
(masses have been rounded) [Eidelman et al.].

According to Table 1.1, the fermions in the Standard Model may be further subdivided into
leptons and quarks. A lepton is an elementary spin-1/2 particle that does not experience
the strong force. The known elementary leptons are the electron, the muon, the tauon, and
the corresponding electrically neutral neutrino flavours with their respective antiparticles.
The second category of fermions are the quarks that differ from leptons insofar as they
carry a fractional electric charge as well as color charge, which is the subject of quantum
chromodynamics. Usually, fermions are associated with matter, with quarks being the
key building blocks of composite particles (hadrons) such as protons and neutrons. With
leptons and quarks, the Standard Model knows twelve different fermion flavours and 24
fermions in total – including the corresponding antiparticles. Furthermore, a distinction
is made between fermions and bosons. Bosons (the name refers to the Indian physicist
Satyendra Nath Bose (সেত নাথ বস)ু) are described by the Bose-Einstein statistics. In the
Standard Model, the elementary vector bosons (s = 1) are responsible for the mediation of
the fundamental forces of nature. These elementary vector bosons are the photon γ, the
gluon(s) g, as well as the neutral Z and the charged W± bosons.

Boson Interaction Mass Qel

Scalar higgs H0 none 125.18± 0.16GeV 0

Vector

photon γ QED < 1016 eV 0
gluons g QCD 0 0

Z EW 91.1876± 0.0021GeV 0
W± 80.379± 0.012GeV ±1

Tensor graviton1G gravity < 6 · 10−32 eV 0

Table 1.2: Bosons in the Standard Model [Eidelman et al.].

9

It should be mentioned that in a hypothetical quantum field theory of gravity there would
be an elementary tensor boson with spin two, the graviton, that is the force-carrier of the
gravitational force. However, to be a consistent theory, the Standard Model requires the
existence of (at least) one scalar particle (s = 0) that is associated with the mechanism
that generates the mass of the fermions and bosons. This is the aforementioned Higgs
boson. The bosons in the Standard Model are summarized in the Table 1.2.

The appearance of gauge bosons in the theory is a consequence of the required local
gauge symmetry of the Standard Model Lagrangian. This concept is important in order
to understand how elementary particles interact with each other through the exchange of
force-carrying particles, which are quantum fields by themselves.

1.1.3 The Standard Model as a QFT
The underlying mathematical-physical framework – to put in a very simplified manner:
the language with its grammatical regularities – of the Standard Model of particle physics
is Quantum Field Theory (QFT). It is therefore only appropriate to spend a moment
on this subject to convey a vestigial idea of the underlying principles behind one of the
most prominent physical theories of all time. With the Standard Model being a QFT it
is (by construction) simultaneously consistent with Quantum Mechanics (QM) as well as
the theory of Special Relativity (SR) [Einstein, 1905]. While in non-relativistic QM the
number of particles is conserved (due to the structure of the underlying Hilbert space
H = ⊗ni=1Hi that prohibits the appearance of non-particle-number-conserving terms in the
Hamiltonian), in QFT However, the number of particles is not fixed, which allows for the
creation and annihilation of particles. Furthermore, in QFT the central quantum field is
an operator (cf. canonical quantization) in Fock space while the particle (this may also be
a quasi-particle like the phonon in condensed matter physics) is considered to represent a
state of the respective field.

The central object of interest in QFT is the quantized field φ(x) and its dynamics that is
encoded in the Lagrangian L (which can be used to derive the equations of motion), e.g. the
Standard Model LSM, that results in predictable and physical measurable quantities such
as, e.g., the scattering amplitude. In general, observables are derived from the so-called
(n-point, time-ordered) correlation function

〈
0
∣∣∣
n∏

i=1

Tφ̂(xi)
∣∣∣0
〉

=

∫
Dφ e−S[φ]

∏n
i=1 φ(xi)∫

Dφ e−S[φ̂]
, (1.1)

which gives the amplitude for a field configuration (a particle of a certain kind) to propagate
from one point in space-time x to another (two-point correlation function). Equation
1.1, given in the path integral formulation, can be written as a perturbative expansion in
several orders. Richard Feynman introduced a pictorial representation, which later was
named after him, of the individual terms in the expansion that correspond to higher-order
corrections to the Born approximation, i.e., lowest-order approximation [Feynman, 1949].

In particle physics, each type of particle is associated with a certain quantum field2 that
describes and encodes its properties, e.g. mass, spin etc., in the Lagrangian of the free fields.

1Hypothetical elementary particle that mediates the force of gravity.
2Although the discipline of QFT has its historical origins the study of particles and their interactions,

it is not limited to this field of research. Over the years, the fundamentals QFT has been successfully
adapted to other areas in physic with a positive retroactive effect on particle physics (cf., e.g., SSB and
renormalization in condensed matter physics).

10

1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

For instance, the Lagrangian L of the Dirac or fermion field, which describes a spin-1/2
particle such as leptons or quarks (see Table 1.1), is given by L = ψ̄(iγµ∂µ −m)ψ with the
resulting equation of motion (iγµ∂µ−m)ψ = 0, whereby ψ is the associated quantum field of
a particle with mass m and half-integer spin. In QFT the fields are interpreted as operators;
hence, in analogy to QM one imposes certain commutator resp. anticommutator relations
on the fields. In case of fermionic particles their fields have to obey the anticommutation
relation {ψa(x), ψb(y)} = δ(3)(x− y)δa that imply the Fermi-Dirac statistic and impose
Pauli’s exclusion principle. On the other hand, if the fields Aµ obey the Bose-Einstein
statistic they satisfy the canonical commutator relation [Aa(x), Ab(y)] = δ(3)(x − y)δa
and therefore describes quanta that exhibit an integer spin. In the Standard Model, the
boson fields are the interacting particles that mediate the respective fundamental force –
therefore the term “force-carrier particles”. These mediator particles naturally emerge in
quantum field theories in which the respective Lagrangian is invariant under local gauge
transformations, hence also the name gauge particles, that are covered in the next section of
this chapter. Last but not least, the simplest class of fields are the so-called scalar fields φ
that are invariant under any Lorentz transformation and do not involve polarization effects.
In its most simple form, the Lagrangian of a complex scalar field φ ∈ C with φ := φ1 + iφ2

with φ1, φ2 ∈ R is given by L = (∂µφ
∗)(∂µφ)−m2φ∗φ with the equations of motions given

by (� + m2)φ(∗) = 0 (in QFT each component of all quantum fields additionally must
satisfy the free Klein-Gordon equation due to energy-momentum conservation). The only
(complex) scalar field in the Standard Model that has been observed in nature so far is
the pseudoscalar Higgs boson. This pseudoscalar particle is the essential component of the
Higgs mechanism and the concept of SSB.

1.1.4 The QCD Lagrangian
The Standard Model of particle physics is a gauge-invariant quantum field theory that is
based on the (spontaneously broken) unitary, non-Abelian symmetry group3

GSM := SU(3)c × SU(2)L × U(1)Y , (1.2)

whereby each of the compact (Lie) subgroups SU(3)c, SU(2)L and U(1)Y introduces
associated gauge fields that defines the nature of the interactions allowed in the theory.
The gauge fields in the Standard Model ensures the underlying Lagrangian to be invariant
under local gauge transformations concerning the group GSM. The requirement of a local
gauge symmetry is non-trivial and comes with a long history. First, it was introduced
in analogy to QED and has then later been adopted to other theories. However, today
there exists a deeper understanding of gauge transformations as the connection between
equivalent coordinate bases for the same mathematical object (i.e. the field).

With the underlying group structure of the Standard Model introduced, it is about time
to present the actual Lagrangian of the theory that encodes the dynamic of the fundamental
quantum fields. The Lagrangian (density) LSM of the Standard Model (reduced and in
simplified notation) in a legible form is given by:

LSM = −1

4
tr [BµνB

µν]− 1

4
tr [WµνW

µν] (1.3)

+ Ψ̄qγ
µDµΨq −−

1

4
tr [GµνG

µν] , (1.4)

3The actual gauge group of the Standard Model is the reduced SU(3)c×SU(2)L×U(1)Y /Z6 symmetry
group [Bakker et al., 2004]

11

+ (DµΦ)†(DµΦ) + µ2Φ†Φ− 1

2
λ(Φ†Φ)2 (1.5)

+ Ψ̄Lγ
µDµΨL +

1

2
ΨT
LCΦHΨL + h.c. (1.6)

Phenomena surrounding the strong force are described by Equation 1.4 in the expression
above.

The strong force was (first phenomenologically) introduced in the 1930s to explain
the binding of the constituents that form the nuclei. Today, quantum chromodynamics
(from Greek χρῶμα, “colour”) is the theory of the strong interaction with the underlying
non-Abelian symmetry group SU(3)c, whereby the subscript c refers to the so-called color
charge, which remains unbroken in the Standard Model. In the Lagrangian of the Standard
Model 1.6, QCD manifests itself by the term

LQCD =
∑

q

Ψ̄q,a(γµ∂µδab − ig3γ
µGαµtα)Ψq,b −

∑

q

Ψ̄q,aΨq,bmqδab −
1

4
tr [GµνG

µν] , (1.7)

with tα bein related to the Hermitian and traceless Gell-Mann matrices (which are generators
of the SU(3)c group) and α ∈ {1, ..., 8} that correspond to eight gluons with different
linear independent colour charge combinations. The field strength tensor Gaµν is given by
Gaµν = ∂µG

a
ν − ∂νGaµ − g3fabcG

b
µG

c
ν , which describes the dynamic of the gluon fields.

The quarks acquire their mass via SSB of the subgroup SU(2)L × U(1)Y → U(1)Q
that also acts on the quark doublets Ψq. The gluons, which are considered to be in the
adjoint representation of the gauge group and an octet under SU(3)c, remain massless
though (which agrees with experimental observations) since the symmetry group SU(3)c is
unbroken in the Standard Model.

Quantum chromodynamics is a non-Abelian gauge theory, i.e., the generators tα of the
underlying symmetry group SU(2)c do not commute with each other [ta, tb] = ifabct

c. This
property causes all kind of beautiful effects and makes QCD a rich theory. A well-known
phenomenon in quantum chromodynamics, as it is also known for the weak interaction, is
the so-called self coupling of the gauge bosons (see gluon self-interaction in Figure 1.1).

Ψi

Ψj

Gaµ

Gaν

Gbµ

Gcρ

Gaν

Gbµ

Gcρ

Gdσ

Fig. 1.1: The basic building blocks of QCD Feynman diagrams: (left) quark-gluon
vertex (middle) three-gluon vertex (right) four-gluon vertex.

Contrary to QED, the mediator bosons in QCD carry a (color) charge by themselves, which
induces self coupling. These terms can easily be identified by expanding and rearranging
the kinetic term of the gluon field strength tensor LQCD ⊃ 1

4 tr [GµνG
µν].

The self-coupling of the gluon fields has further consequences with regards to the
effective charge or coupling of the theory that is related to the β-function, β(g) = µ dgdµ of
the theory, which encodes the dependency of the “coupling constant” on the energy scale
µ. In case of the non-Abelian gauge theory QCD, the situation is different because the

12

1.2. PERTURBATIVE QCD

β-function is negative (antiscreening) [Foundation, 2004, Gross and Wilczek, 1973], which
means that the effective strong coupling becomes small a short distances leading to the
concept of running coupling. This is a characteristic feature of the strong force which leads
to asymptotic freedom, which will be further discussed in Section 1.2.2.

Asymptotic freedom in QCD results in small couplings for sufficient large energy scales
that allows to consider quarks and gluons quasi-free particles. In this limit, perturbation
theory is appropriate to compute the matrix element of the respective process down to
a characteristic energy scale ΛQCD where non-perturbative dynamics dominates. For
small energies however, the coupling becomes large and perturbation theory is no longer
applicable; therefore, predictions in this domain mostly relies on phenomenological model
such as, e.g., the Lund string model [Andersson et al., 1983a]. Thus, the name non-
perturbative regime. This phenomenon where the underlying partons can not be isolated
from the hadrons anymore is known as confinement.

1.2 Perturbative QCD

As already stated above, the Standard Model of particle physics is the most accurate
fundamental theory of the smallest building blocks of matter and their interaction by
the fundamental forces of nature except gravity. The previous section provided a brief
outline of the Standard Model’s history and introduced some most basic concepts as well
as its particle content. This section directly joins the previous one and serves as a basic
introduction into the theoretical framework of perturbative QCD. Furthermore, the very
important phenomenon of the running coupling constant and its physical and practical
implications are discussed in more detail. This section also lays the foundation for the
following chapter 2 by introducing the concept of a parton shower and its implementation
based on the Sudakov form factors.

1.2.1 Renormalization and running coupling
Historically – soon after its initial success – QFT faced a serious problem: the naïve
computation of higher-order terms in the perturbative expansion, such as loop diagrams in
the correlation functions, results in divergent integrals over the particle’s (intermediate)
momentum. As a consequence, most of the terms in the perturbative expansion are indeed
infinite, contradicting the finite observables measured in the experiments. It was a long-
lasting development process until this peculiar phenomenon and its physical meaning were
finally understood. Important contributions to a better understanding of renormalization
in particular came from Sin-Itiro Tomonaga (朝永 振一郎), Julian Schwinger and Richard
Feynman, who all were awarded the Nobel Price in 1965 “for their fundamental work in
quantum electrodynamics, with deep-ploughing consequences for the physics of elementary
particles[.]” (Foundation [1965]).

In a nutshell, the renormalization process aims to remove divergencies in the compu-
tations of the physical observables. It usually starts with the regularization scheme by
introducing an additional (non-physical) parameter µ that allows the isolation of the part
that gives rise to divergencies. This parameter may be a cutoff (cf. cutoff regularization)
or a modification of the dimensionality of the respective integral (cf. dimensional regu-
larization). The divergencies are removed (“discarded”) by the redefinition, which is the
actual renormalization step, of the parameters, e.g. the mass, the fields or the charge, in
the Lagrangian. This is an extraordinary step that requires reflection since it changes
our perspective on the actual parameters occurring in the Lagrangian 1.3–1.6. Due to

13

the regularization procedure, the physical quantities are finite without any divergencies;
however, they are now a function of the artificially introduced regularization parameter
µ. The procedure described above, consisting of regularization and renormalization, al-
lows to obtain finite (renormalized) states if the theory (like, e.g., QCD) is inherently
renormalizable. Unfortunately, there is a certain degree of arbitrariness attributed to this
technique, since the individual regularization and renormalization steps are not unique. As
a consequence, the resulting QFT depends on the respective renormalization scheme. Hence,
regularization and renormalization result in a family of QFTs that depend on the specific
choice of the scheme and the regularization parameter. To obtain a consistent procedure,
the resulting quantum field theory must be independent of those particular choices. This
requirement induces the so-called renormalization group equations (cf. Callan-Symanzik
equations in QED) that ensures scale invariance of the physical observables if the associated
beta-function vanishes. If the renormalization group equations are satisfied, the different
regularization and renormalization schemes are guaranteed to result in an equivalence class
of QFTs.

Based on the renormalization group equation, the regularization parameter µ is ab-
sorbed into the coupling of the theory, giving rise to the famous running coupling, i.e., the
functional dependence of αS on µ, which is the subject of the following section.

1.2.2 Asymptotic freedom and colour confinement
The renormalization procedure roughly outlined in Section 1.2.1 results in a dependence
of the coupling αS on the regularization parameter µ that is governed by the underlying
renormalization group equation(s). Of particular interest is the aforementioned beta-function
of QCD

β(αS) := 4πµ2 ∂αS
∂µ2

= 4π

∞∑

k=0

βk

(αS
4π

)k+2

≈ −α
2
S

4π

(
11

3
Nc −

2

3
Nf

)
, (1.8)

which encodes the information of how the “coupling constant” runs with the energy scale
µ. The approximation of Equation 1.8 to O(α2

S), with β0 = 2
3Nf − 11

3 Nc, is the so-called
one-loop beta-function (one loop in the perturbative expansion), whereby Nc denotes the
number of colors and Nf the number of quark flavours in the theory. For three colours
Nc = 3 and Nf = 6 quark flavors – as observed in nature –, the beta-function is negative
β0 < 0, which is a characteristic feature of QCD contrary to QED where β0 is strictly
positive. Solving the differential equation 1.8 for the integral boundaries [Q,µ] within the
one-loop approximation and rewriting the resulting expression in terms of the energy scale
ΛQCD := µ2 exp 4π

β0αS(µ2) gives

αS(Q2) = − 1

β0

4π log
(

Q2

Λ2
QCD

) . (1.9)

Due to β0 < 0, the coupling α decreases with the energy scale Q2. This phenomenon is
known as asymptotic freedom since the coupling vanishes in the limit of very large energies
limQ2→∞ αS(Q2) = 0; therefore, QCD appears to be a free theory in the ultraviolet
limit (interestingly, according to Equation 1.8, theories based on the SU(3) are only
asymptotically free if Nf < 11

2 Nc). Figure 1.1 shows several measurements of the strong
coupling constant αS for different energy scales Q2 at various experiments that niceĺy
illustrate the aforementioned mechanism. The current world average value of αS evaluated

14

1.2. PERTURBATIVE QCD

at the mass of the Z boson Q2 = MZ is given by αS(Q2 = M2
Z) = 0.1172 ± 0.0059

[Eidelman et al.].

Plot 1.1: Overview of several measurements of the running (strong) coupling αs(Q)
(adapted from Khachatryan and others, 2015, Fig. 7, p. 12).

The characteristic scale ΛQCD is, by construction, invariant under the renormalization group
and corresponds roughly to the energy scale at which αS(ΛQCD) ∼ O(1) where perturbation
theory is no longer applicable. Hence, ΛQCD, which is in the order of hadron masses,
determines the energetic boundary between the perturbative and the non-perturbative
regime in QCD. So, perturbative QCD is able to provide meaningful results if E � ΛQCD.

Another characteristic property of QCD besides asymptotic freedom is the so-called
colour confinement that accounts for the experimental evidence that quarks only exist
within bound states that are a colour-singlet state under SU(3)c transformations. This is
the reason why particles with fractional electric charge have never been directly observed
in any experiment to the present day. Colour confinement is phenomenologically well-
established and unquestioned; however, it still is remains a hypothesis in QCD because
until now there is no general mathematical proof of this property for non-Abelian gauge
theory based on first principles in QFT4. Due to the lack of precise theoretical description,
colour confinement needs to be approximately described by a potential V (r) (which can
actualy be computed in lattice QCD (see, e.g., [Bornyakov and others, 2003])) between
two quarks in a colour-singlet state

V (r) = −4

3

αS
r

+ kr, (1.10)

with V (r)→∞ for r →∞ (confinement) and V (r)→ − 4
3
αS
r for large energies (asymptotic

freedom). This potential is extensively used in phenomenological hadronization models
such as, e.g., the already mentioned Lund string model [Andersson, 1986].

4The proof of confinement is equivalent to show that the quantum Yang-Mills theory exists and has
a mass gap [Jaffe and Witten, 2000], which is one of the Millenium Problems advertised by the Clay
Mathematics Institute and awarded with US$1 million for a righteous solution to the problem.

15

1.2.3 Soft and collinear limits of QCD
The previous section introduced the effect of asymptotic freedom at short distances (large
energies) and color confinement in the infrared regime (low energies), both of which are
a characteristic feature of QCD that follows from the dependence of the strong coupling
αS(Q2) on the momentum transfer Q2, i.e., the running coupling which in turn follows from
the self-coupling of the gluon fields. Perturbative QCD takes advantage of this property by
performing a perturbation expansion of, e.g., the cross-section around the strong coupling
if the characteristic momentum transfer Q of the process under consideration is in the
appropriate domain Q� ΛQCD. The term perturbation expansion refers to a power series
that divides a problem, which can not be solved exactly, into several (usually infinitely many)
subproblems that in turn can be solved analytically. The quality of the approximation is
determined by the number of terms that are included in the power expansion. Formally,
the perturbative expansion of the cross-section of a given process i→ fn with n particles
in the f inal state is given by

dσifn =

∞∑

k=0

αk+n
S dσ̃ifnk , (1.11)

whereby σ̃ifnk := σifnk /αk+n
S denotes kth expansion of σifn factorized for the coupling αS .

For the method to be valide and give meaningful results, the expansion coefficient, i.e, the
coupling must be sufficiently small (αS < 1) such that the contributing corrections to the
matrix element decrease for higher-orders in αS . In practice, however, the perturbative
series 1.11 has to be terminated prematurely.

In particle physics, the first term of the expansion dσ̃ifn0 is called Leading-Order (LO)
(also known as Born level) cross-section. All of the following terms are named with respect
to the LO term, for instance, dσ̃ifn1 is referred to as the Next-to-Leading-Order (NLO)
cross-section.

dσifn = αn dσ̃ifn0︸ ︷︷ ︸
LO

+αn+1 dσ̃ifn1︸ ︷︷ ︸
NLO

+αn+2 dσ̃ifn2︸ ︷︷ ︸
NNLO

+

∞∑

k=3

αn+kdσ̃ifnk . (1.12)

The individual terms in the expansion 1.12 can be computed by means of Feynman rules
and Feynman diagrams.

Feynman diagrams are a graphical representation of the individual terms in the S-matrix
expansion. Along with the Feynman rules, which are derived from the Lagrangian L of the
underlying theory, the diagrams can be used to derive mathematical expressions for the
matrix element of a given process under consideration.

It is instructive to study some general properties of the matrix element in QCD in the
soft and collinear limit. The cross-section, which is proportional to the squared amplitude,
of the process i→ fn can be computed according to

dσifn =
(2π)4

4EfEiJα

1

n!

n∏

j=1

∫
d3kn
(2π)3

1

2Ej
δ(4)

(
pf + pi +

∑

i

kl

)
∣∣Mifn

∣∣2 (1.13)

= dΦn
∣∣Mifn

∣∣2 , (1.14)

with n partons in the final state. Equation 1.14 comprised the kinematic information of the
available differential phase space dΦn as well as the information of the underlying physical
process that is encoded in the matrix elementMifn . If the nth particle is a collinear and

16

1.2. PERTURBATIVE QCD

soft gluon – i.e. radiated Bremsstrahlung – the cross-section 1.14 can be simplified (in
anticipation of the factorization theorem to be introduced in Section 1.2.5) according to

lim
θ→0
En→0

dΦn
∣∣Mifn

∣∣2 = dΦn−1

∣∣Mifn−1
∣∣2 αSCi

π

dθ2

θ2

dEn
En

. (1.15)

The factorized cross-section 1.15 has a non-integrable divergence if the radiated gluon is
very soft, i.e., En → 0 and/or the radiation angle is very small θ → 0. This apparent
contradiction to the finite observables measured in the experiments is explained by the
circumstance that the partonic cross-section is not an actual physical observable. Due
to the colour confinement explained in Section 1.2.2, quarks and gluons are not observed
as freely propagating partciles but as a compound states, i.e., hadrons that are a singlet
under rotations in colour space. This problem can be solved by “absorbing” the unpleasant
divergencies in the (renormalized) parton distribution functions (PDFs), which are the
subject of the following section.

1.2.4 Factorization theorem and DGLAP equations
In general, a QCD process includes both short- and long-distant behavior. Therefore,
perturbation theory alone is not sufficient to provide reliable predictions. Especially at
lepton-hadron and hadron-hadron colliding experiments, most QCD processes live in the
low energetic regime where the formation of colour singlet states, i.e., bound hadrons takes
place. The factorization theorem divides the cross-section into a hard process – that comes
with large momentum transfer Q2 and hence can be computed with perturbation theory
(see section 1.2.3) – and a long-distant part that describes processes with low momentum
transfer, which is mostly based on empirical models. Figure 1.2 provides a visualization of
the factorization theorem for the example of hadron-hadron interaction (1.2a) and deep
inelastic scattering (1.2b) through hadron-lepton interaction. In Figure 1.2, the structure of
the hadrons (such as protons) is described by the PDFs, while the hard subprocess is given
by the scattering cross-section. According to the factorization theorem, the differential
cross-section dσh1h2→f of a physical process h1h2 → f (read: interaction between hadron
h1 and h2 with the final state f) is given by the convolutional integral

dσh1h2→f =

∫

[0,1]

∫

[0,1]

dx1dx2

∑

i,j

fi/h1
(x1, µF)fj/h2

(x2, µF)dσij→f
(
x1, x2,

(
Q

µF

)2
)
,

(1.16)
with x1, x2 being the momentum fraction carried by the respective parton, σij→f being
the partonic cross-section and µF denoting the so-called factorization scale that can be
thought of the scale that separates long and short distance contributions. Emission below
the factorization scale (long distance effect with small energy scales Q2) are described
by the PDFs. Equation 1.16 divides the computation of the cross-section into two parts:
the hard scattering cross-section dσh1h2→f at some order of perturbation theory and non-
perturbative contribution that accounts for the complex internal structure of the hadrons
involved in the interaction. Loosely speaking, the computation of the cross-section has
been separated in an “analytical” and an “empirical” part. Equation 1.16 also provides
experimental instruction on how to measure the PDFs in Deep Inelastic Scattering (DIS).

17

p1

p2

x2p2

x1p1

h2

h1

fj/h2

fi/h1

(a) Hadron-hadron interactions

p

k k′

q

xp

h

`−

}X

`−

fi/h

(b) Deep inelastic scattering

Fig. 1.2: Visualization of the factorization theorem for hadron-hadron interactions
(1.2a) and deep inelastic scattering (1.2b) with the respective flavour-dependent
PDFs fi/h.

The precision of the cross-section computation according to the factorization theorem 1.2
depends on the uncertainty of the hard scattering cross-section and the PDFs. While the
former depends on the order of perturbation theory, i.e., the number of terms that are
included in the perturbative expansion of the cross-section, the latter is dominated by
experimental uncertainties in the measurement of the PDFs. Therefore, a precise measure-
ment of fi/h(x, µF) is indispensable and utterly important to obtain precise predictions of
the cross-section.

The PDFs as introduced above are used to provide a non-perturbative description of
the internal structure of hadrons. More specifically, at leading-order the parton distribution
function fi/h(x,Q2) of a hadron h corresponds to the probability to find a parton of type i
(a quark of a certain flavor or a gluon) with a longitudinal momentum fraction x of the
compound object at an energy scale of Q2. While (at present) the PDFs itself cannot be
derived from first principles in QFT, their evolution with the energy scale Q2, which can
be thought of as the energy transfer between the hadron and its scattering partner, is
accurately predicted by the so-called DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)
equations [Altarelli and Parisi, 1977, Dokshitzer, 1977, Gribov and Lipatov, 1972] which
follows from the requirement that the observable structure functions are independent of
the non-physical factorization scale. The DGLAP equations, which describe the PDFs’
dependence on µF and momentum fraction x, are given by

µ2
F

∂fi/h(x, µ2
F)

∂ lnµ2
F

=
∑

j

αS
2π

∫ 1

x

dz
z
Pij(z)fj/h

(x
z
, µ2
F

)
, (1.17)

where Pij are the (leading-order) spin-averaged, regularized splitting functions/kernels that
describe the probability of a daughter parton i splitting from a parent parton [Höche, 2014].
A pictorial representation of the DGLAP equations is given in Figure 1.3.

18

1.2. PERTURBATIVE QCD

Fig. 1.3: Pictorial representation of the evolution of the parton distribution functions
via the DGLAP equations (adapted from Höche, 2014, Fig. 1, p. 3).

With the DGLAP equation at our disposal, the PDFs measured at some lower energy scale
Q2 – as it has been extensively done at the HERA and the Tevatron collider in DIS – can
be evolved to higher energy scales required by more recent colliders like the LHC. In this
sense, the PDFs are universal.

(a) Q = 2GeV (b) Q = 100GeV

Fig. 1.4: Parton distribution functions (CTEQ6M) for different partons at the energy
scale Q = 2GeV (1.4a) and Q = 100GeV (1.4b) (adapted from Pumplin et al., 2002,
Fig. 1, p. 8).

Figure 1.4 gives an example of two parton distribution functions (CTEQ6M) published
by the CTEQ Collaboration [Pumplin et al., 2002]. The two plots illustrate the PDFs for
different energy scales Q = 2GeV and Q = 100GeV for different partons in the hadron. The
up-type quarks are the dominant distribution for small values of Q and large momentum
fractions x. For smaller values of x, however, the distribution is mostly dominated by gluons;
hence, they carrying small momentum fractions. The distribution changes significantly
for higher energy scales. For higher values of Q, the distribution becomes progressively
flavor-independent for small values of x, a flavor symmetry that is not present in the PDF
for Q = 2GeV.

The parton distribution functions are, broadly speaking, experimentally determined
by fitting a large number of measured cross-sections in deep inelastic scattering in a

19

(Q2, x)-grid. The precise and well controlled experimental conditions in deep nuclear-lepton
scattering (see Figure 1.2b) cross-section measurements along with the accurate predictions
in perturbative QED provide an ideal environment for probing the internal structure of
hadrons.

1.2.5 Parton shower and Sudakov form factors
The previous section introduced the very important concept of factorization in perturbative
QCD. The principle idea behind factorization is the decomposition of some measurable
quantity, e.g. the cross-section of some process, into two (or possibly more) independent
factors, whereby each factor only depends on its dedicated energy scale [Collins, 2003].
This Paragraph introduces yet another factorization theorem that plays a crucial role in the
computation of the Sudakov form factors and hence in the simulation of parton showers:
the so-called (soft-)collinear factorization or collinar approximation theorem.

The hard subprocess in the interaction involves large momentum transfers Q2 between the
interacting partons – which is why perturbation theory is applicable in the first place –
which again cause acceleration and hence the emission of additional radiation in form of
photons and/or gluons, depending on whether the accelerated particles carry an electric
charge (QED) and/or a colour charge (QCD). Contrary to the gauge boson in QED, the
photon, the gluons in QCD carry a (colour) charge by themselves and hence emit further
radiation if accelerated in form of additional gluons. Within the picture of perturbative
QCD, the additional radiation of gluons can be interpreted as higher-order corrections to
the hard subprocess.

Mn+2

θbc

θde

a

b

c

d

e
θbc,θde→ 0−−−−−−−→
θde� θbc Mn × ×

a
b

c

d

e

Fig. 1.5: The collinear factorization theorem for the example of a matrix element
Mn+2 of a given process with n+ 2 external legs and a final state a that branches
(splits) two times with ordered splitting angles θ.

However, these corrections to the hard subprocess cannot be computed exactly for all radia-
tion angles and energy fractions. The problem can be bypassed by using an approximation
scheme that includes only the dominant contributions to all orders of perturbation theory
in the limit of soft and collinear radiation. This approximation scheme is the so-called
collinear factorization theorem (see Figure 1.5). The collinear factorization theorem states
that the (n + 1)-parton differential cross-section with an additional soft and collinear
gluon can be factorized into the n-parton differential cross-section before splitting and the
(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) splitting functions Pi,jk(z, φ) that gives the
distribution of the fraction of energy of parton i carried by j:

dσn+1 ≈ dσn
αS
2π

dθ2

θ2
dz dφPi,jk(z, φ). (1.18)

20

1.2. PERTURBATIVE QCD

Equation 1.18 is at leading-order of perturbation theory and holds under the assumption of
an almost collinear splitting of the parton of type i to jk. The similarity of Equation 1.18
and the DGLAP equation (1.17) introduced in Section 1.2.4 is not a coincidence: averaging
the splitting functions over φ results in the same splitting functions as those appearing in
the DGALP equation.

The sequential application of Equation 1.18 by using the Monte Carlo method (see
Chapter 2) to generate “random numbers” of z, t and φ (see section 2.1) defines a Markov
process that can be used to produce an arbitrary number of parton splittings and hence
an arbitrary number of particles [Höche, 2014, Webber, 2011]. This procedure is a
probabilistic approach to parton shower simulation. It is important to emphasise again
that the aforementioned splitting procedure is a Markov process (or a Markov chain);
therefore, the splitting of the partons does not depend on the previous splittings (the
history) of the system and hence neglects (quantum) interference between the radiation
that is produced. Furthermore, the collinear factorization theorem requires the splittings
to be ordered according to some evolution variable. There are different choices for the
evolution variable. In Equation 1.18 the splittings are ordered according to θ2; however,
alongside angular-ordered parton showers there are also ordering schemes according to the
vitality q2 and the pT of the process (in the collinear limit all definitions of the evolution
variable are equivalent dθ2/θ2 = dk2

⊥/k
2
⊥ = dq2/q2). The evolution variable allows defining

a cut at which the system falls into the hadronization scale and hence the perturbative
splitting process is terminated.

The differential probability of a parton i to split into jk in the interval [q2, q2 + dq2]
according to Equation 1.18 is given by:

dPi→jk =
αS
2π

dq2

q2

∑

jk

∫

z

∫

φ

dz′ dφ′ Pi,jk(z′, φ′). (1.19)

The requirement of unitarity gives the probability that a parton i does not split into
j + k by Pi9jk = 1 − Pi→jk. The probability that a parton does not emits additional
radiation within the interval [q2, Q2

0], whereby Q2
0 is some resolution criterion, is given by

the so-called Sudakov form factor

∆i(Q
2
0, q

2) := lim
n→∞

n−1∏

k=0

P(zk, φ)i9jk

= lim
n→∞

n−1∏

k=0

1− αS

2π

∫ 1−Q
2
0

q2

Q2
0

q2

dq′2

q′2
∑

jk

∫

z

∫

φ

dz′ dφ′ Pi,jk(z′, φ′)

= exp

−

αS
2π

∫ Q2
0

q2

dk2

k2

∫ 1−Q
2
0

k2

Q2
0

k2

dq′2

q′2
∑

jk

∫

z

∫

φ

dz′ dφ′ Pi,jk(z′, φ′)

= exp

{
−
∫ Q2

0

q2

dk2

k2
Pi→jk

}
, (1.20)

whereby the index i in ∆i refers to the ith parton that splits into jk [Buckley and others,
2011]. Since the calculation of the Sudakov form factors is based on the probability of a
parton not to split, it includes not only the collinear-enhanced real parton emissions, but
also virtual quantum loop corrections to all orders of perturbation theory. The value of the
resolution variable Q2

0 is a question of definition, with the integration limits of z defining a

21

range in which the splitting process is experimental resolvable. Splittings with too soft,
i.e., to small values of z are not included in the parton shower.

Obviously, the function ∆i(Q
2
0, q

2) given by Equation 1.20 is the solution to the following
linear first-order differential equation

− d∆i(Q
2
0, q

2)

dq2
= ∆i(Q

2
0, q

2)
dPi
dq2

, (1.21)

which accounts for the fact that the change of probability d∆i(Q
2
0,q

2)/∆i(Q
2
0,q

2) is proportional
to the branching probability Pi. This is in close analogy to the law of radioactive decay.
The actual implementation of Equation 1.21 is rather straightforward and discussed in
Chapter 2.

It is important to note that in the limit of soft and collinear radiation the higher-order
corrections and the leading-order matrix element factorize in all orders of perturbation
theory due to the factorization theorem 1.18. This can be seen by rewriting Equation 1.20
∆i(Q

2
0, Q

2) ∝ exp
{
−CF αS2π log2 Q2

Q2
0

}
(see Buckley and others, 2011, Eq. 17, p. 27) and

expressing the exponential function in terms of its series representation

∆i(Q
2
0, Q

2) ∝ lim
N→∞

N∑

k=0

(αS
2π

)k (
log2 Q

Q0

)k
. (1.22)

Equation 1.22 is an expansion in terms of the strong coupling αS ; hence, the Sudakov
form factors are the sum of all leading collinear logarithms to all orders in perturbation
theory. However, it should be emphasised that this statement is only true in the limit of
collinear and soft radiation. Therefore, the parton shower through Sudakov form factors
provides meaningful result in the soft regions of phase space; the radiation of high-energy
and wide-angle particles is not well described. This will be the main motivation for the
joint use of matrix element generators and shower Monte Carlos in Chapter 2.

1.3 QCD phenomenology

The previous chapter 1.2 reviewed the theoretical basics of perturbative QCD and how it
can be used to compute the hard-scattering matrix elements for given processes as well
as the showering approximation (parton shower) to simulate all dominant collinear QCD
radiation. As it was shown, the cascade of splittings caused by the initial parton results
in a large number of additional particles that all carry a fraction of the primary parton’s
four-momentum. To reconstruct the four-momentum of the original parton, it is therefore
necessary to measure and reconstruct the additional particles that are a consequence of
this showering process. However, a particle detector is by no means a sterile environment.
Usually, there are several interactions involved that cause pile-up contamination of the
environment as well as higher particle multiplicities in the final state. As a result, the
difficulty lies in the identification of active regions in the detector that are assumed to
originate from the same process and the same initializing particle. This is – as one can
imagine – a very sophisticated task. Over the years many different concepts and techniques
have been developed to solve this problem in a reasonable manner. The purpose of this
chapter is therefore to provide a short introduction into the extensive field of jet physics,
i.e., a phenomenological approach to QCD whereby it is limited to the main aspects of this
area.

22

1.3. QCD PHENOMENOLOGY

1.3.1 Jets in particle physics
The abstract object that particle physicists refere to as jet is the remaining signature of
quarks and gluons that are produced in high-energy particle collisions but escape direct
detection in the experiment. Therefore, in many instances, the reconstruction of jets is
the only way to gain insight into the underlying process of an event. Furthermore, hadron
colliders such as the LHC are dominated by QCD, which is why the reconstruction of jets
often is the only way to extract structures and make sense out of an event in the first place.
As a result, studying jets and its properties is utterly important and the key element for
many studies – in particular for the search of new physics beyond the Standard Model.
Figure 1.6 shows to different jet typologies as they are steady observed in experiments.

Fig. 1.6: Left: a two-jet event with clear separation of the final state particles; right:
a three-jet event with significant overlap among radiation from two different sources.
The dashed, blue line indicated the direction of the respective underlying parton.

Each solid line in Figure 1.6 represents the path or track of a particle that originates from
the interaction point of the event. The tracks of charged particles are measured in the inner
detector regions, which are usually equipped with semiconductor detectors, while the energy
deposition of the particles is measured in the so-called calorimeter (derived from Latin calor,
“heat”, and Greek metron (μέτρον), “measure”) of the detector. The left Figure in 1.6 is a
somewhat simplified illustration of a two-jet event, i.e. two separated collection of particles
in the final state to balance energy-momentum. The right hand side of the Figure, however,
shows a three-jet event with three final state particles. As seen in this topology, there is
the possibility of significant overlap between the particles measured in the detector, making
the assignment to the underlying process difficult. This becomes even worse for higher jet
multiplicities in the final state. For many years, theorists and experimentalists alike worked
on efficient methods that allow the reconstruction of jets through clustering particles. In
the course of these efforts, a variety of different algorithms has been developed to fulfill
this task. It is therefore evident that the definition of a jet is based on the respective jet
reconstruction algorithm that are used since different reconstruction methods will result in
non-identical jets with different particle content. Therefore the following section introduces
the most widely used jet reconstruction algorithms in experimental particle physics along
with a rather broad overview of the basic requirements for a jet algorithm.

23

1.3.2 Infrared and collinear safety
Jet reconstruction is the task to group particles into orthogonal categories that are assumed
to originate from the same parton of the underlying hard scattering process. To organize
the particles into groups, the jet reconstruction algorithm usually comes with a distant
measure, as well as recombination scheme that specifies how particles are (re-)combined
into a single four-vector for the next iterative step [Glover and Kosower, 1996]. The most
simple recombination scheme would be the four-vector sum of the constituents.

There exists a large variety of different jet algorithms since, historically, each experiment
used its own definition of a jet. In 1990, there was an attempt to specify a set of criteria
based on experimental and theoretical considerations that each jet reconstruction algorithm
should meet. This set of rules became later known as the “Snowmass Accord”, which was
the first step “[t]oward a standardization of jet definitions[.]” (Huth and others, 1990). The
CDF Collaboration at the Tevatron, Illinois, USA, was the first collaboration that tried to
implement this “accord” [Abe, 1992].

In the Snowmass accord from 1990 the Authors proposed “[s]everal important properties
that should be met by a jet definition[.]” (Huth and others, 1990). Among other things,
the jet definition should “[y]ield[.] finite cross-sections at any order of perturbation theory”
as well as “[...] a cross-section that is relatively insensitive to hadronization” (Huth and
others, 1990, p. 6, property 4 & 5). Those properties are guaranteed if the definition of a
jet is infrared and collinear (IRC) safe. Formally, infrared safeness can be defined as:

An observable is infrared safe if, for any parton configuration,adding an infinitely
soft parton does not affect the observable at all (Seymour, 1998, Def. 4, p.5).

Similar, one defines collinear safeness:

An observable is collinear safe if, for any parton configuration, replacing any
massless parton by an exactly collinear pair of massless partons does not affect
the observable at all (Seymour, 1998, Def. 5, p.5).

As described in Section 1.2, the parton in the hard interaction undergoes numerous soft
and collinear splittings as part of the fragmentation process that finally leads to stable
hadrons in the final state. A consistent jet definition should therefore be insensitive to
those effects, i.e., the radiation of additional soft and collinear partons shall not change
the jet. Figure 1.7 and 1.8 show an idealized example of a fictional jet algorithm that is
neither infrared nor collinear safe.

Fig. 1.7: Visualization of infrared safety: the configuration of reconstructed jets
must not change with the emission of another soft particle.

24

1.3. QCD PHENOMENOLOGY

Fig. 1.8: Visualization of collinear safety: the configuration of reconstructed jets
must not change with one particle replace by two collinear particles.

Apart from that, fixed-order calculations in perturbative QCD soft radiation and
collinear splittings are accompany by divergent matrix elements already at tree-level.
Those divergences are guaranteed to cancel with higher order loop diagrams that enter
the calculation with an opposite sign. This can easily be seen by means of the leading
order cross-section of process `+`→ qq̄. The dominant contribution to the next-to-leading
order correction comes from additional QCD radiation `+`→ qq̄g. The double-differential
cross-section for this process is then given by

d2σ

dxqdxq̄
= σLO

αs
2π
CF

x2
q + x2

q̄

(1− xq̄)(1 + xq)
, (1.23)

with xq and xq̄ being the momentum fraction carried by the quark respectively the antiquark.
The cross-section according to Equation 1.23 is obviously ill-defined for collinear radiation of
a gluon (i.e. xq → 0 or xq̄ → 0) as well as a very soft gluon (i.e. xg → 0⇒ (xq, xq̄)→ (1, 1)).
First, consider the radiation of a very soft or collinear gluon that is unresolvable in the
experiment. This situation correspond to the two-jet cross-section that is then given by
σtwo-jet(T) = σLO(1 + αsf(T) +O(α2

s)), with T being the separation between two- and
three-jet in the region (cf. Dalitz plot) to be integrated over. The function f is still divergent
for T → 1. However, if one performs the integration over the three-jet region σthree-jet(T) =
σLOαsg(T)+O(α2

s), where the gluon is resolvable in the experiment, and computes the total
inclusive cross-section σtot = σtwo-jet+σthree-jet+· · · = σLO(1+αs [f(T) + g(T)]+O(α2

s)) it
turns out that the infinities precisely cancel each other in the limit limT→1 [f(T) + g(T)] = 0.
Hence, the cross-section σtot = σLO

(
1 + 3

4CF
αs
2π +O(α2

s)
)
is finite [Chiochia et al., 2010].

This simple sample calculation shows that in the inclusive scenario the collinear and
soft infinities cancel each other out. This, however, is not necessarily the case for exclusive
kinematic measurements in which only a selected group of particles is used to compute
certain observables. If the respective observable is inherently IRC safe, though, the
calculation will yield finite results.

1.3.3 Cone based algorithms
For a long time, the standard jet reconstruction algorithms have been so-called cone
algorithms that are based on the geometric definition of a cone (the first jet algorithm has
been developed by Sterman and Weinberg in 1977 [Sterman and Weinberg, 1977]). Even
though this definition might appear straightforward it still allows for numerous different
implementations of reconstruction algorithms. However, with the Snowmass Accord as
guidance regarding meaningful jet definitions, most cone algorithms seek to extremize the
hadronic energy flow through a cone with a fixed radius R, with R2 = (∆η)

2
+ (∆φ)

2, in

25

η − φ space. According to this definition, the transverse energy of the jet is simply given
by the scalar sum of the constituent’s transverse energy within the cone

ET =
∑

i∈{Ri<R}
ET,i, (1.24)

while the pseudorapidity and azimuthal angle of the jet is the weighted sum of the
constituent’s position η − φ space

η =
1

ET

∑

i∈{Ri<R}
ET,iηi, φ =

1

ET

∑

i∈{Ri<R}
ET,iφi. (1.25)

Those very simple definitions [Seymour, 2000] already allow to reconstruct jets.
Most cone algorithms are seed-based, e.g. the particle with the largest momentum, and

use of an iterative procedure to successively combine particles until stable configurations
are found. Within the group of iterative cone algorithms, the most prominent methods are
the iterative cone algorithm with progressive removal (IC-PR) – which uses the hardest
cell as a seed – and the iterative cone algorithm with the split merge procedure – where all
cells above a certain energy threshold are seeds. In contrast to iterative cone algorithms,
fixed cone algorithms use a fixed geometry around the seed direction. Although cone
algorithms are comparatively simple – or perhaps exactly for this reason –, most of them
suffer a serious problem: they are soft (IC-SM) and collinear unsafe (IC-PR) [Atkin, 2015].
The aforementioned problems have their origin in the seed that is used by the algorithm.
Therefore, the seedless cone algorithm, SISCone, (Seedless Infrared Safe Cone [Salam and
Soyez, 2007]) have been developed, which is the only representative of its family that is
infrared as well as collinear safe. The algorithm SIScone uses to identify stable pseudo-jets
is rather complicated since it involves several nested iterations and depends on several
parameters. Hence, it would not be very conducive to discuss it at this point (a description
of the complete algorithm can be found in Salam and Soyez, 2007, Algorithm 2, p. 12). The
problems regarding cone based algorithms were one main motivation for the development
of so-called sequential recombination algorithms for jet clustering, which are the subject of
the next section.

1.3.4 Sequential recombination algorithms
The second family of jet reconstruction algorithms are the so-called sequential recombination
algorithms that have been introduced in the ’80s by the JADE collaboration [Bartel et al.,
1986]; hence, have their origin in studies of e+e− collisions at PETRA at DESY, Hamburg.
Within this class, there exists a large variety of different algorithms that are based on
different assumptions such as the splitting functions in QCD for the kt algorithm [Catani
et al., 1993, Ellis and Soper, 1993], angular ordering for Cambridge-Aachen [Wobisch and
Wengler, 1998] and collimated jet cores as used by anti-kt [Cacciari et al., 2008]. The first
two are especially suited for studies regarding the substructure of jets, while the latter one
is often used to study single-parton jets.

Sequential recombination algorithms are inherently (by construction) infrared and
collinear safe. This property makes them theoretical superior to cone based reconstruction
of jets which is why those are generally favoured by theorists. The problem was, however,
that this class of algorithms suffered from a poor computational performance. This issue
has mostly been resolved by the efficient implementation of the FastJet package [Cacciari
et al., 2011] in C++ that is used by the experiments at the LHC.

26

1.3. QCD PHENOMENOLOGY

The kt algorithm

When kt algorithm was introduced by the JADE experiment at DESY in 1993, it was
designed in accordance with studies at lepton colliders. The (modified) distance measure
of the algorithm is given by

yij =
2 min(E2

i , E
2
j)

Q2
(1− cos θij), (1.26)

whereby Q is the total energy of the even. Equation 1.26 is evaluated for each pair of
particles from which the minimum ymin is determined. If ymin below some threshold
value ycut, then i and j are recombined into a new particle (referred to as a “pseudo-jet”);
afterwards the procedure is repeated until the iteration terminates. Due to the definition
1.26 this algorithms favors soft particles, which results in somewhat “diffuse” shapes.

In the limit θ � 1, yij is reduced to yij
θ�1
= (min(Ei, Ej)θij/Q)

2 which is the squared
normalized transverse momentum – hence the name kt algorithm. As mentioned in Section
1.3.4, the kt algorithm can be related to the splitting functions in QCD by considering
a soft and collinear branching k → ij. In this case, the differential splitting is given by
∂Ei,θijPk→ij ∼ (min(Ei, Ej)θij)

−1.
Equation 1.26 has been constructed with regard to the application in lepton colliders.

In hadron colliders, however, the total energy of an event is not well defined along with
other complications. An adapted version of the kt algorithm for hadron collisions is given
by:

dij = min(p2
T,i, p

2
T,j)∆R

2
ij , diB = p2

T,i, (1.27)

with each particle being assigned to either a beam-jet (diB) or a final state-jet [Salam,
2010].

The Cambridge-Aachen algorithm

The Cambridge-Aachen algorithm uses a distant measure similar to Equation 1.26 and
1.27 along with a second distant measure defined as vij = 2(1 − cos θij). The rationale
behind this method was to combine the kt algorithm with angular ordering that is related
to the ordering in multiple gluon emissions. The actual algorithm is simple: Find the
pair of particles with minimum vij and recombine those particles to a new pseudo-jet if
the corresponding condition yij < ycut is satisfied and repeat the process. As it was the
case for the kt algorithm, the Cambridge-Aachen algorithm must be modified to meet the
requirements of hadron colliders.

Like the kt algorithm the Cambridge-Aachen’s approach tends to result in irregular
jet shapes. This problem is, inter alia, addressed by the next sequential recombination
algorithms – the famous and widespread anti-kt algorithm.

The anti-kt algorithm

The so-called anti-kt algorithm – which is the one used in this thesis – can be considered
as being a generalization of the aforementioned (inclusive) kt and Cambridge-Aachen
algorithm. The distant measures of the anti-kt algorithm is given by:

dij = min(p2p
T,i, p

2p
T,j)

∆R2
ij

R2
, diB = p2p

T,i, (1.28)

where p is an additional parameter that allows to recover the kt algorithm for p = 1 and
Cambridge-Aachen for p = 0. For a value p = −1, the algorithm preferably clusters hard

27

particles (min(p−2
T,i, p

−2
T,j)→ max(p2

T,i, p
2
T,j)). An interesting “side-effect” of this algorithm

is that it tends to produce very circular and hard jets, making it an attractive alternative
for certain cone-type algorithms.

With the (anti-)kt, Cambridge-Aachen and SIScone algorithm the four most commonly
used jet reconstruct algorithms have been introduced.

1.3.5 Jet-related observables
The jet reconstruction algorithms introduced in Section 1.3.3 and 1.3.4 cluster final state
hadrons measured in the detector into an object called jet whose four-momentum, which
is assumed to roughly corresponding to the parton’s involved in the hard subprocess, is
then used for subsequent analysis. Out of the jet’s kinematic variables, i.e., EjetT , φjet, ηjet,
mjet (which already completely defines the four-momentum of a particle), it is possible
and reasonable to construct other observables that can be measured in the experiment and
later compared to expectations from theory.

Jet-shape

The so-called Jet-shape ΨJ is a jet observable which has been in use for a long time [Ellis
et al., 1992] and which is still in use to this day. Unlike global event shapes, the jet-shape
is individually defined for each jet in an event. Since this thesis only considers the leading
jet in an event, it is a perfect figure of merit to evaluate the quality of the generated data.

The (conventional) jet-shape is defined by:

Ψ(r) =

∫ r

0

dr′
pT(r′)

pjetT

≈ 1

N

N∑

i=1

pT,i

pjetT

, (1.29)

where the continuous integration has been approximated by a discrete sum over the pixel
cells in the detector [Chien and Vitev, 2016]. As can be seen from Equation 1.29, the
range of values of Ψ is limited to Ψ ∈ [Ψ(r = 0) = 0,Ψ(r = R) = 1]. With this definition
of the jet-shape, the interpretation is very simple: it measures the fraction of the total
transverse momentum pjetT that falls in the region defined by r. This observable has some
discrimination power regarding the distinction of gluon or quark initialized jet; however,
the identification efficiencies is rather poor. Notwithstanding, this variable is very useful as
it allows to study the distribution of particles or jet’s constituents as well as their momenta
within the scope of this thesis. This is much more powerful than, e.g., just considering the
transverse momentum of the jet.

Jet-width

The jet-width or jet-broadening as it was used by ALEPH and OPAL (e.g. [Ackerstaff and
others, 1999], is yet another jet observable that can be used to distinguish between gluon
and quark jets. It is defined by the simple equation

Bjet =

∑N
i=1 |pi × njet|∑N

i=1 p
jet
T,i

. (1.30)

28

1.3. QCD PHENOMENOLOGY

This definition, however, cannot be used with hadron colliders. ATLAS’ definition of the
jet-width is therefore modified accordingly

wjet =
1

Ejet
T

N∑

i=1

∆Ri × ET,i, (1.31)

with Ejet
T being the scalar sum of the constituent’s pT [and, 2011]. This definition of the

jet-width is quite natural, straightforward and has an easy interpretation: it gives the
average distance between the clusters inside a jet. This definition is, by the way, very
similar to N -subjettiness τ1 for one jet (see Equation 1.32).

N-subjettiness

Another variable to study the substructure of a jet is the inclusive jet shape referred to as
N -subjettiness [Thaler and Van Tilburg, 2011] that is based on N -jettiness [Stewart et al.,
2010]; although the latter one being an event shape, while the former one is defined for
each jet individually. The N -subjettiness of a jet with an assumed number of N subjets is
calculated based on the following equation:

τN,β =
1

d0

N∑

k=0

pT,i min
{

∆Rβ1,k,∆R
β
2,k, · · ·∆R

β
N,k

}
, (1.32)

with d0 = Rβ
∑N
k=1 pT,i and β ∈ R>0 (in this work, without exception, β = 1 is used.

henceforth, unless specified differently, the simplified notation τN is synonymous with
τN := τN,β=1). As mentioned in Section 1.3.5, for N = 1 and R = 1 the jet-width
wjet = τR=1

1 = 1/pjetT
∑N
i=1 ∆RipT,i if the clusters are taken to be massless. With this

definition, it is easy to see that N -subjettiness provides an information about to which
degree a jet can be regarded as being composed out of N subjets.

The following three plots in Figure 1.2 give an impression of the distribution of this
variable for QCD and boosted W jets.

(a) 2-subjettiness (b) 3-subjettiness (c) 32-subjettiness

Plot 1.2: N -subjettiness distribution τ2 (1.2a) and τ2 (1.2b) for QCD and boosted
W jets and a mass window 145GeV < mjet < 205GeV. The discrimination power of
this variable manifests it self in the ratio τ32 := τ3/τ2 (1.2c). (adapted from (Thaler
and Van Tilburg, 2011, Fig. 2(b,c), 3(b), p. 8).

29

As can be seen in Figure 1.2, N -subjettiness itself does not provide a good discrimination
between QCD and boostedW jets; however, the ratio τ3/τ2 does give a significant separation
between the different processes.

In this thesis N -subjettiness is not used to discriminate between jets originating from
different processes but to probe the substructure of the generated jets and compare them
with expectations from the training data. It is considered to be another figure of merit that
provides different perspective on the manifold learned by the neural network and hence
allows to quantitatively estimate its performance. This statement holds true for all figures
of merit and obervables used throughout this thesis.

30

Chapter 2

Event Simulation in HEP

Until now the focus was largely on theoretical and conceptional considerations. However,
in physics – as in natural sciences in general –, each theory must prove itself valid in the
experiment; otherwise, it will be buried in the vast cemetery of disproven theories.

In this chapter, both threads, theory and experiment, are wed together to provide an
introduction into the broad topic of event generators along with their practical applications
in experimental particle physics. A full description of this extensive subject is beyond
the scope of this work; therefore, it is limited to merely convey an idea of the underlying
principles that are common to most event generators.

The title of this chapter already reflects parts of its structure. Starting from the
Monte Carlo method (2.1), the very general concept of Monte Carlo integration (2.1.1) and
simulation (2.1.2) is introduced (which will also be relevant for the subsequent chapter),
as both methods are fundamental and frequently used in High Energy particle Physics
(HEP). The next section 2.2 then builds a bridge to the subject matter of the previous
chapter by introducing the objective of Monte Carlo event generators (2.2.1) in the context
of high-energy particle physics. Furthermore, special attention is devoted to the fixed-order
computation of the matrix element of the underlying hard subprocess (2.2.2) as well as
the simulation of parton showers utilizing the Sudakov form factors (2.2.3) that have been
introduced in the previous chapter. Section 2.2.4 combines and summarizes all accumulated
insights to give a short overview of the individual steps common to most gevent generators.
This is followed by the introduction of different types of event generators and their most
prominent representatives (2.3). Finally, the chapter is closed by a brief consideration of
challenges arising in the combination of matrix element generators and and shower Monte
Carlos (2.4).

2.1 The “Monte Carlo” method

Generally speaking, the Monte Carlo method – a term first introduced by the Greek-
American physicist Nicholas Metropolis (Νικόλαος Μητρόπουλος) and an innuendo to the
eponymic Monégasque city – is, in its broadest sense, a class of numerical algorithms to
solve complex mathematical problems employing probabilistic principles. The application
of this method can be broadly divided into Monte Carlo integration (2.1.1) and simulation
(2.1.2).

It was first made public in a theoretical essay by Nicholas Metropolis and the Polish-
American scientist Stanłslaw Ulam in 1949, mainly to take “[. . .] a statistical approach

31

to the study of differential equations [. . .]” (Metropolis and Ulam, 1949). However, the
proposed method was already invented several years before by Ulam when he took part
in the nuclear weapons program at the Los Alamos National Laboratory, USA (where he
was involved in the Manhattan Project during World War II). The Hungarian-American
scientist John von Neumann, who was involved in the same project at that time, quickly
recognized the importance of the novel method suggested by his colleague. In a first
practical application of the method, Ulam and von Neumann studied, under strict secrecy
self-evidently, the problem of neutron diffusion, which is essential to build and design
nuclear weapons [Richtmyer et al., 1947].

Although the Monte Carlo method has a turbulent history that goes back to a period
of geopolitical tension and military confrontation, it has become an indispensable tool in
a wide spectrum of scientific applications: from industrial engineering; the simulation of
physical, chemical and biological processes of all different kinds; to economics and finance.
Everywhere people “play dice”.

2.1.1 Monte Carlo integration
Formally, Monte Carlo computations are equivalent to an approximate integration in higher
dimensional space. Consider, for instance, the d-dimensional integral

I =

∫

[0,1]d
dx f(x) =

∫

[0,1]

dx1 · · ·
∫

[0,1]

dxd f(x1, . . . , xd), (2.1)

whereby f : [0, 1]d → Rd is a real-valued function over (for reasons of simplicity and
without loss of generality) the normalized hypercube [0, 1]d = Πd

i=1[0, 1]. Equation 2.1
may be interpreted as an expectation value EX∼Ud(0,1) [f(X)] of the function f over the
d-dimensional uniform probability distribution Ud(0, 1), with X being an vector of i.i.d.
random variables X ∼ Ud(0, 1), meaning Xi ∈ [0, 1] with i ∈ N≤d \ {0}.

The Monte Carlo approximation of expression 2.1 is then given by

Sn =
1

n

n∑

i=1

f(xi), (2.2)

where {xi}ni=1 are n independent samples of the random variable X. The convergence of
the Monte Carlo approximation 2.2 to the integral 2.1 is guaranteed by the law of large
numbers, i.e., the sample mean of a sequence of variables Sn = 1

n

∑n
i=1 Si converges to the

expectation value Sn → µ := I for n→∞ iff the first two moments E[Sn] = µ ∈ R and
E
[
(Si − µ)

2
]

= σ2 ∈ R>0 exist. The circumstance that the sample mean converges to a
fixed number justifies the approximation 2.2 of 2.1.

The statements above vindicates the estimation of integrals by means of the Monte
Carlo approximation. However, what are the benefits of Monte Carlo integration compared
to other numerical integration methods available (e.g. rectangular integration or Simpson’s
rule)? The advantage lies in the statistical nature of the method that not only connects it
to the law of large numbers but also to the central limit theorem1 in probability theory.

According to the central limit theorem, the sample mean Sn of a sequence {Si}ni=1 of
with E[Sn] = µ and Var(Si) = σ2 follows approximately a normal distribution N (µ, σ2/n).
This implies that the standard score

√
nSn−µσ converges to a stochastic variable that is

1For a proof of the central limit theorem see [Feller, 1945].

32

2.1. THE “MONTE CARLO” METHOD

normal distributed with zero mean and unity variance, i.e.
√
nXn−µσ

n→∞∼ N (0, 1).
To relate the statements above with Monte Carlo integration, consider the approximation

error Sn − I(f); according to the central limit theorem this quantity is (approximately)
normal distributed Sn − I(f) ∼̇ N (µ, σ2/n). Then, the following statement is true within
the limits of finite statistical precision: P

(
a σ√

n
< Sn − I(f) < b σ√

n
)
)
≈ Φ(b)−Φ(a), with

Φ(·) being the cumulative distribution function. From this simple consideration, it can be
concluded that the approximation error of the Monte Carlo method behaves like O (1/

√
n).

The statement holds – and this is the decisive aspect – regardless of the dimensionality
d ∈ N of the integral 2.1. This property, the approximation error being independent of the
dimensionality of the integral to be calculated, makes the Monte Carlo method superior
when it comes to evaluate higher dimensional integrals (for d ≤ 2 there are numerical
methods that give lower or similar errors with O

(
1/n1/d

)
, e.g. the general trapezoid

approximation).
The line of arguments above explain the success of Monte Carlo integration in many

scientific fields, which usually deal with high-dimensional integrals. The same argument
applies to high energy particle physics due to the appearance of high-dimensional phase-
space integrals in, e.g., cross-section computations. This makes the Monte Carlo method
(integration) a natural method of choice in particle physics and hence in the event generators
discussed in Section 2.2.

2.1.2 Monte Carlo simulation
As it has been mentioned, the code name “Monte Carlo” is derived from the city with the
same name in Monaco, situated along the French Riviera. It is well known for its numerous
casinos, which makes Monte Carlo the world’s largest gambling centre. The term is by no
means arbitrarily chosen: Nicholas Metropolis suggested the name as an allusion to Ulam’s
uncle who used to borrow money from its relative, only to squandering it for gambling
[Metropolis and Aspray, 1987].

A typical problem in statistical physics (as well as in many other fields) is to estimate
the mean value of some function h of a random variable x with respect to a probability
density function f(x) (PDF)

〈h〉 := Ex∼f(x) [h(x)] =

∫

Ω

dxh(x)f(x). (2.3)

A typical example in experimental particle physics would be, for instance, the expected
mean energy 〈E〉 deposition in some region and part of the detector system. The probability
of some particle to deposit energy in the interval [E,E + dE] is given by f(E)dE. However,
the PDF might be a very complicated function that is a priori unknown. This is usually
the case. The Monte Carlo method provides a procedure to estimate the unknown PDF, f ,
through simulation of the actual (physical) processes involved and hence is referred to as
Monte Carlo simulations. The objective is to numerically mimic and reproduce the basic
processes as accurately as possible to get a good estimation of the underlying PDF that
have generated the data. This requires precise theoretical and experimental models that
accounts for the stochastic nature of the respective process under consideration.

Monte Carlo simulations are used extensively in particle event generators to estimate
the expected number of events in some regions of phase space, and therefore it is an
indispensable tool in HEP.

33

2.2 Monte Carlo event simulation

From a philosophical perspective, theoretical concepts in physics are studied concerning
their ontological assumptions and implications in nature. Hence, the interplay between
theory and experiment in physics is an essential concept – one is not possible without the
other. From an epistemological point of view, the agreement of theoretical predictions and
corresponding observations in nature does not only allow for a description of the process
under consideration of a specific language but also reveals a deep insight in the structure of
the surrounding reality [Hartmann, 2000]. This fundamental concept applies to all physics
questions and fields. Indeed, one could say that for a theory to be called physical it needs
to describe measurable processes. A theory that protects itself by being non-verifiable and
hence non-falsifiable is not valid in a physical sense; it is part of metaphysics.

To apply those concepts to particle physics, it is necessary to compare experimental
observations with theoretical predictions. Monte Carlo event generators have been developed
to satisfy exactly this need. Their purpose is to incorporate the current knowledge of
elementary particle physics into a tool that allows to make predictions of known processes.
However, they are also used to study and predict processes beyond the current Standard
Model based on theoretical considerations. Thus, Monte Carlo event generators are the
bridge that links theory and experiment in the broad field of elementary particle physics.

This section intends to provide a brief introduction to Monte Carlo event generators
and their applications. By doing so, it refers to the physical fundamentals introduced in
chapter 1.

2.2.1 The larger picture
As state above, the objective of MC event simulation is to give accurate predictions of some
physical observable O that can finally be compared with data obtained in an experiment.
Generally, this observable is computed from the reconstructed four-momenta p1, . . . , pn in
the final state f , i.e., Of := Of (p1, . . . , pn), with n being the number of “particles” (this
may also be a jet or missing transverse energy) in the final state. Due to the underlying
statistics of quantum mechanics, the probability of a specific final state configuration to
occur is given by the differential cross-section dpf (p1, . . . , pn) ∝ dσf (p1,...,pn)

d3p1...d3pn
. The cross

section σ of a physical process is a detector independent quantity; however, it is related to
the number of observed events N in an experiment/particle collider through the integrated
luminosity L as per N(t) = σ

∫
t
dt′L′. Therefore, the frequent repetition of an experiment

allows to measure the expectation value 〈Of 〉 of the observable Of based on the likelihood
and the integrated luminosity according to

〈Of 〉L = L
∑

i∈If

∫

V
d3p1 . . . d3pn

dσf (p1, . . . , pn)

d3p1 . . . d3pn
Of (p1, . . . , pn), (2.4)

(cf. Equation 2.3). The dimensionality of the complicated integral in Equation 2.5 increases
with the number of final state particles in an event. As a result, one relies on Monte
Carlo methods to get a reasonable estimation of the expectation value. The Monte Carlo
approximation of Equation 2.5 according to Equation 2.2 is therefore given by:

〈Of 〉L,N ≈ L
|V|
N

N∑

j=0

∑

i∈If
d3p1 . . . d3pn

dσf (p1, . . . , pn)

d3p1 . . . d3pn
Of (p1, . . . , pn), (2.5)

34

2.2. MONTE CARLO EVENT SIMULATION

with |V| being the integration volume and If denoting the index set of final state particles.
Based on the statements in Section 2.1.1, the sample mean 〈Of 〉L,N converges to the true
expectation 〈Of 〉L = limN→∞〈Of 〉L,N for infinite statistics. Following Equation 2.5, the
expectation value for each observable may be computed based on the measured differential
cross-section.

Now, to get a prediction for 〈Of 〉MC
L,N that can be compared with the experiment, the

probability, i.e., the differential cross-section of a process, must be accurately predicted by
theory. Within the framework of pQCD (or perturbation theory in general), the precision
of the prediction is improved by including higher-order corrections into the expansion
of the matrix element (see Section 1.2.3). This is known as fixed-order expansion in the
simulation chain of MC event generators, which is the subject of the following section.

2.2.2 Fixed-order matrix element expansion
All commonly used multi-purpose event generators come with a comprehensive list of pre-
implemented leading-order matrix elements equipped with the corresponding phase-space
parameterization for processes up to three particles in the final state [Buckley and others,
2011] (see Equation 1.12). However, since the number of Feynman diagrams growths roughly
factorial(!) with the number of final-state particles – resulting in a considerable number
of terms for the squared amplitude –, the computation of higher particle multiplicities is
usually done by dedicated matrix-element and phase-space generators such as, for instance,
AlpGen [Mangano et al., 2003], Comix [Gleisberg and Hoeche, 2008] or MadGraph5_aMC@NLO
[Alwall et al., 2014b].

There is another complication related to higher-order corrections to Equation 1.12
besides of the large number of additional diagrams that are related to whether the radiated
gluon is resolvable or not – the corresponding NLO Feynman diagrams are illustrated in
Figure 2.1a.

g

q

q

g

g

g

q

q

g

g

(a) Real contributions R (FS- and ISR)

g

q

q

g

g

g

q

g

q

q

q

g

g

(b) Virtual V contributions

Fig. 2.1: NLO Feynman diagrams contributing to the qq̄ annihilation cross-section.

This problem was already addressed in Section 1.3.2 in the context of collinear and infrared
safety. If the radiated gluon can not be resolved, e.g. due to finite detector granularity,
the phase space integrals in Equation 1.12 are identical for LO and NLO. As it was shown
before, the infrared and collinear divergences cancel if the contributions are combined. In
practice, however, this requires certain subtraction techniques or phase space slicing since
the divergent contributions to the NLO cross-section σNLO =

∫
N+1

dσR +
∫
N
dσV live in

different regions of phase space, which can not be simultaneously solved by Monte Carlo.
If the partonic cross-section σij→fNnLO has been evaluated through perturbative QCD to a

fixed order n in the perturbative expansion of the matrix element, the cross-section for
the scattering process can be computed according to the factorization theorem 1.16. In
doing so, one has to chose the (non-physical) renormalization µR and factorization scales

35

µF as well as a parameterization of the PDF that matches the desired accuracy of the final
cross-section calculation [Buckley and others, 2011].

2.2.3 Parton shower simulation
The theoretical background of parton shower simulation through the Sudakov form factors
has been introduced in Section 1.2.5; this short paragraph focuses on the actual implemen-
tation of the showering algorithm using Monte Carlo methods. As it was shown before,
the Sudakov form factor ∆i(t, T) give the probability that a parton does not undergo a
branching between two scales t and T

∆i(T, t) = exp

−

∑

j

∫ t

T

dt′

t′

∫

z

dz′
αS
2π
Pji(z

′, t′)

 = exp

{
−
∫ t

T

d log t′Pi(t′)
}
, (2.6)

whereby Equation 1.20 has been expressed in terms of a general scale t and the marginalized
splittings functions Pji(z′, t′) =

∫ ′
φ
dφ′ Pji(z′, t′, φ′). This Equation was derived based on

the assumption that the splitting probability is unconditioned – which is not true due to
quantum interference effects –; hence, making the simulation of parton showers a Markov
process. The probability Pi(T) that a splitting of i occurs at scale T after the parton did
not branch in the interval (T, t] is given by

dPi(T)

dt
=

dPi→jk(T)

dt
exp

{
−
∫ t

T

d log t′Pi(t′)
}

1.21
= −d∆i(T, t)

dt
, (2.7)

whereby the first factor Pi→jk(T) denotes the naïve probability for a splitting to occur
at scale T . Conveniently, the distribution corresponds to the Sudakov form factors. The
objective now is to solve Equation 2.7 for a new scale T . Formally, this can be done by
sampling a random number R ∼ U(0, 1) with

∫ t
T
dt′ dPi(T)

dt = 1−R and solving the equation

−
∫ t

T

dt′
d∆i(t

′, t)
dt

= ∆i(t, t)︸ ︷︷ ︸
=0

−∆i(T, t) = 1−R, (2.8)

so ∆i(T, t) = R. If the function Pi has an analytical and invertible primitive Pi with
P =

∫ t
T
d log t′Pi(t′), then the solution to Equation 2.8 is simply given by T = P−1

i (Pi(t)−
logR). However, usually P is a complicated function such that there is no analytical solution
to this problem. Therefore, the integral equation in must be solved by Monte Carlo methods.
Nowadays, most shower Monte Carlos use to so-called veto algorithm [Buckley and others,
2011] – which is a variant of the well-known hit-or-miss Monte Carlo – to generate a
sequence of evolution variables of a parton shower.

The descending order of the evolution variable t that has been used above implies final
state radiation, i.e., the showering cascade continues until the energy scale of the partons
is at the order of ΛQCD where non-perturbative effects (the formation of hadrons) take
over. However, the parton shower model and the Sudakov form factors can also be used to
simulate initial state radiation (see Figure 2.1). However, in case of initial state radiation,
one has to account for the fact that the additional radiation before the hard scattering
process changes the energy scale of the event and thus also the parton density functions
according to the DGLAP equation 1.17. The corresponding backwards-evolution algorithm
[Sjöstrand, 1985] starts from the hard scattering process and considers the case were no
collinear emission takes place dσi ∝ |Mq(x)|2dxfi/h(x, t) as well as the opposite case, where

36

2.2. MONTE CARLO EVENT SIMULATION

i does emit a collinear parton dσi ∝ |Mq(x)|2dxαS(t)
2π

∑
jk fj/h(x/z, t)Pj,ik(z)dz dφ2π

dt
t . So,

the relative probability for the gluon to be unresolved is given by the ratio

dPi =
dσq→qg
dσq9qg

=
αS(t)

2π

fq/h(x/z, t)

fq/h(x, t)
Pq,qg(z)dz

dφ
2π

dt
t
, (2.9)

whereby x/z is the momentum fraction of the incoming quark before the emission of a
gluon. In analogy to the steps in Section 1.2.5, Equation 2.9 can be used to derive the
Sudakov form factors for ISR

∆ISR
i (t, t′) = exp

−

∫ t

t′

dt′′

t′′
αS(t′′)

2π

∫ 1

x

dz
z

∑

jk

Pj,ik(z)
fj/h(t′′, x/z)

fi/h(t′′, x)

 . (2.10)

2.2.4 Event simulation and event topology
The purpose of Monte Carlo event generators is to simulate high energy collisions in all
process steps to the stable final-state particles that are measured in the detector. This
process chain and its individual component follows physical principles and should therefore
mimic the actual process that produced the event in the real world.

Fig. 2.2: Individual components in the simulation chain of proton-proton collisions:
incoming parton densities heading towards each other with the hard interaction
indicated by the central red blob and a second hard scattering (purple). The tree-like
structure surrounding the hard interaction is bremsstrahlung simulated through
parton showers. The non-perturbative regime, i.e., the transition from partons to
hadrons is depicted in light-green, which is followed by the formation of excited
states that further decay to final-state particles measured in the detector (adapted
from Höche [2014], Fig. 3, p. 6).

37

The generation of an event starts with the computation of the matrix element at fixed order
of perturbation theory for the underlying hard subprocess (2.2.2) with some dedicated
matrix-element-generator like POWHEG or aMC@NLO. This very first step only computes the
partonic final-state without any hadronization involved (parton-level events). To simulate
the emissions of QCD radiation, the information of the parton-level event is processed by
a Shower Monte Carlo, such as Herwig6, Herwig++, Pythia6, Pythia8 or Sherpa, that
simulates a cascade of showering particle up to the hadronization scale where colourless
hadrons are finally formed (see “colour confinement” 1.2.2), which may further decay to
stable final-state particles. With the simulation of the so-called particle-level events, the
event generation process is finished. However, due to the imperfection of measuring devices
at our disposal and the resulting limitations in the reconstruction of particles, the further
simulation of detector effects is utterly important to get realistic predictions that can be
compared to the measurementd at the actual detector. This simulation of detector effects
is based on Monte Carlo (see Section 2.1.2). A well-known tool for detector simulations is
Herwig that actually “[. . .] is a multi-purpose particle physics event generator[.]” (Bellm
and others [2016]). After all those steps, the generated reco-level events are comparable
with the measurement in the respective detector and only this detector.

Following now is a short description of the individual steps of the event generation
process and how they are related to the theoretical fundamentals introduce in this chapter.

1. Hard subprocess

The first step is the aforementioned simulation of the hard subprocess – whereby the term
“hard” implies processes, whose energies are large enough for perturbation theory to be
applicable. 1.2.2). It starts with the simulation of hadron-hadron collisions, the underlying
interaction of the fundamental partons whose momentum fraction depends on the PDF
(see Figure 1.4) and the underlying energy scale of the event.

The calculation of the matrix element is a fixed-order calculation, i.e. the perturbative
expansion of the scattering matrix is terminated at some fixed order. The order of
perturbation, which is taken into account to compute the hard subprocess, defines the
precision as well as the order of the whole event.

It should be noted, that the assumption of only one underlying hard subprocess that
evolves to a final-state measured in the detector is overly-simplistic. Usually, the actual
hard event is accompanied by a large number of secondary interactions called pile-up,
which needs to be simulated as well.

2. Parton shower simulation

The calculation of the hard subprocess is followed by the simulation of additional radiation.
Since the hard subprocess usually is associated with high energies of the final-state particles
at parton-level, the accelerated particles that carry a colour charge tend to emit radiation
in form of gluons (similar to the emitted photons in case of accelerated electric charges).
In contrast to QED, the non-Abelian nature of QCD causes self interaction of the gluons
(see Figure 1.1) which carry a colour charge by themselves. This causes QCD radiation to
further emit radiation and so forth, causing a cascade of splittings until the energy of the
radiated particles reaches the hadronization threshold where the particles become “soft”
and the formation of colour singlet hadrons sets in.

In high energy particle physics, there are different schemes available that try to provide
approximate modelling of the process described above based on the Sudakov form factors.
As it has been described in Section 1.2.5, the Sudakov form factors sum the leading

38

2.3. TYPES AND EXAMPLES OF MC EVENT GENERATORS

contribution to all orders in perturbation theory, but only in the limit of soft and collinear
splittings, otherwise, the approximation fails and diverges. This in particular means, that
the showering algorithms preferably add soft and collinear radiation to the partons from the
hard subprocess. On the one hand, this is beneficial since the computation of the matrix
element fails for soft and collinear particles; hence, the parton shower algorithm allows to
fill regions in phase space that are inaccessible for the matrix element. On the other hand,
the emission of hard radiation with wide angles is suppressed. This is also related to the
problem of matching and merging between matrix element and parton shower since both
create and overlap in the phase space and hence double count events.

3. Hadronization and decay to final-state particles

In each subsequent splitting step the respective partons decrease their energy until they
enter the hadronization phase. At this energy scale (ΛQCD), the perturbative approach is
not valid anymore due to the large coupling constant α(ΛQCD) ∼ 1 as a consequence of
the running coupling and colour confinement. Therefore, the soft or hadronic regime can
not be described by first principles but relies mostly on empirical hadronization models.
Usually, those hadronization models are based on the already mentioned Lund string model
or the so-called cluster model.

Most of the hadrons created after the showering process are in an excited state for
very short lifetime. Therefore, they will decay to stable final-state configurations with
several decay products before finally being registered in the detector. This adds a layer of
complexity since the enormous amount of hadron decays need to be modelled, with some
of them not being well understood.

4. Detector Simulation and reconstruction

A detector that has been build to measure the final-state particles produced in hadron-
hadron interactions does not measure the particles directly but their “trace” left in the
material due to energy deposition in calorimeters or ionization in (Silicon) pixel cells (hits
and tracks). From the measured energy, transverse momentum, track curvature, position
in η-φ etc. the four-momentum of the particle(s) may be reconstructed. However, the
measurement of the detector is not perfect since the detector has a finite granularity as
well as limited acceptance in its materials. Furthermore, a detector does not cover the
entire region (η, φ) ∈ R× [0, 2π) and therefore potentially misses some decay products.

To account for the detector effects, the actual physical processes occurring in its
subcomponents are simulated with Monte Carlo methods (see Section 2.1.2). This includes,
e.g., the simulation of energy deposition, ionization and much more. After this step the
generated data is valid only for this particular measuring device since those simulations
depend on the actual detector architecture (number of layers, material etc.) that is used in
the experiment

The last step is the identification and/or reconstruction of particles in the final state
for further analysis.

2.3 Types and examples of MC event generators

Loosely speaking, there are two types of event generators in high-energy particle physics:
the so-called General-Purpose Monte Carlo (GPMC) event generators and the generators
that are based on Matrix Element and Parton Shower matching (ME+PS). The former ones

39

include some LO or NLO matrix elements up to a final-state multiplicity of three particles
and use the parton shower algorithms to compute the cross-section for the underlying hard
process including all dominant collinear radiation. As the name suggests, GPMC event
generators are able to simulate the entire event including hadronization, i.e., the formation
of color-singlet states as well as their decay to final-state particles through various decay
modes. There are plenty GPMC event generators available. The most most prominent
ones are listed in the following enumeration [Buckley and others, 2011]:

• Ariadne [Lönnblad, 1992] was the first shower Monte Carlo that implemented
a dipole cascade to model coherent gluon emission through two colour-connected
partons, which by now is used by most other GPMC event generators.

• Herwig++ [Bahr and others, 2008] is an acronym for Hadron Emission Reactions
With Interfering Gluons (re)written in C++. Its unique selling point is the angular
ordering of parton showers to take colour coherence effects into account. Furthermore,
it provides matching at NLO as well as elaborate hadronic decay models.

• Pythia(8) [Andersson et al., 1983b, Sjostrand et al., 2006, 2008] is the most widely
used general-purpose event generator in HEP that has been extensively used at
LEP and HERA. Its main features are its enormous list of pre-implemented hard
subprocesses up to three final-state partilces (higher multiplicities are archived
through parton showers) as well as its interface to other matrix element generators
via the so-called Les Houches interface. The parton shower simulation is based on
Ariadne’s dipole-approach.

• Sherpa is yet another general-purpose event generator “[...] for the Simulation of
High-Energy Reactions of Particles in lepton-lepton, lepton-photon, photon-photon,
lepton-hadron and hadron-hadron collisions[.]” (Gleisberg et al. [2008]) (the name
also is a reference to the ethnic groups native to Nepal). Sherpa’s philosophy is
to model the actual underlying physical processes as close as possible (bottom-up
approach).

The latter one, ME+PS, combines matrix element generator and parton shower Monte
Carlo to take advantage of their particular strengths. As it was shown before, the parton
shower is based on the collinear factorization that is only valid within the limit of soft
and collinear radiation. The matrix element exhibits singularities in this regime where
the parton shower is valide, but provides excellent results for wide-angled, hard partons
in the final state. Hence, the combination of matrix element and parton shower aims to
bring together the best of two worlds: the precise calculation of the matrix element at
fixed order of perturbation theory that accounts for quantum interference and it allows
for higher multiplicities and the parton shower in the collinear and soft limit. However,
the complementary use of both methods and their naïve combination may give rise in an
overlap of the phase space and therefore may cause double-counting of events – even though
they operate in different regions of phase space. This is a very serious issue since the
overlap distorts the predicted cross-section. The problem gets even worse if higher-order
corrections (such as NLO or NNLO) are taken into account. To remove the overlap in
phase space, matching and merging schemes between matrix element and parton shower
must be applied.

There are several matrix event generators available. One famous representative is
MadGraph5_aMC@NLO that has emerged from the fusion of MadGraph [Alwall et al., 2014a,
Stelzer and Long, 1994] (later MadGraph5 [Alwall et al., 2011]), which was invented in 1994,

40

2.4. CHALLENGES IN MC EVENT GENERATION

as well as MadLoop [Hirschi et al., 2011, Hirschi, 2011], MadFKS [Frederix et al., 2009], and
aMC@NLO [Frixione et al., 2010]. The great advantage of MadGraph5_aMC@NLO lies in its
flexibility, i.e., the fully automated computation of Born-level and one-loop amplitudes for
arbitrary processes under consideration. Furthermore, it provides a simple interface to
GPMCs via Les Houche files for parton shower shower simulation and matching to NLO.
Other matrix element generators are CalcHEP/CompHEP [Boos et al., 2004, Pukhov et
al., 1999, Pukhov, 2004] or ALPGEN [Mangano et al., 2003].

2.4 Challenges in MC event generation

This Chapter aimed to provide a general introduction into the topic of parton showers
as they are used by the general-purpose Monte Carlo event generators in experimental
particle physics. The application of parton showers has proven to be very successful in the
prediction of background processes and hence is an integral part of most particle searches.
Despite their unquestionable success, however, the implementation of parton showers
in event generators is an approximation that is based on the requirement of collinear
factorization of the splitting functions. Moreover, the computation of the matrix element
of the hard subprocess is at a fixed order of perturbation theory and hence comes with
uncertainties due to the premature termination of the expansion series. Furthermore, due
to the combination of matrix element calculations at fixed order of perturbation theory for
resolvable separations (large angles) and the collinear approximation (small angles) used
for parton showers causes additional problems such as multiple counting of diagrams.

2.4.1 Double-counting
As explained above, the fixed-order matrix element events generators are based on pertur-
bation theory and hence provide very precise results as long as the respective process is
hard and the partons in the final state are well separated. In this case, the limiting factor
is the premature termination of the perturbative expansion. However, the computation of
the matrix element is expensive not only due to higher orders but also because of the large
number of diagrams for larger multiplicities in the final state – which growths factorially
with the number of external particles.

The shower Monte Carlo event generators introduced are computational cheap; however,
they rely on the assumption of soft and collinear partons and do not take into account
quantum interference.

It can be seen that both methods complement each other; hence, it is only reasonable
to combine both in the event generation process. To combine matrix element and parton
shower, one must take into account the overlap of the phase space of matrix element
calculation and parton shower simulation that will result in double counting events. This
issue, which is illustrated in Figure 2.3, already occurs in the simple case of leading order
processes. This problem is addressed by the so-called merging schemes that aim to remove
the overlap in phase space. A comparatively simple technique is the so-called MLM match-
ing [Mangano et al., 2002] for LO processes. However, the situation is far more complicated
for NLO processes where a further overlap (besides double-counting) occurs due to the
additional real emission, i.e., initial- and final state radiation. A merging scheme that
accounts for this effect would be FxFx merging [Frederix and Frixione, 2012].

41

Paron shower

M
at
ri
x
el
em

en
t

Fig. 2.3: Double counting at leading order. Along the horizontal axis, the parton
shower algorithm adds radiation; in doing so, it generates diagrams which have an
equivalent in leading order processes with higher multiplicities.

42

Part II

43

Chapter 3

Machine Learning

Nomen est omen – the objective of this chapter is to provide a short yet substantive
introduction into the highly topical area of machine learning with an emphasis on (artificial)
neural networks – more specifically, deep neural networks. The first section (3.1) serves as a
description as well as a recapitulation of the historical development of neural networks and
machine learning: from its modest beginnings in the mid-twentieth of the previous century
to highly complex, state-of-the-art generative models that are in the focus of today’s
research. By doing so, the section is limited to “milestones” (according to the author’s
subjective opinion) that caused a significant step forward in the area of machine learning
or even – to cite the words of the physicist and philosopher Thomas S. Kuhn [Kuhn,
1970] –, a change of paradigm. After the historical introduction, the three paradigms
of machine learning, supervised, unsupervised and reinforcement learning, are quickly
explained (3.2). The subsequent section is more specific and introduces the fundamental
concepts behind artificial neural networks (3.3) as well as the two most commonly used
network topologies: feed-forward (3.3.1) and recurrent neural networks (3.3.2). The fourth
section 3.4 is again rather technical in its character; alongside some fundamental concepts,
it introduces the essential basics to train neural networks such as the crucial loss function
3.4.1, gradient descent to optimize the network’s parameters with respect to the cost 3.4.2,
the backpropagation algorithm 3.4.3, and some popular regularization and normalization
techniques 3.4.4 to stabilize the training routine. All the preliminaries serves as a focal
point for the gist of this chapter, i.e., the introduction of generative models and their
realization employing Variational AutoEncoders (VAEs) (3.5) Generative Adversarial and
(neural) Networks (GANs) (3.6.2) as well as several variations. Now, equipped with the
necessary tools to grasp the topic at hand, the successive topic is dedicated to a detailed
discussion and comparison of the best-known adversarial models including different metrics,
such as the Jensen-Shannon (f -)divergence or the recently proposed Wasserstein a.k.a.
“marth mover’s” distance.

3.1 A brief history of neural networks

The highly advanced and complex computer models, which more and more find their way
into the daily life of modern societies, come with a long and rich history that goes back
even further than the appearance of the very first computers – at least conceptually. The
principle idea is/was to model the functionality of the (human) brain with its enormous
amount of interconnections between individual neurons and the activation potential within

45

these cells. The growing understanding of neurobiology and the processes that govern the
human brain in the last three centuries therefore greatly influenced the early concepts of
artifical neural networks.

At the beginning of the eighteenth century, biologists and physicists alike studied the
effect of electricity on the nervous system. The Italian naturalist Luigi Galvani [Galvani,
1791] first demonstrated the presence of electrical currents in animal tissues. Later in 1871,
Julius Bernstein, with the help of Emil du Bois-Reymond, deepened the knowledge of
the processes in the nervous system with his “Membrane Theory of Electrical Potentials”
[Bernstein, 1871], which is considered to be the first description of the action potential.
Shortly thereafter, the Spanish neuroscientist and pathologist Santiago Ramón y Cajal
[Ramón y Cajal, 1888] reported the first detailed anatomy of the nervous system, which
later inspired scientists to adopt and apply those novel insights to mathematical and
computer models.

The idea to model the functionality of the brain with its interconnections of neurons – a
term that was first introduced by Heinrich W. G. von Waldeyer-Hartz [von Waldeyer-Hartz,
1891] – and hence the beginning of artificial neural networks is often taken to be the
research article “A Logical Calculus of Ideas Immanent in Nervous Activity” of Warren
McCulloch and Walter Pitts in 1943 [Mcculloch and Pitts, 1943]. With the starting gun
being fired, it did not take long until the concepts introduced by McCulloch and Pits
received the attention of the scientific community. The ’40s of the previous century also
had a profound influence on brain theory, whereby special emphasis should be placed on
Donald Hebb’s “Organization of Behavior: A Neuropsychological Theory” in particular
the therein introduced “[.] Neurophysiological Postulate” (also known as Hebb’s rule) that
describes the pre-post synaptic enhancement that is essential for the process of “learning”
[Hebb, 1949]. This concept was then translated to the artificial McCulloch-Pitts neuron
by weighting each input. The gathered knowledge in neurobiology and the (at this time)
hypothetical neural network models can be considered as important preparation work for
the fast development of the field in the 1950s that was driven by the advancement of
computers with increased computational power as well as significantly increased memory
capacities.

Activation function σ

∑
w2x2

...
...

wnxn

w1x1

w01

Inputs Weights

Fig. 3.1: The perceptron according to Frank Rosenblatt with bias term.

The discoveries and scientific research by Warren McCulloch and Walter Pitts, Hebbs et al.

46

3.1. A BRIEF HISTORY OF NEURAL NETWORKS

culminated in Frank Rosenblatt’s perceptron in 1962, which can be considered as the first
artificial neural network in a modern sense. Frank Rosenblatt introduced the perceptron in
his famous book “Principles of Neurodynamics” [Rosenblatt, 1962]. The perceptron is a
very simple model that consists of a fixed number of inputs {x1, x2, . . . xn} (Rosenblatt only
used five at the time) that are weighted with a real number {w1, w2, . . . wn} and results
a weighted input {w1x1, w2x2, . . . wnxn} with xk, wk ∈ R to the node (artificial neuron)
where the inputs are added together

∑n
k=1 wkxk. Inspired by McCulloch and Pits’ work,

the artificial neuron had a binary activation according to the threshold value θ ∈ R with
σ(x) = Θ(x− θ), where Θ is the Heaviside step function.
This simple model introduced by Rosenblatt was already quite successful; though, it was
limited to a restricted family of functions it could approximate. For example, Rosenblatt
perceptron is incapable representing a simple logical XOR (eXclusive-OR) or XNOR
(eXclusive-NOR) gate due to its limitation to only learn a single decision boundary. Rosen-
blatt was not aware of these limitations; he – overly enthusiastically – proclaimed: “Given
an elementary [..]perceptron, a stimulus world W , and any classification C(W) for which
a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus
must reoccur in a finite time; then beginning from an arbitrary initial state, an error
correction procedure will always yield a solution to C(W) in a finite time [. . .]” (Rosenblatt,
1962). This initial elation caused the machine learning community to completely exaggerate
the potential and applicability of neural networks at that time – disappointment and
disillusionment was the consequence. In 1969, seven years after Rosenblatt’s publication,
however, Marvin Minsky and Seymour Papert published the essay “An Introduction to
Computational Geometry” [Minsky and Papert, 1969], which drew the attention to the
inherent limitations of the perceptron and its restrictions to only learn linearly separable
functions (the aforementioned XOR and XNOR gate is a simple example for a non-linearly
separable function). The paper by Minsky and Papert had put the breaks on the initial
euphoria of the novel method introduced by Rosenblatt and almost caused a complete
standstill of research in the area until the beginning of the ’80s.

After the initial hype in the ’60s, the discipline of neural networks fell into a deep sleep.
It was not until the year 1982, that the area awoke from the dark ages; rose out of the ashes
of its eventful past in manifold dazzling colours, like the phoenix or the Egyptian Bennu.
The age of machine learning is yet to come. The person triggering the renaissance of
neural networks was the American physicist John Hopfield of Caltech. In his directive essay
“Neural networks and physical systems with emergent collective computational abilities”
[Hopfield, 1988], he provided a structured and systematic analysis of of the potential as well
as the limitations of a neural network at that time. In 1985, he, Hopfield, in cooperation
with D. W. Tank published another important paper: “ ‘Neural’ computation of decisions
in optimization problems” [Hopfield and Tank, 1985].

The 80’s mark a turning point and a rapid development of the field of machine learning
boosted by the essay of Hopfield and the political circumstances of the cold war and the
fear of the USA to be outperformed by other countries in this promising technology, the de-
velopment in machine learning accelerated rapidly. In 1986 another method experienced its
revival: a process called backpropagation. The backpropagation (automatic differentiation)
algorithm was first introduced by Seppo Linnainmaa in 1970 [Linnainmaa, 1970]; however,
the method was not appreciated until the year 1986 when David Rumelhart, Geoffrey
Hinton, and Ronald Williams published a paper that used “[l]earning representations by
back-propagating errors” [Rumelhart et al., 1986]. This algorithm was the prerequisite to
train the large complex networks that emerged at that time.

Also, the theoretical understanding of the mechanisms and the mathematical fundamen-

47

tals grew, enabeling great steps forward. The paper by George Cybenko “Approximation
by Superpositions of a Sigmoidal Function” from 1989 [Cybenko, 1989] is considered to be
the first proof of the so-called Universal Approximation Theorem (UAT) for the special
case on sigmoid activation functions solely.

Theorem (UAT; Cybenko, 1989, Thm. 1, p. 306). Let σ be any continuous discriminatory
function. Then finite sums of the form

G(x) =

N∑
j=1

αjσ(yTj + θj)

are dense in C(In) [space of real-valued continuous functions]. In other words, given any f ∈ C(In)
and ε > 0, there is a sum, G(x), of the above form, for which

|G(x)− f(x)| < ε for all x ∈ In.
(Proof: see Cybenko, 1989, p. 306)

Two years later, Kurth Hornik provided another, more general proof of the universal
approximation theorem [Hornik, 1991]. The UAT can be considered as the theoretical basis
of neural networks that tells us that – in principle – there are no limitations in potential
applications – except the bounds of reality of course. Under the assumption of an arbitrary
complex model, a neural network can approximate, respectively, learn any continuous
function. The continuous growth in complexity of today’s networks come with an enormous
amount of trainable parameters (weights) goes hand in hand with an increased demand on
computer performance regarding the requirements of CPU power and RAM storage. For
this reason, the complexity and the performance of neural network models scale with the
enhancement of computing power, similar to parallelization of mathematical operations on
modern GPUs.

With the universal approximation theorem at the beginning of the ’90s, neural networks
have established themselves. In the following decades, the field of machine learning and
artificial intelligence have made considerable progress and numerous discoveries. Today,
artificial intelligence is an integral part of our daily life – but not without controversy. It is
hardly possible to foresee the implications of the increasing presence of machine learning
methods and big-data analysis within the context of the progressive digitization and its
repercussions on our daily life. However, it is very likely that this age marks the beginning
of the era of “artificial intelligence”.

The increased interest at the beginning of the ’90s caused a cascade of numerous
discoveries. One milestone was followed by another one so that it becomes difficult to distil
the major steps that caused significant progress of the field as a whole. The most significant
of these were – according to the suthor’s opinion –: the “discovery” of recurrent artificial
neural networks by John Hopfield [Hopfield, 1988] and recurrent neural networks derived
therefrom, the Long Short-Term Memory (LSTM) (recurrent neural) networks introduced
by Sepp Hochreiter and Jürgen Schmidhuber in 1997 [Hochreiter and Schmidhuber, 1997a]
(the development of LSTM, which are much better at capturing long-term dependencies,
were the main driver for the great success of RNNs in the applications of speech recognition);
the invention of support vector machines as an algorithm for optimal margin classifiers
[Bos, 1992]; reinforcement learning based on Markov decision processes [Watkins and
Dayan, 1992] (for an overview, see [Li, 2017]); the realization of generative models by
means of generative adversarial neural networks [Goodfellow et al., 2014] and autoencoders
(conceptually introduced by Ballard [Ballard, 1987]).

48

3.2. TRINITY OF MACHINE LEARNING

3.2 Trinity of machine learning

The field of machine learning is usually subdivided into three conceptually very different
learning paradigms: supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning is the oldest paradigm in machine learning used to train neural
networks. In a supervised learning task, the input x as well as the expected output y
are both available (x,y) ∈ D to train the network. Hence, the predictions of the neural
network ŷ after a certain number of training steps are compared with the (true) label
known from the data set. The discrepancy between y and ŷ is then used as a measure of
similarity to update the network’s weights accordingly to improve the prediction in the
next iteration. Well-known examples for supervised learning would be simple linear and
logistic regression, non-linear regression, (multi-class, multi-label) classification etc.

The second pillar of machine learning is unsupervised learning. As the name suggests, in
case of unsupervised learning the true label y is withheld or more likely inaccessible during
training. Due to the absence of this information, the network has to learn and identify
patterns in the data unshephered and unsupervised (an example for an unsupervised
learning task would be, for instance, the identification of substructure within a large jet).
A popular example would be a clustering problem where the neural network is supposed to
learn the inherent structure in the data and group the elements accordingly.

The last paradigm in machine learning is reinforcement learning, which is conceptually
very different from the two concepts introduced above. Reinforcement learning labels a
methode, in which an agent in a certain state that performs actions within an environment
according to some policy with the objective to maximize its reward.

Within the scope of this thesis, only the first two concepts are relevant. However,
reinforcement learning could also have some possible applications in the context of the
problems studied in this work (a proposal is given in at the end of this report).

3.3 Artificial neural networks

The basic building blocks of an artificial neural network have already been introduced
in Theorem 3.1. More Formally, a neural network can be described in terms of a triple
(N ,V, w), whereby N corresponds to the set of neurons, whereat the connection between
the pairs of neurons (i, j) ∈ V is given by the set V :=

{
(i, j)|i, j ∈ N≥|N|

}
. The weights

are defined by the function w : V → R that gives the strength wij := w((i, j)) of the
connection (i, j) ∈ V. Hence, a weight wi′j′ = 0 cuts of the connection between neuron
i′ and j′ (no stimulus). Furthermore, neural networks need a propagation function Tw
that receives the output of several neurons {i1, i2, · · · in} with the output (oi1 , oi2 , · · · oin)
connected via weights {wi1,j , wi2,j · · ·win,j} to one neutron j and transforms it to Twj :=
Tw(oi1 , · · · oin , wi1,j , · · ·win,j) ∈ R. In principle, there is no restriction on Tw besides
differentiability (which is required by the backpropagation algorithm). In practice, however,
in almost all practical applications, the so-called weighted sum is used. This weighted sum
is an affine transformation between outputs of the neurons and the weights

Twj =
∑

i∈{1,··· ,n}
oiwi,j + bj , (3.1)

49

where bj is the so-called learnable bias bj ∈ B term [Kriesel, 2007]1.
The neural network f , i.e., the function it learns defined above, is still rather limited in

its applications since it is restricted to affine functions solely due to the chosen form of the
propagation function. Hence, the network is not able to approximate non-linear functions
since the concatenation of linear (b = 0) functions is linear again (homomorphism).

f = ©
j∈N

T b=0
wj = ©

j∈N

 ∑

i∈{1,···n}
oiwi,j

 =

∑

i∈{1,···n}

(
oi ©
j∈N

wi,j

)
(3.2)

A neural network defined like Equation 3.2 would be nothing but a simple linear regression
model. To improve the approximation power of general feed-forward neural networks, the
output of the propagation function Twj is further processed by what is called the activation
function (also known as transfer function) σ

σj = σ(Twj , α1, · · · , αn), (3.3)

with α1, · · · , αn ∈ R being some adjustable hyperparameters (i.e. fixed parameters not
learned by the network). The output of the activation function may also be time dependent
σj(t) and hence depend on previous activation (see Section 3.3.2). There exists a huge
variety of different activation function and choosing the “most appropriate” one is part
of the model’s adjustement. For example, Rosenblatt’s perceptron introduced in Section
3.1 had a threshold function Θ. The choice of the activation function also depend on the
network’s task whether it is, e.g. a regression or a classification task. Thus the latter
one expects probabilities which requires an appropriate activation function that maps
the network’s output to the interval [0, 1]. The most popular activation functions used
today are the sigmoid, Fermi logistic function σ(z) = 1

1+e−z (as it used for the proof of
the UAT 3.1), the hyperbolic tangent cosh(z) = 1

2 (ez + e−z), and the so-called Rectified
Linear Units (ReLU) ReLU(z) = max(0, z) [Maas, 2013, Nair and Hinton, 2010], whose
graphs can be seen in Figure 3.1 (for a comprehensive list of activation functions see, e.g.,
Nwankpa et al., 2018). ReLUs are the most frequently encountered activation functions in
today’s neural networks although it only has a non-linearly in one point. Compared to
other saturating activation functions, however, ReLUs do not suffer from the vanishing or
exploding gradient problem. Furthermore, the derivations needed for the backpropagation
algorithm are simple to compute and hence significantly improve performance. On the
other hand, ReLUs tends to result in sparse gradients. This effect can be reduced by
using so-called Leaky ReLUs `ReLU(z) = max(−εz, z) that adds a small slope ε ∈ R>0 for
negative arguments [Xu et al., 2015].

Summarizing the statements above, it can be said that neural networks are a composition
of simple linear or affine transformations T and non-linear (activation) functions a with
trainable weights w which are the interconnections between the network’s neurons. These
are the main components that all neural networks have in common. However, there exists a
large number of different topologies or design concepts, i.e., the “geometrical” arrangement

1I felt rather uncomfortable with this approach from the very first time; not because it lacks any logic
but because it imposes a strong constraint on the complexity of the neural network and hence limits the
space of possible functions from the start. From a historical perspective, this definition is reasonable since
it allows for effective calculation of derivatives in the backpropagation algorithm (see Section 3.4.3) and
hence meets the limited computer resources available at that time. It would be interesting – insofar this
has not already been done – to study the effect of different propagation functions that possibly even take
into account vector fields.

50

3.3. ARTIFICIAL NEURAL NETWORKS

−4 −2 0 2 4
−1

0

1

2

z

σ
(z

)

Logistic sigmoid

−4 −2 0 2 4

−1

0

1

2

z

ta
n
h
(z

)

Hyperbolic tan.

−4 −2 0 2 4

0

2

4

z

R
e
L
U

(z
)

ReLU

Plot 3.1: The most frequently used activation functions σ in machine learning:
sigmoid, hyperbolic tangent, and Rectified Linear Units.

of the weights and its interconnections in the network. The following section introduces
some of the most known and widespread network topologies.

3.3.1 Feed-forward neural networks
The by far most common form of a network topology is the so-called feed-forward design.
In this conservative topology, the network’s neurons are grouped into different layers. A
distinction is made between the input layers, hidden layers. and the output layer. The input
layer is the outermost level of a neural network that does not perform any computations
on the data but serves as the “interface” between the outside world and the network. The
hidden layers are the enclosed level of the neural network that is not directly connected
to the outer world. All layers besides the input and the output layers are referred to as
hidden. Within the hidden layers, the actual mathematical operations are performed that
transform the data from layer to layer. Last but not least, the final layer is the output of
the neural network that performs some final computations and returns the processed input
data.

...

...
...

i1

i2

i3

in

h1

hk

o1

om

Input
layer

Hidden
layer

Output
layer

Fig. 3.2: “Shallow” feed-forward neural network with n inputs, one hidden layer with
k neurons, and m outputs. The trainable weights of the networks are represented
by the connections between the individual neurons.

51

The arrangement of weights and nodes (respectively neurons) can be summarized in
what is known as a directed graph. Figure 3.2 shows a directed graph for a very simple
feed-forward neural network with only one hidden layer (also referred to as “shallow” neural
network.). As explained above, a feed-forward neural network is a composition of simple
linear or affine transformations T (l)

w : Rn → Rm and non-linear (activation) functions
σ(l) : Rn → Rn (with l denoting the lth layer in the network) that are arranged in layers
without any feedback (loops), i.e., the output of any layer does not affect that very same
layer. With all those elements and ingredients, a feed-forward neural network can be
written as:

f(x) =
[
σ(L) ◦ T (L)

w

]

︸ ︷︷ ︸
output layer

◦
[
σ(L−1) ◦ T (L−1)

w

]
◦ · · · ◦

[
σ2 ◦ T (2)

w

]

︸ ︷︷ ︸
hidden layers

◦
[
σ(1) ◦ T (1)

w

]
(x)

︸ ︷︷ ︸
output layer

, (3.4)

with x denoting the input to the input layer. So the output f (l)(x) of the lth layer is given
by

f (l)
w (x) =

{
x : l = 0([
σ(l) ◦ T (l)

w

]
◦ f (l−1)

)
(x) : l > 0

. (3.5)

With the definition of a feed-forward neural network according to Equation 3.4, the system
is mathematically well defined by means of its trained weights (see Section 3.4).

In case of discrimination or a multi-class classification task, the network needs to assign
a probability to each label that maps it to class with a certain probability. This adds
the constrain σ(L) : Rn → [0, 1]nc on the image set of the last layer, whereby nc denotes
the number of classes (in practice this restriction is enforced, e.g., by a softmax layer
σ(x)j = exj/

∑nc
k=1 e

xk).
Considering a very simple neural network with two input nodes, two hidden layers (three

and two nodes each) and two outputs that correspond to the classification probability of two
classes (binary classification: red and blue). Due to the choice of the propagation function
to be linear or affine, the classification network tries to learn a new representation of the
data (by means of a (homotopic) coordinate transformation) in each layer that allows for a
separation of the transformed input by a hyperplane (linear separation). In order to visualize
the new representation of the data in the second hidden layer of the network, the input
data is forward passed form the first to the second layer x(2) = σ(2)(T

(2)
w (σ(1)(T

(1)
w (x)))).

(The architecture of the network is very primitive; hence, its complexity and capability is
highly limited. It was chosen such that the transformed coordinate system can be visualized
easily.)

52

3.3. ARTIFICIAL NEURAL NETWORKS

Coordinate x1 [a.u.]

C
oo
rd
in
at
e
x
2
[a
.u
.]

B
in
ar
y
cl
as
s
la
b
el

(a) Raw data

Transformed coordinate x′1 [a.u.]

T
ra
n
sf
or
m
ed

co
or
d
in
at
e
x
′ 2
[a
.u
.]

B
in
ar
y
cl
as
s
la
b
el

(b) Transformed data

Plot 3.2: Discrimination boundary, which was learned by the neural network, for
the raw data (a) and its new representation in the transformed coordinate system of
the second hidden layer (b).

Figure 3.2 shows the learned classification boundary of the neural network (the training
has been terminated after the classification accuracy reached 100 %). In configuration
space x, the data points are separated by a complex, non-linear decision boundary. In the
transformed representation x′, however, the data points are transformed in a complicated
way such that they can be separated by a simple hyperplane. So, the network learns a new
representation of the data (through a complicated coordinate transformation) in which the
classification is simple.

The network may very well fail to learn an appropriate transformation that allows for a
linear separation (e.g. due to the architecture that limits the complexity of the network,
the amount of training data available, training steps or (most likely) an inopportune
configuration of hyperparameters.) Figure 3.3 gives an example of a failed attempt to learn
a decision boundary due to a purposely il-chosen setup.

Coordinate x1 [a.u.]

C
oo
rd
in
at
e
x
2
[a
.u
.]

B
in
ar
y
cl
as
s
la
b
el

(a) Raw data

Transformed coordinate x′1 [a.u.]

T
ra
n
sf
or
m
ed

co
or
d
in
at
e
x
′ 2
[a
.u
.]

B
in
ar
y
cl
as
s
la
b
el

(b) Transformed data

Plot 3.3: Failed classification due to inopportune set of hyperparameters.

53

As shown in the this section, discriminative models (or feed-forward neural networks
with softmax output) try to learn a complex transformation that allows for a linear
separation of the transformed data in the representation of the penultimate layer. This
property does not come as a surprise since it is imposed by the requirement alternating
sequence of a linear (or affine) transformation Tw followed by a non-linear activation σ –
as critically commented1. One may think of a more general transformation than T that
allows for a better transformation of the underlying manifold.

3.3.2 Recurrent neural networks
While feed-forward neural networks assume time-independent data, many of today’s learning
tasks, actually have to deal with sequential data that changes over time. A natural example
would be predicting stock prices, composing a piece of music or, to mention a more prominent
and relevant example, (natural) language processing as it is needed for translation, speech
recognition or text generation. In general terms, it can be said that the feed-forward neural
networks reach their limits in cases where the input data is varying in its length and highly
time-correlated as they learn relationships between input features. To this end recurrent
neural networks have been invented in the 1980s of the previous century (see Section 3.1).

Between their invention in the ’80s and their breakthrough years later lies a long period
of hibernation. This lack of interest was caused by serious problems regarding the stability
as well as computational costs due to a large number of weights of the model. But, let’s
start from the beginning.

Classical Recurrent Neural Networks (RNNs) and feed-forward neural networks are
similar in many aspects regarding the composition of weights as well as the arrangement
of nodes in levels of layers. In case of recurrent neural networks, however, the input
(x1,x2, . . . ,xT) and/or the output (y1,y2, . . . ,yT) of the network is a sequence in time,
e.g. a list of words, notes, particles etc. In the case of feed-forward neural networks, the
output of the model was solely given by the input (for the current configuration of weights).
Recurrent neural networks, however, add another level of complexity by including the
network’s previous state(s) ht−1. Hence, the current state ht is a function of the previous
one as well as the input and is defined as

ht = a
(
W hxxt +W hhht−1 + bh

)
, (3.6)

with whh being a matrix that gives weights to the previous state (recurrent weight). For
whh = 0 the “memory” is removed and the well-known feed-forward network is recovered
(see Equation 3.1). The output of the network for time step t is then given by

ĥt = softmax
(
W yhht + y

)
. (3.7)

The two Equations 3.6 and 3.7 specify all necessary computations for each time step of the
network. The dynamics of the network is shown in Figure 3.3 for different time steps t.
Figure 3.3 depicts an example of a very simple recurrent neural network with input xt,
output yt and several hidden nodes h1

t , . . . ,h
n
t that itself build a feed-forward network. As

it can be seen in Equation 3.6 and Figure 3.3, the information of the previous state of the
network ht−1 is passed forward in time and hence affected the current state ht. To train the
weights of this network, the aforementioned backpropagation algorithm (see Section 3.4.3) is
applied across the time steps. This modification is known as backpropagation-through-time
[Werbos, 1990].

54

3.3. ARTIFICIAL NEURAL NETWORKS

h1
t

...
hn−mt

...
hnt

yt

xt

unfold−−−−→
loop

h1
t−1

...

hn−mt−1

...

hnt−1

yt−1

xt−1

h1
t−1(1)

...

hn−mt−1(1)

...

hnt−1(1)

h1
t−1(2)

...

hn−mt−1(2)

...

hnt−1(2)

h1
t

...

hn−mt

...

hnt

yt

xt

h1
t(1)

...

hn−mt(1)

...

hnt(1)

h1
t(2)

...

hn−mt(2)

...

hnt(2)

h1
t+1

...

hn−mt+1

...

hnt+1

yt+1

xt+1

.

Fig. 3.3: A recurrent neural network as a loop diagram (left) and its unfolding in
time sequences (right).

The “naïve” recurrent network introduced above is conceptually very simple and intu-
itive, but, unfortunately, it is doomed to fail. The instability of this family of networks
troubled scientist for years. The inherent problem lies in the already mentioned training by
backpropagation-through-time that requires the unfolding of the network in time. Depend-
ing on the number of time steps, those unfolded networks can be very deep. If gradients are
passed back through many time steps, they tends to grow (exploding gradient) or vanish
(vanishing gradient). This phenomenon is also known for very deep feed-forward neural
networks. The solution to this problem, which leveraged this feed-back topology, was the
Long Short-Term Memory (LSTM) RNNs [Hochreiter and Schmidhuber, 1997b].

The basic ingredient is a conventional recurrent network as explained above; however,
with each node in the hidden layers being replace by what is called a memory cell as one is
shown by Figure 3.4.

σ σ tanh σ

× +

× ×

tanh

Ct−1

ht−1

Previous state

xtInput

Ct

ht

New state

htOutput

Fig. 3.4: An LSTM cell and its weighted gates.

Simple recurrent neural networks only possess an long-term memory in form of their
weights. The LSTM network, however, introduces a Short-term memory utilizing ephemeral
activations. The heart of the LSTM network, the memory cell, consists of simple nodes and
a specific patterns that build gates that serve a particular purpose, which are explained
below. To gain a better understanding of LSTM cells and the internal mechanism at work,

55

the following list give as brief step-by-step introduction to the individual components shown
in Figure 3.4.

• In the very first step the current input xt and the previous state ht−1 are concatenated
and passed through what is called the forget gate (introduced by Gers et al. [2000])

ft = σ (Wxt ◦ ht−1 + bf) . (3.8)

• In a second step, the network “decides” which information to store within the internal
memory of the cell. This is done in two parts: the so-called input gate decides which
values to update (gives weight to features). A second layer utilizes hyperbolic tangent
to assign positive or negative weights

it = σ (Wixt ◦ ht−1 + bi) , (3.9)

C̃t = tanh (WCxt ◦ ht−1 ◦+bC) . (3.10)

• To update the state of the cell Ct, the previous state Ct−1 is multiplied by the output
of the forget gate ft element wise (remove features); furthermore, the product C̃t⊗ it
is computed, i.e, how the new state is updated (no update if it = 0 or C̃t = 0)

Ct = (Ct−1 ⊗ ft)⊕
(
C̃t ⊗ it

)
. (3.11)

• The final step is to produce the actual (filtered) output that is the input to the
subsequent cells. The concatenated data [xt,ht−1] is passed through a sigmoid layer
that filters the output (see Plot 3.1 in the leftmost position). The next operation is
performed on the updated cell state Ct that is passed through a hyperbolic tangent.
The two component are then multiplied

ot = σ (Wo[xt,ht−1] + bo) , (3.12)
ht = ot ⊗ tanh (Ct) , (3.13)

and the described procedure repeats for the next LSTM cell [Lipton et al., 2015].

The LSTM layer described above represents a conventional architecture. Besides of this
one, a wide variety of different topologies exists such as the one proposed by Gers and
Schmidhuber [2000], bidirectional RNNs [Schuster and Paliwal, 1997], the Gated Recurrent
Unit (GRU) [Cho et al., 2014] or the so-called Deep Gated RNNs [Yao et al., 2015], to
name but a few.

3.4 Training of neural networks

section 3.3 introduced the basic concepts of neural networks regarding their mathematical
formulation in terms of weights, activation and propagation functions, as well as different
topologies in particular feed-forward (3.3.1) and recurrent neural networks (3.3.2). This
section gives a short introduction to the actual training procedure, in particular, on how
to update the model’s parameters through gradient descent (3.4.2) and how to efficiently
compute gradients (3.4.3). Furthermore, the elementary concept of a loss function in
supervised and unsupervised learning is covered in this section.

56

3.4. TRAINING OF NEURAL NETWORKS

3.4.1 The loss function
In order to quantitatively measure the inconsistency between the predicted values by the
neural network ŷ = fθ(x) (now denoting the network’s weights by θ) and the actual label
y (available only in case of (semi-)supervised learning) for the training data (x,y) ∈ D
one needs to define a loss function L(ŷ,y). This loss function provides an estimate
of the network’s approximation error; hence, it should be defined to be a non-negative
quantity (L ≥ 0), with a decreasing loss corresponding to reduced approximation error.
Furthermore, the loss must be a differentiable function to get meaningful derivatives
needed in the backpropagation and gradient descent algorithm to update the network’s
weights (the conceptually very different paradigm of reinforcement learning also allows for
non-differentiable loss functions).

There are plenty of different loss functions available, most of them serving a particular
purpose, e.g. whether the objective is a regression or a discrimination task. A prominent
example for a loss function in a simple regression task would be the Mean Squared
Error (MSE), L = 1

N

∑N
i=1

(
ŷ(i) − y(i)

)2
, while in a classification task the usual choice

would be the binary cross-entropy (multi-class cross-entropy for multi-class classification),
L = − 1

n

∑n
i=1

[
y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

]
.

At this point, there is nothing to be gained from providing a long enumeration of
different loss functions and their properties. Furthermore, the loss functions that are used
in this thesis are much more complicated and therefore need a dedicated paragraph. But
one should keep the loss function and its role in the training process of neural networks in
mind: the loss function is a measure of similarity between predictions of the neural network
and the training data and hence is utterly important in the training process (in case of
generative models, the loss is a measure of similarity between two probability density
functions). It is the fundamental quantity to compute the corrections to the network’s
weights using gradient descent and backpropagation, which is subject to the next sections.

3.4.2 Gradient descent and optimizers
With the loss function at hand, the learning objective of neural networks is to find a
configuration of weights/parameters, which define the model, that minimize L. If L is
non-convex, there is no guarantee that the optimization procedure will yield a global
minimum of the loss function. Besides that, it is not expected that the minimization will
result in a perfect configuration of weights since exact optimization is NP-hard.

Most optimization algorithms used in machine learning today are based on a first-order
iterative optimization algorithm called gradient descent. The objective is to update the
models parameters θ ∈ Rd, i.e., the weight, in the opposite direction of the gradient –
which points in the direction of the steepest slope – of the cost function2 ∇θL(θ). The
most simple form of such an algorithm requires one additional, adjustable parameter, i.e.,
the so-called learning rate α ∈ R>0 that corresponds to the step size taken towards the
(local) minimum.

2Through this thesis the terms loss, cost and objective function are used interchangeably.

57

Fig. 3.5: Fictional contour of a complicated non-convex loss function L(θ) with
θ ∈ RN for a two-dimensional subspace spanned by the weights (R × R ⊂ RN).
The trajectories represent two possible paths of the gradient descent algorithm
(different learning rates and/or initial conditions) to reach the (local) minimum in
this subspace.

It is important to internalize that all optimization algorithms based on gradient descent
are at first-order. While the gradient of the loss function only measures the change of
the slope, the second-order derivative provides information about the direction based on
the curvature of the cost’s error surfaces. So, the restriction to first-order gradients is a
significant limitation. An example of an optimization algorithm that also uses second-
order derivatives would be Newton’s method. However, computing second derivatives is
“expensive” and often computationally intractable as for evaluating the Hessian matrix one
needs to compute N2

θ derivatives, whereby Nθ is the number of weights in the network.
The networks presented in this thesis have a total number of parameters in the order of
approximately one million Nθ ∼ O(106). In other words, the second-order optimization
algorithm would have to compute, roughly, one trillion (O(1012)) derivatives for one
iteration step! This is unfeasible for high-dimensional data sets; hence, the algorithms rely
on first-order approximations.

Furthermore, a distinction is made between three different versions of gradient descent
based on the information that is used to compute the gradients. Batch gradient descent
computes the gradients for the entire data section and updates the parameters weighted by
the constant and global learning rate

θ → θ − α∇θL(θ). (3.14)

This optimization method might be intractable for large data sets that does not fit into
memory at once. The second variant is known by the name stochastic gradient descent. It
is the other extreme and performs an update of the training parameters for each training
example

θ → θ − α∇θL(θ;x(i), y(i)), (3.15)

which might cause redundant computations and usually results in very volatile losses.
Finally, mini-batch gradient descent reaches a compromise among the two previous ap-
proaches by performing an update of the model’s weights for each mini-batch consisting of
nmb samples

θ → θ − α∇θL
(
θ;x(i:i+nmb), y(i:i+nmb)

)
. (3.16)

58

3.4. TRAINING OF NEURAL NETWORKS

This one usually provides more stable convergence and hence is the method of choice – also
in this thesis.

As has been described above, gradient descent only uses the information of first-order
derivatives. However, some methods allow improving the estimation of the direction in the
loss’ error surface by taking into account the information of previous iterations. This is
important since it has a profound impact on the performance of the optimization. There
exists an unmanageable and somewhat confusing variety of extensions to the vanilla gradient
descent that takes this approach; however, they can be broadly subdivided into methods
that use momentum respectively moving averages and adaptive learning rates.

Momentum [Qian, 1999] is a way to accelerate gradient descent by including previous
gradients (“moving average” weighted by some hyperparameter γ) with the effect of damped
oscillations of the geodesic path

vt = γvt−1 + α∇θL(θ), (3.17)
θ → θ − vt. (3.18)

An evident extension of this method is the nesterov accelerated gradient algorithm [Nesterov,
2011] that additionally approximates the next position of the parameters by computing
∇θL(θ − γvt−1). (For this approximation to be reasonable, it is important to choose small
values for γ.)

Adagrad [Duchi et al., 2011] is an example for an optimizer that comes with an adaptive
learning rate. The updating rule for the respective weight θ is given by

θ → θ − α√
Gii + ε

∇θL(θ), (3.19)

whereby the matrix’ diagonal elements Gii depend on previous gradients.
The network presented in this thesis have been trained with the so-called RMSprop

[Tieleman and Hinton, 2012] optimization algorithm. The algorithm has been developed to
correct for Adagrad’s radically diminishing learning rates by incorporating the exponentially
decaying average of squared gradients (exponential moving average). With g = ∇θL(θ)
RMSprop is given by:

θ → θ − α√
0.9 · E[g2]t−1 + 0.1 · E[g2]t + ε

gt. (3.20)

This algorithm is particular well suited for sparse data.
This list would be incomplete without mentioning the most prominent and best-known

representative of its kind: the so-called Adaptive Moment Estimation or Adam, for short
[Kingma and Ba, 2014]. Adam has an adaptive learning rate for each parameter and not
only store the exponentially decaying average of past squared gradients but also accounts for
exponentially decaying average of past gradients, which can be seen as akind of momentum.
However, Adam has proven not to be the appropriate choice in case of Wasserstein GANs
with gradient penalty (see Section 3.6.2), but has been used for Gaussian VAEs.

Other optimization algorithms available are, e.g., Adadelta [Zeiler, 2012], AMSGrad
[Reddi et al., 2019] etc.

59

3.4.3 The backpropagation algorithm
Gradient descent provides rules to update the weights based on the gradient of a predefined
error function. Backpropagation is the numerical implementation of gradient descent that
provides a method for performing automatic differentiation of complex, nested functions
(such as multi-layer neural networks) by successive application of the chain and power rule.

The backpropagation algorithm consists of a forward-pass and a backward-pass (in this
order). In the forward-pass step, the training data is propagated forward through the
entire network that produces an output/prediction ŷ. Now, the loss function L(ŷ,y) is
evaluated for the network’s prediction (or a batch of predictions) and the actual label y
of the data. (This procedure, of course, is only reasonable in the context of supervised
learning where the truth information is available during training.) The starting point of
backpropagation is the very intuitive and natural definition of the “error”

δ
(l)
k =

∂L
∂z

(l)
k

=
∂L
∂σ

(l)
k

∂σ
(l)
k

∂z
(l)
k

=
∑

i=1

δ
(l+1)
i w

(l+1)
ik

∂σ

∂z
(l)
k

, (3.21)

with z(l)
k referring to the output of the propagation function of the kth node/neuron in

layer l ∈ {1, . . . , L}. In Equation 3.21, the error has been (re-)express using the chain rule.
Since backpropagation starts from the output layer, the first step is to compute δ(L)

k for
neurons in this layer. In this case δ(L)

k , is simply given by δ(L)
k = ∂L

∂a
(L)
k

σ′
(
z

(L)
k

)
, whereby

σ(L) denotes the activation function in the output layer. Now, one needs to compute the
gradients of L with respect to the weights w(l)

kj . Using the chain rule again, this is given by

∂L
∂w

(l)
kj

=
∂L
∂z

(l)
k

∂z
(l)
k

∂w
(l)
kj

= δ
(l)
k

∂z
(l)
k

∂w
(l)
kj

(3.22)

The second multiplicand can be written as ∂z
(l)
k

∂w
(l)
kj

= σ
(l−1)
j so that ∂L

∂w
(l)
kj

= δ
(l)
k σ

(l−1)
j .

(Analogously, the very same can be done for the biases ∂L
∂b

(l)
k

= δ
(l)
k .) By subsequently

applying the chain rule tp Equation 3.22

∂L
∂w

(l)
kl

=
∑

αβγ...ω

∂L
∂z

(L)
α

∂z
(L)
α

∂z
(L−1)
β

∂z
(L−1)
β

∂z
(L−2)
γ

· . . . · ∂z
(l+1)
γ

∂z
(l)
ω

σ
(l−1)
j , (3.23)

it becomes clear why the algorithm is called backpropagation: with the chain rule, the
“error” from the very first layer L is gradually backtracked to the respective layer l. The sum
in Equation 3.23 is complicated and goes over all connected paths in the neural network.

With an equation for ∂L
∂w

(l)
kl

and gradient descent (see Section 3.4.2) at our disposal,

the weights of the neural network can be iteratively updated until the cost function is
justifiable minimized and the model provides a reasonable approximation of the training
data.

3.4.4 Training stability, regularization and normalization
Since their emergence, neural networks have been cursed with stability issues. To counteract
this serious problem, an incredible multitude of different regularization and normalization

60

3.4. TRAINING OF NEURAL NETWORKS

techniques have been developed over the recent years, to make the training of those
algorithms more stable and less prone to an inopportune configuration of hyperparameters.
This section only introduces a very selected subset of methods that are relevant in this
work.

L1 and L2 regularization

Neural networks are models that usually have thousands or even millions of adjustable
parameters. This is both a blessing and a curse – a blessing because it allows to potentially
fit very complicated data sets; a curse since it makes them prone to overfitting the data
to minimize the error function. The L1 (Lasso regression) and L2 (Ridge regression) are
regularization methods that aim to prevent overfitting by adding a constraint on the
model’s parameters.

L ⊃ λ
∑

w∈W
|w| (L1 regularization) (3.24)

L ⊃ λ
∑

w∈W
|w|2 (L2 regularization) (3.25)

Due to the two regularization terms above, the network prefers to learn “small weights”
and hence is not able to arbitrarily vary its weights to fit the data set; hence, it helps to
reduce overfitting. The two regularization techniques according to Equation 3.24 and 3.25
are basically the enforcement of constraints through Lagrange multipliers.

Dropout regularization

Dropout regularization [Srivastava et al., 2014] is inspired by the observation that only
parts of the neurons in the human brain are active at the same time. This effect is imitated
in neural networks by randomly dropping (disabling) nodes and through this disconnecting
connections between nodes according to w → rw with r ∼ P{0,1}. This will result in a
slightly different architecture for each training step. Hence, the neural network has to learn
weights for each configuration of different network architectures. With dropout applied,
neural networks are much less susceptible to statistical noise in the training data and
therefore reduce the risk of overfitting the data by fitting noise.

Batch normalization

Batch normalization [Ioffe and Szegedy, 2015] is a technique to significantly speed up
training of the neural networks by reducing the effect of the internal covariate shift due to
frequent parameter updates in the network’s layers. Additionally, it acts as a regularisation
method (hence reduce overfitting) of the weights and allows for higher learning rates.
Conceptually, batch normalization introduces two new trainable parameters γ, β per layer
to the neural network. For each training iteration, the mean µMB

j = 1
NMB

∑NMB

i=1 xij and

the variance σMB
j = 1

NMB

∑NMB

i=1 (xij − µMB
j)2 of a mini-batch are calculated and then used

to normalize the data x̂ij =
xij−µMB

j√
(σMB
j)

2
+ε

. In the subsequent steps the data is scaled and

shifted x̂′ij = γx̂ij + β =: BNγ,β(xij) according to the “learnable” parameters γ, β.

61

Layer normalization

Batch normalization helps to significantly reduce the training time in feed-forward neural
networks; however, it depends on the size of the mini-batch and therefore can not be used
in combination with RNNs. Furthermore, the batch size can not be changed later after the
parameters of the model are fixed. These drawbacks where the main motivations for the
invention of another data normalization method called Layer normalization (LN) [Ba et
al., 2016]. Layer normalization is conceptually very similar to batch normalization. Like in
batch normalization the mean µLNi and variance σLNi are computed, however, this time for
one batch i and not for a feature (xij) along a batch (see Figure 3.6). Then, the data is
normalized x̂ij =

xij−µMB
i√

(σMB
i)

2
+ε

(note the different axis).

Other normalization techniques

Besides batch and layer normalization, which are the most commonly used ones, there
exist other normalization techniques like instance normalization [Ulyanov et al., 2016] or
group normalization [Wu and He, 2018] all of which are summarized in the Figure below.

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm
H

, W

C N

Instance Norm

H
, W

C N

Group Norm

Fig. 3.6: Feature map tensor with N batches, C channels and a spatial dimension
of H (height) and W (width) (adapted from [Wu and He, 2018, Fig. 2, p. 3]).

3.5 Variational Autoencoders

For a long time, the major area of application of machine learning was to construct models
that learn decision boundaries between different classes. This is what is generally termed
as discriminative models (an example of such a classification task in particle physics would
be the discrimination between background and signal events). From a probabilistic point of
view, a discriminative model learns the conditional probability distribution p(y|x), i.e., the
probability that the data point x corresponds to the class or category y with (x,y) ∈ D.
The information provided by discriminative models is therefore satisfactory to categorize
data; but it is not sufficient to generate new data point x̂ according to some class or label
y whereby (x̂,y) /∈ D. The underlying mechanism that generated the data remains hidden.

To generate “unseen” data, it is necessary to model the joint probability distribution,
i.e., the probability of a data points and its label p(y,x). However, in order to compute
the joint distinction from conditional probability, one needs the probability distribution
of the data p(x) (prior). If the prior of the data is known, new data can be generated
according to p(y,x) = p(y|x)p(x). The question which immediately comes to mind is how
to determine the underlying distribution of the data that is a priory unknown in most
of the realistic cases? This question opens the gate to a completely different world – the
colourful world of generative models and will be our guide for the next sections to come.

62

3.5. VARIATIONAL AUTOENCODERS

With this problem being formulated, it is about time to systematically develop concepts
to solve it by means of machine learning methods. The first generative models in this series
– which is historically also one of the earliest – are the so-called (Gaussian) Variational
Autoencoders (VAEs) which is a Bayesian model implemented via variational inference.
The objective of this section is to give a comprehensive introduction into the topic and, at
the same time, to provide an intuitive understanding of the mechanism at work.

3.5.1 Latent variable models
The basic assumption of all generative models is that the training data has its origin in
some (unknown) probability distribution Pr. The objective is to learn a parameterized
distribution Pg := Pθ (see nomenclature and conventions) that approximates the real
distribution Pr as close as possible Pg ≈ Pr. The “naïve” way of doing so would be to
directly learn a distribution Pg through of some function gθ such that

∫
x
dx′ Pθ(x′) = 1

with Pθ(x) = gθ(x) ≥ 0 ∀x ∈ X . This means in particular that gθ needs to be optimized
directly by means of maximum likelihood estimation

max
θ∈RN

1

M

M∑

i=1

logPθ(xi). (3.26)

It can easily be seen that the optimization problem 3.26 corresponds to learning the
underlying distribution of the data x ∈ X in the limit of infinite statistics (continuous
limit):

lim
M→∞

max
θ∈RN

1

M

M∑

i=1

logPθ(xi) = min
θ∈RN

∫

x′
dxPr(x) log

1

Pθ(x)

= min
θ∈RN

∫

x′
dxPr(x) log

Pr(x)

Pθ(x)

=: min
θ∈RN

DKL(Pr||Pθ), (3.27)

where DKL is the so-called Kullback-Leibler divergence (KL-divergence) which is a measure
of similarity between the two distributions Pr and Pθ. The penultimate step is valid
since the additional term does not depend on θ, hence, the solution to the minimum of
the function remains unchanged. Thus, maximum likelihood estimation corresponds to
minimizing the KL-divergence (in the limit of endless number of samples) – and that’s
the crux. The KL-divergence for Pθ(x) = 0 which often is the case if Pθ lies on a low-
dimensional support compared to Pr. Besides, even if one succeeds to learn a distribution
Pθ with Pθ ≈ Pr, it is still necessary to sample from this model after the network has been
optimized to generate new data. This requires the Metropolis–Hastings algorithms – which
is a Markov chain Monte Carlo – to sample new data from x̂

MCMC∼ Pg, which might be
quite expensive and inefficient.

This motivates an alternative approach that is introduced in the following paragraph.
Variational autoencoders – as well as generative adversarial networks that are the

subject of the next section 3.6 – are examples of so-called latent variable models that relates
observables x to a set of latent variables z parameterized function fθ (see leftmost Figure
3.7).

63

z θ

x

N

z θφ

x

N

z θφ

yx

N

Fig. 3.7: Graphical model representation of a general latent space model (left),
a variational autoencoder (middle, section 3.5.2) and a conditional variational
autoencoder (right, section 3.5.4). In the graphs, N refers to the number of times
z and x are sampled, while the parameters/weights θ(φ) remain fixed. The solid
lines indicate the path of the generative process, while the dashed lines denote the
variational approximation.

The latent vector is an element in the high-dimensional latent space z ∈ Z whose
elements are distributed according to some known (ideally simple) probability distribution
Pz. The fully deterministic function fθ then defines a map from the latent space Z to
the space X according to f : Z × θ → X . Since z is a random variable, the image of
the function fθ(z) is a random variable, which is distributed according to some unknown
distribution fθ(z) ∼ fθ(Pz) with z ∼ Pz. In concrete terms, this means that the function fθ
learns a transformation from a known to an unknown probability distribution Pθ = fθ(Pz).

The objective now is to fit the generated marginal distribution pθ(x) to the data
set {x}Ni=1 that is available for training such that maxθ pθ(x) is maximized (maximum
likelihood) with respect to the models parameters. Herein, instead of learning pθ(x) directly,
i.e., without a latent space model, the problem is factorized according to

pθ(x) =

∫
dz fθ(z)p(z) =

∫
dz pθ(x|z)p(z), (3.28)

whereby the function fθ has been replaced by the joint probability distribution of the
observables and the latent space vector. The joint probability distribution pθ(x|z) is the
actual generative model of interest.

gθ

X

Z

Fig. 3.8: A generative model pictured as a smooth map gθ from a low-dimensional
coordinate space/representation Z to a high-dimensional manifold X (adapted from
Shao et al. [2017]).

The latent space Z may also be considered as a low-dimensional coordinate space.
This Interpretation provides a connection between generative models and manifolds, which

64

3.5. VARIATIONAL AUTOENCODERS

are central object of study in the domain of differential geometry. In this context, the
generative model gθ represents a smooth map g : Z × θ → X from a coordinate space to a
manifold X . This situation is illustrated in Figure 3.8

3.5.2 Gaussian Variational Autoencoders
Gaussian variational autoencoders, although conceptually very different from classical
autoencoders, try to approximately maximize Equation 3.28 under the assumption of
a deep latent Gaussian model pθ(x|z) = N (x|fθ(z), σ21). However, the optimization
problem

max
θ

∫
dz pθ(x|z)p(z), (3.29)

is quite difficult, since it involves a possibly high-dimensional, intractable integral over the
latent variables z. One possible approach to evaluate the integral in Equation 3.29 would
be to utilize Monte Carlo methods as introduced in Chapter 2.1.1, with the approximation
of the integral given by pθ(x) ≈ 1

N

∑N
i=1 pθ(x|zi). Since Pz is “simple” and known, the

sampling of the latent variable z ∼ Pz does not require expensive Markov chain Monte
Carlos. Nonetheless, this approach, is not practical since in a high-dimensional space the
number of samples N drawn from Pz must be very large (N � dim(Z)) to get a good
estimation of the integral 3.28. This is because pθ(x|zi) will be close to zero for most
values of z and hence contribute little to the estimate of pθ(x). Therefore, the evaluation
of Equation 3.28 by means of Monte Carlo integration is very inefficient – but possible. To
solve the optimization problem 3.29, another approach is needed.

Variational autoencoders try to solve exactly this problem by efficiently sample only
values of the latent variable z that are likely, i.e., with a high probability to have generated
the data x, and then compute pθ(x) solely for those dominant contributions. This
corresponds to the conditional probability distribution pφ(z|x) (a new function/network
parameterized by φ), i.e., the probability of the latent variable given the data. To rephrase
the crucial statement above: to efficiently solve Equation 3.29, one samples the “most
likely” values of z and based on those evaluates the integral 3.28 by means of Monte Carlo
integration Ez∼Pφ [pθ(x|z)].

How does this small detour solve the problem? At this stage – not at all. The challenge
is now to perform posterior inference. According to Bayes’ theorem the posterior is given
by

pφ(z|x) =
pθ(x|z)p(z)∫
d zpθ(x|z)p(z)

, (3.30)

which still involves an intractable integral in the denominator. Furthermore, the distribution
pφ(z|x) is unknown; hence, to sample from it would again require Markov chain Monte
Carlo techniques. To finally solve the issue, the posterior inference problem 3.31, which
involves an intractable integral, is converted into an optimization problem by means of
variational inference – which gave the method its name. In general, variational inference
seeks to find an distribution qφ(z|x) that approximates the posterior probability. More
formally, variational inference solves the following optimization problem

min
φ

DKL(qφ(z|x)||p(z|x)) = min
φ

Ez∼Qφ
[
log

qφ(z|x)

p(z|x)

]
, (3.31)

where DKL is the so-called Kullback-Leibler divergence that is a measure of similarity
between two distributions q, p and given by DKL(q||p) =

∫
x
q(x) log q(x)

p(x) . Still, the problem

65

remains the same since the Kullback-Leibler divergence involves an integral over the latent
space. However, the systematic evaluation of Equation 3.31 by applying Bayes’ rule gives:

DKL(qφ(z|x)||p(z|x)) =

∫
dz qφ(z|x) log

qφ(z|x)

p(z|x)
(3.32)

=

∫
dz qφ(z|x) log

qφ(z|x)p(x)

p(x, z)
(3.33)

=

∫
dz qφ(z|x) log

qφ(z|x)

p(x, z)
+

∫
dz qφ(z|x) log p(x) (3.34)

= Ez∼Qφ
[
log

qφ(z|x)

p(x, z)

]
+ log p(x). (3.35)

The last step is possible since p(x) is independent of z and Ez∼Qφ [1] = 1. Rearranging
Equation 3.35 allows to find a lower bound on the log-probability of observed data

log p(x) = Ez∼Qφ
[
log

qφ(z|x)

p(z|x)

]
− Ez∼Qφ

[
log

qφ(z|x)

p(x, z)

]
(3.36)

≥ −Ez∼Qφ
[
log

qφ(z|x)

p(x, z)

]
(3.37)

= Ez∼Qφ [log p(x|z)]− Ez∼Qφ
[
log

qφ(z|x)

p(z)

]
. (3.38)

The statement above is true because DKL(q||p) ≥ 0 and log p(x) ≤ 0. The last Equation
3.38

LELBO(θ, φ;x, z) := Ez∼Qφ [log pθ(x|z)]− Ez∼Qφ
[
log

qφ(z|x)

p(z)

]
(3.39)

is the solution to the problem and hence deserves a special name; it is called the Evidence
Lower BOund (ELBO), since it gives a lower bound for the computational intractable
evidence p(x).

Equation 3.39 is a clear instruction on how to proceed: instead of directly extremize the
evidence maxθ pθ(x), the ELBO is optimized LELBO with respect to θ,φ instead. The
generative model pθ(x|z) – referred to as the decoder network – and the inference model –
known as the encoder network – qφ(z|x) are both neural networks with the set of weight θ
and φ respectively (see Figure 3.7).

The evidence lower bound according to Equation 3.39 has two terms that have a simple
interpretation. The first term, Ez∼Qφ [log pθ(x|z)], is a regression task. This can easily be
seen by substituting pθ(x|z) by the Gaussian constraint pθ(x|z) = N (x|fθ(z, σ21). (The
assumption of a Gaussian model corresponds to the assumption of Gaussian distributed
reconstruction errors.) Hence, the ELBO for a Gaussian Variational Autoencoder (GVAE)
is given by:

LELBO(θ, φ;x, z) = −1

2
Ez∼Qφ

[
‖ (x− fθ(z)) ‖2

]
− Ez∼Qφ

[
log

qφ(z|x)

p(z)

]
. (3.40)

Thus, the reconstruction loss for the regression task of the GVAE is a simple MSE between
the actual training data x and the data form the generative model x̂ = fθ(z). The second
term is what distinguishes VAEs from Classical autoencoders. The term Ez∼Qφ

[
log

qφ(z|x)
p(z)

]

defines a constrain on the “shape” of latent space since the KL-divergence measures the
similarity between the distribution Qφ learned by the inference network and the imposed

66

3.5. VARIATIONAL AUTOENCODERS

distribution over the random noise vectors z. If Qφ differs significantly from Pz, the
KL-divergence is large and penalizes the network’s weights to correct the error. This
constrain of the shape of the latent space is utterly important; it allows to sample from the
known distribution Pz to generate new data via the trained decoder network fθ. Without
the restriction of the shape, the system would be just an autoencoder and therefore no
generative model.

3.5.3 Implementation
The previous section derived the objective function for variational autoencoders, i.e., the
ELBO. The optimization problem that is addressed by VAEs is:

max
θ,φ

Ez∼Qφ
[
log

p(z)pθ(x|z)

qφ(z|x)

]
, (3.41)

whereby θ and φ denote the weights of the decoder resp. encoder network. As discussed
in the context of gradient descent (3.4.2) and backpropagation (3.4.3), the weights of the
networks are updated based on the gradients of the loss function. So, in order to perform
gradient descent, one needs to compute the gradients of Equation 3.41 with respect to θ
and φ.

The integral in Equation 3.41 can simply be evaluated by Monte Carlo integration
LELBO ≈ 1

L

∑L
k=1 log pθ(x, zk) − log qφ(zk|x) with zk ∼ Qφ. Now, in contrast to the

previous situation, Monte Carlo integration now is appropriate since the inference network
samples z values with a large contribution to pθ(x) (in fact, in most situations it is
appropriate to set L = 1). The computation of the gradient ∇θ is straightforward since the
expectation value in Equation 3.41 is with respect to φ. Therefore, the gradient ∇θ is given
by ∇θLELBO ≈ 1

L

∑L
k=1∇θ log pθ(x, zk). In case of ∇φ there is an additional obstacle due

to ∇φEqφ [f(z)] 6= Eqφ [∇φf(z)]. This problem can, inter alia, be solved by making use
of the so-called reparameterization trick which is a simple reparameterization of qφ(zk|x)
such that zk is given by zk = µφ + ε⊗ σφ(x) with ε ∼ N (0,1).

Now, after the fundamental prelude, it is about time to breath life into the dry theory,
and make it come alive.

To illustrate the functional principle, a very simple VAE is constructed. The two
networks, encoder and decoder, are a sequence of fully connected layers as they have
already used in Section 3.3.1 (see Figure 3.2). The data set consists of only one image with
200 × 200 pixels, so the dimensionality of the input and the output vector is dim(x) =
dim(x̂) = 40, 000 pixels. Compared with the dimensionality of the latent space, which
is only 50, this resembles an extremely narrow “bottleneck” with a compression factor of
dim(x)/dim(x̂) = 0.00125. This is only possible since the network is trained on only one
image, so there is no diversity in the data (vanishing entropy H(X) = EX∼Pr [I(X)] = 0).
In this simple setup with only one data point, even a latent space dimension of 1 would be
appropriate if the complexity of the networks is sufficient.

67

Decoder Encoder

Fig. 3.9: The author being used as “guinea pig” to demonstrate the operating
principle of a GVAE. The encoder network (inference network) receives a set of
images x and learns a hidden and compressed representation of the data. In a GVAE,
the latent space is constrained to be Gaussian (second term in Equation 3.40). The
decoder network (generative model) samples from a Gaussian z ∼ N (0,1) and tries
to reconstruct the input as close as possible (regression task). Note: the array of
images on the right side has actually been generated by a neural network.

As it can be seen in Figure 3.9, the GVAE does a good job in reconstructing the input
data.

3.5.4 Conditional variational autoencoders
This thesis focus on Conditional (Gaussian) Variational Autoencoders (C(G)VAEs) which
is an extension of the VAEs introduced in Section 3.5.2. In the generative model introduced
in the previous section, there is no mechanism that allows controlling the data generation
process. So, to generate new, i.e., unseen data x̂ one samples a random noise vector z ∼ Pz
and produce new data points via the decoder network x̂ = fθ(z). However, since the class,
category or, more generally, the label yi of the data xi was not explicitly provided during
training, the VAE learns to encode this information in a non-trivial way. For instance, a
VAE that has been trained on the MNIST data set [LeCun and Cortes, 2010] to generate
“handwritten digits”; the Result can be seen in the Figure below.

(a) Latent space (b) Generated data

Plot 3.4: VAE trained on the MNIST data set. R2 latent space representation (left)
where each different color corresponds to a digit in the set {0, . . . , 9} and randomly
generated data (right) (Taken from Davidson et al. [2018] Fig. 2a, p. 5; Fig. 10. p.
18).

68

3.6. GENERATIVE ADVERSARIAL NETWORKS

As it can be seen in Figure 3.4, the network (unsupervised) clusters the compressed
representation of the data into groups in the hidden space. By sampling z, one also
randomly samples a category/label y from Py. To get a data point associated with a
certain label, it would be necessary to perform a scan of the latent space, which is infeasible
if its dimensionality is large. Conditional variational autoencoders, for instance, provide a
solution to generate data associated with a specific label, e.g. a specific digit, a jet with
a certain energy or a certain process like QCD or W initialized jets. This label might
be discrete (e.g. QCD 7→ y = 0 and W 7→ y = 1), like in the example above, or even
continuous such as the reconstructed energy of a jet.

More formally, while a plain VAE learns the distributions qφ(z|x) (encoder) and qθ(x|z)
(decoder), a VAE that is conditioned on a label y learns the distributions qφ(z|x,y) and
qθ(x|z,y) that are additionally conditioned on y. All arguments and statement from
section 3.5.2 remain valid in case of a CVAE, with the addition that now the probability
distributions are conditioned on y. So, e.g., the ELBO in case of CVAEs is given by:

LELBO(θ,φ;x, z,y) = Ez∼Qφ
[
log

p(z)pθ(x|z,y)

qφ(z|x,y)

]
. (3.42)

Practically, the additional information must be provided during training along with the
data x. This is done (in this thesis) by concatenating x ∈ RNx and y ∈ RNy with
x⊕ y ∈ RNx+Ny (there is a large range of different approaches to incorporate the addition
information into the architecture of the networks).

3.6 Generative Adversarial Networks

The variational autoencoders discussed in the previous section are simple examples of
generative models that are based on machine learning methods and variational Bayes.
From a theoretical point of view, VAEs are well defined in terms of their probabilistic
interpretation (log-likelihood estimated by lower-bounded evidence). Also, their practical
implementation utilizing machine learning methods is no obstacle – on the contrary, those
generative models have proven to be very stable with good convergence characteristics.
However, the Gaussian VAEs introduced in Section 3.5 are based on a rather strong
assumption regarding the probabilistic distribution of the latent space, which is constrained
to be a multivariate normal distribution, and the reconstruction error, which assumed to
be Gaussian distributed as well. So, the distribution of the data is learned by fitting the
data via a multi-dimensional Gaussian distribution. Furthermore, the dimensionality of
the latent space is usually small compared to the data set one’s; hence, creating a “tight”
bottleneck that may give rise to data loss. This usually results in noisy data produced by
the generative model. This section, therefore, introduces another approach to generative
models.

3.6.1 GANs according to Ian Goodfellow et al.

The development of Generative Adversarial Networks (GANs) by Ian Goodfellow et al.
in 2014 [Goodfellow et al., 2014] may indeed be regarded as a real paradigm shift in the
field of machine learning – almost unprecedented in this area of research. The heart of
the revolution is simply the introduction of an adversarial framework in which “[...] the
generative model is pitted against an adversary[.]” (Goodfellow et al. [2014]); two networks
that play a non-cooperative game against each other. The actual generative model is

69

implemented by the so-called generator (neural) network gθ, whereby θ are the trainable
parameters of the model. The objective of the generator is to learn a mapping through a
continuous function gθ from a known distribution Pz to a generated probability distribution
Pg that approximates the distribution of the underlying (training) data Pr as close as
possible Pg ≈ Pr. If this approximation is met to a high degree of agreement, new, unseen
data points x̂ ∼ Pg ≈ Pr can be generated by sampling a seed z from the latent space Z
which is then transformed by the model gθ with fixed parameters x̂ ∼ gθ(z). Based on this
argument, the generative model in GANs is – quite similar to variational autoencoders – a
latent variable model (see Section 3.5.1) that transforms a known distribution Pz to a more
complicated one Pg := Pθ = gθ(Pz) which is still unknown but indirectly accessible via the
learned transformation gθ. The second network is referred to as the discriminator fφ, i.e.,
the adversarial network in the system. The discriminator network is a binary classifier
whose task is to discriminate between data points that originate from the underlying
distribution of the real data x ∼ Pr and those that are generated (“faked”) by the generator
network x̂ ∼ Pg. The objective of the generator, on the other hand, is to learn a distribution
Pg such that the discriminator fails its discrimination task, i.e., it assigns the probability
fφ(xg) ≈ fφ(xr) ≈ 1

2 for both the real and the generated samples (state of minimum
confidence).

Theoretical considerations

As described above, GANs use an adversarial game between two competing networks, gθ
and fφ, while, from a probabilistic point of view, variational autoencoders maximize the
likelihood of the data employing the ELBO instead (see Section 3.5). The objective of the
generator network is to learn an approximation Pg of the data such that the discriminator
can not distinguish it from the underlying distribution of the training data Pr anymore.
Generally speaking, this means that the discriminator represents a family of functions L
that measures the dissimilarity between Pr and Pg [Roth et al., 2017]. The objective of the
generator-discriminator system is therefore given by the minimum of the supremum over
L (i.e. extremize the discrimination between real and generated distribution):

min
θ

[
sup
L∈L

L(Pr,Pg := Pθ)
]
, (3.43)

whereby θ are the parameters of the generated distribution (Equation 3.43 taken from
Roth et al., 2017, Eq. 1, p. 1 (notation has been modified)). Equation 3.43 represents a
saddle point problem; hence, the solution – which is known as Nash equilibrium (named
after the American mathematician John Forbes Nash) – is likely to be unstable. The
optimization problem is implemented by representing L through a family of parameterized
functions fφ that are realized by a neural network, i.e., the aforementioned discriminator
model. In classical GANs as proposed by Goodfellow et al., the objective or loss function
L is assumed to be a two-player min-max game with a (log-)logistic classification task
according to

L(Pr,Pθ;φ) := Ex∼Pr [log fφ(x)] + Ex∼Pθ [log(1− fφ(x))], (3.44)

respectively explicitly expressed in terms of the generator’s weights θ and the distribution
of the latent space Pz

L(Pr, gθ(Pz);φ, θ) := Ex∼Pr [log fφ(x)] + Ez∼Pz [log(1− fφ(gθ(z)))]. (3.45)

70

3.6. GENERATIVE ADVERSARIAL NETWORKS

Consequently, generative adversarial networks solve the following non-cooperative two-
player min-max game:

min
θ

max
φ
L(Pr, gθ(Pz);φ, θ). (3.46)

Equation 3.43 gives two opposing optimization problems that define the loss function/objective
for the discriminator

Lfθ (φ) := Ex∼Pr [log fφ(x)] + Ez∼Pz [log(1− fφ(gθ(z)))] (3.47)

and the generator model respectively

Lgφ(θ) := Ez∼Pz [log(1− fφ(gθ(z)))], (3.48)

whereby the last Equation derives from the fact that Ex∼Pr [log fφ(x)] does not depend on
θ.

According to Equation 3.46 and 3.47, the objective of the discriminator model is the
maximization of the classification probability, i.e., the correct assignment of samples to
either the real or the generated distribution. An almost perfect discriminator would assign
fφ(x) ≈ 1 for x ∼ Pr and fφ(x̂) ≈ 0 for a generated data point x̂ ∼ Pg. This is usually the
situation for the initial training period since the generator mostly produces random output
that can easily be categorized as being fake. This is true even though both models, the
generator as well as the discriminator, are initialized randomly. However, the classification
task of the discriminator is fundamentally that the generation task of the generator (as in
real life, it is always easier to criticize than to be creative). Therefore, it frequently happens
during training that the discriminator becomes too powerful. In this case, the output of
the discriminator is fφ(gθ(z)) ≈ 0 for most of the generated samples x̂ = gθ(z); hence,
Lgφ(θ) vanishes, as a result of which the generator’s weights do not get update anymore –
the model configuration is frozen. This problem is known as saturation. Therefore, one
often replaces the optimization problem to maximize Ez∼Pz [log fφ(gθ(z))] instead, which
leads to the very same fix points but reduces the risk of saturating gradients. Finally, the
training of generative adversarial networks is summarized in Figure 3.10.

z ∼ Z Generator gθ x = gθ(z)

x ∼ X

Discriminator fφ fφ(x) L

∇φ 1
N

∑N
i=1 [log fφ(xi) + log(1− fφ(gθ(zi)))]

−∇θ 1
N

∑N
i=1 log(1− fφ(gθ(zi))) resp. ∇θ 1

N

∑N
i=1 log fφ(gθ(zi))

Fig. 3.10: Graphical illustration of the training of generative adversarial networks
as proposed by Goodfellow et al. The discriminator model/network fφ alternately
receives real data from the training set and fake data produced by the generator
network gθ. The loss function is evaluated, and the weights (trainable parameters)
of the networks are updated accordingly. The procedure is repeated till convergences
or termination of the training.

To better understand the fundamental mechanisms at work, it is reasonable to study
the best discriminator fφ∗ given any generator gθ. According to Equation 3.47, the optimal

71

discriminator is the network whose parameter configuration results in ∇φLφ !
= 0. First,

the expectation value in Equation 3.47 is expressed in terms of an integral

Lφ :=

∫

x′
dx (pr(x) log fφ(x) + pg(x) log(1− fφ(gθ(z))))︸ ︷︷ ︸

=Lφ

, (3.49)

whereby x is sampled over all possible values. Now, consider the gradient with respect to φ

∇φLφ = pr(x)∇φLφ log fφ(x) + pg(x)∇φLφ log(1− fφ(x̂)), (3.50)

= pr(x)
∇φfφ(x)

fφ(x)
− pg(x)

∇φfφ(x̂)

1− fφ(x̂))
, (3.51)

=
∇φfφ(x)

fφ(x̂)(1− fφ(x̂)
(pr(x)− fφ(x̂)(pr(x) + pg(x))) . (3.52)

Hence, according to Equation 3.52 the perfect discriminator fφ∗ is given by pr(x) −
fφ(x̂)(pr(x) + pg(x))

!
= 0 with fφ(x̂) = pr(x)

pr(x)+pg(x) . Consistently, the output of a perfect
discriminator for an optimal generator, i.e., pg(x) = 1 is – as expected – fφ∗(x) = 1

2
(random guessing).

Under the assumption of an optimal discriminator, the loss function 3.49 provides some
insights into the actual mechanisms at work. Replacing fφ by fφ∗ in Equation 3.49 gives

Lφ∗ =

∫

x′
dx
(
pr(x) log

pr(x)

pr(x) + pg(x)
+ pg(x) log

pg(x)

pr(x) + pg(x)

)
, (3.53)

= DKL

(
pr||

pr + pg
2

)
+DKL

(
pr||

pr + pg
2

)
− 2 log 2, (3.54)

= 2DJS (pr||pg)− 2 log 2, (3.55)

whereby DJS is the so-called Jensen–Shannon (JS-)divergence, which can be thought of as
a symmetrized Kullback–Leibler divergence. (In contrast to the KL-divergence, the JS-
divergence does represent a proper metric.) Equation 3.55 represents an important result:
the minimization of the loss function 3.49 essentially corresponds to the minimization of the
Jensen Shannon Divergence that measures the similarity between Pr and Pg. Therefore,
the objective function of generative adversarial networks is an f -divergence.

Problems with classical GANs

As explained in the previous paragraph, GANs are a tempting alternative to variational au-
toencoders since they minimize an f -divergence between the generated and the underlying
distribution of the training data instead of maximizing the likelihood (ELBO) of the data.
The direct modelling of the target distribution should in principle provide better results than
VAEs; this is usually the case. However, finding the Nash equilibrium of the non-convex loss
function 3.45 in a very high-dimensional space that is spanned by the trainable weights of the
model is quite challenging. Consequently, GANs have been plagued with non-convergence
since the very beginning of their existence. One reason for the instability of GANs is the
utilization of the gradient descent algorithm (see Section 3.4.2) to update the parameters of
the neural network(s). Since the solution to the non-cooperative two-player min-max game
3.46 is a saddle point, the model is inherently unstable regarding perturbations around this
equilibrium. This can nicely be illustrated by using the simple example of the following

72

3.6. GENERATIVE ADVERSARIAL NETWORKS

popular min-max game minx maxy xy. Using gradient descent, the updated values of xi+1

and yi+1 for the (i + 1)th iteration are given by xi+1 = xi − γn∂x(xy) = xi − αiyi and
yi+1 = yi − γn∂y(xy) = yi + αixi – whereby the learning rate αi depends on the number
of iterations as well (see optimizer and non-constant learning rates section 3.4.2). Hence,
the new state vector xTi+1 = (xi+1, yi+1)T can be expressed by a matrix multiplication
xi+1 = Mxi with M =

(
1 −αi
αi 1

)
=
√

1 + αi
(cos βi − sin βi

sin βi cos βi

)
, whereby M has been ex-

pressed in terms of a simple rotation with βi = arccos((1 + α2
i)
− 1

2)3. To reach a stable
orbit, the path radius ρi must be finite ρi < ∞ ∀i ∈ N. The radius after N iterations
is given by ρN =

∏N
i=0

√
1 + α2

i , with the length of the curve being
∑N
i=1 αi. For each

choice of αi the gradient descent algorithm will result in a stable orbit around the origin or
will diverge rather than converging to the Nash equilibrium x = y = 0 with ρ∞ = 0 since
1 ≤∏∞i=0

√
1 + α2

i = ρ∞. Consequently, gradient descent is incapable to find the desired
stable point in this particular (admittedly slightly pathological) example. In general, to
use gradient descent in combination with generative adversarial networks, the learning rate
must be chosen very small, e.g. αl ∼ O(10−4) or below, to get convergence. This, of course,
goes hand in hand with a significantly increased number of training iterations.

The problem described above is a consequence of the GANs’ loss function and the
optimization through gradient descent. This, however, is only one out of many problems
regarding the stability of generative adversarial networks. One of the most serious threats
is a phenomenon that is commonly known as mode collapse. In case of mode collapse, the
generative model only learns a small subset of the underlying distribution of the training
data, with the effect of completely underestimating the entropy (a measure of encoded
information) of the target distribution. So, the generative model might produce high-quality
data – but with less or even without any diversity. It is intuitively clear that adversarial
models are vulnerable to this effect: assumed the discriminator model does not get updated
anymore (because it reached the limit of its complexity of experienced vanishing gradients),
in this case, the optimal point is given by x∗ = argmaxxfφ(x) to a high precision, which
corresponds to a single mode. The point x∗ is then learned by the generator x∗ ≈ gθ(z).
Hence, the generator maps all seeds to the same point and is therefore independent of
z, with the consequence of vanishing gradients with respect to z. If this happens, the
generator has collapsed to a single point without any hope of recovery; the training of the
model must be terminated for good and started from the very beginning.

There are further obstacles besides the aspects mentioned above, for instance, the high
sensitivity to the complexity and the architecture of the generator and the discriminator
network. The two models must be precisely balanced to avoid that one outperforms the
other. This is related to yet another problem when it comes to training GANs, i.e., the
tuning of the model’s hyperparameters. An inopportune configuration of hyperparameters
quickly leads to non-convergence – as well as frustration and resignation.

Last but not least, there is an inherent problem based on the fact that the loss function
corresponds to the JS-divergence which does not converge under a sequence of distributions
with disjoint support. This circumstance is the main motivation for the use of alternative
metrics such as e.g., the Wasserstein distance – which will be the topic of the following
section.

There exists a considerable weaponry for classical GANs in the battle against afore-

3The factor
√

1 + α2
i follows from the relation sin arccosx =

√
1− x2, hence, ± sin arccos((1+α2

i)−
1
2) =

±
√

1− (1 + α2
i)
−1 = ±αi/

√
1 + α2

i .

73

mentioned enemies, many of which are heuristically. Examples include mini-batch discrimi-
nation, historical averaging, one-side label smoothing, virtual batch normalization etc. (for
a comprehensive list along with implementation details see Salimans et al. [2016a]).

Sources of instabilities – the loss function

As already mentioned before, some stability issues when training GANs are a consequence of
the incapability of the gradient descent (first-order) optimization algorithm to converge to
the Nash equilibrium of the non-convex cost function. There are – in principle – algorithms
that do not suffer the same problem; however, all these methods are not feasibly optimized
functions in very high-dimensional spaces, such as those spanned by the weights of neural
networks. The other category of problems, however, is more fundamental since it is directly
related to the loss function (more precisely, the underlying f -divergence).

An important contribution towards a better understanding of the dynamics of generative
adversarial networks was provided by Martin Arjovsky and Léon Bottou in 2017. In their
work, they identify several sources of instabilities. They recognized that many problems
regarding the instability in GANs are caused by a perfect discriminator network that is,
in turn, related to the support of the real and the generated distribution – whereby the
support of a probability distribution f (or function in general) supp(f) is the set of points
x ∈ X for which f is non-zero, i.e., supp(f) = {x ∈ X |f(x) 6= 0} (non-zero probability
mass). In their publication, they showed that if the support of two distributions Pg and Pr
do not perfectly align and one of them lies on a lower-dimensional manifold, then there
exists an optimal discriminator fφ∗ that perfectly discriminates between Pg and Pr (see
Theorem 2.2 in Arjovsky and Bottou, 2017). In this case, ∇xfφ∗(x) will be zero almost
everywhere; hence, the generator does not get updated anymore due to vanishing gradients
(see Theorem 3.6.1). This is a serious problem since the generated manifold usually lies on
low-dimensional support due to the “low” dimension of Z compared to X . This insight led
to the following theorem.

Theorem (Arjovsky and Bottou, 2017, Thm. 2.3, p. 5). Let Pr and Pg two distributions
whose support lies in two manifoldsM and P don’t have full dimension and don’t perfectly align.
We further assume that Pr and Pg are continuous in their respective manifolds. Then

JSD(Pr||Pg) = log 2

KL(Pr||Pg) = +∞
KL(Pg||Pr) = −∞

(Proof: see definition of Kullback-Leibler and Jensen-Shannon divergence)

From Theorem 3.6.1 follows that the Kullback-Leibler divergence may not be a reasonable
measure of similarity between the two distributions Pg and Pr. This leads to a problem
of interpretation regarding the actual values of the loss function that do not necessarily
correspond to the performance of the model. This problem will, inter alia, lead to an
interpretable loss function in the next section.

So, the problem of instability is related to the discriminator becoming too powerful
compared to the generator, which leads to vanishing gradients with respect to the generator’s
weights. This is summarized in Theorem 3.6.1.

Theorem (Vanishing gradients on the generator; Arjovsky and Bottou, 2017, Thm.
2.3, p. 5). Let gθ : Z → X be a differentiable function that induces a distribution Pg. Let Pr be the

74

3.6. GENERATIVE ADVERSARIAL NETWORKS

real data distribution. Let D be a differentiable discriminator [fφ]. If the conditions of Theorems 2.1
or 2.2 are satisfied, ||D−D∗|| < ε [D∗ is a perfect discriminator], and Ez∼p(z) [||Jθgθ(z)||]22 ≤M2,[.]
then

||∇θEz∼p(z)[log(1−D(gθ(z)))]||2 < M
ε

1− ε
(Proof: see Arjovsky and Bottou, 2017, p. 6)

If the discriminator becomes perfect – which according to the statements above is likely –,
i.e., fφ → fφ∗ (D → D∗), then the gradients of the generator become zero.

Corollary (Arjovsky and Bottou, 2017, Cor. 2.1, p. 6). Under the same assumptions of
Theorem 2.4

lim
||D−D∗||→0

∇θEz∼p(z)[log(1−D(gθ(z)))] = 0

To sum it up, it can be said that many instabilities in GANs are a result of non-aligned,
low-dimensional support between two distributions that allows for a perfect discriminator
with the result of vanishing gradients.

There is an obvious “brute force method” to solve the problem related to the disjoint
support of the probability distributions, i.e., to add noise ε ∼ N (0, σ21) to the data before
feeding it to the discriminator (see Corollary 3.2 in Arjovsky and Bottou, 2017). The
convolution of x and ε (summing random variables x̃ ∼ P∗N (0, σ21)) significantly increases
the support of the generated distribution; hence, reduced the risk of disjoint supports
between Pr and Pg. The implementation is very simple and only requires some minor
modifications of the training scheme shown in Figure 3.10. Adding (explicit) continuous
noise to the inputs of the discriminator significantly stabilizes the training of generative
adversarial networks, with the drawback, of course, that the quality of the data reduces
due to increased sampling variance.

3.6.2 Wasserstein GANs
The previous section introduced GANs as they have been proposed in 2014 by Goodfellow
et al., as well as some superficial considerations of its mathematical properties. Despite
their unquestionable success, however, GANs are famously known for being notoriously
unstable and hard to train. This instability is mainly due to the loss function (see Equation
3.47) and the underlying f -divergence that is minimized by the model during training,
which corresponds to the Jensen-Shannon divergence.

This very problem is addressed in this section by introducing a new metric W (Pr,Pg) to
measure the similarity between the two distributions Pr and Pg, which does not represent
an f -divergence but an Integral Probability Metric (IPM) instead; therefore, does not
suffer the aforementioned vanishing (or exploding) gradient problem. This alternative cost
function is the so-called Wasserstein loss (also known as earth mover’s distance), which was
first applied to GANs by Martin Arjovsky et. al. at the end of 2017 [Arjovsky et al., 2017].
Since then, Wasserstein GANs (WGANs) have taken the machine learning community by
storm. In line with this trend, this section provides a detailed introduction into Wasserstein
GANs – which will be used through this thesis – along with their mathematical properties
and, most importantly, the practical implementation through machine learning methods.

75

The Earth Mover’s distance

This section provides a short derivation of the above mentioned Earth Mover’s Distance
(EMD) instead of just showing the final equation with a shallow explanation of its compo-
nents. The first objective is to give an intuition of the underlying idea behind this metric
without going into too much detail.

As it was shown in Section 3.5.1, the minimization of an f -divergence can be (loosely
speaking) though of as maximum likelihood estimation of the generated distribution. From
a probabilistic point of view, this is very intuitive. However, there are other ways to
measure the similarity between distributions.

−1

0

1

2

3

4−1

0

1

2

3

4

Pθ(x1)

Pr(x2)

γ ∈ Γ(Pr,Pθ)
x1 x2

Fig. 3.11: An two-dimensional example for a possible transportation plan γ that
corresponds to a joint probability distribution with the marginal distributions Pr
and Pg.

One possible approach, for instance, would be to define a measure of how much
(probability) mass must be moved to transform one probability distribution into another one
based on some cost function c : RN×RN → R≥0, (x1,x2) 7→ c(x1,x2) with c(x,x) = 0 that
gives the cost to “move” mass from x1 to x2. The less mass needs to be moved, the closer the
two distributions are; or, in other words: the lower total cost to transform the distribution
Pθ into Pr, the more they resemble each other. The rule for moving mass from one
distribution to the other is given by a transportation plan or a coupling γ. Formally, for this
transportation plan to be reasonable, it must fulfill the requirement of continuity, i.e., the
total change of mass in the system must be zero. Therefore, the infinitesimal mass Pr(x1)dx
removed from Pr(x1) according to the transportation plan γ(x1,x2) must be equal to the
mass Pg(x2)dx added to Pg(x2). This defines the requirements Pr(x) =

∫
dx′ γ(x′,x)

and Pg(x) =
∫
dx′ γ(x,x′); therefore, the transportation plan γ is a joint probability

distribution whose univariate marginal distributions correspond to Pr and Pg respectively.
Accordingly, the infinitesimal mass moved from x1 to x2 is given by dγ(x1, x2) = γ(x1,
x2)dx1dx2 with the associated infinitesimal cost dw(x1, x2) = c(x1, x2)dγ(x1, x2). The
total cost of the respective transportation plan γ under consideration is then given by

C(γ) =

∫ ∫
dx1dx2 c(x1,x2)γ(x1,x2) ∈ R. (3.56)

76

3.6. GENERATIVE ADVERSARIAL NETWORKS

This is for solely one particular transportation plan; however, there is and infinite number
of possible plans γ. The objective is to find the plan (the joint probability distribution)
that corresponds to the minimal total cost. This is equivalent to finding the infimum over
the possible space of all joint probability distributions γ ∈ Γ(Pr,Pθ) with the univariate
marginal distributions Pr and Pg with minimum total cost

W (Pr,Pθ) = inf
γ∈Γ(Pr,Pθ)

∫
dγ(x1,x2) c(x1,x2), (3.57)

or a more compressed and intuitive expression in terms of an expectation value

W (Pr,Pθ) = inf
γ∈Γ(Pr,Pθ)

E(x1,x2)∼γ [c(x1,x2)] , (3.58)

with W (Pr,Pθ) ∈ Γ(Pr,Pθ). There are several possible options for the cost function c;
a common choice is the standard Euclidean norm c(x1,x2) := ‖x1 − x2‖. Finally, the
Wasserstein metric is given by

W (Pr,Pθ) = inf
γ∈Γ(Pr,Pθ)

E(x1,x2)∼γ [‖x1 − x2‖] . (3.59)

The EMD and the Kantorovich-Rubinstein duality

The Wasserstein distance according to Equation 3.58 has an easy interpretation; however,
it is highly intractable due to the infimum that requires the evaluation of the expectation
value for all possible joint probability distributions between Pr and Pg. Apart from that,
the number of possible states scales exponentially with the input dimension of the data,
making the calculation of γ NP-hard and therewith impossible. Furthermore, the solution
to Equation 3.58 is a (discrete) probability distribution, whereas it would be aspirational
to get a single number instead to measures the cost4. A more convenient representation
of Equation 3.58, which is suited to be used in combination with backpropagation, is
given by its dual representation resp. dual form. The transformation from the primal
form to the dual form is not straightforward. The argument goes like this: the constrain
γ ∈ Γ(Pr,Pθ) in Equation 3.58 is removed by adding an optimization over a function
f : RN → R that removes all γ 6∈ Γ(Pr,Pθ) (this insight is very important to understand
the critic5/discriminator network in Wasserstein GANs)

W (Pr,Pθ) = inf
γ

E(x1,x2)∼γ [‖x1 − x2‖]

+ sup
f

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]− (f(x1)− f(x2)), (3.60)

whereby the infimum is taken over the supremum as well. The second term is 0 if
γ 6∈ Γ(Pr,Pθ) and ∞ otherwise; hence, it selects all γ with γ ∈ Γ(Pr,Pθ). It can be shown

4Hypothetically, the optimal transportation plan γ∗ := W (Pr,Pθ) may be transformed to a scalar by
some matrix norm ‖γ∗‖. This norm must be differentiable to allow for the computation of gradients in the
backpropagation algorithm. Furthermore, it must be unique!

5In case of Wasserstein GANs the discriminator is referred to as the critic network. The change of
terminology is justified, since contrary to classical GANs the network f does not classify the data to “real”
of “fake” samples but “filters” correct transportation plans. Therefore, it measures the Wasserstein distance
between Pr and Pg .

77

that in Equation 3.60 the order of the infimum and the supremum can be inverted without
changing the outcome (this step is non-trivial)

W (Pr,Pθ) = sup
f

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

inf
γ

E(x1,x2)∼γ [‖x1 − x2‖]− (f(x1)− f(x2)). (3.61)

The second term defines a convexity condition. It can be shown that all Lipschitz continuous
functions f provide the same solution. Therefore, the second term can be absorbed into a
condition on f , i.e., the function must be Lipschitz continuous f ∈ Lip1

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]. (3.62)

This result is known as the so-called Kantorovich-Rubinstein duality [Bonsall, 1966, Kan-
torovich and G.Sh.Rubinstein, 1958]. Writing Equation 3.62 in terms of the generator gθ
and the critic fφ network gives the loss function for Wasserstein generative adversarial
networks

W (Pr,Pθ) = sup
‖fφ‖L≤1

Ex∼Pr [fφ(x)]− Ez∼Pz [fφ(gθ(z))], (3.63)

with the following optimization task being solved

min
θ

sup
‖fφ‖L≤1

Ex∼Pr [fφ(x)]− Ez∼Pz [fφ(gθ(z))]. (3.64)

This form can “easily” be implemented using neural networks. The only difficulty here is
to ensure that the network of the critic only learns a family of Lipschitz steady functions.

There is an entire smorgasbord of methods to ensure fφ ∈ Lip1. In the original paper
the authors clamped the weights of the critic’s network to a compact space [wmin, wmax]N

which implies global Lipschitz continuity. However, they admitted that “[w]eight clipping
is a [...] terrible way to enforce a Lipschitz constraint[.]” (Arjovsky et al. [2017]), since the
performance of the network is highly sensitive to the clipping interval. A more suitable way
to ensure Lipschitz continuity is the so-called Gradient Penalty (GP), i.e., “[...] penalize
the norm of gradient of the critic with respect to its input [...]” (Gulrajani et al. [2017]).
This method as well as the training of WGANs is the subject of the next section.

Beforehand, it is worth to point out the relation between the integral probability
metric 3.63 and the JS-divergences DJS introduced in the previous section. This was later
generalized to any f -divergence Df (of which the JS-divergence is only one representative)
in the so-called f -GANs [Nowozin et al., 2016] by introducing a convex function f [Roth et
al., 2017]. It can be shown that the Df divergence has an lower bound that can be seen
by expressing Df (Pr||Pg) in terms of the Radon-Nikodym derivative dPr

dPg and the Fenchel
dual f c of f [Nguyen et al., 2008, Reid and Williamson, 2011] – which was already used to
write Equation 3.59 in its dual representation

Df (Pr||Pg) := EPg

[
f ◦ dPr

dPg

]
=

∫

X
dPg sup

u

(
u
dPr
dPg
− f c(u)

)
. (3.65)

The lower bound on Df in terms of an arbitrary class of statistics ψ ∈ Ψ [Roth et al., 2017]
is given by

Df (Pr||Pg) ≥
∫

X
dPg sup

u

(
u
dPr
dPg
− f c(u)

)
= sup

ψ
{EPr [ψ]− EPg [f c ◦ ψ]}. (3.66)

78

3.6. GENERATIVE ADVERSARIAL NETWORKS

This result is interesting and requires some reflection. On the right-hand side of Equation
3.66, a more general form of the Wasserstein distance can be identified (cf. Equation
3.62). Hence, the Wasserstein loss does represents a lower bond on the f -divergence that is
minimized by classical GANs.

Furthermore, the Wasserstein distance is much “weaker” than, e.g., the Jensen-Shannon
divergence, i.e., every sequence of distributions that convergence under the JS-divergence
also converges under the EMD.

It should also be mentioned that the EMD is closely related to the so-called Maximum
Mean Discrepancy (MMD) that is given by MMD(Pr,Pg) =

∥∥Ex∼Pr [φ(x)]− Ex∼Pg [φ(x)]
∥∥
H

with φ : X → H being a feature map and H denoting the so-called reproducing ker-
nel Hilbert space. Writing the MMD in an alternative representation MMD(Pr,Pg) =
supf∈H,‖f‖H≤1 Ex∼Pr [φ(x)]− Ex∼Pg [φ(x)] with 〈f, φ(x)〉H = f(x), reveals the close con-
nection to the Wasserstein distance. This relation will become important later when the
statistical moments of the generated jets are studied.

Gradient penalty and training of WGANs

Gradient penalty is a method to ensure local Lipschitz continuity of f . It is based on
the fact that if f∗ is a 1-Lipschitz steady function which is the optimal solution (optimal
critic) to max‖f‖L≤1 Ex∼Pr [f(x)] − Ex∼Pg [f(x)] with the optimal coupling π ∈ Γ, then

P(x1,x1)∼π
[
∇f∗(xt) = x2−xt

‖x2−xt‖

]
= 1 with xt = tx1 + (1− t)x2 and t ∈ [0, 1]. So, “[...] f∗

has gradient norm 1 almost everywhere under Pr and Pg[.]” (Arjovsky et al., 2017, Prop.
1, Cor. 1, p. 3). According to this statement, one has to sample points between Pr and Pg
along a parameterized line and ensure the gradient norm of the critic to be close to one
along this path – therefore, the Lipschitz constrain is only locally enforced6. The norm
condition can be incorporated in the optimization task by adding an additional term to
the loss 3.63 that penalizes the weights of the critic network if the gradient norm differs
significantly from 1. This term is referred to as gradient penalty term

L = Ex∼Pr [fφ(x)]− Ez∼Pz [fφ(gθ(z))] + λGPEx′∼Px′

[(
‖∇x′fφ(x′)‖2 − 1

)2]
, (3.67)

whereby λGP is a hyperparameter that weights the contribution of the gradient penalty
term [Arjovsky et al., 2017]. With Equation 3.67 at our disposal, everything is well defined.
The implementation does not represent a problem and cam mostly be adopted from classical
GANs.

As one can see by comparing Figure 3.12 with Figure 3.10, the training scheme and the
actual implementation of WGANs and GANs are very similar. One difference – besides
the loss function – is the multiple updates of the critic’s weights, indicated by the number
of critic updates Nc in the Figure above. The hyperparameter Nc gives the number of
backpropagation steps for the critic per generator update. It is necessary to train the critic
several times before updating the model of the generator to get a precise approximation of
the Wasserstein distance; otherwise, the Lipschitz constraint might not be fulfilled with
the consequence of poorly estimated gradients. In the paper the authors proposed Nc = 5

6In 2018, a new weight normalization technique, called spectral normalization, was introduced [Miyato
et al., 2018] that allows to globally enforce the Lipschitz constrain. Within the context if this thesis, it
was tried to combine spectral normalization with Wasserstein GANs. However, the resulting networks
turned out to be highly unstable with significant oscillations in the loss function. This behavior is not yet
understood; therefore, spectral normalization is not part of this record.

79

[Arjovsky et al., 2017]; however, for the networks in this thesis, Nc = 10 have been found
to be more appropriate.

z ∼ Z Generator gθ x = gθ(z)

x ∼ X

Critic fφ fφ(x) L

Nc

∇φ 1
N

∑N
i=1

[
fφ(xi)− fφ(gθ(zi)) + λGP

(
‖∇x′fφ‖2 − 1

)2]

∇θ 1
N

∑N
i=1 fφ(gθ(zi))

Fig. 3.12: Graphical illustration of the training of generative adversarial networks
with the Wasserstein metric and gradient penalty as introduced by Arjovsky et al.,
2017. The critic model/network fφ measures the Earth mover’s distance between
the generated distribution Pg and the real distribution of the training data Pr.

Despite all obvious similarities, it is important to be aware of the substantial difference.
First, the output of the critic (the discriminator in case of GANs) does not correspond to a
probability; hence, the image set is not restricted to [0, 1] but can take on any real number.
Moreover, the Wasserstein distance is the subtraction between two terms instead of an
addition; this minus sign changes the whole world: it reveals a close connection between
the EMD and the MMD as already mentioned in the previous section.

A serious issue with classical GANs was the problem of vanishing or exploding gradients
due to a discriminator network that is too powerful compared to the generator. Hence, the
balance between the discriminator and the generator network regarding the complexity of
the model must be carefully tuned. This problem does not occur in case of Wasserstein
GANs due to the properties of the earth mover’s distance. On the contrary, in WGANs
the critic model should be as complex as possible to provide precise information of the
gradients for the generator and to get a good approximation of the Wasserstein distance.

Conditional Wasserstein GANs

Like it was done in case of variational autoencoders (see Section 3.5.4), the generative
adversarial networks used through this thesis are conditioned on external labels y (if not
explicitly motioned otherwise). This requires some minor modifications of the loss function
as well as of the architecture. The overall objective of this step is – again – to control
certain properties of the data that is produced by the generative model. Thus, for instance,
a model that is conditioned of the energy Ejet and pseudorapidity ηjet of the jet allows
to generate jets in certain regions of phase space at specific locations in the detector.
From a probabilistic perspective, conditioning the generative model on a set of features
{y1,y1, . . . ,yN} owned by the data corresponds to a factorization of the (joint) probability
density function

p(x,y1,y1, . . . ,yN |z) =
p(x,y1,y1, . . . ,yN , z)

p(z)
,

=
1

p(z)
p(x|y1,y1, . . . ,yN , z)p(y1,y1, . . . ,yN , z),

80

3.6. GENERATIVE ADVERSARIAL NETWORKS

= p(x|y1,y1, . . . ,yN , z) ·
N∏

i=1

p

yi

∣∣∣
i−1⋂

j=1

yj ∩ z

 , (3.68)

which also takes correlations between the various labels into account (e.g. p(ηjet|pjetT) etc.).
Equation 3.68 now corresponds to N + 1 (generative) models. In order to condition the
generative model p(x|y1,y1, . . . ,yN , z) on the additional information, the conditioning
labels {y1,y1, . . . ,yN} must be provided to the generator and the discriminator/critic
network during training – as it was done for the decoder and encoder model in case of
variational autoencoders in Section 3.5.4.

z ∼ Z Generator gθ

y1 . . . yN

x = gθ(z,y1, . . . ,yN)

x ∼ X

Critic fφ

y1 . . . yN

fφ(x,y1, . . . ,yN) L

Nc

∇φ 1
N

∑N
i=1

[
fφ(xi,y1, . . . ,yN)− fφ(gθ(zi,y1, . . . ,yN),y1, . . . ,yN) + λGP

(
‖∇x′fφ(x

′,y1, . . . ,yN)‖2 − 1
)2]

∇θ 1
N

∑N
i=1 fφ(gθ(zi,y1, . . . ,yN),y1, . . . ,yN)

Fig. 3.13: Graphical illustration of the training of conditional generative adversarial
networks with the Wasserstein metric and gradient penalty. Both models, the
generator and the critic, additionally receive a list of conditioning label y1,y1, . . . ,yN .

The training of Conditional Wasserstein GANs (CWGANs) is illustrated in Figure 3.13. The
labels itself are sampled from the respective probably distribution yi ∼ p

(
yi
∣∣⋂i−1

j=1 yj ∩ z
)
,

yi ∼ p
(
yi
∣∣⋂i−1

j=1 yj

)
or yi ∼ p(yi) if independent of the latent space z or uncorrelated.

3.6.3 A kaleidoscope of GANs
Generative models that use an “adversary” for training have received a tremendous amount
of attention not only by the machine learning community but from all kind of scientific
fields. It is therefore scarcely surprising that, since their introduction in 2014, generative
adversarial (neural) networks have undergone rapid development in many directions, such
that it becomes quite difficult to retain an overview over the complex as a whole. To date,
however, it appears that the curve of new publications and contributions starts to flatten
off; nonetheless, the area remains very dynamic and full of verve.

The two previous sections only introduced two kinds of generative adversarial networks:
first, GANs as proposed by Goodfellow et al. [Goodfellow et al., 2014] as the pioneering
paper that opened the “floodgates”; second, Wasserstein GANs proposed by Martin Ar-
jovsky et. al. at the end of 2017 [Arjovsky et al., 2017]. However, one and a half years are
a donkey’s year in the tremendously fast-moving field of machine learning. But, at some
point, one has to stop chasing the current trends, fix the methods, with the disadvantage
of never using true state-of-the-art techniques. However, “recent” developments in the field
should not be left unmentioned.

As already mentioned above, there exists a large variety of different versions of GANs.
They mostly differ concerning their objective or loss function to measure the similarity

81

between the generated distribution and the underlying probability density of the training
data. We’ve already encountered two classes of GANs: those that minimize an f -divergence
between two distributions (e.g. Jensen-Shannon or KL-divergence) and the above-mentioned
ones that minimize an integral probability metric (e.g. the earth mover’s distance or, more
generally, the MMD). Besides the aforementioned GANs [Goodfellow et al., 2014], WGANs
[Arjovsky et al., 2017], improved WGANs with gradient penalty [Gulrajani et al., 2017]
or even the “[i]mproving [of] the [i]mproved [t]raining of Wasserstein GANs” by means
of consistency regularization7 (Wei et al. [2018]), the following versions are frequently
encountered: MMD-GANs that complement generative moment matching networks by
an adversary [Li et al., 2017], Cramer GANs that introduce a new distance to correct for
biased sample gradients in the Wasserstein loss [Bellemare et al., 2017], Fisher GANs –
that use an IPM as well – [Mroueh and Sercu, 2017], LSGANs (Least Squares GANs) that
minimize the Pearson χ2-divergence [Mao et al., 2016], Energy-based GANs “[...] which
views the discriminator as an energy function that attributes low energies to the regions
near the data manifold [...]” (Zhao et al. [2016]), and much, much more.

This little foray into the jungle of different versions of generative adversarial networks not
only finishes this chapter regarding machine learning but the introduction in this thesis as
a whole. It is now about time to breathe life into the theoretical concepts discussed in the
last chapters and to amalgamate physics with concepts from machine learning.

7This method has been tried as well within the scope of this thesis – with limited success though. This
is unfortunate since I appreciate the idea. In their paper, the authors proposed to extend the loss according
to Equation 3.67 by another term called consistency regularization. The principle idea is to additionally
enforce the 1-Lipschitz constraint by Ex1,x2∼Px

[
max

(
0,

d(fφ(x1),fφ(x2))

d(x1,x1)

)
−M ′

]
which is based on the

property d(fφ(x1), fφ(x2)) ≤ Md(x1,x2) common to all Lipschitz continuous functions. However, the
method, despite being very well motivated, introduces several new hyperparameters that need to be tuned.

82

Chapter 4

Training Data and Preprocessing

The previous chapter provided a rather extensive insight into the thematic field of machine
learning starting from the historical development of the discipline with its modest beginnings
in the first half of the 20th century to highly advanced state-of-the-art concepts seen today.
However, notwithstanding the complexity of contemporary machine learning methods,
fundamental underlying principles have changed very little over time. Still, a model that is
based on a neural network – regardless of being supervised or unsupervised – is supposed
to learn a set of trainable parameters based on a finite subset of points sampled from a
data space with an underlying distribution that might be a priory unknown. In the case of
generative models, the distribution of the data ought to be modelled by a parameterized
model implemented through a neural network. Thus, it is evident that the selection as
well as the preparation of data used to train the model, is of great significance, which
may be the decisive factor for success or failure of the model. It is therefore important
to be aware of the underlying nature of data. This chapter intends to acknowledge this
circumstance and to give account for the data that is used to train the neural networks that
are described in this report. To this end, the first part of this chapter introduces the basic
physical processes that are supposed to be modelled. This report is restricted to QCD
(strong force only) and W initialized jets due to the clear and distinct difference in their
respective jet substructure. Once the simulation and reconstruction of the events have
been introduced, the second part focuses on the conversion of the energy distribution in
the calorimeter cells of an idealized detector to an “image”, which is then used to train the
generative models. To improve the performance of the training routine, the data undergoes
a number of further preparation steps, i.e., the preprocessing of the images to exploit as
many inherent symmetries as possible with the objective to remove redundancies in the
training set, which is a common practice in data analysis. The preprocessing of the data is
important to speed up the convergence of the model (especially if the data has intrinsically
complex structures), however, it is inevitably accompanied by “information loss”. This loss
of information will be investigated in the last part of this chapter – even though not of
importance in the scope of this feasibility study.

4.1 Event simulation

To study and evaluate the methods presented in this thesis, a sterile environment is required
that allows to perform tests under well-controlled “laboratory conditions”. For this purpose,
the data sets used to train neural networks have been generated with Monte Carlo event

83

generators and shower Monte Carlo in preference of real data. As previously described in
Chapter 2, the simulation of an event in high energy particle physics usually consists of (at
least) two steps: the calculation of the matrix element of the underlying hard subprocess
at fixed order in perturbation theory (e.g. LO or NLO) and, afterwards, the modeling of
QCD radiation, i.e., gluon emission based on some dedicated parton shower algorithm (see
Section 1.2.5).

At the LHC (like at all hadron-hadron colliding experiments) QCD is the dominant
process with the largest contribution to the total cross-section σpptot for proton-proton
interactions (see “jets” (R=0.4) in Figure 4.1).

Fig. 4.1: Overview of several cross-section measurements of selected Standard Model
processes compared to the corresponding theoretical expectations (adapted from
Gemme, 2016, Fig. 1, p. 3).

Due to the large “contamination” of QCD events at hadron colliders, it is utterly important
to provide accurate predictions of this omnipresent background to improve the sensitivity
to potential signals whose cross-sections are usually orders of magnitude smaller. Therefore,
with QCD being by far the most dominant contribution to the total cross section, it is only
reasonable to study this process in more detail in the course of this thesis.

4.1.1 Underlying hard subprocess and parton shower
This section introduces the underlying physical processes of the simulated data that is
used to train the neural networks presented in this report. Besides pure QCD – i.e. strong
interactions exclusively –, tt̄ events in the fully-hadronic final state have been simulated.

Pure QCD

The simulation of the underlying hard subprocess of the generated events is done with the
latest version (2.6.6) of MadGraph5_aMC@NLO (MG5) [Alwall et al., 2014b] for proton-proton
interactions at leading order (to avoid complications in the matching and merging proce-
dure) with a center-of-mass energy of

√
s = 14TeV, disregarding all interactions but QCD

for the time being (MG5 command interface: MG5_aMC>generate p p > j j). Figure 4.2

84

4.1. EVENT SIMULATION

depicts the essential LO tree-level s-channel Feynman diagrams for the simulated processes,
ignoring t- and u-channel as well as time inverted diagrams.

q

g

q

q

g

g

q′

q

q

q′

g

q′

q

g

g

g

g

g

g

Fig. 4.2: Small selection of leading order tree-level Feynman diagrams for the
processes pp→ gq+0jets, pp→ qq+0jets, and pp→ gg+0jets for strong interactions
solely (see Section 1.2).

The simulation of the hard interaction accounts for all quark flavors u, d, c, s, t and b;
this result in a total number of 65 processes with 112 different diagrams that contribute
to the total cross section σjets. Furthermore, an arbitrary pT-cut p

jet
T,cut = 100GeV and a

pseudorapidity-cut |ηjetcut| ≤ 5 (which is MG’s default) has been applied.

Electroweak

Additionally to the aforementioned simulated QCD processes (see Section 4.1.1), a LO tt̄
sample has been generated for the fully-hadronic final-state of the decaying W+ and W−
bosons1 (MG5 command interface: MG5_aMC>generate p p > t t , (t > W+ b, W+ > j
j), (t > W- b , W- > j- j)) in order to evaluate the performance of the generative
models for a jet topology that differs from pure QCD jets’ ones. The LO Feynman diagram
for qq̄ → bq̄q′ b̄q̄′′q′′′ is shown in the figure below.

t

g

g

t

t

q

q

g

g

g

g
W+

t

W−
t̄

b̄

q′′′

q̄′′

q′

q̄

b

Fig. 4.3: Example of the leading order Feynman diagram(s) for the hadronic final
state of the tt̄ system for different initial states and interactions.

While QCD jets usually result in a diffuse spray of radiation that is distributed over the
reconstructed jet radius R without an immediately apparent substructure (see Figure 1.2),
the hadronic decay of the W into two quarks may result in a very different jet structure,
depending on whether a resolved or a boosted topology is present. In a topology that is
completely resolved, the number of jets in the final state it at least six. However, in the

1This is the dominant decay with a branching fraction of BR(W → q′q̄) ≈ 67.60 [Eidelman et al.]).

85

boosted topology, where the transverse momentum of the W bosons is sufficiently large
(R ≥ 2mW

pT
), the decay products of the W may be reconstructed within one single large jet

(usually R = 1).

Parton shower simulation

The parton-level event information (see 2.2.4) from the matrix-elements-based calculation
is saved in a file that based on the Les Houches format (Les Houches Event Files resp. Les
Houches Accord (LHA)). Pythia8.2 provides various interfaces to external matrix element
event generators with LO and NLO matching available. To simulate QCD radiation by
means of a parton shower model, the Les Houches file(s) from MadGraph5_aMC@NLO with
parton-level event information are processed by Pythia8.2 via the Les Houches interface.
It is worthwhile noting that Pythia8.2, contrary to its previous version uses a dipole
shower to simulate parton showers which also accounts for gluon coherence [Sjostrand et
al., 2008].

“Detector simulation” and event reconstruction

The next step is the “reconstruction” of the parton-level events with QCD radiation being
simulated by Pythia. This done through an extremely simplified “detector simulation” that
consists of nothing other than a (detector) grid with finite granularity in the η-φ plane, as
well as a threshold cut Epix

th , which accounts for the finite acceptance of the detector in
each pixel. A cell in the detector is therefore associated with a position in ηpixi , φpixj as well
as an energy deposition Eij ≥ Epix

th in that particular cell by one or more particles with
Epix
ij = 0 if below Epix

th . Furthermore, there is no magnetic field involved in the simulation.
Hence, the parton-level information is used to populate the detector layer.

This idealized detector has some spatial extensions ∆η,∆φ in the
eta-φ space as well as a predefined number of pixels npixη , npixφ in each dimension. With the
spatial extension and the given number of pixels the granularity of the detector is given by

∆ηpix(φpix) =
∆η(φ)

npixη(φ)

. (4.1)

In this case, the number of pixels in η and φ direction is not fixed but depends on the radius
R that is used in the jet reconstruction algorithm to avoid artifacts in the reconstructed
distributions. With this information available, the detector tower (ηpix, φpix, Epix) is an
element of the following set

D :=
{

2|k|−1
2 sgn(k)∆ηpix

}npix
η −1

2

k=−
npix
η −1

2

×
{

2|`|−1
2 sgn(`)∆φpix

}n
pix
φ −1

2

`=−
npix
φ −1

2

× R≥E
pix
th , (4.2)

with (ηpixi , φpixj , Epix
ij) ∈ D and the signum function x = sgn(x)|x| whereby sgn(0)

!
= 0. In

the set 4.2, one recognizes that the description of this oversimplified detector is given by
two contributions: the information which pixel/cell is active (Epix ≥ Epix

th) is given by the
tuple (ηpixi , φpixj) and a continuous energy value Epix

ij that represents a regression task for
the neural network. The detector defined by Equation 4.2 does only exhibit one individual
layer, i.e., one layer of “radiation sensitive material” that absorbs all energy of the passing
particle. An obvious extension that is closer to reality would be to include several detector
layers. This, however, would require the simulation of the actual energy deposition in the

86

4.2. DATA PREPROCESSING

material in each layer and is therefore beyond the scope of this thesis.
The four-momentum of the particles associated with the respective particle-level event

is available and associated with one of the detector’s η-φ cells according to the criterion∣∣∣(ηpixi − η)/∆ηpix
∣∣∣ < 1

2 and
∣∣∣(φpixj − φ)/∆φpix

∣∣∣ < 1
2 , whereby η

pix
i and φpixj give the central

position of each pixel in the η-φ grid. The energy in the respective detector cell (i, j) ∼=
(ηpixi , φpixj) is then simply given by Epix

ij = Θ(Epix
th −Eij)Eij , whereby Eij =

∑
k∈=ij

Eij,k
denotes the summed energy of all generated particles in the event that fall into the same
pixel cell (ηpixi , φpixj) according to the aforementioned resolution criterion. This procedure
is repeated until all generated particles are processed and the detector is populated. After
this step the event is fully discretized and ready for the actual reconstruction, i.e., the
reconstruction of the jet.

The event information (position and energy of the particles in the detector) is now
distributed over a grid with finite granularity according to Equation 4.2. The task now is
to reconstruct the event from the detector information, i.e., cluster the energy distribution
over the η-φ grid to jet candidates based on some sequential recombination algorithm as
described in Chapter 1.3. For this purpose, the anti-kt jet reconstruction algorithm (see
1.3.4) with a reconstruction radius of R = 0.4 (for QCD jets) and R = 1.0 (for W jets) was
used. The actual reconstruction is done with the implementation of the anti-kt algorithm
in the software package FastJet [Cacciari et al., 2012].

The (inclusive) algorithm returns a list of jet candidates with an associated register
of constituent particles that constitute the respective jet. Within the scope of this study,
only the leading pT jet will be used for further analysis; all other reconstructed jets in the
event are discarded for the sake of simplicity.

4.2 Data preprocessing

The previous Section gave a brief description of the data generation process as it is usually
done in high-energy physics. After populating the idealized detector, reconstructing the
event using FastJet’s implementation of the anti-kt algorithm, and discarding all identified
jets except the leading pT one2, the result is only one jet in the final state that is used for
further analysis. This reconstructed jet is associated with a collection of constituent pi
particles and a four-vector pjet given by

pjet = Ejet
(

1,
cosφjet

cosh ηjet
,

sinφjet

cosh ηjet
,

sinh ηjet

cosh ηjet

)
(4.3)

=
∑

i∈Ijet
Epix
i

(
1,

cosφpixi
cosh ηpixi

,
sinφpixi

cosh ηpixi
,

sinh ηpixi
cosh ηpixi

)
, (4.4)

whereby the summation is taken over all constituent particles of the jet that have been
clustered by the reconstruction algorithm.

In principle, the discretized leading pT jet (discrete values of η and φ) is the information
used to train the generative models in this report. However, as it is commonly done in
data science, the preparation of the data is utterly important and may decide over success
or failure of the respective method – neural networks certainly are no exception to this rule.

2Unless specified differently, the term “jet” within the scope of this report always refers to the leading
pT jet.

87

Hence, this Section introduces and explains the individual preparation or preprocessing
steps of the data that are applied before providing it into the neural network. The objective
is to exploit as many symmetries as possible that are encoded in the data. This procedure
makes the learning task of the neural networks much more efficient since it does not have to
learn redundant symmetries but may focus on the main features of the data. Furthermore,
taking symmetries into account results in faster convergence and allows for a smaller data
set to be used. But one should consider that preprocessing of data often is accompanied
by information loss to a certain extent, a topic discussed after the introduction of the
individual preprocessing steps.

In the next paragraphs the following preprocessing steps are discussed: Lorentz transfor-
mation (boost) of the leading pT jet, a cut window of the detector, rotation and interpolation
of the pixelated image, scaling of the energy, and parity transformation.

Step 1: Lorentz boost and rotation
The reconstructed jet according to Equation 4.3 (as well as its constituents) is associated
with some position in the detector, i.e., the discretized η-φ grid. To prepare the training set
for the neural network, it is advisable to “standardize” the data to a certain extent. Therefore,
the four-vector of the reconstructed jet pjet is transformed via a Lorentz transformation
Λ = (Λαβ) (strictly speaking a Lorentz boost) followed by a simple rotation R in Euclidean
space such that the spatial position of its leading pT subjet3 is located at (0, 0) in the
η-φ grid. To this end, the four-momentum pi of the jet’s constituent particles must be
transformed accordingly. With this in mind, the transformation is given by

pjet′ = RΛ pjet (4.5)

=

1 0 0 0
0 cosφrot − sinφrot 0
0 sinφrot cosφrot 0
0 0 0 1

 ·

γb 0 0 −βbγb
0 1 0 0
0 0 1 0

−βbγb 0 0 γb

 ·

Ejet

pjetx
pjety
pjetz

 , (4.6)

=

cosh ηb 0 0 − sinh ηb

0 cosφrot − sinφrot 0
0 sinφrot cosφrot 0

− sinh ηb 0 0 cosh ηb

 ·

Ejet

pjetx
pjety
pjetz

 , (4.7)

(4.3)
=

∑

i∈Ijet
(RΛ pi) =

∑

i∈Ijet
p′i, (4.8)

whereby γb = tanh ηb and γbβb = sinh ηb have been used. It remains to determine the
boost parameter ηb and the rotation angle φrot to fully define the transformation above.
From the matrix multiplication in Equation 4.6 one gets the following condition on the
energy Ejet′ and the z component pjet′z of the jet after the transformation

pjetz cosh ηb − Ejet sinh ηb = pjet′z
!
= 0. (4.9)

Equation 4.9 defines the boost parameter tanh ηb = βb = pjetz /Ejet = tanh ηjet. Similarly,
the defining condition for the rotation angle is pjetx cosφrot + pjety sinφrot = 0; hence, the
vector in the transverse plane must be rotated by φrot = − arctan

(
pjety /pjetx

)
.

3If there is no subjet, then the barycenter of the reconstructed jet is transformed to the origin.

88

4.2. DATA PREPROCESSING

The transformation according to Equation 4.8 defined by ηb, φrot is applied to all
constituents that make up the jet. Hence – by construction – the reconstructed object, i.e.,
the leading pT subjet will be centered in the η-φ plane.

Instead of transforming the leading pT subjet of the reconstructed leading pT jet to
the origin of the detector, one could decide to only transform the barycenter of the jet
irregardless of the substructure. In fact, this should be the preferred solution since it
guarantees that all radiation remains within the radius R around the center. In case of
QCD, the two transformation schemes, leading pT subjet and barycenter, are approximately
the same due to the structure of the jet that has most of its radiation cumulated in the
center. However, the situation is very different for W initialized jets. In this case, the
leading pT subjet and barycenter of the jet differs significantly; hence, most of the radiation
is not necessarily contained in the center of the detector.

Step 2: cut window

g/q

g/q

p p

φ
η

ηjet

ϕjet

 0

 0

Fig. 4.4: First and second preprocessing step: a Lorentz boost as well as a rotation
in the transverse plane are applied to transform the leading pT (sub)jet to the origin
of the detector (0, 0) in the η-φ grid. Afterwards, a small region of the detector is
selected according to condition 4.11 (adapted from Thaler and Van Tilburg, 2011,
Fig. 1 (c,d), p. 4).

After the transformation of the leading pT (sub)jet using a Lorentz boost and a spatial
rotation, the jet is centered in the detector at position (0, 0). Nevertheless, the discretized
“image” of the event still expands over the entire detector region in η and φ direction.
However, using the complete detector would not be very conducive since the transformation
displaces the entire structure into a cone with radius R around the origin; hence, leaving
almost all cells outside this range empty (remember: all other jets are discarded). Further-
more, the entire detector area comes with a large number of pixels (npixη · npixη ∼ O(104))
in each dimension npixη(φ). Training neural networks on a data set that is based on the
entire detector region would, therefore, be computationally very expensive. It would also
be accompanied by significant memory consumption, limiting the applicability of batch
training (3.4.2), which is very important to obtain precise estimates of the gradients.
Cutting out a selected region of interest in the detector is therefore unavoidable.

Generally, care should be taken in this step to prevent spoiling the jet definition given in
Chapter 1.3. To ensure infrared and collinear safety of the jet definition, the cut-out window
must not be smaller than 2R. The window (zoomed version of the event) should have
npix′η and npix′φ pixels in η respectively φ direction. To avoid artifacts in the image (bound-

89

ary or discretization effects), it is naturally required that the granularity of the detector
∆ηpix(φpix) and the cut-out window ∆ηpix′(φpix′) are identical ∆ηpix(φpix)

!
= ∆ηpix′(φpix′).

This requirement defines two relations for η and φ that must be met

∆η(φ)

npixη(φ)

=
∆η′(φ′)

npix′η(φ)

. (4.10)

The full detector range ∆η(φ), the section ∆η′(φ′), as well as the number of pixels
npix′η(φ)(= 25) of the window is fixed; hence, the number of detector pixels in each dimension
is given by

npixη(φ) = npix′η(φ) ·
∆η(φ)

∆η′(φ′)
= npix′η(φ) ·

∆η(φ)

2R+ δ
, (4.11)

with δ ≥ 0 being some offset to extend the view. With this definition the cut-window is a
subset of the set 4.2, i.e., the detector.

Step 3: image rotation, interpolation and scaling

 0

 0

 0

 0

Fig. 4.5: Third preprocessing step: the image is rotated by αPCrot such that the
first principal component axes points at at 12 o’clock (adapted from Thaler and
Van Tilburg, 2011, Fig. 1 (c,d), p. 4).

After the preprocessing steps one and two, the result is a section of the detector’s center
that contains the transformed constituents of the leading pT jet. The third preprocessing
step serves the purpose of taking advantage of the underlying rotational symmetry of
the image by conducting a Principal Component Analysis (PCA) that finds the principal
components of the data – the jet image in this case – on an event-on-event base.

The PCA is a technique that is frequently used in data science. Its objective is to find
the axis of maximum variance in a distribution of data points by solving an eigenvalue
problem. Often, a PCA is used to reduce the dimensionality of the data by projecting it
on the principal axis; here, however, the PCA defines a “special axis” that is used to rotate
each jet image on an event-on-event base such that the principal component(axis) (PC) of
this particular image points at 12 o’clock (see Figure 4.5). The PCA then provides the
angle αPCrot by which the image must be rotated counterclockwise.

The eigenvalue problem that must be solved in context of the PCA is a very simple one.
As it has been described above, after the preprocessing steps one and two the jet is given
by a an image with a total number of Npix = npix′η ·npix′φ (= 625) pixels. Each particle has a
position (ηpixi , φpixi) in the grid (see Section 4.1) as well as an associated energy value Ei. To

90

4.2. DATA PREPROCESSING

simplify the notation, the labeling of the detector towers has been temporarily changed from
(ηpixi , φpixj , Epix

ij) with (i, j) ∈ N≥n
pix
η × N≥n

pix
φ \ {(0, 0)} to the equivalent representation

(ηpixi , φpixi , Epix
i) with i ∈ N≥n

pix
η ·npix

φ \ {0}. The mean position/barycenter in the image is
given by the weighed sum µη(φ) =

∑Npix

i=1 Eiηi(φi)/
∑Npix

i=1 Ei. The next step is to compute
the entries of the correlation matrix Σij which is given by Σij = E[Epix

i Epix
j]− µiµj with

i, j ∈ {η, φ}. To get the fist principal axis, one needs to compute the eigenvalues λPC and
eigenvectors xPC of the covariance matrix det|Σ − λPC12×2| = 0. So, the characteristic
polynomial is given by

det
∣∣∣∣
[
Σηη − λPC Σηφ

Σφη Σφφ − λPC
]∣∣∣∣ =

(
λPC

)2 − 2λPCΣηφ + ΣηηΣφφ − Σ2
ηφ = 0, (4.12)

whereby the symmetry of the covariance matrix Σηφ = Σφη was used. The polynomial 4.12
can easy be solved for the eigenvalues λPC1,2 = Σηφ ±

√
2Σ2

ηφ − ΣηηΣφφ. On that basis, the

kernel of Σ is computed; the elements of the kernel xPC ∈ ker(Σ) are

(Σηηx
PC
1 − λPC) + Σηφx

PC
2 = 0, (4.13)

(Σφφx
PC
2 − λPC) + Σφηx

PC
1 = 0. (4.14)

Based the solution of the system of linear Equations 4.13 and 4.14, the rotation angle for
the image is αPCrot = π

2 − arctan
(
xPC
2

xPC
1

)
.

The rotation causes a problem that is related to the finite granularity of the digitized
detector. The grid of the rotated and the non-rotated images do not necessarily lie on top
of each other (see Figure 4.6); hence, it is necessary to perform some kind of interpolation
between neighboring pixels.

Fig. 4.6: Overlaying pixels between the rotated and non-rotated image.

There are several interpolation techniques available such as the (k-)nearest neighbors
algorithm or spline interpolation. In this thesis, a cubic spline interpolation was used
to smoothly interpolate between neighboring pixels. The interpolation – apart from the
nearest neighbors interpolation – obviously causes another complication, since it changes
(“smears”) the energy content, i.e., the total energy sum Eimg

i =
∑Npix

i=1 Epix
i of the image.

To avoid this problem, the image is normalized and scaled by the initial energy after the
rotation has been performed.

91

Step 4: party transformation

 0

 0

 0

 0

Fig. 4.7: A parity transformation P is applied such that the Eimg
r > Eimg

l , i.e., the
largest energy fraction is always on the right-half of the plane (adapted from Thaler
and Van Tilburg, 2011, Fig. 1 (c,d), p. 4).

After the rotation of the image, there is one trivial symmetry left: spatial inversion or
parity transformation (this can already be seen in the previous paragraph since the basis
given by the PCA is only defined up to a sign). To avoid this underlying symmetry of the
data to be learned by the neural network, the image is transformed such that the largest
fraction of energy is always placed on the right half of the image M img ∈ D. The energy
fraction on the left Eimg

l and the right Eimg
r half of the image is given by

Eimg
l(r) =

∑

1≤i<bnpix
η /2c

(bnpix
η /2c≤i≤npix

η)

∑

1≤j<bnpix
φ /2c

Epix
ij . (4.15)

Based on Equation 4.15, the parity operation is defined as

P =

{
1 if Eimg

r ≥ Eimg
l

−1 otherwise
, (4.16)

with the parity transformation matrix P = 1
2 (1+P)1n

pix
η ×npix

φ + 1
2 (1−P)1npix

η ×npix
φ

(whereby
1npix

η ×npix
φ

denotes the anti-diagonal unit matrix).

4.3 “Invertible preprocessing”

The previous Section introduced a set of preprocessing steps that are applied to the data
before the training routine. However, besides this preparation procedure, there are fur-
ther modifications of the data prior to the actual training of the networks. These data
manipulations differ from those defined in Section 4.2 through their property to be exactly
invertible on an event-on-event base, while the others can only statistically be inverted
by sampling rotation angles αPCrot ∼ Pα and parity values P ∼ PP if both quantities are
uncorrelated, i.e., P (αPCrot ,P) = P (αPCrot)P (P). Those data transformations, henceforth
referred to as invertible preprocessing, serve the main purpose to scale the data such that
the information can be well processed by the respective algorithms, “[s]ince networks prefer
small numbers[...] between 0 and 1” (Kasieczka et al. [2017]). Besides the scaling, the

92

4.3. “INVERTIBLE PREPROCESSING”

functions ϕ ϑ are applied to the data whose characteristics and purpose are discussed in
this Section.

The jet images obtained after the aforementioned preprocessing steps presents a challenge to
neural networks because: first, the data is extremely sparse (see the universal approximation
theorem 3.1 and Section 4.4.2), and second, the neural network has to learn a large range
of energy values in the pixels that extend over several orders of magnitude. As a matter of
fact, the neural network has to learn an energy distribution for each individual pixel as well
as their correlations among each other. These two characteristics alone put a challenge on
all state-of-the-art neural networks. The situation is illustrate in Figure 4.1 that shows the
distribution of energy values in the pixel Epix

ij with i, j ∈ N≤25 \ {0} for a linear scale (4.1a)
and a logarithmic scale with Epix

ij → log(1 + Epix
ij) (4.1b) and Epix

ij → log(1 + 102Epix
ij)

(4.1c).

0 50 100 150 200 250 300 350 400 450 500

Energy Epix [GeV]

1

10

102

103

104

105

106

E
ve
n
ts
/9

.8
0
G
eV

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

(a) Linear

0 1 2 3 4 5 6

Energy log(1 + Epix/1GeV) [1]

1

10

102

103

104

105

106

107

E
ve
n
ts
/0

.1
2

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

(b) log(1 + Epix)

0 2 4 6 8 10

Energy log(1 + 1p2 · Epix/1GeV) [1]

1

10

102

103

104

105

106

107

E
ve
n
ts
/0

.2
1

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

(c) log(1 + 102Epix)

Plot 4.1: Distribution of pixel intensity values Epix for different scales.

The pronounced, dominant peak in the very first bin reflects the already mentioned low
occupancy of the image with most pixels being empty. Besides that, the log-scale (Plot 4.1b
and 4.1c) reveals some structure that is not immediately visible in the linear representation
where most of the structure is hidden in the very first bins. It will be very difficult for the
neural network to resolve the low energy contributions and learn the entire range of energy
values that roughly covers four orders of magnitude. Therefore, in order to simplify the
learning task of the network, the transformation ϕ is applied to each individual pixel in
the image and its energy content Epix

ij such that approximately Ẽpix
ij := ϕ(Epix

ij) ∼ O(1) or
below.

On the other hand, the conditional networks also receive two labels besides the latent
space vector z ∼ N (0,1), i.e., Ejet and ηjet (see conditioned neural networks Section 3.5.4
and 3.6.2). However, usually the desired energy of the reconstructed jet Ejet will not be at
the same order as the seed components zi; therefore, a linear transformation ϑ is applied
such that at least Ẽjet := ϑ(Ejet) ∼ O(1).

The general transformations ϕ and θ introduced above create an “aesthetical flaw”
that concerns the relation between the energy values in the pixels of the image Epix

ij as
well as the conditioning label Ejet. Since the network is conditioned, it should be able
to reconstruct the energy of the jet – which is externally provided by Ejet in form of
the conditioning label – from the pixel activations over the image. More precisely, there
must be a function ψ : D → R with Eimg = ψ(M img), whereby M img is one instant,

93

i.e., one event of the detector M img ∈ D. In the non-transformed system, this is simply

Eimg =
∑npix

η

i=1

∑npix
φ

j=1 E
pix
ij (see Equation 1.24). The function ψ is learned by the network

and might be non-trivial after all. The situation is simple if the transformation that is
applied to the pixel values ϕ and the one applied to the conditioning energy ϑ are both
homomorphisms, i.e., linear functions. In this case, the relation is given by

Eimg =
∑

i,j

Epix
ij , (4.17)

ϑ−1
(
Ẽimg

)
=
∑

i,j

ϕ−1
(
Ẽpix
ij

)
, (4.18)

= ϕ−1

∑

i,j

Ẽpix
ij

 , (4.19)

whereby in the last step the linearity of ϕ was used. So the relation between the conditioning
label and the pixel values in the transformed system is given by

Ẽimg = ϑ ◦ ϕ−1

∑

i,j

Ẽpix
ij

 =

∑

i,j

ϑ ◦ ϕ−1
(
Ẽpix
ij

)
. (4.20)

This means, especially, that the natural relation between the energy of the jet and the
constituents is preserved, with Ẽimg =

∑
i,j Ẽ

pix
ij if ϑ = ϕ. However, a linear scale comes

along with the aforementioned problems regarding the large range of energy values in the
pixels; therefore, other, non-linear transformations might be more beneficial in respect of
their impact on the training performance. One particular transformation – which is used
in this thesis – alongside the linear one, is the logarithm with ϕ(Epix

ij) = log(1 + %Epix
ij)

whereby % ∈ R. This transformation significantly helps regarding the possible range of
energy values Epix

ij , but breaks the simple relation between jet and pixel energy in Equation
4.20 due to the non-linear nature of the logarithm

Ẽimg = ϑ

∑

i,j

ϕ−1
(
Ẽpix
ij

)

 . (4.21)

This is, as already mentioned above, more an aesthetical than a fundamental problem. Even-
tually, the network is supposed to be conditioned on the jet energy Ejet, i.e., Ejet/Eimg ≈ 1
– this relation needs to be verified later.

In order to enforce a more “intuitive” relation between jet-image and its corresponding
label(s), one may consider to use an exponential transformation with an appropriate
exponent. If both ϑ and ϕ are exponential, Equation 4.21 can be written as

Ẽimg =
∏

i,j

ϑ ◦ ϕ−1
(
Ẽpix
ij

)
, (4.22)

with Ẽimg =
∏
i,j Ẽ

pix
ij if ϑ = ϕ. This is an interesting structure; however, after several

experiments, it has become clear that an exponential transformation is numerically highly
unstable despite antecedent scaling of the exponent or using a logarithm. Hence, this idea
was discarded.

Last but not least, the pseudorapidity ηjet of the jet, which is the second conditioning
label of the model, is simply transformed according to ηjet → 1

2η
jet.

94

4.4. TRAINING DATA

4.4 Training data

The preprocessing scheme introduced and explained in Section 4.2 is a standard choice in
machine learning when dealing with data that exhibit an underlying rotational symmetry
(see for instance de Oliveira et al. [2017] or Kasieczka et al. [2017], whereby the latter one
used the preprocessing steps in the context of a classification task; hence, inversion is not
required subsequently).

After the preprocessing steps have been applied, the preparation of the data is finished
and ready to be used to train neural networks. The reasons for the preprocessing in the
first place was to make the learning task of the network simpler by utilizing use of all trivial
symmetries encoded in the data beforehand. This – hopefully – will have a positive impact
on the performance (although it has a measurable effect) and the convergence behaviour
and result in a significant speedup of the time needed to train the model. But, everything
comes at a price: the loss of information to a certain extent. Of course, already the finite
granularity of the measuring device will result in an inevitable loss of information since
the resolution, as well as the acceptance of the detector, is fundamentally limited by the
bounds of reality. This is not a hindrance since it reflects the ubiquitous imperfection of the
measuring devices at our disposal in real-world experiments. Similarly, the training data for
the neural network will be an image with a finite granularity that corresponds to some region
of an idealized calorimeter with one layer. The rotation of the image, however, is quite
problematic, precisely because of its limited resolution (see Figure 4.6). The interpolation
between pixels in the rotated and non-rotated system changes the “activation value” Epix

ij

(energy tower) in the pixels as well as the number of pixels that are considered to be “active”
Npix
Epix>Epix

th
(hereinafter, the following abbreviation will be used: Npix

0 := Npix
Epix>0

), i.e.,
number of “constituents” of the jet. This poses a serious problem – although not in the
context of this thesis4 – since many observables take the relative position between particles
into account. Therefore, changing the number of constituents of the jet is very likely to
spoil the reconstructed observables.

Since machine learning is a (solely) data-driven method, understanding the training data
is very important. Therefore, the purpose of this Section is to provide a closer examination
of the data that is used to train the neural networks presented in this report. Here the
main issue is to study the effect of the individual steps in the preprocessing chain regarding
the data and the loss of information.

4.4.1 Average jet image
Since the discretization of the event is unavoidable, it – along with the Lorentz boost
that transforms the four-momentum of the jet to the center of the detector (furthermore
referred to as “minimal preprocessing” or indicated by the first italic Roman numeral I) is
the starting point to study the implications of the individual preprocessing steps in Section
4.2. As peviously discussed, training the model on the entire detector region is, in principle,
possible but not recommended due to limited memory resources.

First of all, consider the average reconstructed jet image for the leading pT QCD jet in
Figure 4.2.

4In the context of this thesis, the information loss is not relevant since the generated samples are
exclusively compared with the respective data from the actual training set. Therefore, everything is
consistent (incidentally, this also applies to collinear and infrared safety of the jet).

95

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/
ra
d
]

10−3

10−2

10−1

1

10

A
ve
ra
ge

en
er
gy

〈E
p
ix
〉[
G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

LeadingJetLeadingJet

anti-kt, R = 0.4anti-kt, R = 0.4

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/
ra
d
]

10−3

10−2

10−1

1

10

A
ve
ra
ge

en
er
gy

〈E
p
ix
〉[
G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

LeadingJetLeadingJet

anti-kt, R = 0.4anti-kt, R = 0.4

Plot 4.2: Reconstructed average leading pT QCD jet for minimal preprocessing (left)
and full preprocessing (right) for 200, 000 events.

The jet images in Figure 4.2 correspond to the average of N event = 200, 000 individual
images (single events like illustrated in Figure 4.3) whereby the energy entry Ēpix

ij in each

pixel in the average jet-image is given by the sample mean Ēpix
ij = 1

Nevent

∑Nevent

k=1 Epix
ij,k.

One should keep in mind that the model learns a different energy distribution for each
pixel whose shape will differ significantly for different pixels. Hence, the average energy
Ēpix
ij provides the sample mean approximation of the expectation value Ēpix

ij ≈ EE∼Pij [E]
of the energy distribution Pij in pixel (i, j).

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix
[G

eV
]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix
[G

eV
]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix
[G

eV
]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

Plot 4.3: Three random QCD events.

The images in Figure 4.3 show one characteristic of QCD initialized jets, i.e., the “diffuse”
spray of radiation within the radius of the jet without any immediately obvious substructure
(cf. N -subjettiness for QCD jets in Chapter 1.3.5). Due to this lack of substructure, the
implications of the preprocessing steps are relatively small – though they are clearly
visible. Therefore, the preprocessing just barely influences the training performance of
the networks, and might as well be dropped (nonetheless, the preprocessing is applied
since it still positively affects training time and reduces the size of the data set needed).
Furthermore, Figure 4.3 and 4.2 show the large range of energy values in the individual
pixels of the image as well as the aforementioned small occupancy in the periphery of the
image.

The situation, however, is very different in case of W jets as can be seen in the Feynman
diagram 4.3. The decay products are reconstructed in one large jet (provided that the
radius R of the jet is sufficiently large). This results in a clear substructure within the jet’s

96

4.4. TRAINING DATA

radius that consists of two isolated energy accumulations originating from the two quarks
enclosed by soft radiation from the parton shower. Figure 4.4 shows again the reconstructed
average jet-image forW jets and the two preprocessing configurations evaluated for 200, 000
events.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−3

10−2

10−1

1

10

A
ve
ra
ge

en
er
gy
〈E

p
ix
〉[
G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

pjetT ≥ 200GeVpjetT ≥ 200GeV

LeadingJetLeadingJet

anti-kt, R = 1.0anti-kt, R = 1.0

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−3

10−2

10−1

1

10

A
ve
ra
ge

en
er
gy
〈E

p
ix
〉[
G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

pjetT ≥ 200GeVpjetT ≥ 200GeV

LeadingJetLeadingJet

anti-kt, R = 1.0anti-kt, R = 1.0

Plot 4.4: Reconstructed average leading pT W jet for minimal preprocessing (left)
and full preprocessing (right) for 200, 000 events and a pT cut pjetT ≥ 200GeV.

The average image forW jets shows a clear substructure, which is expected forW jets, with
two distinct contributions. As it can be shown based on simple kinematic considerations,
for the decay products to be reconstructed within a jet of radius R, the pT of jet should
meet the condition R >∼ 2mW /p

jet
T . Therefore, a pT cut of 200GeV has been applied on

the reconstructed jet, justified by the reconstruction radius R = 1.0 used for the anti-kt
algorithm 1.3.4. The structure that is visible in Figure 4.4 does only manifest itself on
average; for single events, however, it is barely visible.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix
[G

eV
]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix
[G

eV
]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix
[G

eV
]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,W

Plot 4.5: Three random W events.

While due to the lack of structure, QCD jets do not necessarily require preprocessing,
the W initialized jets do. The abandonment of the preprocessing steps for the W data
set results in a significant increase of the training time compared to the situation where
preprocessing applied. This effect can be compensated with an enlarged data set and/or an
increased number of training iterations. Due to the limited computer resources available,
though – unless specifically stated otherwise –, the full preprocessing chain (steps 1 to 4 in
Section 4.2) is applied for all data sets used in this report.

97

4.4.2 Information loss
The aforementioned image preprocessing inevitably gives rise to data loss mainly due to
the interpolation between the pixels in the course of the rotation of the PC. This Section
briefly studies the impact of the individual preprocessing steps on the data relative to the
minimal configuration I, i.e., Lorentz boost and a zoomed detector view only.

First and foremost, with the preprocessing steps being applied, all the jet images
generated by the neural network will be biased. A neural network that was trained on a
data set with the full preprocessing chain applied will only generate jets with the principal
component axis pointing at 12 o’clock (4.2) and the major energy fraction on the right
side of the image Eimg

r > Eimg
l (4.2). This does not represent a problem in the scope of

this thesis since the preprocessing can easily be inverted by sampling from the distribution
of the rotation angles αPCrot for the PCA and the parity values P to mirror the jet image.
Both distributions can always be generated from the training set as shown in Figure 4.6.

π 2π

Rotation angle αPC
rot [rad]

0

5

10

15

20

25

×103

E
ve
n
ts
/0

.3
1
ra
d

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

Parity P

0

0.05

0.1

0.15

0.2

0.25

×106

E
ve
n
ts
/1

.2
0

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

-1 1
0 π 2π

Rotation angle αPC
rot [rad]

-1

1

P
ar
it
y

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

×103

E
ve
n
ts

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV,QCD

ρα,p = 6.958 · 10−4 (3.0 · 105 events)ρα,p = 6.958 · 10−4 (3.0 · 105 events)

Plot 4.6: Distribution of rotation angles αPCrot obtained from the PCA (4.2) (left),
parity values P as defined in Section 4.16 (middle) and the correlation coefficient
ραPC

rot ,P
between αPCrot and P (right).

The distribution of the rotation angles and parity values in Figure 4.6 look as expected.
Furthermore, the two quantities can be considered uncorrelated (though not necessarily
independent) with a Pearson correlation coefficient of ρα,P = 0.6958h (for 300,000 events)
as can be seen in the rightmost correlation plot in Figure 4.6. So, to invert the preprocess-
ing chain – if required at all –, all one has to do is to sample random variables from the
two leftmost distributions in Figure 4.6. However, it shall not be left unmentioned that
this approach exhibits some characteristic problems. For instance, while the inversion of
the preprocessing is easily done for the leading pT jet, it does not take int account the
correlation between the leading and the subleading pT jet that is discarded at this point.
This is an inherent problem of the method, since the neural networks in this thesis are ex-
clusively trained on the leading pT jet. Therefore, all models are predestined to fail to learn
correlation between different jets in an event like, e.g., color connection/flow [Collaboration,
2018]. Subsequent studies should aim to account for those effects which are encoded in the
actual training data by allowing to train models on different jet multiplicities. But this
is, unfortunately, beyond the scope of this thesis. Possible strategies of how to train neu-
ral network for a variable number of jets through RNNs are provides at the end of this report.

The effect of the individual preprocessing steps can clearly be seen in the change in the
distribution of the jet observables such as, e.g., the mass, N -subjettiness etc. (the jet
energy remains unchanged by construction if the image is (re-)scaled (Rs) after the rotation

98

4.4. TRAINING DATA

took place). The normalized distance

ξiOimg =
Oimg
FD −O

img
CW,i

Oimg
FD +Oimg

CW,i

∈ R, (4.23)

is defined as a proxy for the “information loss”, whereby Oimg
i refers to the reconstructed jet

observables under consideration of the respective preprocessing steps introduced in Section
4.2. Oimg

i on the other hand denotes the observable that was reconstructed based on the
boosted jet with the full detector instead of a zoomed section.

The information loss in the reconstructed jet mass is summarized in Figure 4.7.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Information loss ξm = (mimg
FD −mimg

CW)/(mimg
FD +mimg

CW)

0

100

200

300

400

500

600

700

800

900

E
ve
n
ts
/0

.0
15

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV, QCD

Boost+RotNN+Rs

Boost+Rot1+Rs

Boost+Rot3+Rs+P

Boost+Rot3+Rs

Boost+Rot2+Rs

Boost

(a) ξm distribution

B
oost+

R
ot N

N
+
R
s

B
oost+

R
ot 1

+
R
s

B
oost+

R
ot 3

+
R
s+

P

B
oost+

R
ot 3

+
R
s

B
oost+

R
ot 2

+
R
s

B
oost

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

ξ̄ m
±
√

V
ar

(ξ
m

)

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14 TeV, QCD

(b) Average “information loss”

Plot 4.7: Loss of information for the reconstructed jet mass for different preprocessing
configurations.

Figure 4.7a shows the distribution5 ξm for different preprocessing steps while the graph
in Figure 4.7b gives the mean as well as the Root Mean Square (RMS) error of the respective
distribution. RotINTRPL indicates that the image has been rotated with the INTeRPoLation
method Nearest Neighbor (NN) or spline interpolation like (bi)linear (1), quadratic (2)
or cubic spline interpolation (3). The parity transformation (4.2) does not affect the
distribution. This is expected since the parity operation preserves all relative angles
between the constituents. However, it is hardly surprising that all image modifications that
involve rotations significantly affect the shape of the mass distribution. The interpolation
between pixels ((re-)pixelation) distributes/smears the energy content of one pixel-cell in
the initial frame over several pixels in the rotated system; hence, it affects the relative
angles and thus also the reconstructed mass. This effect is a consequence of the finite
granularity of the detector and vanishes in the continuous limit (∆ηpix,∆φpix) → (0, 0)
if (npixη , npixφ) → (∞,∞). It may come as a surprise that the Lorentz boost gives rise to
information loss in the mass spectrum, since the mass is a Lorentz invariant quantity and

5The bin with wbin of the histogram was computed according to Freedman–Diaconis’ rule [CIS, 1981]
wbin = 2

IQR(x)
3√n , whereby IQR(x) denotes the interquartile range of the data set x.

99

therefore remains unchained under boosts in beam direction. The apparent discrepancies
can be explained by the first two preprocessing components in Section 4.2. According to
the first step, not the leading pT jet itself, i.e. its barycenter is centered in the detector but
its leading pT subjet (if it exists). This serves a particular purpose: centering the leading
pT subjet ensures that the highest region of activity is always shifted to center of the
image. This step was crucial when working with classical GANs (according to Goodfellow
et. al.); however, it is probably obsolete with the more robust WGANs. Nonetheless, this
preprocessing step was used for all the data through this thesis. The difference in the mass
for the reconstructed jet in the full and the selected detector region can be seen in Figure
4.8.

10 20 30 40 50 60 70

Mass mimg
FD (Full Detector) [GeV]

0

5

10

15

20

25

30

35

40

45

M
as
s
m

im
g

C
W

(C
u
t
W

in
d
ow

)
[G

eV
]

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV, QCD

LeadingJet

anti-kt, R = 0.4

(a) mimg
FD versus mimg

CW

150 200 250 300 350 400 450

Transverse momentum pimg
T [GeV]

4

6

8

10

12

14

∆
m

im
g

=
m

im
g

F
D
−
m

im
g

C
W

[G
eV

]

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14 TeV, QCD

LeadingJet

anti-kt, R = 0.4

(b) ∆m = mimg
FD −mimg

CW versus pimg
T

Plot 4.8: Comparison of the reconstructed jet mass in the Full Detector (FD) and
the Cut Window (CW).

As it can be seen in Figure 4.8a, mimg
FD and mimg

CW are strongly positively correlated whereby
mimg

FD > mimg
CW. This can be understood with the information given above. Since the

leading subjet is centered, it might happen that other constituents of the reconstructed
jet lay outside of the window after the transformation is applied. Therefore, the mass
reconstructed from the image systematically underestimates the actual mass of the jet.
The right Figure 4.8b on the other hand shows the difference of the reconstructed mass
in the full detector and the selected region ∆mimg = mimg

FD −m
img
CW versus the transverse

momentum pimg
T of the jet. In this case, a positive correlation can be observed too. This

might be caused by the increasing amount of additional QCD radiation due to acceleration
that is not contained within the window after the Lorentz transformation. Although, this
effect is – of course – undesirable, it does not present a problem within the context of this
feasibility study but, on the contrary, was important for convergence of GANs.

The effect is very similar for τ1 (1-subjettiness for one assumed subjet) although less
pronounced as illustrated in Figure 4.9.

100

4.4. TRAINING DATA

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

ξτ1 = (τ img
1,FC − τ img

1,CW)/(τ img
1,FD + τ img

1,CW)

0

100

200

300

400

500

600

700

800

900

E
ve
n
ts
/0
.0
22

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV, QCD

Boost+RotNN+Rs

Boost+Rot1+Rs

Boost+Rot3+Rs+P

Boost+Rot3+Rs

Boost+Rot2+Rs

Boost

(a) ξτ1 distribution

B
oost+

R
ot N

N
+
R
s

B
oost+

R
ot 1

+
R
s

B
oost+

R
ot 3

+
R
s+

P

B
oost+

R
ot 3

+
R
s

B
oost+

R
ot 2

+
R
s

B
oost

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ξ̄ τ
1
±
√

V
ar

(ξ
τ
1
)

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14 TeV, QCD

(b) Average “information loss”

Plot 4.9: Loss of information for the reconstructed τ1 for different preprocessing
configurations.

Compared to the mass in Figure 4.7 the differences between the various interpolation
techniques is rather ‘marginal”.

However, the situation is very different if one studies the information loss in the number
of “constituents” or active pixels, i.e., the number of pixels Npix

0 in a jet-image with an
energy value Epix

ij > 0. Since the effect is significant, Figure 4.10a directly shows the
distributions of Npix

0 on an event-on-event base instead of ξNpix . Figure 4.10b, however,
still gives the average and RMS of the ξNpix distributions since it is centered around zero
and hence easier to interpret. As was to be expected, the impact on the number of active
pixels in an image is considerable. This effect is caused by the rotation of the image
and therefore is strongly dependent on the respective interpolation method that is used.
As it can be seen in Figure 4.10a, the distribution of active pixels for the (1-)nearest
neighbour interpolation coincides with the distribution from the boosted data set that
did not undergo any rotation and interpolation. This is line with expectations since the
(1)-nearest neighbour interpolation is simply defined by

E(i, j) =

{
E(bic, bjc) for i/j − bi/jc < 1

2

E(bic+ 1, bjc+ 1) otherwise
,

with (i, j) ∈ Nn
pix′
η ×Nn

pix′
φ . So, the number of active pixels remains unchanged, however, not

their position in the image. The other interpolation techniques in Figure 4.10b use several
pixels for interpolation; therefore, the number of active pixels is significantly increases. So,
the rotation as well as the following interpolation (except nearest neighbor) result in a
distorted number of active pixels. This, however, does not mean that the nearest neighbor
method is the appropriate choice to interpolate between pixels. As it can be seen in Figure
4.7 and 4.9, the nearest neighbor interpolation results in a significant information loss in the
mass as well as τ1 where the relative position between pixels is crucial. This information,
the distance between pixels in the η-φ grid, is not well preserved (anyway, the number of
active pixels is not a good observable since it is not IRC safe (see Section 1.3.2)).

101

50 100 150 200 250 300

Number of active pixels Npix
0 [px]

0

1000

2000

3000

4000

5000
E
ve
n
ts
/
1
p
x

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV, QCD

Boost+RotNN+Rs Boost+Rot1+Rs

Boost+Rot3+Rs+P Boost+Rot3+Rs

Boost+Rot2+Rs Boost

(a) Number of pixels with Epix > 0

B
oost+

R
ot N

N
+
R
s

B
oost+

R
ot 1

+
R
s

B
oost+

R
ot 3

+
R
s+

P

B
oost+

R
ot 3

+
R
s

B
oost+

R
ot 2

+
R
s

B
oost

-1

-0.8

-0.6

-0.4

-0.2

0

ξ̄ N
±
√

V
ar

(ξ
N

)

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14 TeV, QCD

(b) Average “information loss”

Plot 4.10: Loss of information for the reconstructed number of active pixels Npix
0

for different preprocessing configurations.

Taking into account many other distributions (which are not shown), it was decided
that the cubic spline interpolation is the method of choice even though it results in a
significant increase in the number of active pixels in an image. The increased occupancy
in the image due to the interpolation is actual beneficial from the point of view of the
training stability of neural networks (see stabilizing GANs through noise Section 3.6.1):
as evident from Figure 4.10a, as well as visually observed in the generated samples in
Figure 4.3, the training data is extremely sparse. For non-rotated QCD events/images, the
average occupancy is roughly 3 % while the rest stay inactive. It is well known that machine
learning algorithms (especially generative models) usually show poor performance if applied
to sparse data. The reason for this follows the fact that for sparse data a significant amount
of weights stay inactive and hence are not updated (sparse gradients). This corresponds
to an effective reduction of the size of the training set. If the training set includes N |D|

training samples {xk}N
|D|

k=1 with an average occupancy feff = 1
N |D|·nx

∑
i,k Θ(x

(i)
k) ∈ [0.1]

– counting non-zero entries over the entire data set –, the “effective size” of the data set
N
|D|
eff is actually just N |D|eff ∼ O(feffN

|D|). This means, for instance, that the effective size
of the boosted data set with 200, 000 events effectively is reduced to only 6, 000 events
compared to a data set with full occupancy in each image. This effect is confirmed by
several experiments and has often been observed. Normally, a counteractive measure to
reduce the impact of the aforementioned effect is to convolute the data with a known
distribution (usually taken to be a Gaussian), i.e., adding noise to increase the occupancy
and to expand the intersecting set of the support. This is a common regularization scheme
to improve the performance of generative models. Likewise, the rotation and interpolation
acts as a regularization since it increases the number of active pixels in the image. This
turned out to be very important for the training of classical GANs. In case of the cubic
spline interpolation, the average occupancy significantly increases to roughly 13 % – which
is still very sparse though. A possible countermeasure would be to reduce the number of
pixels npix′η(φ) with the cost of less structure in the image. Furthermore, an adjustment of
the number of active pixels in the image can be done by applying an energy threshold cut
Epix
th on each pixel. Figure 4.11 shows the fraction of events in one out of three bins for the

102

4.4. TRAINING DATA

reconstructed jet energy parameterized by the energy threshold Epix
th applied on each pixel

(migration of events from one bin to another).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Energy cut log
(
1 + 10 · Epix

cut/1GeV
)
[1]

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
c
u
t
/N

0
[1
]

Ejet ∈ [87, 170]

Ejet ∈ [170, 252]

Ejet ∈ [252, 334]

01 2 3 4

Energy cut Epix
T,cut [GeV]

MadGraph5 aMC@NLO&Pythia8.2

√
s = 14TeV, QCD

Boost

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Energy cut log
(
1 + 10 · Epix

cut/1GeV
)
[1]

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
c
u
t
/N

0
[1
]

Ejet ∈ [88, 187]

Ejet ∈ [187, 286]

Ejet ∈ [286, 385]

01 2 3 4

Energy cut Epix
T,cut [GeV]

MadGraph5 aMC@NLO&Pythia8.2

√
s = 14TeV, QCD

Boost+Rot3+Rs+P

Plot 4.11: Bin-to-bin-migration as a function of the energy threshold Epix
th .

The direct effect of the energy cut on the distribution of active pixels for the different interpo-
lation methods is exemplary illustrated in Figure 4.12 for Epix

th ∈ {0.5GeV, 1.0GeV, 5.0GeV}.

0 10 20 30 40 50 60 70 80

Number of active pixels Npix
Epix≥0.5GeV

0

1000

2000

3000

4000

5000

6000

E
ve
n
ts
/1

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV, QCD

Energy threshold cut Epix
th = 0.5GeV

Boost+RotNN+Rs

Boost+Rot1+Rs

Boost+Rot3+Rs+P

Boost+Rot3+Rs

Boost+Rot2+Rs

Boost

(a) Epix
th = 0.5GeV

0 10 20 30 40 50 60 70 80

Number of active pixels Npix
Epix≥1.0GeV

0

1000

2000

3000

4000

5000

6000

7000

8000

E
ve
n
ts
/1

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV, QCD

Energy threshold cut Epix
th = 1.0GeV

Boost+RotNN+Rs

Boost+Rot1+Rs

Boost+Rot3+Rs+P

Boost+Rot3+Rs

Boost+Rot2+Rs

Boost

(b) Epix
th = 1.0GeV

0 5 10 15 20 25 30

Number of active pixels Npix
Epix≥5.0GeV

0

5

10

15

20

25
×103

E
ve
n
ts
/1

MadGraph5 aMC@NLO&Pythia8.2,
√
s = 14TeV, QCD

Energy threshold cut Epix
th = 5.0GeV

Boost+RotNN+Rs

Boost+Rot1+Rs

Boost+Rot3+Rs+P

Boost+Rot3+Rs

Boost+Rot2+Rs

Boost

(c) Epix
th = 5.0GeV

Plot 4.12: Number of active pixels Npix
Epix>Epix

th
for different threshold cuts.

There is already a significant change in the shape of the distributions for an energy-cut
of only Epix

th = 0.5GeV (the distribution for the boosted data set remains unchanged due
to the absence of any interpolation and the 500MeV cut in the “detector simulation” at
parton level (see Section 4.1.1)). For a threshold cut of Epix

th = 5.0GeV all distributions
are (more or less) in good agreement.

103

104

Part III

105

Chapter 5

Jets with Gaussian Variational
Autoencoders

The last chapter provided an introduction into the topic of machine learning, motivated
and compiled the data, which consists of QCD and W initialized jet and introduced the
individual preprocessing steps that are applied to the jet images to remove redundancies
present in the actual data set to improve the performance of the training routine.

With a standardized and preprocessed data set at one’s disposal, it is time to turn
the attention to the actual subject matter of this thesis, i.e., the analysis of generative
models through machine learning based on deep learning. This opens the third and final
part conducted within the framework of this report that studies Gaussian VAEs as well as
Wasserstein GANs, following the chronological order introduced in Chapter 3.

This chapter starts with a brief description of the architecture that was used for the
neural networks of the encoder and the decoder model (5.1) (the architecture of the critic
and the generator model in case of adversarial networks, which are the subject of the
subsequent Chapter 6, will remain mostly unaltered compared to the ones introduced in the
context of variational autoencoders). Section 5.2 introduces and justifies the configuration
of hyperparameters, i.e., the dimension of the latent space dim(Z), the learning rate αl,
and the gradient-descent-based optimization algorithm that have been used to train the
composite model. The successive section (5.3) is the first attempt to generative models and
studies unconditioned Gaussian variational autoencoders. In Section 5.4, the information
of the matrix element is marginalized through a Gaussian VAE that is conditioned on
the energy Ejet and the pseudorapidity ηjet of the jet. The penultimate section of this
chapter (6.5) combines conditional Gaussian VAEs with RNNs with a view to model the
underlying sequential nature of the splitting sequence in the parton shower. This chapter
finally ends with a very brief summary and conclusion based on the gathered insights before
the attention is directed to Wasserstein GANs in Chapter 6.

5.1 Model architecture specification

An important part of the necessary preperation when dealing with machine learning
methods is, in general, to develop a particular design for the architectures of the neural
networks used to implement the respective models, e.g., the non-linear activations, the
number of hidden layers and weights used in a feed-forward topology (see Section 3.3.1) or,

107

for instance, the number of time-steps nT in a recurrent network. At present, there are no
general rules available regarding the choice and the design of a network architecture for a
specific purpose (even though there are attempts towards a fully automatic construction
of deep neural networks); therefore, the optimization of the unable hyperparameters of
the respective model mostly relies on empirical insights, rules of thumb that have been
acquired over time and is therefore often one recurring point of criticism. Within the scope
of this thesis, the design of the network architecture does by no means aim for the best
possible performance of the respective deep learning models, but to reach an acceptable
compromise between performance and complexity – fully aware that different architectures
might provide occasionally better results.

(NMB) 1
32

32

8

8

6
6

4

25

25

25

25

29

29

13

13

17

17

13

13

15

15

15

15

5

5

5

5

5

5

3
3

256

128

64

100

100

µφ

σ2
φ

zero-padding↗
P = 2

zero-padding↗
P = 2

zero-padding↗
P = 1

1. res.

2. res.

3. res.

4. res.

`ReLU

`ReLU
`ReLU

`ReLU+LN

`ReLU+LN

`ReLU

Ejet

ηjet

(a) Encoder

(NMB) 1

64 32

32
32

6

6

4

7

7

7

7

14

14

18

18

14

14

28

28

26

26

25

25

100

5

5 5

5

3

3

3

3z

up-sampling↗
2× zero-padding↗

P = 2

up-sampling↗
2×

1. res.

2. res.

3. res.

`ReLU
`ReLU `ReLU

`ReLU

Ejet

ηjet

(b) Decoder

Fig. 5.1: Network architecture of the variational autoencoder.

All architectures that are used through this thesis – also in case of the Wasserstein
GANs (see Section 6.1) – are based on the famous and pioneering design of the Deep
Convolutional Generative Adversarial Networks (DCGAN) introduced by Radford et al.
[2015] as well as the modified architecture proposed by de Oliveira et al. [2017]. The
corresponding geometry of the decoder (Figure 5.1a) and encoder (Figure 5.1b) neural

108

5.1. MODEL ARCHITECTURE SPECIFICATION

network used in this report is schematically illustrated in Figure 5.11. The two basic
architecture geometries that are shown in Figure 5.1 come in different variations that
either utilize fully-connected dense layers (FcNet), classical convolutional layers (ConvNet)
[Springenberg et al., 2015], locally-connected layers (LcNet) or locally-connected layers
with residual blocks (ResNet). Furthermore, the suffix “-BN” resp. “-LN” implies that either
batch or layer normalization (see Section 3.4.4) was used (e.g. ResNetBN/LN), while the
suffix “-Res” indicates that the number of trainable parameters have been reduced (usually
approximately by a factor of one-half NX : NXRed ≈ 2 : 1) for the specific architecture
under consideration (for instance, the network LcNet comprises significantly more trainable
parameters than LcNetRed).

The aforementioned concept of residual learning was first introduced by He et al. [2015]
in Google’s “Deep Residual Learning for Image Recognition” and has become increasingly
popular among the machine learning community over the recent years. Today, many
state-of-the-art models use residual networks that are, in turn, based on the aforementioned
residual blocks. Conceptually, this method is very intuitive and simple to understand yet
very effective. The basic operating principle of a residual block in its simplest form – as it
is used in this report – is summarized in Figure 5.2 below.

f (`−1)(x)

Layer `

σ`(T (`)w(f (`−1)(x))) f (`−1)(x)

Layer `+1

T (`+1)
w ⊕ f (`−1)(x)

Fig. 5.2: A simple residual block.

In conventional feed-forward neural networks (as they have been introduced in Section
3.3.1) the output of each (hidden) layer is exclusively used as an input for the subsequent
one. Hence, the current state of layer ` does only depend on `− 1 and not explicitly on
layer `− 2. For models with at least one residual block, however, the input into one layer
contemporaneously possibly serves as a “non-transformed”2 input into many other layers
somewhere in the network (see Figure 5.2). This allows for the construction of very deep
and complicated models without running into known characteristic problems of deep neural
networks like vanishing or exploding gradients in the backpropagation algorithm due to
the subsequent application of the chain-rule and/or the dreaded “curse of dimensionality”
[Keogh and Mueen, 2017]. If the complexity of the network is gradually increased, the
“goodness of the fit”, i.e., the loss/cost function will begin to saturate and possibly start
to degrade again if more and more parameters are added to the model (cf. degradation

1Important note: The geometrical dimensions of the shapes in Figure 5.1 are not drawn to scale! They
only intend to provide an intuitive display of the architectures used in this work.

2Occasionally, it is necessary to correct the “shape” of the residual such that the concatenation
T

(`+1)
w ⊕ f (`−1) is a meaningful operation.

109

problem in deep learning). With residual blocks being part of the model, however, sections
of the neural network may be bypassed (see Figure 5.2) or even completely disconnected;
hence, the effective number of parameters is reduced. This makes the model significantly
less vulnerable and more robust against a suboptimal design of the network’s architecture,
which is often the root of poor performance.

Besides the residual blocks, the rather unconventional locally-connected convolutional
layers (with unshared parameters) need some explanation. Convolutional neural networks
have been developed simultaneously with the increasing relevance of image processing and
image analysis in machine learning. The need for shared weights – as commonly used by
convolutional networks – is immediately apparent since fully-connected layers do not scale
well with the increasing dimensionality of the input, which grows quadratically with the
size of the image. A simple fully-connected network that consists of only one shallow layer
with Nn nodes/neuron that takes as input an image with dimension Nx ×Ny ×Nc, with
Nc being the number of color channels in the image (e.g. Nc = 1 for 8-bit (monochrome)
grayscale or Nc = 3 for RGB of the 24-bit standard), will already have Nx×Ny ×Nc×Nn
learnable weights (excluding biases). Usually, the dimensions Nx and Ny of the image
are the same; hence, the number of weights grows quadratic, which makes them again
prone to overfitting. Convolutional neural networks solve this problem by using the same
set of weights (cf. shared-weight filters) for the convolution with the data and therefore
also accompanied by some regularization effect that reduces overfitting (see Figure 5.3a).
Besides the advantage of a considerably reduced number of parameters, convolutional
layers are translational invariant [Lecun, 1989], i.e., a shift in the input data will cause a
proportional shift in the output of the operation. This property is especially desirable for
data with a high degree of symmetry.

1−10

1

10

[G
eV

]
pi

x
E

0 5 10 15 20 25

[pix]ηPseudorapidity

0

5

10

15

20

25

]
ra

d
[p

ix
/

ϕ
A

zi
m

ut
ha

l a
ng

le

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5

s

NK

(a) Shared weights in a convolutional layer
with NK filters (kernels) of size K×K convo-
luted with an image of size L×L with a stride
(step) size of S. If one includes zero-padding
P , the output size of the convolution is given
by W ×W ×NK with W = L−K−2P

S
+ 1.

1−10

1

10

[G
eV

]
pi

x
E

0 5

10

15 20

25

[pix]η

Pseudorapidity
0

5

10

15

20

25

]
ra

d
[p

ix
/

ϕ
A

zi
m

ut
ha

l a
ng

le

0.5− 0.4− 0.3− 0.2−

0.1

− 0 0.1 0.2 0.3

0.4 0.5

0.5−

0.4−

0.3−

0.2−

0.1

0

0.1

0.2

0.3

0.4

0.5

−

−

−

−

(b) Operating principle of a locally-connected
layer. A locally-connected layer has groups
N unique filters that are applied to each
section of the image individually; hence, each
stack of filters learns a segment of the image,
whereby the filters may partially overlap.

Fig. 5.3: Convolutional and fully-connected layers.

The operating principle of a locally-connected layer, on the other hand, differs signifi-
cantly from convolutional layers. As it is shown in Figure 5.3b, locally-connected layers

110

5.1. MODEL ARCHITECTURE SPECIFICATION

do not use the same set of kernels for each region of the image but a group or family of
filters associated with a local region of the matrix that is fixed; hence, the weights are not
shared. Usually, convolutional layers are favoured over their locally-connected counterpart
due to the considerable smaller number of parameters in the model and the aforementioned
translational invariance – which is not present in case of locally-connected layers. However,
it is also known that convolutional layers often perform poorly when applied to very sparse
data. Furthermore, there are complications if the data has regions of very small variance.
As it has been demonstrated by de Oliveira et al. [2017], locally-connected layers are indeed
beneficial and show better performance if applied to data with low occupancy such as the
jet images that are sparse as shown in Chapter 4.4.2.

Following now is a detailed description of the architecture of the decoder and the
encoder model.

The encoder network in Figure 5.1a, which tries to learn a new representation of the
data, receives as an input a batch of (jet-)images with dimension 25×25×1 and two labels,
pjetT and ηjet, if the model is additionally conditioned. The first layers of the network only
process the image information (no conditioning labels) with a conventional convolutional
layer (see Figure 5.3a) with 32 filters/kernels of size 5×5 and a stride size sx = xy = 1. The
stride size is the distance between spatial locations of the image where the convolutional
kernel is applied (see Figure 5.3). Proximately, the output of the convolution passes a ReLU
activation function (see Figure 3.1) and is expanded by “appending” two rows and columns
of zeros (zero-padding), which serves as a preperatory step for the subsequent operation
(as it has been proposed in the “Architecture guidelines for stable Deep Convolutional
GANs” by Radford et al. [2015], the first layer remains always non-normalized). The
zero-padded image is then further processed by the first locally-connected layer (unshared
weights) with a group size of 8 filters with a spatial extension 5× 5 and a stride size of
sx = sy = 2. The output is again handled by a ReLU activation function and possibly
normalized employing layer or batch normalization (see Section 3.4.4) indicated by the
respective suffix. The procedure is repeated exactly from the point of zero-padding but
with “only” 6 filters in the following locally-connected layer and a stride size of sx = sy = 1.
The subsequent block is the last locally-connected layer in the network with 4 filters of size
3 × 3 and sx = sy = 2. It receives the zero-padded image with pad size of Px = Py = 1
and transfers the output to a ReLU (no normalization layer). The image is then flattened
(RN1×RN2×RN3 → RN1×N2×N3), and the resulting vector is concatenated (if conditioned)
with the conditioning value for the energy Ejet ∈ R and the pseudorapidity ηjet ∈ R of the
jet. From now on, the following layers are three fully-connected dense layers with 256, 128
and 64 neurons (the GPU can utilize optimizations when working with powers of two) and
with ReLU activation functions and layer normalization in between3. In case of variational
autoencoders, there are two additional dense layers for the mean µφ and the variance σ2

φ

of the latent space representation of the data with an output dimension of Nz := dim(Z)
(the dimensionality of the output in case of the critic/discriminator for Wasserstein GANs
is just 1). Not yet mentioned in the description of the architecture above are the residual
layers that are displayed by the paths that connect certain layers in Figure 5.1 (cf. Figure
5.2). Those residual blocks are only active if the network is a residual network as explicitly
indicated by the “-Res” suffix otherwise they are discarded.

The architecture of the decoder network in Figure 5.1b is quite similar to have a sym-

3The combination of convolutional and dense layers is a standard architecture in deep learning. This is
justified by the observation that the convolutional kernels learn location-associated structures of the image
while the dense layers connect respectively correlate those learned structures.

111

metric system. However, it receives as an input a latent-space vector z of random variables
of size Nz sampled from a standard multivariate normal distribution z ∼ N (0,1) that is
simply concatenated4 with the conditioning labels pjetT and ηjet to z⊕ pjetT ⊕ ηjet ∈ RNz+1+1

(if conditioned). To further process the data via convolutional and/or fully-connected
layers, the data must be reshaped by a dense layer to RNz+1+1 → R64 × R7 × R7. This
operation gets more expensive if the dimensionality of the latent-space vector is increased
(the number of trainable parameters is given by [Nz + 2] · 64 · 7 · 7). So, after this operation,
the result is an “image” with dimension 64 × 7 × 7. This image serves as input for the
subsequent convolutional operation with again 32 and a kernel size 5×5 filters with a stride
size of sx = sy = 1 followed by a ReLU activation and normalization. The next processing
step is an up-sampling of the image by a factor of two. This layer does not come with any
trainable parameters but only scales the image such thatW → 2W . This is then once again
subsequently followed by zero-padding with P = 2. Those steps are necessary to ensure
that the subsequent operations on the intermediate image will finally result in an output
image with size 25 × 25 × 1 (compare dimension of the encoder’s input). The resulting
image is then handled by a locally-connected layer with 6 filter per group of size 5× 5 and
sx = sy = 1. After the activation function and the normalization layer, the same block is
repeated but without zero-padding and with only 4 kernels for the locally-connected layers
with size 3× 3. The last layer is again a locally-connected layer with only one filter per
group (since the output image only has one “channel” that corresponds to the continuous
energy associated with the pixels Epix) and a kernel size of 2 × 2, as well as a disabled
bias term. Finally, the output is passed through a very last ReLU function, which is quite
uncommon, since they are likely to cause sparse gradients. However, the activation function
was chosen to avoid saturation effects for large ranges of energy values that span over
several orders of magnitude (cf. activation functions in Plot 3.1). The bias b term in the
rectified linear unit ReLU(x) = θ(x+ b) has been disabled from the start to prevent the
network from learning non-physical negative energy values in the pixels.

The architecture of the encoder and the decoder network described above are purposely
designed to be very similar such that their total number of trainable parameters is in the
same order of magnitude. This is intended since both networks should have more or less
the same complexity such that both networks are able to compete with one another. This
is especially important in case of classical GANs as introduced in Section 3.6.1 to keep
the discriminator from becoming too powerful; regarding Wasserstein GANs, however, this
restriction does not exist.

5.2 Latent space and hyperparameter configuration

The latent space is one of the crucial components likewise in a variational autoencoder as
in a classical autoencoder. It is the space of the compressed representation of the training

4This is the most simple way to incorporate additional information into the neural network. However, it
should be noted that there is an ongoing debate on how to integrate conditioning labels into the architecture
of a neural network. The approaches range from adding the additional information only at the beginning
of the network, to only in the last layer(s), to all layers (see, e.g., Miyato and Koyama [2018]). In this
thesis, the conditioning labels are simply concatenated with the input to the decoder and with the input
to the dense layers in the encoder. However, there is a small modification: the position of the labels in the
respective vector is not fixed but randomly chosen according to a discrete uniform probability distribution,
with the probability of a certain position k ≤ Nz + 2 given by p(X = k) = 1

Nz+2
. This is a regularization

technique that ensures that the network does not simply disconnect the additional information by setting
certain weights to zero.

112

5.2. LATENT SPACE AND HYPERPARAMETER CONFIGURATION

data and simultaneous serves as the “source space” for the seeds z from which new, i.e.,
unseen samples are generated by the generative model x̂ = fθ(z). If the latent space Z
is inappropriately chosen (regarding the shape of the underlying distribution and/or its
number of dimensions), the encoder network fφ is likely to fail to learn an appropriate
map from the data manifold X to Z. Consequently, the encoder (the generative model)
will necessarily fail to reconstruct the original data from the hidden space fθ ◦ fφ 6≈ id, as
well as to generate authentic samples that are not elements of the training set fθ(z) 6∈ X .
Usually, the dimension on the latent space is much smaller than the dimension of the
training data dim(Z)� dim(X) which gives rise to a narrow “bottleneck” that may result
in data loss, i.e., the encoder is not able to embed all characteristic features of the data in
the hidden space. Therefore, for the encoder to learn a decent hidden representation of
the data, the dimensionality of the latent space must be sufficiently large to avoid data
loss and hence mismodelling of the underlying distribution. However, there is no general
law that relates the size of the latent space and, for instance, the dimensionality of the
input data or the number of parameters in the networks. Therefore, it must be determined
in several experiments such that there is an acceptable trade-off between performance
and complexity, i.e., the number of parameters and the quality of the ELBO according
to Equation 3.41. Figure 5.2 shows the ELBO as well as the KL-divergence KL(Qφ||Pz)
that measures the similarity between the distribution learned by the inference network
Qφ = fφ(Pr) and the Gaussian prior Pz parameterized for different dimensions of the latent
space dim(Z) ∈ {2k}k≤10.

0 2 4 6 8 10 12 14
×103

Iterations

102

103

104

E
v
id
en
ce

lo
w
er

b
ou

n
d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Epochs

dim(z) = 1 dim(z) = 2 dim(z) = 4

dim(z) = 8 dim(z) = 16 dim(z) = 32

dim(z) = 64 dim(z) = 128 dim(z) = 512

dim(z) = 1024

(a) ELBO

0 2 4 6 8 10 12 14
×103

Iterations

0

20

40

60

80

100

120

K
L
-d
iv
er
ge
n
ce

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Epochs

dim(z) = 1 dim(z) = 2 dim(z) = 4

dim(z) = 8 dim(z) = 16 dim(z) = 32

dim(z) = 64 dim(z) = 128 dim(z) = 256

dim(z) = 512 dim(z) = 1024

dim(z)VAE – ResNetLN – QCD

(b) KL-divergence

Plot 5.1: The ELBO and the KL-divergence (see Equation 3.41) versus the number
of training iterations for different dimensions of the latent space dim(Z).

The strong dependence of the ELBO and the KL-divergence on the dimensionality of the
latent space is evident from the two plots above. In Figure 5.1a, the ELBO decreases up
to roughly dim(Z) ≤ 128 ∼ O(dim(X)). Subsequently, the reconstruction loss and the
KL-divergence gradually deteriorates. In principle, an increased number of dimensions for
the latent space allows to capture more features of the training data. However, the encoder
(and/or decoder) network might not be able to learn a well-suited function that achieves
a transformation from the data to the latent space or vice versa. So, to make use of the

113

more powerful latent space, the complexity of the encoder and/or the decoder network
must be increased accordingly by adding more parameters to the model(s). But since the
computer resources available in the scope of this thesis are rather limited, the architecture
and complexity of the encoder and the decoder remain unchanged (see Section 5.1). Hence,
the dimension of the latent space was chosen to be dim(Z) = 100 (also concerning the
comparability with the latent space in case of Wasserstein GANs). The curve progression
of the KL-divergence in Figure 5.1b may come as a surprise: it grows with the increased
complexity of the latent space. However, this is exactly the desired curve characteristics.
The family of curves indicates that the entropy H(Z) = EZ∼Qφ [− log(P (Z))] of the
distribution grows and hence encodes more intrinsic features of the data into the latent
space for an increased number of dimensions.

Another important hyperparameter is the learning rate αl that, along with the respective
optimizer, determines the weight of the correction to the model’s parameters with respect
to the gradients of the loss function after each iteration step (see Section 3.4.2). Tuning this
parameter is painful – especially for generative models – since the model is very sensitive
to an inopportune configuration of αl. A learning rate that is chosen too small may quickly
result in extremely long training times and a complete standstill, while a learning rate that
is too large may easily cause non-convergence. This is illustrated in Figure 5.2 that shows
the ELBO for different learning rates αl(:= αel = αdl), whereby both networks, the encoder
and the decoder, experience the same learning rate.

0 2 4 6 8 10 12 14
×103

Iterations

103

104

105

E
v
id
en

ce
lo
w
er

b
ou

n
d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Epochs

αl = 0.0100 αl = 0.0050 αl = 0.0010

αl = 0.0005 αl = 0.0001

VAE – ResNetLN – QCD

Adamβ1=0.9
β2=0.999

(a) ELBO versus learning rate

0 2 4 6 8 10 12 14
×103

Iterations

103

104

105

E
v
id
en

ce
lo
w
er

b
ou

n
d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Epochs

SGD RMSprop Adagrad

Adadelta Adam Adamax

Nadam

V AE−ResNetLN−QCD

(b) ELBO versus optimizer

Plot 5.2: The ELBO versus the number of training iterations for different learning
rates αl (5.2a) and various optimization algorithms (5.2b).

As it can be seen in Figure 5.2a, a learning rate with αl = 0.01 or αl = 0.005 is to
large; the models do not converge. Especially the (blue) curve corresponding to αl = 0.05
nicely illustrates how the configuration of trainable parameters (which span a very high-
dimensional space with dim(W) ≈ O(106)) gets “kicked out” of a local minimum on the
optimization hyper-surface LELBO(θ,φ) if the learning rate is chosen too large (see Figure
3.4.2 for a conceptional portrayal of the situation). Based on Figure 5.2a, a learning rate
of αl = 0.0002 in combination with Adam (see Figure 5.2b) was deduced, which was used
for training the encoder as well as the decoder network.

114

5.3. UNCONDITIONED VAES

The rightmost Plot in Figure 5.2 shows a family of curves whereby each graph cor-
responds to a Gaussian variational autoencoder that has been trained with a different,
commonly used first-order optimization algorithm (see Section 3.4.2). All additional param-
eters besides the learning rate αl are kept at their respective default value (default values
given by Chollet [2015]). For the (initial) learning rate, the previously determined value
αl = 0.0002 according to Figure 5.2a was used for the different optimization schemes except
for the “primitive” stochastic gradient descent optimizer, which required αl ≤ 0.00005 in
order to “converge” due to a missing damping mechanism of the learning rate. Based on
the curve progression of the ELBO for different optimization algorithms in Figure 5.2b, it
was decided to use Adam [Kingma and Ba, 2014] in the further course of this study. Note:
Adam is only used in combination with Gaussian VAEs in this chapter. As it turned out,
Adam is not at all an appropriate choice in case of Wasserstein GANs due to gradient
penalty (see Figure 6.3a in Chapter 6).

5.3 Unconditioned VAEs

The data that is used to train the neural network in this thesis (see Chapter 4) basically
encodes two contributions: the matrix element information for the hard subprocess and
the parton shower simulation for soft and collinear QCD radiation. If the generative
model is unconditioned and exclusively trained on jet-images (the energy Ejet and the
pseudorapidity ηjet are withheld), it is intended to learn the underlying distributions of
the matrix-element and the parton shower in the same model. In probabilistic terms, the
neural network models the joint probability distribution pθ(x, E

jet, ηjet). This scenario
is obviously more complicated for the respective model compared to the situation where
the network is conditioned because the entropy of the target distribution is much larger.
However, despite being more complicated, the study of variational autoencoders in this
section starts with the case where the model is unconditioned.

An unconditioned model is quite easy to implement and does not require any material
changes in the architecture introduced in Section 5.1. All one has to do is to replace the
conditioning labels xc1 := pjetT and xc2 := ηjet by xc1 = xc2 = 0 such that those particular
connections in the directed graph are disabled

σj

(
N∑

i=1

wjixi

)
= σj

N−2∑

i=1

wjixi + wc1 xc1︸︷︷︸
=0

+wc2 xc2︸︷︷︸
=0

 = σj

(
N−2∑

i=1

wjixi

)
.

For this purpose, the stochastic placement of the labels described in Footnote 4 in the
random seed vector is abandoned and replaced by a fixed position for the time being.

The networks in this section have been trained on QCD (Section 4.1.1) and W (Section
4.1.1) samples for 200, 000 data points in each case. A mini-batch of data {xi}NMB

i=1 contains
– if not mentioned otherwise – NMB = 64 jet images. This information is important to
compare the ELBO of two networks that have been trained with different mini-batch sizes
since the ELBO for mini-batch training is given by:

LELBO(θ,φ; {xi}NMB
i=1) ≈ N

NMB

NMB∑

i=1

LELBO(θ,φ;xi). (5.1)

According to Figure 5.2b, Adam was used as the stochastic gradient-based optimization
of the loss function with a learning rate αl = 0.0002 (see Plot 5.2a and 5.2b) with the

115

default parameters β1 = 0.9 and β2 = 0.999 (the default values have been taken from
[Kingma and Ba, 2014, Fig. 4, p. 8]). The QCD and W samples are generated by two
different generative models PQCD

θ , PWθ in order to study both processes in detail and
completely independently from each other. However, it only requires minor modifications to
train one generative model on both processes at the same time by additionally conditioning
the model on the process by a multi-class label (e.g. 0 7→ QCD, ±1 7→W±, 2 7→ Z etc.),
which should be the preferred solution.

As it is demonstrated as part of this section, an unconditioned variational autoencoder
does show quite a bad performance compared to its conditioned counterpart. (Already
anticipating one result of the subsequent chapter: this statement does not apply to
unconditioned Wasserstein GANs that, on the contrary, show an excellent performance.)
Therefore, it is not the intention of this section to dwell upon this subject for an unnecessarily
long time, but to highlight the characteristic problems and to move on to conditioned
models.

5.3.1 Samples and average jet images
The performance of variational autoencoders is directly measured by the ELBO – contrary
to generative adversarial networks based on an f -divergence, whose loss function is less
conclusive. The regression loss provides information about the quality of the generated
data while the KL-divergence measures the information (cross-entropy) of the latent space.
Even though the ELBO provides a good measure to evaluate the performance of VAEs,
the visual inspection of the generated data is indispensable to draw conclusions regarding
the reliability of the simulated samples. This is the main purpose of this section, i.e., to
provide an impression the extend to which the unconditioned variational autoencoder can
produce jet-images that are visually indistinguishable from the training data.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
g
y
E

p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

η[px]

0

5

10

15

20

25

Pseudorapidity η [px]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

η[px]

0

5

10

15

20

25

Pseudorapidity η [px]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

Plot 5.3: Three randomly simulated QCD jets.

116

5.3. UNCONDITIONED VAES

0 5 10 15 20 25

 [px]η

0

5

10

15

20

25

]
ra

d
 [

pi
x/

φ

1−10

1

10

 [
G

eV
]

pi
x

E

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

=14 TeV, Ws Simulated jet,

0 5 10 15 20 25

 [px]η

0

5

10

15

20

25

]
ra

d
 [

pi
x/

φ

1−10

1

10

 [
G

eV
]

pi
x

E

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

=14 TeV, Ws Simulated jet,

0 5 10 15 20 25

 [px]η

0

5

10

15

20

25

]
ra

d
 [

pi
x/

φ

1−10

1

10

 [
G

eV
]

pi
x

E

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

=14 TeV, Ws Simulated jet,

Plot 5.4: Three randomly simulated W jets.

First, let’s have a look at some individual generated images for QCD and W initialized
jets generated by the Gaussian VAE. The set of images in Figure 5.3 and 5.4, which have
been generated from random seeds z ∈ Z already show some conspicuous features that are
characteristic for variational autoencoders. If one compares the generated samples with
the training data (cf. Figure 4.3 and 4.5), the aforementioned characteristic “blurring” or
noising effect becomes clearly recognizable (see 3.6). This effect is particularly apparent
when comparing the occupancy of the generated data and the training data. The mean
occupancy ō simply gives the average number of active pixels (number of pixels Npix with
Epix > Epix

th) for a total number of N event images

ō =
1

N event

Nevent∑

i=1

oi =
1

N event
1

npixη npixφ

Nevent∑

i=1

npix
η∑

j=1

npix
φ∑

k=1

Θ(Epix
jk,i − E

pix
th), (5.2)

whereby the Heaviside step function just counts the number of active pixels. Evaluating
Equation 5.2 for the two processes under consideration results in quite different curve
characteristics as it is illustrated in Figure 5.5.

0 20 40 60 80 100
×103

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
cc

u
p
an

cy
ō

0.37

0 5 10 15 20 25 30

Epochs

0.12

Training data Generated data

VAE – ResNetLN – QCD

(a) QCD

0 10 20 30 40 50 60 70 80 90
×103

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
cc

u
p
an

cy
ō

0.15

0 5 10 15 20 25

Epochs

0.10

Training data Generated data

VAE – ResNetLN – W

(b) W

Plot 5.5: Occupancy according to Equation 5.2.

In Figure 5.5, the “blurring” of the image clearly manifests itself by an significantly

117

reduced mean sparseness 1− ō or an increased occupancy ō of the generated images. This
effect is much more pronounced in case of the QCD initialized jets, although, the sparseness
for QCD and W images is more or less the same (ōQCD

r ≈ 12 %, ōWr ≈ 10 %); hence, the
distribution, or the average occupancy of active pixels in the image, does play a role as well.
Therefore, this behavior can only be explained based on the very different jet substructure
for the two different processes that can be seen in Figure 5.3 to some extend and 5.4, but
becomes even more visible if one considers the average jet images shown below.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
a
d
]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V AE, ResNetLN,QCD

(a) QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
a
d
]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V AE, ResNetLN,W

(b) W

Plot 5.6: Average jet image for 50, 000 events and 40, 000 iterations.

Figure 5.6 demonstrates that the Gaussian variational autoencoder rudimentarily learns the
different characteristic features, i.e., one highly active center with surrounding soft radiation
(which is blurred) for QCD jets and two well-separated regions of increased activity for
W jets from the decay products (note: there is no pT-cut involved in Figure 5.6b). For
the latter one, the implications of the preprocessing (see Section 4.2) is quite apparent.
The approximate correspondence between the generated average jet images in Figure 5.6a
and 5.6b with the training data in Figure 4.2 (QCD) and 4.4 (W) demonstrates that the
network correctly learns the average correlation between the different pixels. However,
the agreement in the very first moment (the mean) is not sufficient to finally conclude
that the VAE has learned the distribution of the underlying data since two distributions
only completely match iff they agree in all statistical moments (cf., e.g., maximum mean
discrepancy). In case of the unconditioned VAE, however, significant deviations can already
be observed in the first statistical moments. Figure 5.7 shows a comparison of the first nine
(central) statistical moments of the training data and the data produced by the Gaussian
variational autoencoder; thus, allows to gain a deeper insight into the distribution learned
by the generative model. The nth statistical moment m(n) ∈ RM with M := dim(X)
measures the “shape” of a distribution and is simply defined by

m(n) :=

{∫
RM dx p(x) (x− µ)

n ≈ 1
N

∑N
i=1 (xi − µ)

n if n > 1
∫
RM dx p(x)x ≈ 1

N

∑N
i=1 xi if n = 1

, (5.3)

whereby the integrals are numerically evaluated by Monte Carlo integration (see Section
2.1.1). The definition of the statistical moment according to Equation 5.3 gives a moment

118

5.3. UNCONDITIONED VAES

for each pixel in the image, i.e., m(n) ∈ Rn
pix
η ×npix

φ . Comparing the moments for each
pixel individually would be very tedious; therefore, the nth moment per image mimg

(n) ∈ R
is defined by mimg

(n) = mT
(n)m(n)/n

pix
η · npixφ . As it can clearly be seen in Figure 5.7, the

distribution learned by the unconditioned variational autoencoder differs significantly from
the training data.

0.5

1

1.5

2

2.5

3

S
ta
ti
st
ic
a
l
m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 13 it. 40000

VAE – ResNetLN – QCD

1 2 3 4 5 6 7 8 9

nth ordinal

0

1

2

3

4

R
at
io

(a) QCD

0

1

2

3

4

5

S
ta
ti
st
ic
a
l
m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 13 it. 40000

VAE – ResNetLN – W

1 2 3 4 5 6 7 8 9

nth ordinal

0

1

2

3

4

R
a
ti
o

(b) W

Plot 5.7: nth statistical moment for generated QCD and W jets.

A good agreement only exists for the very first moment – which can be visually confirmed
by the comparison with the average images in Figure 5.6 –, i.e., the mean of the respective
distribution; higher moments like the variance σ2 = m(2), the skewness m(3), the kurtosis
m(4) or higher moments without an apparent corresponding geometric or intuitive inter-
pretation are not well described by the model. This means that for both processes, QCD
(Figure 5.7a) and W (Figure 5.7b) jets, the generative model fails to properly learn the
correlation between the individual pixels.

119

5.3.2 Kinematic distributions and jet observables

(a) QCD (b) W

Plot 5.8: Reconstructed energy Eimg for 50, 000 events.

This section studies different kinematic distributions, such as the mass, energy etc., that
have been reconstructed from distributionslearned by the generative model. Based on the
previous section, it is to be expected that the network will suffer from poor performance.
This can already be seen from the reconstructed energy spectrum. Since the model
is unconditioned according to pθ(x, Ejet, ηjet|z), the energy distribution pθ(E

jet) is not
factorized; hence, the reconstructed energy spectrum in Figure 5.8 is an indicator of to
what extend the neural network has managed to learn the information of the underlying
matrix element and the parton shower. So, by sampling a seed vector z ∼ Pz one also
randomly samples a jet-energy Eimg from the underlying energy distribution learned by
the network that should correspond to the true distribution. This is only possible if the
inference network has managed to encode the distribution of jet-energies Ejet into the
latent space (similar to the discrete example for MNIST illustrated in Figure 3.4). One
possible explanation for the severe deviations in Figure 5.8 is that the information of the
energy is not correctly embedded in the hidden space, i.e., Pθ(Eimg) 6≈ P (Ejet). To study
the generated space of the inference network Qφ in more detail, consider the distribution
of Reconstructed jet-energies in Figure 5.9b for a two-dimensional subspace of the latent
space.

120

5.3. UNCONDITIONED VAES

-2 -1 0 1 2 3

Latent space component z1

-3

-2

-1

0

1

2

3

L
at
en
t
sp
a
ce

co
m
p
on

en
t
z 2

[000, 115]

[115, 125]

[125, 130]

[130, 135]

[135, 145]

[145, 150]

[150, 160]

[160,∞)

VAE – ResNetLN – QCD [Eimg
min, E

img
max]

[GeV,GeV]

(a) QCD

-3 -2 -1 0 1 2 3

Latent space component z1

-3

-2

-1

0

1

2

3

L
at
en
t
sp
a
ce

co
m
p
on

en
t
z 2

[000, 112]

[112, 126]

[126, 140]

[140, 154]

[154, 168]

[168, 182]

[182, 196]

[196,∞)

VAE – ResNetLN – W [Eimg
min, E

img
max]

[GeV,GeV]

(b) W

Plot 5.9: Energy distribution in a two-dimensional projection of the 100-dimensional
latent space Z.

In Figure 5.9, the range of individual energy intervals/classes are computed such that all
bins contain the same number of events; otherwise the distribution would not be very
conclusive. The plots are created by evaluating the generative model for a seed z ∼ Pz
that gives a jet-image via x̂ = fθ(z). The reconstructed energy Eimg = Eimg(x̂) is then
color-coded according to its respective class and drawn in a two dimensional subspace
spanned by zi, zj ∈ z ∈ Z. Obviously, the model does not cluster the latent space to
regions of different energy labels (as it was the case for the MNIST example in Chapter
3.4). It is important to remember that the distribution in Figure 5.9 only represents a
two-dimensional projection of an actually 100-dimensional latent space; therefore, this plot
cannot be used to conclude that there isnt a structure present in other correlations. There
could be a correlation between the hidden space and the energy of the jet that is not visible
in Figure 5.9. In order to uncover possible correlations, it is necessary to consider the
entire latent space vector z and the associated energy Eimg reconstructed from the image
x̂ = fθ(z).

For a simple visualization that does not require complex illustration techniques for
higher-dimensional data, it is necessary to construct a function that uniquely maps the
high-dimensional latent space vector to a single number. But, such a bijective map does
not exist since the entries zi ∈ R of the seed vector are real numbers with zi ∼ N (0, 1).
However, a possible workaround is to multiply (scale) all entries of z ∈ RN with N = dim(Z)
globally by a real number γ ∈ R 6=0 and to round off the entries such that z̃i := bγzic ∈ Z.
This means, of course, that the precision is reduced depending on the choice of γ. With
z̃ ∈ ZN , a function q : ZN → Q that uniquely maps z̃ to some rational number can be
constructed based on the unique-prime-factorization theorem. This function is defined
by q(z̃) =

∏N
i=1 p

h(z̃i)
i , whereby pi denotes the ith prime number and h is some affine

function that shifts z̃ by some constant to avoid problems if z̃i = 0 (for reasons of simplicity,
h(z̃i) = z̃i + 1 is used if z̃i ≥ 0, otherwise h(z̃i) = z̃i). The quantity q(z̃) is unique, but
impractical regarding its numerical implementation. Therefore, for reasons of numerical
stability, the monotonic logarithm is applied. As a result, the function that maps z̃ ∈ ZN to
z̃ ∈ Q is given by z̃ =

∑N
i=1 h(z̃i) log pi. Now, that there is a z̃ for each z, the reconstructed

121

energy of a jet generated from z can be plotted against the average z̃; this situation is
illustrated in Figure 5.10.

100 200 300 400 500

Energy Eimg [GeV]

440

450

460

470

480

490

500

510

520

530

540

U
n
iq
u
e
av
er
a
ge

se
ed

z̃
=
∑
N i=

1
h
(z̃
i)
lo
g
p
i

V AE−ResNetLN−QCD

(a) QCD

100 200 300 400 500 600

Energy Eimg [GeV]

440

450

460

470

480

490

500

510

520

530

540

U
n
iq
u
e
av
er
a
ge

se
ed

z̃
=
∑
N i=

1
h
(z̃
i)
lo
g
p
i

V AE−ResNetLN−W

(b) W

Plot 5.10: Correlation between z̃ and the reconstructed energy Eimg.

In case of QCD jets in Figure 5.10a, there appears to be a small negative correlation between
the unique seed z̃ and the reconstructed jet energy Eimg. Regarding W jets however, the
distribution is almost flat, which might be an explanation for why the discrepancy between
the generated and expected energy spectra is much more pronounced in case of W than
for QCD jets (compare Figure 5.10a and 5.8a, as well as Figure 5.10b and 5.8b).

As it is clear from Figure 5.8a and 5.8b, the network struggles to learn and reconstruct
the energy distribution. The situation is worse for W initialized jets – probably due to the
long tail towards higher energies (less Gaussian). Equally, the situation does not improve
any further for a larger number of iterations; this can moreover be seen in the evolution of
the ELBO in Figure 5.8.

122

5.3. UNCONDITIONED VAES

0 20 40 60 80 100
×103

Iterations

10

102

103

L
os
s’

co
m
p
on

en
ts

0 5 10 15 20 25 30

Epochs

V AE−ResNetLN−QCD
Evidence-Lower Bound (ELBO) Rec. loss (MSE)

KL-divergence -KL-divergence µ

KL-divergence σ

(a) QCD

0 10 20 30 40 50 60 70 80 90
×103

Iterations

10

102

103

L
os
s’

co
m
p
on

en
ts

0 5 10 15 20 25

Epochs

V AE−ResNetLN−W
Evidence-Lower Bound (ELBO) Rec. loss (MSE)

KL-divergence -KL-divergence µ

KL-divergence σ

(b) W

Plot 5.11: The ELBO and its components.

Of particular interest in Figure 5.11 is the Kullback-Leibler divergence since it is a direct
measure of the information the inference network has encoded in the latent space. The
KL-divergence (green curve) remains nearly static onward 10, 000 training iterations, which
explains the behavior witnessed in Figure 5.11.

A similar problem can be observed in the spectrum of the reconstructed invariant mass
of the jet (see Figure 5.12). Compared to the reconstructed energy of the image, the
mass contains more information since it also accounts for the distribution of active pixels
(“constituents”) over the image/detector and their relative positions.

0 5 10 15 20 25 30 35 40 45 50

Mass mimg [GeV]

0

2

4

6

8

10

12

14

16

×103

E
ve
n
ts
/1
.6
7
G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

VAE – ResNetLN – QCD

(a) QCD

0 20 40 60 80 100 120 140

Mass mimg [GeV]

0

2

4

6

8

10

12

14

16

18

20

×103

E
ve
n
ts
/5
.0
0
G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

VAE – ResNetLN – W

(b) W

Plot 5.12: Reconstructed mass spectrum mimg for 50, 000 events.

Both distributions show significant deviations from the expectation based on the training
data. The same trend can be observed for the correlation between the energy resp. the
transverse momentum and the average reconstructed mass in Figure 5.13. As shown below,

123

the unconditioned Gaussian VAE fails to learn the complete range of energy values for
both processes. Therefore, the problems furthermore appears to be related to the large
range of energy values, which is not well modeled.

100 150 200 250 300 350 400 450 500 550

Transverse momentum pimg
T [GeV]

5

10

15

20

25

30

35

40

45

50

55

M
as
s
m

im
g
[G

eV
]

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

VAE – ResNetLN – QCD

(a) QCD

100 200 300 400 500 600

Transverse momentum pimg
T [GeV]

0

20

40

60

80

100

120

140

160

180

M
as
s
m

im
g
[G

eV
]

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

VAE – ResNetLN – W

(b) W

Plot 5.13: Correlation between the reconstructed average mass mimg and the trans-
verse momentum pimg

T for 50, 000 events.

The study of unconditioned GANs in the subsequent chapter will reveal a very different
behaviour in case of unconditioned models. This result, already anticipated here, indicates
that the problems observed in this section are specifically related to the unconditioned
VAE. To further investigate Gaussian VAEs, the generative model should be factorized into
two tasks: first, a model that is responsible for the parton shower simulation; and second,
another model that learns the matrix element information. These are two generative models
resembling the two simulation steps of the hard subprocess and the parton shower (see
Chapter 2). The next section of this chapter therefore studies variational autoencoders
that are conditioned on the jet energy and the pseudorapidity. This procedure will be
repeated for Wasserstein GANs.

5.4 Conditional VAEs

The previous section studied the classical approach to a Gaussian variational autoencoder.
The implemented model has been trained on a large set of jets images (that could correspond,
e.g., to some measured jet in a control region in some particular analysis) with the learning
objective not only to visually reconstruct the jet images (some distribution of energy in the
detector), but also their associated characteristic energy spectrum. This is a complicated
task: the network has to learn the distribution of pixels in the npixη × npixφ grid, the
correlation between all those pixels and their energy. Furthermore, since the energy is
continuous and many images may result in roughly the same reconstructed jet energy,
the neural network has to theoretically learn an infinite number of classes, i.e., it has to
learn a very complicated boundary between the different images in high-dimensions. This
is one motivation for the investigation of the conditioned variational autoencoders that
are the subject of this section since the neural network is relieved of its duty to classify

124

5.4. CONDITIONAL VAES

the images according to their energy in the hidden space. In a conditioned variational
autoencoder (see Section 3.5.4) the model receives additional inputs besides the latent space
noise/seed vector z. However, while the latent space vector is randomly sampled from a
known distribution Pz, the conditioning labels are directly associated with the training
data – or the generated data after the training process. In this thesis, all conditioned
neural networks (whether variational autoencoders or generative adversarial models) are
conditioned on the energy of the reconstructed jet Ejet as well as the pseudorapidity ηjet
before the Lorentz boost (see Section 4.2) but before pixelation (see Section 4.2). Through
this measure, the model does not depend on any parton level information that would not
be available in a down-to-earth scenario anyway.

The advantage of conditioned neural networks is that the model is provided with
additional information regarding the training data. This makes the learning task much
easier compared to the unconditioned case. One of the reasons why this is the case is because
the network does not have to learn all classes associated with the data by itself. If the
model uses with the energy and pseudorapidity information, it will be easier to categorize
the data, i.e. the jet images according to those labels. This may also be considered as a
beneficial regularization effect that helps to lower the risk of overfitting and reduce the
venture of mode collapse.

This section follows the previous one regarding its structure. The configuration of
hyperparameters (optimizer, learning rate αl, dimension of the latent space etc.) is – if
not explicitly mentioned otherwise – equivalent to the setup used for the unconditioned
variational autoencoders. However, due to the additional information that needs to be
incorporated into the encoder and decoder model (see Figure 5.1), the architecture is
different – albeit only marginally – since the supplementary connections increase the
model’s number of weights. To exclude the possibility that the differences between the
unconditioned and the conditioned model are caused by the “increased complexity” of the
network and not because of its conditioning, the unconditioned VAE has been systematically
scanned for increased model complexity. However, as it has become apparent, the results in
the prior section are consistent within small variations for an increased number of weights.
Hence, it is fair to assume that the difference between unconditioned and conditioned
variational autoencoder is indeed exclusively caused by the additional information provided
to the network.

5.4.1 Conditioning the model
This paragraph starts with the difference between conditioned and unconditioned VAE
regarding their probabilistic interpretation. The unconditioned model learns the probability
function pθ(x|z) which is, as it is the case for all latent space models (Section 3.5.1),
conditioned on the latent space variable z. The output of the generative model, i.e., its
prediction x̂ = fθ(z) therefore depends solely on the latent space that, hopefully, encodes
all information of the data. However, the jet image is associated with an energy Eimg

as well as a pseudorapidity ηimg as fundamental kinematic variables. The distribution of
the energy and the pseudorapidity is process-specific and hence depend on the underlying
event that is given by the matrix elementM of the hard subprocess. Therefore, the neural
network does not only need to encode the jet images into the latent space but also the
information of the matrix element. More formally, Eimg and ηimg are conditioned on z as
well with pθ(Eimg, ηimg|z). The last probability distribution can be factorized

pθ(E
img, ηimg|z) =

pθ(E
img, ηimg, z)

p(z)
, (5.4)

125

=
pθ(E

img, z)

p(z)
· pθ(η

img|Eimg, z)

pθ(Eimg, z)
(5.5)

= pθ(E
img|z) · pθ(ηimg|Eimg, z) (5.6)

Eimg⊥⊥ηimg

= pθ(E
img|z) · pθ(ηimg|z), (5.7)

whereby the last step used the fact that the energy and the pseudorapidity are (mostly)
uncorrelated5. In summary, the generative model in the unconditioned case correspond to
the following probability distribution

p(x, Eimg, ηimg|z) = p(x|Eimg, ηimg, z) · p(Eimg|z) · p(ηimg|z), (5.8)

which basically rephrases the problem explained above. Obviously, the learning task can be
simplified by making the networks not learn p(Eimg|z) and p(ηimg|z) and this is precisely
where conditioned networks come into play. The idea is to train the neural network on the
jet images, sample the energy and the pseudorapidity of the jets from the distributions PE
and Pη known from the matrix element and provide those as an additional information to
the neural network. From a probabilistic point of view, this procedure corresponds to the
marginalization of Equation 5.8 with respect to Ejet and ηjet

p(x|z) =

∫

Ejet

∫

ηjet
dEjet′dηjet′ p(x, Ejet′, ηjet′|z). (5.9)

After this detailed discussion of the underlying probabilistic principles at work, it be
expected that the unconditioned variational autoencoder will perform better since it is
liberated from the heavy burden of learning the matrix element information as well.

The conditioning labels Ejet and ηpix in Equation 5.8 are sampled from the probability
distribution of the energy p(Ejet) and the pseudorapidity Pη directly given by the matrix
element as it is associated with the respective jet image

5.4.2 Samples and average jet images
As it was done in the previous section, the first step is to visually inspect the generated
data that has been generated by the neural network and to look at the mean jet image to
make sure that the network has learned the average correlation between the pixels.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

Plot 5.14: Three randomly simulated QCD jets.

5This was a main motivation why choosing the energy in favor of the jet’s transverse momentum
pjetT since it allows to independently samples values for Ejet and ηjet. However, the approximation
p(Eimg, ηimg|z) ≈ p(pimg

T |z) · p(ηimg|z) is still valid for pseudorapidities within a certain range where the
correlation is negligible: in case of QCD jets this tuned out to be roughly the case for ηjet ∈ [−2, 2].

126

5.4. CONDITIONAL VAES

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/
ra
d
]

10−1

1

10

E
p
ix

[G
eV

]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulated jet,
√
s = 14TeV, W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/
ra
d
]

10−1

1

10

E
p
ix

[G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulated jet,
√
s = 14TeV, W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/
ra
d
]

10−1

1

10

E
p
ix

[G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulated jet,
√
s = 14TeV, W

Plot 5.15: Three randomly simulated W jets.

Compared to the QCD (Figure 5.3) and W (Figure 5.4) jet images simulated by the
unconditioned variational autoencoder, the conditioned model appears to generate data
that is less blurred (this is by no means a general statement since the random sample
only envelopes three data points and thus statistically not significant). This impression is
further supported by the reduced occupancy of the images that corresponds to an increased
sparseness as illustrated in Figure 5.16.

0 10 20 30 40 50 60 70
×103

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
cc
u
p
an

cy

0.32

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.12

Training data Generated data

CVAE – ResNetLN – QCD

(a) QCD

0 20 40 60 80 100
×103

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
cc
u
p
an

cy

0.10

0 5 10 15 20 25 30

Epochs

0.10

Training data Generated data

CVAE – ResNetLN – QCD

(b) W

Plot 5.16: Occupancy according to Equation 5.2. The reported errors δō are
statistical uncertainties based on “propagation of errors”.

The direct comparison of the average occupancy of the images generated by the conditioned
VAE in Figure 5.16a and 5.16b (ōQCD ≈ 37 %, ōW ≈ 13 %), as well as the one in Section
5.3.1 (Figure 5.5a and 5.5b) (ōQCD ≈ 32 %, ōW ≈ 10 %) show a considerable improvement.
For both processes, QCD and W jets, the average occupancy is reduce roughly by 5%
– in case of W jets, the average occupancy now coincides with the one of the training
data within statistical uncertainties. This, along with the visual improvements, is a first
indication that the arguments in Section 5.4.1 regarding the factorization of the matrix
element (Equation 5.8) information are indeed correct and the performance of the model is
improved. This is also observed in the average jet image in Figure 5.34.

127

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

CV AE, ResNetLN,QCD

(a) QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

CV AE, ResNetLN,W

(b) W

Plot 5.17: Average jet image for 50, 000 events and 40, 000 iterations.

While the difference between the mean jets in case of QCD (cf. Figure 5.34a and 5.6a) is
rather negligible, the average W jet shows a clear improvement compared to Figure 5.6b
and is generally much closer to the one of the training data according to Figure 4.4. This
means that the network has improved in learning the correlation between the individual
pixels – at least on average. Interestingly, the improvements are not substantially reflected
in the agreement between the different statistical moments (not shown at this occasion),
which roughly corresponds to Figure 5.7. Nonetheless, the positive effect of conditioning
the neural network is indisputable. Finally, this can also be seen in the reconstructed loss
as well as the KL-divergence.

0 10 20 30 40 50 60 70

×103

Iterations

10

102

103

L
os
s’

co
m
p
o
n
en
ts

0 2 4 6 8 10 12 14 16 18 20

Epochs

CV AE−ResNetLN−QCD
Evidence-Lower Bound (ELBO) Rec. loss (MSE)

KL-divergence -KL-divergence µ

KL-divergence σ

(a) QCD

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
×106

Iterations

10

102

103

L
os
s’

co
m
p
o
n
en
ts

0 10 20 30 40 50

Epochs

CV AE−ResNetLN−W
Evidence-Lower Bound (ELBO) Rec. loss (MSE)

KL-divergence -KL-divergence µ

KL-divergence σ

(b) W

Plot 5.18: The ELBO (see Equation 3.39) and its components.

128

5.4. CONDITIONAL VAES

5.4.3 Conditioning of the model
As it has been done before, this section dives deeper into the manifold generated by the
conditioned variational autoencoder.

The first step is, of course, to verify that the neural network is indeed conditioned on
the jet energy and the pseudorapidity. The “stochastic insertion” of the conditioning label
described in Footnote 4 ensures that the model does not simply disconnect the additional
information by setting the associated weights to zero (like it was purposely done for the
unconditioned VAE). However, the network hypothetically could – although very unlikely –
learn to average over the conditioning labels to soften the constraint. To verify whether
the network is conditioned on the energy or not, the conditioning energy label is plotted
against the reconstructed energy from the generated image. If the network is conditioned,

one expects a strong, positive correlation between Ejet and Eimg =
∑npix

η

i=1

∑npix
φ

j=1 E
pix
ij . This

correlation is shown in Figure 5.19 for QCD and W jets.

100 200 300 400 500 600

Input energy Ejet [GeV]

100

200

300

400

500

600

R
ec
on

st
ru
ct
ed

en
er
gy

E
im

g
[G

eV
]

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CVAE – ResNetLN – QCD

(a) QCD

100 200 300 400 500 600

Input energy Ejet [GeV]

100

200

300

400

500

600

R
ec
on

st
ru
ct
ed

en
er
gy

E
im

g
[G

eV
]

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

Ep. 23 it. 70000

CVAE – ResNetLN – W

(b) W

Plot 5.19: Input energy Ejet and reconstructed jet energy Eimg.

The expected strong correlation between the reconstructed jet energy Eimg and the con-
ditioning label is visible in the two diagrams above. Therefore, as a matter of fact, the
conditioning energy Ejet input allows controlling the reconstructed energy of the jet! In the
case of QCD jets, the correlation is almost one-to-one while for W jets the relation appears
to be non-linear on the edge of low and high energies. An additional curve, corresponding
to 70, 000 training iterations, have been included to see if this effect is reduced. That does
seem to be the case (see last bin). Interestingly, the network first learns a linear relation
that underestimates the input-energy. However, it develops a non-linear relation while
trying to improve the reconstruction. This behaviour is not fully understood at the time of
writing.

Now that it is guaranteed that the energy of the jet is controlled by the input label, it
is about time to study to what extent the trained model has learned to simulate parton
showers. To this end, different figures of merit, as well as their corrections among each
other are closely examined. Each quantity is supposed to provide a different perspective on
the generated manifold. For example, the reconstructed energy that is position-independent
(scalar sum) and therefore only measures the quality of the regression task, the recon-

129

structed mass that depends on the energy values in the pixel cells as well as their relative
position, the N-subjettiness that probes the substructure of the jet etc. The more aspects
of the generated manifold are aggregated, the more they form an overall picture of the
data’s structure.

For completeness and for QCD only, consider again a two-dimensional subset of the
latent space, categorized into energy bins of equal statistics, as well as the “unique” la-
tent space variable z̃ as defined in Section 5.3.2 for a conditioned Gaussian variational
autoencoder.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Pseudorapidity ηjet

450

460

470

480

490

500

510

520

530

540

550

U
n
iq
u
e
av
er
ag
e
se
ed

z̃
=
∑
N i=

0
h
(z̃
i)
lo
g
p
i

100 150 200 250 300 350 400 450 500 550

Energy Eimg [GeV]

450

460

470

480

490

500

510

520

530

540

550

CVAE – ResNetLN – QCD

(a) Unique z̃ versus reconstructed jet energy
Eimg and input pseudorapidity ηjet.

-3 -2 -1 0 1 2 3

Latent space component z1

-3

-2

-1

0

1

2

3

4

L
at
en
t
sp
ac
e
co
m
p
on

en
t
z 2

[000, 121]

[121, 129]

[129, 137]

[137, 145]

[145, 153]

[153, 161]

[161, 177]

[177,∞)

CVAE – ResNetLN – QCD [Eimg
min, E

img
max]

[GeV,GeV]

(b) Energy-correlation in a two-dimensional
subspace of Z.

Plot 5.20: Correlations in the latent space.

While a small negative correlation between the energy of the generated jet and the
associated unique latent space number z̃ in Figure 5.10 in case of the unconditioned model
was observed, the latent space vector and the respective energy are uncorrelated according
to Figure 5.20. This result is in accordance with the previously explained effect concerning
the classification of images based on their associated energy. The neural network does
not learn the energy distribution of the jet; hence, this information does not have to be
encoded in the latent space since it is provided externally6.

5.4.4 Kinematic distributions
All figures of merit that can be derived from the jet images are either based on the energy
values in the pixels Epix

ij and/or the position of the active pixels in the η-φ grid, i.e., the cells
in the detector with an activation above a certain acceptance threshold. The most simple
quantity one may reconstruct is the energy spectrum. To reconstruct the energy spectrum
of a given process, all that needs to be done is to calculate the scalar sum of the energy

values over the pixels on an event-on-event basis according to Eimg =
∑npix

η

i=1

∑npix
φ

j=1 E
pix
ij .

6The latent space itself remains a “black box” to some extent since the actual encoding is inaccessible.
This is an unsatisfactory situation – to say the least. Future studies should, therefore, aim to imbue the
latent space with some physical meaning.

130

5.4. CONDITIONAL VAES

This quantity does not take into account any positional information. Theoretically, the
neural network could learn to perfectly reconstruct the energy spectrum just by mapping
the conditioning energy input to one pixel in the image. This does not happen since the
KL-divergence penalizes the network if it underestimates the entropy of the underlying
distribution. Since the model is conditioned, the reconstructed energy spectrum should
simply correspond to the distribution used to sample the conditioning label. This is the
case since, as it was shown in Section 5.19 Figure 5.19a and 5.19b, the correlation between
the input and the reconstructed output energy is roughly one-to-one. To gain more insight
into the manifold learned by the generative model, it is necessary to account for the relative
position of the active pixel cells as well. An obvious quantity that satisfies this need is the
jet mass. The mass of the jet is given by the squared sum of the jet’s constituents four
momenta according to

(
mjet)2 =

(
N−1∑

k=0

pk

)
=

N−1∑

k=0

p2
k

︸ ︷︷ ︸
=0

+

N−1∑

i=0

N−1∑

i6=j
pipj (5.10)

=

N−1∑

i=0

N−1∑

i6=j
pT,ipT,j (cosh (ηi − ηj)− cos (φi − φj)) , (5.11)

whereby the constituents are assumed to be massless p2
k = 0. According to Equation 5.11,

the mass probes not only the energy/transverse momentum values of the individual pixels
cells by pT,i and pT,j , but also their position in the η-φ grid.

0 5 10 15 20 25 30 35 40 45 50

Mass mimg [GeV]

0

2

4

6

8

10

12

14

16

×103

E
ve
n
ts
/1
.6
7
G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−QCD

(a) QCD

0 20 40 60 80 100 120

Mass mimg [GeV]

0

1

2

3

4

5

6

7

8

×103

E
ve
n
ts
/2
.4
0
G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−W

(b) W

Plot 5.21: Reconstructed jet mass mimg for 50, 000 events.

From the comparison the reconstructed jet mass for the conditioned variational autoencoder
(Figure 5.36) for QCD and W jets with the unconditioned model (Figure 5.12), it is obvious
that the description has significantly improved. This is due to the factorization of the
learning task, as already mentioned before.

It is only reasonable to study the individual contributions to Equation 5.11 in more
detail. Although, the energy of the jet is provided as an input to the network and therefore

131

not learned, the energy spectrum of the constituents Epix
ij is certainly not. Therefore, the

following plots show the distribution of the energy values (energy of the constituents) in
the pixels – including empty cells Epix

ij = 0 (for each image on an event-on-event base).

0 100 200 300 400 500 600 700

Energy Epix [GeV]

1

10

102

103

104

105

106

107

E
ve
n
ts
/1
7.
07

G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−QCD

(a) QCD

0 100 200 300 400 500 600 700

Energy Epix/1GeV [GeV]

1

10

102

103

104

105

106

107

E
ve
n
ts
/1
7
.0
7
G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−W

(b) W

Plot 5.22: Pixel activation values on an event-on-event base for 50, 000 images/events
and 40, 000 iterations.

0 1 2 3 4 5 6

Energy log
(
1 + Epix/1GeV

)
[1]

1

10

102

103

104

105

106

107

108

109

E
ve
n
ts
/0
.1
6

Training data Ep.01 it.01000

Ep.04 it.10000 Ep.07 it.20000

Ep.10 it.30000 Ep.13 it.40000

CV AE−ResNetLN−QCD

(a) QCD

0 1 2 3 4 5 6

Energy log
(
1 + Epix/1GeV

)
[1]

1

10

102

103

104

105

106

107

108

109

E
ve
n
ts
/0
.1
6

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CV AE−ResNetLN−W

(b) W

Plot 5.23: Logarithmic representation of the pixel activation values on an event-on-
event base for 50, 000 events.

Figure 5.22 emphasizes once again one challenge that needs to be mastered by the neural
networks: the pixel values span a wide range of energy values. As the images are very
sparse, most cells are empty with an energy value of Epix

ij = 0. Due to the large amount of
statistics for pixels with no activation, the VAE will focus mostly on accurately describing
this bin at the expense of learning high-energy values. This is the source of all kind of

132

5.4. CONDITIONAL VAES

problems when dealing with sparse data in general. So, it is all the more astonishing that
the model provides a good description of the mass despite those large discrepancies in
Figure 5.22. The reason is that the linear scale in Figure 5.22 mediates a wrong impression
of the constituent’s energy. Since the parton shower simulation described in Section 1.2.5
mostly adds soft radiation, the linear representation hides a lot of substructure in the
lower bins. A logarithmic scale provides a different picture. According to Figure 5.23 the
description is not so bad after all. The network learns an approximation of the spectrum
and by doing so it focuses on the low energy contributions with large statistics. As it has
been described in Section 4.3, the network was also directly trained on a data set whose
elements (images) feature a logarithmic scale like in Figure 5.23. However, against all odds,
the performance of the network deteriorates significantly compared to the linear scale. This
is surprising since in case of Wasserstein GANs, which are covered later in the next chapter,
the opposite behaviour could be observed. The discrepancy between training data and the
simulated jets is particular pronounced regarding different statistical moments, which can
be seen in Figure 5.24.

0.5

1

1.5

2

2.5

3

S
ta
ti
st
ic
al

m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 13 it. 40000

CV AE(log)−ResNetLN−QCD

1 2 3 4 5 6 7 8 9

nth ordinal

0

2

4

R
at
io

(a) Statistical moments QCD

0

1

2

3

4

5

S
ta
ti
st
ic
al

m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 13 it. 40000

CV AE(log)−ResNetLN−W

1 2 3 4 5 6 7 8 9

nth ordinal

0

2

4

R
at
io

(b) Statistical moments W

Plot 5.24: nth statistical moment for generated QCD and W jets for a logarithmic
scale (cf. Figure 5.7).

The deterioration compared to the corresponding diagram for the unconditioned VAE in
Figure 5.7 is particularly evident in the ratio between the two graphs. Even for the very first
moment, i.e., the mean of the distribution the deviation from the training data is significant.
The origin of this effect is not entirely understood. A possible cause might be a modification
of the reconstruction component in the ELBO (see Equation 3.40) in case of a log-scale.
With the transformation x′ = log(1 + x) and f ′θ(z) = log(1 + fθ(z)), the reconstruction

part is given by LELBO ⊃ − 1
2Ez∼Qφ

[
‖ (x′ − f ′θ(z)) ‖2

]
= Ez∼Qφ

[
log
∏npix

η ×npix
φ

i=1
1+fiθ(z)

1+xi

]
.

The last Equation poses a problem since with this transformation the basic assumption of
Gaussian distributed errors is replaced by something less intuitive and hence spoils the
basic probabilistic assumptions. Furthermore, the expression is numerically problematic
because the gradient may give rise to vanishing gradients. However, this is pure speculation
at this point. Based on those observations, the linear scale was used.

133

5.4.5 Other jet observables
The “good” description of the mass – which still has space for improvement – indicated
that the variational autoencoder not only learns to reconstruct the energy values of the
pixelsm but also their relative position in the image/grid (see Equation 5.11). The next
logical step is therefore to study a quantity that specially probes the substructure within
the reconstructed jet as well. N -subjettiness (see Section 1.3.5) fulfills exactly this need.
This paragraph studies 1-, 2 and 21-subjettiness (τ1, τ2 and τ21 := τ2/τ1) all three of which
have some interpretations. According to Equation 1.32, τ1 is given by

τ1 =

N∑

i=1

(
∆Ri
R

)(
ppixT,i∑N
j=1 p

pix
T,j

)
. (5.12)

The somewhat cumbersome representation of 1-subjettiness in Equation 5.12 provides a
possible interpretation: it is the weighted sum of the relative distances from reconstructed
jet in the η-φ grid. Hence, it gives the average distance of the constituent from the jet’s
reconstructed barycenter. This is, intuitively, closely related to the width of the jet (see
Equation 1.31).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1-subjettiness τ1

0

2

4

6

8

10

12

14

16

18

×103

E
ve
n
ts
/0
.0
17

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−QCD

(a) QCD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1-subjettiness τ1

0

2

4

6

8

10

12

14

16

18

×103

E
ve
n
ts
/0
.0
12

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−W

(b) W

Plot 5.25: 1-subjettiness for generated QCD and W jets.

Here the conditioned variational autoencoder fails. It comes as little surprise that τ1 is
rather poorly described with non-insignificant deviations from the true distribution for
both processes. Interestingly, the mean value of the learned and the true distribution are
consistent (which is in agreement with the good description of the first statistical moment),
but full width at half maximum is not (the mean values are roughly consistent with the
average jet image 5.16a,5.16a). This already reveals an apparent limitation of the model
proposed in this section: the more complicated the substructure of the jets, the worse is the
performance of the network. This is likely caused by an “undersizing” of the dimensionality
of the latent space Z. To reiterate: the dimensionality of the latent space is 100 while the

134

5.4. CONDITIONAL VAES

training data has 625 dimensions (pixels). This narrow bottleneck with compression by a
factor of roughly 0.16 will probably cause information loss. So, it is to be expected that
there will deviations between the generated and the true distribution. Figure 5.26 and 5.27
show the distributions for τ2 and τ21.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

2-subjettiness τ2

0

2

4

6

8

10

12

14

16

18

×103

E
ve
n
ts
/0
.0
07

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−QCD

(a) QCD

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

2-subjettiness τ2

0

2

4

6

8

10

12

14

16

18

20

22
×103

E
ve
n
ts
/0
.0
07

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−W

(b) W

Plot 5.26: 2-subjettiness for generated QCD and W jets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

21-subjettiness τ21

0

2

4

6

8

10

12

14

×103

E
ve
n
ts
/0
.0
31

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−QCD

(a) QCD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

21-subjettiness τ21

0

2

4

6

8

10

12

14
×103

E
ve
n
ts
/0
.0
28

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CV AE−ResNetLN−W

(b) W

Plot 5.27: 21-subjettiness for generated QCD and W jets.

In the case of QCD in Figure 5.26a, the description of the spectrum significantly deteriorates
– which is to be expected. QCD jets usually cause a diffuse spray of radiation with less
substructure. Therefore, τ1, which corresponds to the assumption of just one (or fewer)
subjets, is rather well described. The situation is different for W initialized jets. W jets,
which decay to hadrons in the final state, normally cause two spatial regions of higher
activity originating from the respective quarks. Hence, in case of W jets, τ2 should be

135

better approximated by the network compared to τ1 since 2-subjettiness corresponds to
the main feature of W jets, i.e., at least two subjets. This can de facto be observed in
Figure 5.26b and 5.27b. Following this logic (without further demonstration), τ3 should
get worse for both processes QCD and W jets.

Until now, mostly “counting experiments” have been studied to check to what extent
the network manages to fit the true distributions of the training data. However, those
distributions provide little to no information about, e.g., the performance of the network in
different mass or pT bins. Therefore, it is only reasonable (with the mass and N -subjettiness
being introduced) to study the correlation between different quantities. This provides more
insight into the manifold that is learned by the Gaussian VAE and allows to systematically
determine situations where the model fails.

From Figure 5.19 and 5.36 it is clear that the energy as well as the mass are rather
well modeled. This observation is qualified by studying the correlation between those two
figures of merit.

100 150 200 250 300 350 400 450 500 550

Transverse momentum pimg
T [GeV]

0

10

20

30

40

50

60

70

M
as
s
m

im
g
[G

eV
]

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CV AE−ResNetLN−QCD

(a) QCD

100 200 300 400 500 600

Transverse momentum pimg
T [GeV]

0

20

40

60

80

100

120

140

160

180

200

M
as
s
m

im
g
[G

eV
]

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CV AE−ResNetLN−W

(b) W

Plot 5.28: Correlation between the reconstructed mass mimg and the transverse
momentum pimg

T for 50, 000 events.

Both plots above show deviations for higher pimg
T values – while the effect is much more

pronounced for QCD jets. From Figure 5.28 it is furthermore expected that the correlation
between the mass mjet and the average transverse momentum per constituent pimg

T /Npix
0

will not be modeled well, which might also explain the deviation in Figure 5.28.

136

5.4. CONDITIONAL VAES

0 2 4 6 8 10 12 14 16 18 20

Mean transverse momentum pimg
T /Npix

0 [GeV]

0

5

10

15

20

25

30

M
as
s
m

im
g
[G

eV
]

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CV AE−ResNetLN−QCD

(a) QCD

0 2 4 6 8 10 12 14

Mean transverse mometum pimg
T /Npix

0 [GeV]

0

5

10

15

20

25

30

35

40

45

M
as
s
m

im
g
[G

eV
]

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CV AE−ResNetLN−W

(b) W

Plot 5.29: Correlation between the reconstructed mass mimg and the average mo-
mentum per constituent pimg

T
Npix

0

for 50, 000 events.

Plot 5.29 finally reveals the actual Achilles’ heel of the model, which is consistent with the
observations in Figure 5.23 that shows the distribution of energy values in the pixels. The
mismodelling in case of QCD jets in Figure 5.29a can be explained by the “blurring” and
the accompanying increased occupancy (see Figure 5.16a) that cause a bias towards low
values of pimg

T /Npix
0 . For W jets on the other hand this argument is not valid.

5.4.6 Why the model “fails”
The title is somewhat provocative. However, based on the insights that have been gained
up to this points, it is fair to say that the model (to a certain extent) fails to learn the
underlying probability distribution of the training data. As it has already been described
in Section 3.5, variational autoencoders are known to “blur” the data, or rather, to produce
noisy samples. Many publications investigate this behaviour and several solutions have
been proposed over the recent years such as e.g, Variational Lossy Autoencoder [Chen et
al., 2016], Improving Variational Inference with Inverse Autoregressive Flow [Kingma et
al., 2016] etc. Many reasons facilitate the apparent blurriness of the generated data. One
factor that encourages the model to generate noisy data is the mean squared error loss
used for the regression task, which corresponds to the assumption of a Gaussian distributed
errors. In combination with a small bottleneck, i.e., low dimensionality of the latent space,
the network might not be able to reproduce all features of the data precisely and therefore
“smears” the generated samples to provide a good description on average. Subsequent
studies should therefore further investigate the effect of the latent space as well as other
state-of-the-art inventions surrounding variational autoencoders or, more preferably, utilizes
adversarial models instead.

137

5.5 Conditioned VAEs with RNNs

The previous sections 5.3 and 5.4 studied conditioned and unconditioned variational au-
toencoders with a Gaussian constraint on the latent space. As it was shown, the description
of the data improves significantly if the learning task is factorized into the actual shower
algorithm and the matrix element of the underlying subprocess. However, the evident
deviation between the generated and the real manifold strongly indicates that the generative
model (without any assessment) “failed” – at least to some extend – to learn the underlying
distribution of the training data.
Nonetheless, this section introduces another modification to Gaussian variational autoen-
coders with the objective to later apply this method to generative adversarial networks
in the next chapter as well. Even though significant improvement compared to the pre-
vious configurations is rather unlikely, it is nevertheless useful to investigate the effect
of combining variational autoencoders with recurrent neural networks in the context of
parton shower simulation. These insights gained in this section, will be very helpful when
combining RNNs with the more complicated GANs.

5.5.1 Why generative models with RNNs?
The introduction of recurrent networks represents yet another complication of the problem
compared to the previous setup. Thus, the question why the combination of recurrent
neural networks and generative models, in general, is considered to be beneficial is justified.
To appreciate the argument, one has to remember that recurrent neural networks have been
developed for the purpose of modelling time-sequential data (see Section 3.3.2), for instance,
a sequence of words or letters. So, contrary to classical feed-forward neural networks without
any feedback (loops), recurrent neural networks also have to learn temporal correlations
between the data. To make this statement clear, consider again the example of a generative
model that has been trained to generate English sentences out of a random seed z. If the
first word represents a noun, it is very unlikely to be directly followed by yet another noun;
more likely, the network has to place a verb that describes the action in the sentence. More
generally, the network has to learn the close connection between nouns, verbs, adjectives
etc. in a sentence. In respect thereof, it has to account for the previous state of the
system in the current decision-making process. This requires the network to learn temporal
correlations; something that can not easily be done with simple feed-forward networks,
which only learn correlations between the data at one instant. Another example would
be the composition of music. The choice of cords in parallel harmonies and melodies
strongly depends on previous notes, musical motifs and figures in the score. Therefore, for
a neural network to compose meaningful music that appears pleasing to human beings, it
must account for the previous states of the piece. Otherwise, the composition will sound
random and most likely disharmonious most of the time (just like Arnold Schönberg’s
atonal music or twelve-note compositions) (for a generative adversarial neural network that
has been trained to compose music see Yang et al. [2017]). So, recurrent neural networks
are indispensable when temporal correlations play a crucial role in modelling the data.

As described in Chapter 2 and 1.3, the jets observed in the calorimeter of a detector are
the result of a (temporal) sequence of emitted radiation that causes a cascade of secondary
particles. In the simulation of parton showers, this process is sequentially modelled by
a Markov chain and the probability that a parton does not split, given by the Sudakov
form factors (see Section 1.2.5). With the actual underlying fundamental process in mind –
the sequential emission of QCD radiation –, it seems only natural to model this process

138

5.5. CONDITIONED VAES WITH RNNS

with recurrent neural networks that have been designed exactly for this area of application.
However, there is a major limitation: the jet images used to train neural networks do not
contain any sequential information anymore since the image itself represents a projection
along the time dimension (the accumulation of particles over some time interval). It is not
possible to reconstruct the order of the showering in the calorimeter of a detector; therefore,
this information is not accessible and hence can not be used for training of the model. It
is more than doubtful that the neural network will learn a meaningful shower sequence
if the timestamp of the constituents is withheld. However, by using the recurrent neural
network the model is “enforced” to model the data sequentially by any means necessary –
whether it is actual sequential or not. It will be interesting to study how the neural network
accomplishes this task if trained on jet images introduced in Chapter 4.

5.5.2 Combining VAEs with RNNs
How does one combine variational autoencoders with recurrent neural networks introduced
in Section 3.3.2? The actual implementation is straightforward. The architecture of the
encoder according to Figure 5.1a remains unchanged since only the decoder (the actual
generative model) is supposed to be time-sequential. The choice of RNNs introduces several
new hyperparameters as part of the LSTM layer (see Figure 3.4) that need to be tuned.
Furthermore, the length of the time sequence nT must be defined that gives the number of
individual images xt for each time step t ∈ {1, 2, . . . , nT }7. In the end, the model should
return a single jet image x := h(x1,x2, . . . ,xT) that is composed out of the individual
time sequences {xt}nTt=1 by some function h :

∏nT
i=1 R

npix
η ×npix

φ → Rn
pix
η ×npix

φ . The simplest
choice of h would simply be the sum of the individual images generated in each time step
that also mostly corresponds to the underlying physical process of subsequent splittings

h ({xt}nTt=1) =

nT∑

t=1

xt. (5.13)

The definition of h according to Equation 5.15 has a potential weakness: the neural network
could learn to bypass the sequential model by (re-)producing the same output xt exactly
nT times with x1 = x2 = . . . = xT . In this case, each image xt with time stamp t just
represents output scaled by 1/nT

h ({xt}nTt=1) =

nT∑

t=1

xt = xt

nT∑

t=1

= xtnT = x. (5.14)

Empirical tests (not presented in this report) showed that this kind of risk can be reduced
by introducing an explicit ordering in the series Equation 5.15 according to

h ({xt}nTi=1) =

nT∑

t=1

xti. (5.15)

Of course this can theoretically be bypassed by generating the same image scaled by
nT (nT + 1)/2.

7In this thesis the length of the sequence of images is fixed for reasons of simplicity. However,
based on fundamental arguments, the number of time steps nT that generate an image should be a
function of the energy since the average number of emitted gluons strongly depends on the energy via

nT ∼
〈
Ng
〉
∝ exp

(√
4CA
πb

ln Q
Λ

)
.

139

The architecture of the decoder network is kept very simple; it only consists of a
sequence of LSTM and dense layers as shown in Figure 5.4.

LSTM LSTM LSTM LSTM→LSTM

E0 x0

Ejet, ηjet, z0

E1 x1

Ejet, ηjet, z1

E2 x2

Ejet, ηjet, z2

Et xt

Ejet, ηjet, zt

Et xt

Ejet, ηjet, zt

. . .

Fig. 5.4: The decoder combined with an RNN. As an input, the LSTM layer receives
two conditioning labels, jet energy Ejet and the pseudorapidity ηjet, as well as the
seed zt, which is different for each time step t. The output for each time step, i.e.,
each loop cycle, is a normalized vector and a scalar that corresponds to the energy
at time t.

For each time-step, the LSTM layer returns an energy value Et as well as a vector x̃ ∈
Rn

pix
η ×npix

φ with
∑npix

η ×npix
φ

t=1 xt = 1, i.e., output is a discrete probability distribution. This
is achieved by using a dense layer with npixη · npixφ output nodes with a softmax function σ :

Rn
pix
η ×npix

φ →
{
x̃ ∈ Rn

pix
η ×npix

φ |xt ≥ 0,
∑npix

η ×npix
φ

t=1 xt = 1

}
with σ(x̃)t = exi/

∑npix
η ×npix

φ

t=1 x̃t.

The actual final jet image that is returned by the decoder network is then given by

x := h ({xi}nTt=1) =

nT∑

t=1

E(i)σ(x̃)ii
β , (5.16)

with β ∈ R being a tunable (hyper)parameter that introduces “time-ordering”. Henceforth,
we refer to the operation defined by Equation 5.16 as image generation layer or time
projection layer.

Using a softmax activation was not the first choice. The original intention was to only
add one parton for each time step t, in connection the number of emitted gluons according

to nT ∼
〈
Ng
〉
∝ exp

(√
4CA
πb ln Q

Λ

)
. In doing so, each cycle in the LSTM layer would have

a clear physical interpretation, i.e., the addition of a new gluon to the shower cascade
for each time step. However, the implementation is difficult for several reasons. To add
only one gluon per time t, the output of the LSTM layer must be modified such that the
probability distribution given by the softmax activation is replaced by an operation σ′ that
assigns 1 corresponding to the position of highest probability and 0 otherwise

x′t := σ(x)′t =

1 if xi = arg min
x

(σ(x))

0 otherwise
. (5.17)

140

5.5. CONDITIONED VAES WITH RNNS

Equation 5.17, although very intuitive, has a serious problem, i.e.m it is not continuously
differentiable. Backpropagation (Section 3.4.3) and gradient descent (Section 3.4.2), however,
require continuously differentiable functions to compute gradients of the loss function
(Section 3.4.1) and to update the model’s weights accordingly. Therefore, Equation 5.17
can not be used in the context of supervised or unsupervised learning8. To work around this
problem, it was tried to approximate Equation 5.17 by a Gaussian N (µtmax , σ2) whereby
arg min

x
(σ(x)) = xtmax and σ = 1/n with n ∈ N \ {0}. The conceptual difference between

the Gaussian and the softmax activation is shown in Figure 5.30.

3 4 5 6 7 8 9 10 11

Position

In
te
n
si
ty

(a
.u
.)

Gaussian activation

Softmax activation

Plot 5.30: The softmax activation gives a discrete probability distribution (in contrast
to the continuous spectrum depicted) over the pixel positions while the Gaussian
activation selects one particular pixel that corresponds to the highest probability –
all other pixels are highly suppressed (distributions not to scale).

Even though the Gaussian approximation is continuously differentiable, it does suffer from
vanishing gradients due to the small width σ that is required by the resolution criterion(
µtmax−xt

σ

)2 � 1 if xi 6= µimax . Hence, the model does not get updated anymore and thus
remains static. In conclusion, the softmax activation was used as a compromise solution9.

The actual number of LSTM cells and dense layers is part of the tuning of the model.
Fortunately, in case of variational autoencoders, the ELBO and/or the KL-divergence
provide an ideal measure of the performance of the model in terms of its reconstruction
loss and/or the information encoded in the latent space as it was done before. Therefore,
both quantities, the ELBO and the KL-divergence, are evaluated for different sequence
length nT as it was already done for the dimensionality of the latent space dim(Z) (Figure
5.2) and the learning rate αl (Figure 5.2).

Figure 5.31a and 5.31b show the ELBO as well as the Kullback-Leibler divergence for
an increasing number of time steps, successively increasing by powers of two.

8Reinforcement learning (see Section 3.2) does not have the restriction of a continuously differentiable
cost function but allows to learn non-differentiable functions as well. It might therefore be worth trying to
translate the problem to this paradigm of machine learning. Of cause, this would be a significant change
at all levels with an uncertain outcome.

9This is still rather unsatisfactory since the softmax activation gives rise to the aforementioned problems
regarding the replication of the same image for each time step. By construction, this issue does not occur
if only one particle is added per cycle. Consequently, the recommended long-term scenario definitely would
be to get rid of the softmax activation for good.

141

0 2 4 6 8 10 12 14
×103

Iterations

102

103

104

E
v
id
en

ce
lo
w
er

b
ou

n
d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Epochs

nT = 1 nT = 2 nT = 4

nT = 8 nT = 16 nT = 32

nT = 64 nT = 128 nT = 512

nT = 1024

CV AE −RNN−ResNetLN−QCD

(a) ELBO

0 2 4 6 8 10 12 14
×103

Iterations

0

20

40

60

80

100

120

K
L
-d
iv
er
g
en

ce

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Epochs

nT = 1 nT = 2 nT = 4

nT = 8 nT = 16 nT = 32

nT = 64 nT = 128 nT = 512

nT = 1024

dim(z)

CV AE −RNN−ResNetLN−QCD

(b) KL-divergence

Plot 5.31: The ELBO and the KL-divergence (see Equation 3.41) versus the number
of iterations parameterized for different numbers time steps nT .

Again, the KL-divergence is significantly affected. This effect is caused by the increased
complexity of the inference network that is accompanied by an increased number of time
steps rather than a direct effect of the number of time steps. Contrary to the variational
autoencoders in the previous section, the RNN requires an additional dimension that
corresponds to the time axis. Therefore, the output of the encoder network is of dimension
dim(Z) · nT , which corresponds to the number of neurons in the last layer of the network.
Hence, the complexity of the encoder scales linearly with the number of time steps nT .
According to Figure 5.31, nT was chosen to be 64.

The architecture of the generative model is very simple and only consists of one single
LSTM layer that receives a vector of size dim(Z) · nT as an input and has 512 output
nodes followed by two (time distributed) dense layers with 512 nodes each. As illustrated
in Figure 5.4, the network has two outputs: first, a single value that is the energy Et at
each time step; second, the flattened image xt ∈ Rn

pix
η ·npix

φ at time t that is given by a
dense layer npixη · npixφ . Normalization layers have been waived in experiments concerning
VAEs with RNNs.

Comment : In case of variational autoencoders combined with recurrent neural networks
each time step t gets its own seed zt that is sampled from the latent space Z. It was
later realized, that this approach is conceptually very similar to increasing the number of
samples in the Monte Carlo approximation as described in Section 3.5.3.

5.5.3 Samples, average jet image and jet observables
Like it was done in the previous two sections, the first step is to visually examine the
simulated samples from the generative model combined with recurrent neural networks.
Figure 5.32 and 5.33 show again three samples generated from a random seed zt ∼ Pz
for QCD and W initialized jets respectively. Recall, that in case of VAEs combined with
RNNs according to the image generation layer (see Equation 5.16), each image is generated
out of nT seeds, i.e., one latent space vector for each time step.

142

5.5. CONDITIONED VAES WITH RNNS

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/
ra
d
]

10−3

10−2

10−1

1

10

E
p
ix

[G
eV

]
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/
ra
d
]

10−3

10−2

10−1

1

10

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/
ra
d
]

10−3

10−2

10−1

1

10

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

Plot 5.32: Three randomly simulated QCD jets.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/
ra
d
]

10−4

10−3

10−2

10−1

1

10

E
p
ix

[G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulated jet,
√
s = 14TeV,W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/
ra
d
]

10−5

10−4

10−3

10−2

10−1

1

10

E
p
ix

[G
eV

]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulated jet,
√
s = 14TeV,W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/
ra
d
]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

10

E
p
ix

[G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulated jet,
√
s = 14TeV,W

Plot 5.33: Three randomly simulated W jets.

The comparison between the simulated samples for VAEs in the previous sections (see
Figure 5.3, 5.4 and 5.14, 5.15) and the ones that utilizes recurrent neural networks reveal
an entirely different picture. The first feature that immediately strikes the eye in Figure
5.32 and 5.33 is the very high activity in the image, i.e., a significant increased occupancy
compared to the previous examples. In fact, the occupancy is almost 100 % for each image
on an event-on-event base. What is moreover conspicuous is that the individual samples
separately are already quite close to the respective average jet image shown in Figure 5.34a
and 5.34b.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
ge

en
er
gy

〈E
p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

CVAE-RNN, ResNetLN, QCD

(a) QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
ge

en
er
gy

〈E
p
ix
〉[

G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

CVAE-RNN, ResNetLN, W

(b) W

Plot 5.34: Average jet image for 50, 000 events and 40, 000 iterations.

143

As one can clearly see from the Figures above, the average jet image for 50, 000 samples
and the individual jet images (Figure 5.32 and 5.33) are in surprisingly close proximity
to each other. This phenomenon is owed to the definition of the image generation layer
x =

∑nT
t=1Etσ(x̃)tt

β that merges several images to one final jet image by the summation
over the individual images xt = Etσ(x̃)t generated at each time step. This is a strong
indication that the neural network generates mostly random jet images for each time step
t; hence, does not learn any temporal correlations between the particular samples. Again,
it is hardly surprising that the network does not learn temporal correlations since this
information is not provided during training. The training data itself is nothing but a
two-dimensional projection, which does not simply allow to reconstruct the time-sequential
character of the underlying physical process that generated the final pattern observed in
the detector.

Surprisingly, the significantly increased occupancy does not adversely affect the recon-
structed energy spectrum as illustrated in Figure 5.35.

0 100 200 300 400 500

Engery Eimg [GeV]

0

2

4

6

8

10

12

14

16

18

20
×103

E
ve
n
ts
/1
9.
43

G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

(a) QCD

0 100 200 300 400 500 600

Engery Eimg [GeV]

0

2

4

6

8

10

12

×103

E
ve
n
ts
/2
1.
55

G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

(b) W

Plot 5.35: Reconstructed jet mass mimg for 50, 000 events.

However, according to Figure 5.3 and 5.4, most pixel activations in the periphery of
the image are very soft. Hence, the energy Eimg is composed of two contributions: the
structuring component of the image (high-energy activations primary in the center) that
does come with higher energies and the softer component that is an artifact from the
summation in the image generation layer. However, the soft contribution to the total
energy is orders or magnitudes smaller compared to the highest pixel activation values and
can therefore be neglected.

The situation is different if the respective jet observable takes into account the relative
position between the individual pixels such as, e.g., the reconstructed mass (see Equation
5.11) that is shown in Figure 5.36.

144

5.5. CONDITIONED VAES WITH RNNS

0 10 20 30 40 50 60 70

Mass mimg [GeV]

0

2

4

6

8

10

12

14

16

18

20

22

24
×103

E
ve
n
ts
/2
.5
9
G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

(a) QCD

0 20 40 60 80 100 120 140 160 180 200

Mass mimg [GeV]

0

2

4

6

8

10

12

14

16

×103

E
ve
n
ts
/2
1.
55

G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

(b) W

Plot 5.36: Reconstructed jet mass mimg for 50, 000 events.

The significant shift of the reconstructed distributions towards higher masses for both
processes is a consequence of the increased occupancy in the image. Furthermore, the
shift is positive since the increased activity is not uniformly distributed over the image
but slightly shifted to the right hand side due to the preprocessing. Hence, the addi-
tional contribution to the reconstructed mass from the soft energy values

(
mimg

)2
=

∑N−1
i=0

∑N−1
i 6=j pT,ipT,j

(
cosh δηimg

ij − cos δφimg
ij

)
does not completely average out.

To improve the consistency between the generated and the real mass spectrum, an
energy-cut Epix

th is applied to each individual pixel. The result is shown in Figure 5.37.

0 10 20 30 40 50 60 70

Mass mimg [GeV]

0

5

10

15

20

25

×103

E
ve
n
ts
/2
.5
9
G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

Epix ≥ 2.0MeV

(a) QCD

0 20 40 60 80 100 120 140 160 180 200

Mass mimg [GeV]

0

5

10

15

20

25

×103

E
ve
n
ts
/6
.6
7
G
eV

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–W

Epix ≥ 10.0MeV

(b) W

Plot 5.37: Reconstructed jet mass mimg for 50, 000 events.

The energy threshold cut Epix
th has been varied to find the value that corresponds to the

best agreement between two distributions (there are certainly other distributions that are
rather suitable to determine the energy cut). In case of QCD, this threshold is at roughly

145

Epix
th ≈ 2MeV while for W jets with Epix

th ≈ 10MeV the energy cut must be chosen much
larger to get a tolerable result. This threshold cut is of course quite unsatisfactory since it
introduces a certain degree of arbitrariness.

The impact of this threshold cutting of the distribution of pixel activation values is
shown in the Figure below.

0 1 2 3 4 5 6

Energy log
(
1 + Epix/1GeV

)
[1]

1

10

102

103

104

105

106

107

108

E
ve
n
ts
/0
.1
6

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

Epix ≥ 2.0MeV

(a) QCD

0 1 2 3 4 5 6

Energy log
(
1 + Epix/1GeV

)
[1]

1

10

102

103

104

105

106

107

108

E
ve
n
ts
/0
.1
6

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CVAE-RNN–ResNetLN–W

Epix > 10.0MeV

(b) W

Plot 5.38: Pixel activation values on an event-on-event base for 50, 000 events.

Still, even after the energy cut, the shift towards lower energy values is significant (cf.
Figure 5.22) in the distribution of pixel activation values.

The deterioration of the description of the underlying distribution of the training data
can also be observed in the significant deviations between the statistical moments of the
generated and the expected distribution.

0.5

1

1.5

2

2.5

3

S
ta
ti
st
ic
al

m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

Epix ≥ 2.0MeV

1 2 3 4 5 6 7 8 9

nth ordinal

0

1

2

3

4

R
at
io

(a) Statistical moments QCD

0

1

2

3

4

5

S
ta
ti
st
ic
al

m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–W

Epix ≥ 10.0MeV

1 2 3 4 5 6 7 8 9

nth ordinal

0

2

4

6

R
at
io

(b) Statistical moments W

Plot 5.39: nth statistical moment for generated QCD and W jets.

Compared to the variational autoencoder without recurrent neural network in Figure 5.24,
the approximation of the target distribution has measurable deteriorated – especially in

146

5.5. CONDITIONED VAES WITH RNNS

case of W jets.
If the correlation between the reconstructed mass and the transverse momentum is

studied instead, one unexpectedly observes an improvement – dependend on the aforemen-
tioned energy cut – for QCD jets compared to the corresponding Plot 5.28. This, however,
does already significantly changes in case of W jets as can be seen in Figure 5.40b.

100 150 200 250 300 350 400 450 500 550

Transverse momentum pimg
T [GeV]

0

10

20

30

40

50

60

70

M
a
ss
m

im
g
[G

eV
]

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

Epix ≥ 2.0MeV

(a) QCD

100 200 300 400 500
Transverse momentum pimg

T [GeV]

0

20

40

60

80

100

120

140

160

180

200

M
a
ss
m

im
g
[G

eV
]

Training data

Ep. 01 it. 01000

Ep. 04 it. 10000

Ep. 07 it. 20000

Ep. 10 it. 30000

Ep. 13 it. 40000

CVAE-RNN–ResNetLN–W

Epix ≥ 10.0MeV

(b) W

Plot 5.40: Correlation between the reconstructed mass mimg and the transverse
momentum pimg

T for 50, 000 events.

Finally, the model completely fails to reconstruct the substructure of the jet images
compared to the training data, which is lost within the high occupancy in the image. This
becomes particularly apparent in the reconstructed correlation between the 1-subjettiness
τ1 and the transverse momentum pimg

T . The large discrepancy for the processes is clearly
visible in Figure 5.41.

100 150 200 250 300 350 400 450 500 550

Transverse momentum pimg
T [GeV]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1-
su
b
je
tt
in
es
s
τ
im

g
1

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CVAE-RNN–ResNetLN–QCD

Epix ≥ 2.0MeV

(a) QCD

100 200 300 400 500 600

Transverse momentum pimg
T [GeV]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1-
su
b
je
tt
in
es
s
τ
im

g
1

Training data Ep. 01 it. 01000

Ep. 04 it. 10000 Ep. 07 it. 20000

Ep. 10 it. 30000 Ep. 13 it. 40000

CVAE-RNN–ResNetLN–W

Epix ≥ 10.0MeV

(b) W

Plot 5.41: Correlation between the reconstructed 1-subjettiness τ1 and the transverse
momentum pimg

T for 50, 000 events.

Based on Figure 5.41, it is obvious that the generative model does indeed fail to learn the

147

relation between the relative position of the consistent jets and the transverse momentum
of the jet. The description does not improve for other choices of the energy threshold
cut. Under these circumstances, it is not reasonable to further investigate the variational
autoencoders in more detail – although many other jet observables have been studied
that provide a different perspective on the manifold learned by the generative model.
The following brief paragraph is supposed to quickly summarize some insights that have
been gained in the previous sections before giving attention to Wasserstein GANs in the
subsequent Chapter.

5.6 Final notes

In this chapter, the applicability of variational autoencoders in the context of the simulation
of QCD radiation has been studied. The first Section 5.1 introduced the architecture
of the encoder as well as the decoder neural network. In the second Section 5.2 the
hyperparameter configuration regarding the dimensionality of the latent space, the learning
rate αl and the optimizer used for gradient descent was motivated. With the technical
questions being clarified, the unconditioned variational autoencoder has finally been trained
on the generated QCD and W data as explained in the previous chapter. As it turned out,
the unconditioned model shows a poor performance regarding the modelling of the training
data, i.e., matrix element and parton shower. The reason for the significant discrepancies
that have been observed between the generated and the real data is due to the fact that
the neural network has to learn two problems in one model: the underlying information of
the hard subprocess encoded in the matrix element as well as QCD radiation by means
of parton shower simulation (see Section 1.2.5). Therefore, in the subsequent Section
5.3 the encoder and the decoder have been conditioned on the energy as well as on the
pseudorapidity of the jet. From a probabilistic point of view, this step corresponds to
the factorization into two generative models one of which models the matrix element and
one that learns the shower simulation. Instead of learning the hard subprocess through a
generative model, the information of the matrix element is directly taken from the training
data (e.g. the distribution of the energy or the transverse momentum). Compared to the
unconditioned VAE, conditioning the model on the energy and the pseudorapidity had a
measurable positive effect on the performance regarding the quality of the generated samples.
Nonetheless, significant deviations in several figures of merit could be observed, indicating
that the generative model does indeed fail to learn the actual underlying distribution that
generated the training data (particularly apparent in the progression of the statistical
moments). This was one main motivation for the combination of variational autoencoders
and recurrent neural networks, which have been introduced in Section 6.5. Using RNNs
in this context is very tempting since the underlying process that generated the data is a
time sequence of parton splittings; hence, recurrent networks seem to be a natural choice.
However, the sequential nature of the actual process is not included in the training data;
as a result, the network fails to use the options provided by RNNs and does not learn any
temporal correlation. As a matter of fact, the description of the data noticeably degrades if
VAEs are combined with RNNs – probably due to the definition of the time-projection layer.
In general, it can be said that in the scope of this thesis the VAE reached its limit. The
generative model mastered to superficially learn the approximate distribution of the data.
However, a deeper look into the manifold (see Figure 3.8) reveals significant deviations,
which are especially apparent if the 1-subjettiness is studied that probes the substructure
of the jets. The results obtained so far are not satisfactory. The following chapter therefore
takes a completely different approach to the problem through Wasserstein GANs.

148

Chapter 6

Jets with Wasserstein Generative
Adversarial Networks

The previous chapter has clearly shown that the application of (Gaussian) variational
autoencoders in the context of matrix element and/or parton shower simulation is rather
limited. As a matter of fairness, it must be mentioned that this conclusion does by no
means represent a general statement, but is restricted to the scope of this thesis. As always,
the performance of the respective machine learning model under consideration strongly
depends on the configuration of hyperparameters and the architecture of the network(s).
Hence, it is very well possible that a different model configuration performs significantly
better (or worse) than those presented in this report.

In this chapter, the variational autoencoders and their various variations are left
behind to make room for generative models that are based on the Wasserstein generative
adversarial networks, which have been introduced in Section 3.6. The structure of this
chapter closely follows the previous one to allow for a simple comparison between the
two different approaches to generative models. The first two sections are rather technical,
explaining and motivating the architecture of the generator and the critic network (6.1) as
well as the configuration of hyperparameters used in the training routine (6.2). Hereafter,
unconditioned (6.3) and conditioned WGANs (6.4) are studied one by one, followed by the
combination of WGANs and RNNs (6.5) like it was done in the previous chapter for VAEs.
The chapter finally concludes with a summary of the acquired insights (6.6).

6.1 Architecture specification

On the whole, the networks’ architecture used for the critic and the generator of the
adversarial model is the same as the one introduced in Chapter 5 in the context of VAEs –
with some minor but important changes. In the case of Gaussian variational autoencoders,
the encoder has two outputs that correspond to the mean µφ and the variance σ2

φ of
the Gaussian approximation by the inference network. Accordingly, the decoder network
receives two inputs as well (disregarding the conditioning labels) to reconstruct the data
from the latent space Z. In the case of Wasserstein GANs on the contrary, the output of the
critic network fφ is a single number, i.e., a score in the range [−∞,∞] (see Section 3.6.2)
contrary to classical GANs in which the discriminator maps the input to a (classification)
probability (see Section 3.6.1). The image set is of particular importance. Otherwise, the

149

function fφ is not able to rule out invalid transportation plans γ 6∈ Γ(Pr,Pg). Hence, it
fails to learn the earth mover’s distance from the start. To ensure that the critic network
indeed maps the input to the entire range of real numbers fφ : Rn

pix′
η ×Rn

pix′
φ → R, it must

not have an activation function in the last layer1. The input to the network of the critic is
the same as for the encoder: an image from the training set x ∈ X or generated by the
generative model gθ(z) = x̂ ∈ F and, if the model is conditioned on external labels too,
the energy Ejet as well as the pseudorapidity ηjet of the jet.

The situation is similar for the generator network gθ, i.e., the actual generative model.
Contrary to VAEs, the generator in WGANs only receives one input, i.e., the noise vector or
seed z ∈ Z samples from the distribution Pz over the latent space Z that is constrained to
resemble a multivariate Gaussian distribution with mean 0 and variance 1. If the generative
model is conditioned it also receives Ejet and ηjet as an input that is concatenated to z.
Except for the changes mentioned above, the architecture regarding the number of layers,
residual blocks (see Figure 5.2), number filters etc. remains the same.

0 2 4 6 8 10 12 14 16 18 20
×103

Generator iterations (ngit : n
c
it = 1 : 10)

1

10

M
o
d
u
lu
s
o
f
W
as
se
rs
te
in

(e
ar
th

m
ov
er
’s
)
d
is
ta
n
ce

0 2 4 6 8 10

Epochs

LcNet LcNetRed FcNet

ResNet ResNetLN

Plot 6.1: Modulus of the Wasserstein loss for different network architectures.

It should also be noted that in contrast to VAEs, (Wasserstein) GANs show a significant
dependence on the underlying network architecture. Figure 6.1 shows the modulus of the
earth mover’s distance for several architectures with roughly the same number of trainable
parameters (Locally-connected Network (LcNet), Fully-connected Network (FcNet), and
Residual Networks (ResNet) with Layer Normalization (ResNetLN)) (cf. Section 5.1). The
family of graphs show notable differences. Especially the layer normalization has proven to
be very beneficial for the reduction of training time.

1In fact, the critic network might have an activation function σ : Rn
pix′
η × Rn

pix′
φ → R with σ 6= idx in

the last layer as long as the image set Im(fφ) = R is guaranteed to be the entire range of real numbers.
This has been tried as well. However, a non-linear activation function in the last layer causes additional
complications and reduces the training performance due to the costlier calculations of gradients.

150

6.2. HYPERPARAMETER CONFIGURATION

6.2 Hyperparameter configuration

After the network architecture of the critic and the generator has been explained, it is
once again about time to justify the configuration of hyperparameters that was used to
train the adversarial neural network in this report. Doing this is crucial because Wasser-
stein GANs – more specifically: GANs in general – are very sensitive to the setting
of hyperparameters compared to, for instance, variational autoencoders that are more
robust in this regard. Hence, an inopportune configuration of the model’s tunable pa-
rameters might quickly result in chaotic behaviour and non-convergence. In fact, the
results shown here represent the fundamental prerequisite for the outcomes and insights of
the sections to follow. (Admittedly, it is an unpleasant work and certainly not the most
interesting part, but it’s certainly worth the effort.) Furthermore, the findings acquired
in this section may serve others who work with generative adversarial networks as a
decent starting point for their model optimization. In spite of every effort, the tuning
and optimization of the model are still considered to be rather superficial due to the large
dimensionality of the hyperparameter space. There are promising approaches towards an
automated hyperparameter tuning besides performing a random grid search, like Bayesian
optimization methods or the utilization of Gaussian processes. However, all those novel
methods currently require small networks with rather simple cost functions. Hence, none of
these methods is suited to be used in combination with generative models for the time being.

In order to adequately estimate the performance of the neural network, a figure of merit
is required that reflects the improvement or deterioration for different configurations of
hyperparameters. In case of variational autoencoders, the loss function, i.e., the ELBO (see
Equation 3.39) unequivocally is the quantity of choice since it directly gives a lower bound
on the object of interest, i.e., the evidence of the data Pr(x). Generally, however, there
is no easy way to measure the performance of (classical) generative adversarial networks
regarding the quality and the entropy (diversity) of the generated distribution Pg. This is
due to the “lack of interpretability” of the objective function (see Section 3.6.1) since an
increasing loss may correspond to an improved performance or vice versa. This makes it
very difficult to systematically rate the effectiveness of the model or to define some criterion
of early stopping for the training routine. Therefore, it is established common practice in
many publications to just present visual results2. Fortunately, the situation is different in
case of Wasserstein GANs. As it has been explained in Section 3.6.2, as one representative
on an integral probability metric the Wasserstein distance gives a lower bound on the
Kullback-Leibler divergence DKL(Pr||Pg) between the real data Pr and the generated
distribution Pg (see Equation 3.66) similar to the lower bound on Pr(x) in case of VAEs.
Hence, a smaller value of W (Pr,Pg) corresponds to an improved approximation of the real

2A good figure of merit or “GAN evaluation measure” should measure the quality of the simulated
samples as well as their diversity of the generated distribution, i.e., the entropy of the underlying
probability distribution. To meet both criteria, an additional neural network is required: the so-called
image classification network or inception classifier (that is provided by Google). The task of the inception
network is to measure p(y|x), i.e., to classify the generated data x ∼ Pg to some label y, for instance,
the pT of the jet. This measures the quality of the generated data. To estimate the diversity of the
data, the entropy of the generated distribution Pg must be calculated according to the marginalization∫
z dz

′ p(y|gθ(z′)) that should be close to the true distribution p(y). Both criteria combined give the

so-called inception score IS(Pg) = exp
(
Ex∼Pg [DKL(p(y|x)||p(y))]

)
[Barratt and Sharma, 2018, Brock et

al., 2018, Salimans et al., 2016b]. Unfortunately, the inception score can not be used in the context of his
thesis since Google’s classification network has not been trained to classify jet images.

151

distribution. This makes perfect sense, as the integral probability metric is related to the
maximum mean discrepancy by MMD(Pr,Pg) = supf∈H,‖f‖H≤1 Ex∼Pr [φ(x)]−Ex∼Pg [φ(x)]
and hence directly measures the similarity between two distributions with respect to their
statistical moments. This is not necessarily true for GANs that use an f -divergence instead.
Therefore, just as it was done for variational autoencoders, the approximation of the earth
mover’s distance by the critic network is used as a figure of merit to estimate the performance
of the model. Furthermore, the gradient penalty term, L ⊃ Ex′∼Px′

[(
‖∇x′fφ‖2 − 1

)2], is
used to measure the quality of the required Lipschitz condition and thereby the reliability
of the estimation of the earth mover’s distance.

The first step is to specify the dimensionality of the latent space that serves as a random
seed from which the jet-images are generated. For this purpose, the Wasserstein loss and
the gradient penalty term are evaluated for different dimensions of the latent space Z for
dim(Z) ∈ {2k}k≤9. The results are illustrated in Figure 6.2.

0 1 2 3 4 5
×103

Generator iterations (ngit : n
c
it = 1 : 10)

0

2

4

6

8

10

12

M
o
d
u
lu
s
of

W
as
se
rs
te
in

(e
ar
th

m
ov
er
’s
)
d
is
ta
n
ce

0 1 2 3 4 5 6 7 8

Epochs

dim(z) = 1 dim(z) = 2

dim(z) = 4 dim(z) = 8

dim(z) = 16 dim(z) = 32

dim(z) = 64 dim(z) = 128

dim(z) = 512 dim(z) = 1024

dim(z)

WGAN−ResNetLN−QCD

(a) Wasserstein loss

0 1 2 3 4 5
×103

Generator iterations (ngit : n
c
it = 1 : 10)

0

0.05

0.1

0.15

0.2

0.25

G
ra
d
ie
n
t
p
en
al
ty

(λ
G
P
=

10
)

0 1 2 3 4 5 6 7 8

Epochs

dim(z) = 1 dim(z) = 2

dim(z) = 4 dim(z) = 8

dim(z) = 16 dim(z) = 32

dim(z) = 64 dim(z) = 128

dim(z) = 512 dim(z) = 1024

dim(z)

WGAN−ResNetLN−QCD

(b) Gradient penalty contribution

Plot 6.2: The non-negative Wasserstein loss (6.2a) (earth mover’s distance) and the
gradient penalty term (6.2b) for different dimensionality dim(Z) of the latent space
Z for the same architecture.

Both family of curves in Plot 6.2a and 6.2b show some saturation from dim(Z) ≈ 64
onwards, with the loss still decreasing slowly. It is also noteworthy that the variance of the
contribution from the gradient penalty is significantly reduced for increased dimensions
of Z. Since it is hard to tell whether dim(Z) = 32 or dim(Z) = 128 is the appropriate
choice, a dimension of dim(Z) = 100 has been assigned to Z, which turned out to provide
reasonable results. It is important to keep in mind the improvements in Figure 6.2 are not
exclusively due to the larger dimension of Z since increasing dim(Z) always is accompanied
by an increased complexity of the network regarding the number of trainable parameters
(although this effect is small compared to the total number of weights in the network
N tot
g,w ∼ O(106)). This is obvious, since the noise vector z ∈ Z is processed by fully

connected layers in the first layer of the generator. Hence, the number of weights in the
first layer of the generator scales linearly with the dimension of Z.

After the dimensionality of the latent space dim(Z) = 100 has been fixed, the next
step is to determine the learning rate αl that weights the updates to the parameters in

152

6.2. HYPERPARAMETER CONFIGURATION

the gradient descent algorithm. At this point there is an additional difficulty compared
to VAE: in VAEs, the decoder and the encoder network are trained simultaneously, while
in GANs, the discriminator/critic and the generator are trained alternatingly. Therefore,
a priori, there is no argument why the learning rate of the critic αcl the learning rate of
the generator αgl should be identical; on the contrary, there are reasonable arguments
why this should indeed not be the case. However, evaluateing the model on a grid of
[αc,min
l , αc,max

l]× [αg,min
l , αg,max

l] is unfeasible in light of the complexity of the used model
(the generation of the plots in Figure 6.3 already took several days), which is why the
constraint αl := αcl = αgl is applied in all models presented in this report. Figure 6.3a
shows the approximation of the earth mover’s distance for different learning rates.

0 1 2 3 4 5
×103

Generator iterations (ngit : n
c
it = 1 : 10)

10−1

1

10

M
o
d
u
lu
s
of

W
as
se
rs
te
in

(e
ar
th

m
ov
er
’s
)
d
is
ta
n
ce

0 1 2 3 4 5 6 7 8

Epochs

αl = 0.00500 αl = 0.00100 αl = 0.00050

αl = 0.00010 αl = 0.00005 αl = 0.00001

WGAN−ResNetLN−QCD

(a) Wasserstein loss

0 1 2 3 4 5
×103

Generator iterations (ngit : n
c
it = 1 : 10)

-40

-30

-20

-10

0

10

20

30

W
as
se
rs
te
in

lo
ss
’
co
m
p
o
n
en
ts

0 1 2 3 4 5 6 7 8

Epochs

αl = 0.00500 αl = 0.00100 αl = 0.00050

αl = 0.00010 αl = 0.00005 αl = 0.00001

WGAN−ResNetLN−QCD

(b) Wasserstein loss’ components

Plot 6.3: The non-negative Wasserstein loss (6.3a) and its components (6.3b) ac-
cording to sup‖fφ‖L≤1 Ex∼Pr [fφ(x)]− Ez∼Pz [fφ(gθ(z))] for different learning rates
αl with the constraint αl := αc = αg.

Judging by the graphs shown in Plot 6.3a, all learning rates except αl = 0.005 result
in a converging model – obviously, the convergence is slower for smaller learning rates
(in case of αl = 0.005, the model quickly collapsed). To facilitate the decision regarding
the learning rate to use for training the model, consider Figure of 6.3b that shows the
individual terms of the earth mover’s distance without gradient penalty term W (Pr,Pg) =
sup‖fφ‖L≤1 Ex∼Pr [fφ(x)]− Ez∼Pz [fφ(gθ(z))]. Plot 6.3b reveals some interesting behavior:
the difference between the absolute value of Ex∼Pr [fφ(x)] and Ez∼Pz [fφ(gθ(z))] is the largest
for αl = 0.0001. This is generally desirable because it means that the critic improves in
order to assign a score to the respective samples. Furthermore, the variance for αl = 0.0001
is smaller than for αl > 0.0001, which positively affects the stability of the training routine.
Based on those examinations, the learning rate for the critic and the generator was chosen
to be αl = 0.0001, which corresponds roughly to the default value that is commonly used
to train generative models. The gradient penalty contribution has not been evaluated for
different learning rates since the respective term in the loss function experiences a different
effective learning rate that also depends on λGP via αGP

l = αlλGP.
The next step is therefore to investigate the effect of the penalty coefficient λGP on the

loss function, which is shown in Figure 6.4a.

153

0 1 2 3 4 5
×103

Generator iterations (ngit : n
c
it = 1 : 10)

10−1

1

10

102

103

M
o
d
u
lu
s
o
f
W
as
se
rs
te
in

(e
ar
th

m
ov
er
’s
)
d
is
ta
n
ce

0 1 2 3 4 5 6 7 8

Epochs

λGP = 0.10 λGP = 001 λGP = 005

λGP = 010 λGP = 025 λGP = 050

λGP = 100 λGP = 200

λGP

WGAN−ResNetLN−QCD

(a) Wasserstein loss

0 1000 2000 3000 4000 5000

Generator iterations (ngit : n
c
it = 1 : 10)

10−2

10−1

1

10

102

M
o
d
u
lu
s
of

W
a
ss
er
st
ei
n
(e
a
rt
h
m
ov
er
)’
s
d
is
ta
n
ce

0 1 2 3 4 5 6 7 8

Epochs

RMSprop Adagrad Adadelta

Adam Adamax Nadam

WGAN−ResNetLN−QCD

(b) Wasserstein loss

Plot 6.4: The non-negative Wasserstein loss for different “penalty factors” λGP of
the gradient penalty term (6.4a) and for different optimizers (weights’ update rule)
used in the gradient descent algorithm (6.4b).

As one can see, the penalty coefficient λGP is of great influence and has a strong impact
on the curve progression. This is expected since it basically controls the quality of the
Lipschitz approximation required by the Kantorovich-Rubinstein duality (see Section
3.6.2) and thus the validity of the critic’s approximation of the earth mover’s distance.
However, if λGP is chosen too large, the gradient penalty term becomes too dominant in
the optimization, with the consequence that the network only focuses on satisfying the
constraint Ex′∼Px′

[(
‖∇x′fφ‖2 − 1

)2] ≈ 0, letting the earth mover’s distance slide. This
situation is, however, not present in Figure 6.4a. As indicated in the graph, the array of
curves saturates roughly at λGP ≈ 50, which is why this value was henceforth used to train
the neural network of the critic.

Last but not least, an optimizer, i.e., an algorithm that performs the update of the
model’s weights for each training step/iteration must be established. The same complication
as in the case of the learning rate arises since both networks – critic and generator – could
in principle get different optimizers. And, again, there are good reasons to use different
optimizers for both networks due to the complicated gradient penalty term in the critic’s
loss that gives rise to all kind of problems in the optimization procedure. The modulus of
the Wasserstein loss for different standard optimizers is summarized in Figure 6.4b. As
one can see, the learning performance of the model is highly sensitive to the choice of
the optimization algorithm. Especially noticeable is the glaring differences in the curve’s
progression of RMSprop and ADADELTA [Zeiler, 2012] (see Section 3.4.2). This is all the
more surprising given the fact that both optimization algorithms have been invented to
address the same problem, i.e., reduce the aggressive, monotonically decreasing learning rate
of ADAGRAD [Ruder, 2016], i.e., an “ ‘[a]daptive subgradient method[.] for online learning
and stochastic optimization” (Duchi et al. [2011]) (this effect can be seen in Figure 6.4b: the
Wasserstein loss decreases very slowly in case of ADAGRAD). So, both methods serve the
same purpose, but behave very differently. In order to understand this phenomenon, it is
recommended to closer examine the updating rule for the weights of the respective algorithm.
In case of RMSprop, the update of the weights wi → wi+αlδwi is given by δwi = − gi

RMS[g]i
,

154

6.3. UNCONDITIONED WGAN – ANOTHER ATTEMPT

whereby RMS[g]i denotes the “root mean squared” error of the gradient g of the loss function
L for the ith iteration. The RMS in case of RMSprob is given by RMS[g]i =

√
E[g2]i + ε

with E[g2]i = 0.9·E[g2]i−1+0.1·E[g2]i, i.e., a moving average of the gradients g(= ∇wL(w))
and ε > 0. ADADELTA’s update rule for the weight is very similar. The correction to the
weights for the ith training step is δwi = −RMS[δw]i−1

RMS[g]i
gi, whereby RMS[g]i =

√
E[g2]i + ε

with E[g2]i = γE[g2]i−1 + (1− γ)E[g2]i. For the default value of γ = 0.9, RMSprop and
ADADELTA do not differ in this regard. The difference is the RMS of the previous weights
(the weights for the ith iteration are unknown) RMS[δw]i−1 =

√
E[δw2]i−1 + ε with

E[δw2]i−1 = γE[δw2]i−2 + (1 − γ)E[δw2
i−1]; so, δwADADELTA/δwRMSprop = RMS[δw]i−1.

Therefore, the problem that is present in Figure 6.4b must be caused by the RMS of the
previous weights or, more generally, by the inclusion of many weighted previous model
configurations into the current state of the network through the moving average of the
weights. Something similar occurs in case of Adam and its variations – though Adam
does not average over the model’s weights directly but computes the moving average
of the previous gradients. The incorporation of previous weights into the calculation of
the new state is problematic with respect to the gradient penalty term since it creates
correlations between different model configurations. This spoils some basic assumptions in
the computation of the gradients with respect to the sample interpolation x̂ = xrε+(1−ε)xg
(see Section 3.6.2). This is also the reason why batch normalization (see Section 3.4.4)
can not be used in combination with Wasserstein GANs that uses gradient penalty to
enforce the Lipschitz constraint because it creates correlation between the data over several
batches. Based on those insights„ RMSprop – besides plain SGD and ADAGRAD that
both converge too slowly – is the only appropriate choice. It is worth underlining again
that all the results shown in Plot 6.4b are obtained for the same optimization algorithm
for both networks (critic and generator). However, the aforementioned problems regarding
the induced correlations between different states of the model only concerns the critic;
the generator does not come with a gradient penalty term (see objection function of the
generator according to Equation 3.67).

To summarize: the generative adversarial neural network (more precisely: the generative
model) uses a latent space with dimensionality dim(Z) = 100 (6.2); both networks are
trained with the same learning rate αl = 0.0001 (6.3) and the same optimizer: RMSprop
(6.4b); finally, the gradient penalty factor is λGP = 50 (6.4a). Now, it is time to proceed
and to simulate some QCD radiation.

6.3 Unconditioned WGAN – another attempt

As observed in the previous chapter of this report, the Gaussian variational autoencoder
(see Section 3.5) is “incapable” of learning the information of the underlying subprocess,
i.e, the matrix element information and the parton shower simulation in one model. This
means that the model is not able to correctly reproduce the probability distributions given
by the matrix element such as the energy of the “final state” particles. The exact underlying
cause of those problems are rather difficult to identify (from a theoretical perspective);
however, based on the empirical evidence obtained in Chapter 5, there is little to no doubt
that VAEs are unsuited for this task. Only if the learning task is factorized into matrix
element (provided as a piece of external information) and parton shower, the model can
provide (more or less) reasonable results. These are the events so far.

However, this chapter provides a new chance for the aforementioned learning task by
using Wasserstein generative adversarial networks instead. As it has been explained in

155

Section 3.6.2, Wasserstein GANs optimize an integral probability metric instead of the
log-likelihood of the data. Therefore, both methods differ significantly regarding their
implementation, as well as their fundamental underlying principles. Due to those essential
differences between both approaches to generative models, it is not possible to draw any
premature conclusion for the Wasserstein GANs based on the result obtained in case of
VAEs. The procedure must be repeated from the beginning.

An additional note regarding the characteristics of this section. As it turned out, the
usage of Wasserstein GANs will result in a significant improvement compared to Gaussian
VAEs for unconditioned models as will be shown in the next section below. However,
the focus of this thesis is on the simulation of parton showers and hence on models that
are conditioned on the jet energy and pseudorapidity. For this reason, the considerable
improvements observed in this section are presented mostly uncommented. As it turns
out, the results further improve in the subsequent section that studies the conditioned
case. Therefore, most explanations and/or interpretations regarding the reasons behind
the improvement are postponed to the next section 6.4.

6.3.1 Linear versus logarithmic scale
In case of Wasserstein GANs, a strong difference in the performance was observed depending
on whether a linear or logarithmic energy scale was used for the pixel activation values in
the image (see “invertible preprocessing” 4.3). Both scales result in converging models –
contrary to the Gaussian VAE where the section logarithmic scale spoiled the probabilistic
assumptions regarding the Gaussian distribution of reconstruction errors. This, however, is
not the case for Wasserstein GANs or GANs in general.

To study the effect of a linear Epix 7→ %Epix scale, with % ∈ R, and a logarithmic
scale Epix 7→ log

(
1 + %Epix

)
, the distribution of pixel activations Epix is evaluated for two

generative models that have been trained on both scales respectively (for reasons of clarity
and brevity, only QCD jets are shown. However, it should be noted that all results also
apply for the W training set). The results for the different scales are summarized in Figure
6.5.

0 1 2 3 4 5 6

Energy log
(
1 + Epix/1GeV

)
[1]

1

10

102

103

104

105

106

107

108

109

E
ve
n
ts
/0
.1
6

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

WGAN-GP(lin) – ResNetLN – QCD

(a) Linear scale

0 1 2 3 4 5 6

Energy log
(
1 + Epix/1GeV

)
[1]

1

10

102

103

104

105

106

107

108

109

E
ve
n
ts
/0
.1
6

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

WGAN(log) – ResNetLN – QCD

(b) Logarithmic scale

Plot 6.5: Pixel activation values Epix on an event-on-event base for 50, 000 events.

156

6.3. UNCONDITIONED WGAN – ANOTHER ATTEMPT

At first glance, both networks provide a descent description of the energy spectra of the pixel
values. In case of a linear scale (Figure 6.5a), however, there are a drastic deviations from
the expected curve at low energies. This difference might appear small, but it is actually
considerable due to the logarithmic scale of the ordinate axis that hides discrepancies. In
case of a logarithmic scale (Figure 6.5b), the situation has improved significantly, and the
discrepancy has almost completely vanished. This effect is easily explained. In case of a
linear scale, the neural network actually “sees” an energy spectrum as illustrated in Figure
4.1a. There is one pronounced peek at zero that “absorbs” most of the structure. In case of
a logarithmic scale on the other hand, more structure is resolved, whereby the sensitivity
to low-energy values can be controlled by % (in this thesis a % = 0.1 for lin- and % = 1 for
log-scale was used).

The effect is even more pronounced in case of the reconstructed invariant mass of the
jet (again only for QCD jets).

0 10 20 30 40 50 60 70

Mass mimg [GeV]

0

2

4

6

8

10

12

14

16

×103

E
ve
n
ts
/2
.5
9
G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

WGAN-GP(lin) – ResNetLN – QCD

(a) Linear scale

0 10 20 30 40 50 60

Mass mimg [GeV]

0

2

4

6

8

10

×103

E
ve
n
ts
/2
.0
0
G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – QCD

(b) Logarithmic scale

Plot 6.6: Reconstructed jet mass mimg for a linear (6.6a) and a logarithmic scale
(6.6b) for 50, 000 events.

The difference between the two mass spectra in Figure 6.6 nicely illustrates the beneficial
impact of the logarithmic scale on other jet observables. This is expected too since the
increased sensitivity to low energy contributions in the image is automatically accompanied
by an increased “awareness” of their position, i.e., the relative position of active pixels in
the image, which is an essential information used by many observables.

Finally, the same beneficial effect can be observed for the average jet image as can be
seen in Plot 6.7a and 6.10a.

157

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

WGAN-GP(lin), ResNetLN, QCD

(a) Linear scale

0 5 10 15 20 25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

0

5

10

15

20

25

Pseudorapidity η [px]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

WGAN-GP(log), ResNetLN, QCD

(b) Logarithmic scale

Plot 6.7: Average jet image for a linear (6.7a) and a logarithmic scale (6.7b).

Figure 6.7 once more illustrates the effect of the logarithmic energy scale. The structure
of the jet much more resembles the true image according to Figure 4.2. Based on those
observations, the decision was made in favor of a logarithmic scale that is used for all
Wasserstein GANs in the following sections if not specifically mentioned otherwise.

6.3.2 Samples and average jet images
As it has been done in the previous chapter, the first step is a visual comparison of the
generated data for QCD and W jets for a generative model that has been trained for
40, 000 iterations.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

Plot 6.8: Three randomly simulated QCD jets after 40, 000 iterations.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

Plot 6.9: Three randomly simulated W jets after 40, 000 iterations.

158

6.3. UNCONDITIONED WGAN – ANOTHER ATTEMPT

The results displayed above show a significant improvement compared to the unconditioned
variational autoencoders in Figure 5.3 and 5.4. Apparently, the occupancy of the images
is well modelled (compared to the VAE) and equally so the activation of the individual
pixels. The same is observed for the average jet images in the Figure below.

0 5 10 15 20 25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

0

5

10

15

20

25

Pseudorapidity η [px]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

WGAN-GP(log), ResNetLN, QCD

(a) QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

WGAN-GP(log), ResNetLN, W

(b) W

Plot 6.10: Average jet image for 50, 000 events and 40, 000 iterations.

The generated average jet images almost perfectly resemble the true ones shown in Figure
4.2 and 4.4 (note: there is no pT-cut involved in Figure 6.10b).

6.3.3 Kinematic distributions
The following Figure 6.11 shows the reconstructed spectrum of the jet’s transverse mo-
mentum pimg

T . Since the model is unconditioned, the energy or the transverse momentum
distribution (which is a piece of information provided by the matrix element) must be
entirely learned by the neural network. As it was shown in Section 5.3, the unconditioned
Gaussian variation autoencoder failed to distil this underlying information from the training
set, i.e., the jet images. In the case of unconditioned Wasserstein GANs, the model is able
to learn both the underlying matrix element and the parton shower information as can be
seen in Figure 6.11.

159

0 100 200 300 400 500

Transverse momentum pimg
T [GeV]

0

2

4

6

8

10

12

14

16

18

×103

E
ve
n
ts
/1
9.
43

G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 100 200 300 400 500 600

Transverse momentum pimg
T [GeV]

0

2

4

6

8

10

×103

E
ve
n
ts
/2
1.
55

G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.11: Reconstructed transverse momentum pimg
T for 50, 000 events.

The improvement compared to the corresponding Figure 5.8 for the Gaussian VAE is
remarkable. It can thus be concluded that the generative model indeed has learned the
underlying information of the matrix element as well as the parton shower.

The same holds true for the reconstructed invariant mass of the jet, which is shown in
Figure 6.12.

0 10 20 30 40 50 60

Mass mimg [GeV]

0

2

4

6

8

10

×103

E
ve
n
ts
/2
.0
0
G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 10 20 30 40 50 60

Mass mimg [GeV]

0

2

4

6

8

10

×103

E
ve
n
ts
/2
.0
0
G
eV

Training data

Ep.02 it.01000

Ep.16 it.10000

Ep.32 it.20000

Ep.48 it.30000

Ep.64 it.40000

WGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.12: Reconstructed jet mass mimg for 50, 000 events.

The corresponding distributions for the Gaussian VAE are illustrated in Figure 5.9. The
explanations for this significant degree of improvement is given in the subsequent section
in the context of conditioned Wasserstein GANs. Without giving too much away, the
improvement is closely related to the fundamental connection between the MMD and the
EMD.

160

6.3. UNCONDITIONED WGAN – ANOTHER ATTEMPT

6.3.4 Other jet observables
The previous results already demonstrated a significant improvement. Apparently, the gen-
erative adversarial network can provide a much better approximation Pg of the underlying
probability distribution of the training data Pr. To verify this first impression on a deeper
level, the following plots show the correlation between different jet-observables as well as
their description in different regions of phase space.

100 150 200 250 300 350 400 450 500 550

Transverse momentum pimg
T [GeV]

5

10

15

20

25

30

35

40

45

50

55

M
as
s
m

im
g
[G

eV
]

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – QCD

(a) QCD

100 200 300 400 500 600

Transverse momentum pimg
T [GeV]

0

20

40

60

80

100

120

M
as
s
m

im
g
[G

eV
]

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.13: Correlation between the reconstructed average jet mass mimg and the
transverse momentum pimg

T for 50, 000 events.

As it was shown in Figure 6.11 and 6.12, the spectrum of the transverse momentum and
the invariant mass is well described for both processes. The same holds true in case of the
average invariant mass of the jet in different pimg

T regions. The situation has significantly
improved compared to the corresponding Figure 5.13 for VAEs. In the case of unconditioned
Gaussian VAEs, the investigation was terminated at this point due to the poor modelling
of the training data. However, since the Wasserstein GAN provides excellent results, it
is worthwhile to study jet observables that also probe the substructure of the jet such
as, for instance, N -subjettiness. The following figure therefore shows the reconstructed
1-subjettiness for different regions of the transverse momentum of the jet.

161

100 150 200 250 300 350 400 450 500

Transverse momentum pimg
T [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – QCD

(a) QCD

100 150 200 250 300 350 400 450 500

Transverse momentum pimg
T [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep.02 it.01000

Ep.16 it.10000 Ep.32 it.20000

Ep.48 it.30000 Ep.64 it.40000

WGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.14: Correlation between the reconstructed average 1-subjettiness τ img
1 and

the transverse momentum pimg
T for 50, 000 events.

As it can be seen in Figure 6.14, the graphs that have been reconstructed from the generated
distribution provide a very good description of the training data. Furthermore, the strong
correlation between the number of iterations (updates of the generator’s weights with
ncit : ngit = 1 : 10) and the goodness of the reconstruction can be observed.

This also applies to the correlation between the 1-subjettiness and the invariant mass
of the reconstructed jet, which is shown in Figure 6.15.

0 5 10 15 20 25 30

Mass mimg [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1
-s
u
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 20 40 60 80 100 120 140

Mass mimg [GeV]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

WGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.15: Correlation between the reconstructed average 1-subjettiness τ img
1 and

the mass mimg for 50, 000 events.

As expected, the 1-subjettiness τ1 increases with larger jet masses. In the case of W jets,
some deviations from the expected curve characteristics can be observed.

162

6.4. CONDITIONAL WGAN

This section could easily be extended by many more figures of merit and plots that all
together convey the same message, i.e., the excellent agreement between the generated
distribution and the training data. The results achieved with unconditioned Wasserstein
GANs are indeed very satisfactory. Contrary VAE, WGANs allow to model the matrix
element as well as the parton shower.

6.4 Conditional WGAN

This section introduces the generative model that – out of all networks presented in this
report – showed the best performance and provided the finest results (albeit very close
to the ones obtained in the previous Section 6.3). The model under consideration is the
Wasserstein generative adversarial network as it was introduced previously but conditioned
on the energy Ejet and the pseudorapidity ηjet of the jet (following the footsteps of the
variational autoencoder in Chapter 5). Taking into account the positive effect of the
factorization of the generative model into the matrix element and the parton shower
simulation for the VAE, the conditional WGAN is expected to benefit from this step as
well. Like it was done in the previous chapter, the distributions of conditioning energy PE
and pseudorapidity Pη are not learned by a generative model,but directly approximated
through the training data that correctly accounts for the correlation between the two labels.

6.4.1 Training and model convergence
It is important to closely monitor the training routine of the networks to correctly estimate
the performance of the generative model. As noted previously, the earth mover’s distance
(as an integral probability metric) provides a good figure of merit not only to estimate the
performance of the model, but to monitor the training progress as well. If the Wasserstein
loss W (Pr,Pg)i < W (Pr,Pg)i−1 for iteration i has reduced compared to the previous step
i− 1, it is guaranteed that the approximation of Pr by means of Pg = gθ(Pz) has improved
(see MMD and Equation 3.66 and lower bound 3.66). Therefore, the Wasserstein loss does
not only allow to directly follow the progression of the model, but it also allows to define
a “stopping rule” of when to terminate the training of both models. This is an incredible
advantage compared to classical GANs (see Section 3.6.1) and enables one to systematically
work with generative adversarial models. However, the number itself, i.e., the actual value
of the Wasserstein loss is much harder to interpret – the smaller, the better.

The Wasserstein loss (6.16a) and its components (6.16b) for the model trained on QCD
samples are shown in Figure 6.16.

163

0 5 10 15 20 25 30 35 40
×103

Generator iterations (ngit : n
c
it = 1 : 10)

-10

-8

-6

-4

-2

0

2

W
as
se
rs
te
in

lo
ss
’
co
m
p
on

en
ts

0 10 20 30 40 50 60

Epochs

CWGAN-GP(log) – ResNetLN – QCD

(a) Wasserstein loss

0 5 10 15 20 25 30 35 40
×103

Generator iterations (ngit : n
c
it = 1 : 10)

-35

-30

-25

-20

-15

-10

-5

0

W
a
ss
er
st
ei
n
lo
ss
’
co
m
p
o
n
en
ts

0 10 20 30 40 50 60

Epochs

Ex∼Pr
[fφ(x)] Ez∼Pz

[fφ(gθ(z))]

Ex̂∼Px̂

[
(‖∇x̂(fφ(x̂))‖2 − 1)2

]

CWGAN-GP(log) – ResNetLN – QCD

0 5 10 15 20 25 30 35 40
×103
10−2

10−1

1

10

G
ra
d
ie
n
t
p
en

al
ty

(b) Wasserstein loss’ components

Plot 6.16: The Wasserstein loss (6.16a) and its components (6.16b) for QCD jets.

As one can seen in Figure 6.16a, the model converges since the curve it is monotonically
decreasing (the small fluctuations are a consequence of mini-batch training (see Section
3.4.2)). The model is still improving after 40, 000 iterations; however, the training has
been terminated due to a very small rate of changes. The respective stopping criterion
was defined as

∣∣∣MA[W (Pr,Pg)]i−MA[W (Pr,Pg)]i−N
MA[W (Pr,Pg)]i−N

∣∣∣ < δstop ≈ 1h, whereby MA(x)i is a moving
average over the first i samples with a higher weight for most recent iterations (exponential
moving average). However, for reasons of comparability (and limited amount of time), all
result shown in this report are up to 40, 000 training iterations if not explicitly mentioned
otherwise. The right Plot 6.16b in Figure 6.17 shows the components of the loss including
the gradient penalty term normalized to λGP (see Equation 3.67). The curve(s) show the
desired characteristic as it is expected from the optimization task according to Equation
3.64. The same accounts for the gradient penalty term, i.e., the Lipschitz condition
Ex′∼Px′

[(∥∥∇x′fφ40k

∥∥
2
− 1
)2] ∼ O(1 %) is sufficiently met at the one-percent level. The

very same is done for the model that has been trained on W samples instead.

0 10 20 30 40 50
×103

Generator iterations (ngit : n
c
it = 1 : 10)

-10

-8

-6

-4

-2

0

W
a
ss
er
st
ei
n
lo
ss
’
co
m
p
on

en
ts

0 10 20 30 40 50 60 70

Epochs

CWGAN-GP(log) – ResNetLN – QCD

(a) Wasserstein loss

0 10 20 30 40 50
×103

Generator iterations (ngit : n
c
it = 1 : 10)

-30

-25

-20

-15

-10

-5

0

W
as
se
rs
te
in

lo
ss
’
co
m
p
on

en
ts

0 10 20 30 40 50 60 70

Epochs

Ex∼Pr
[fφ(x)] Ez∼Pz

[fφ(gθ(z))]

Ex̂∼Px̂

[
(‖∇x̂(fφ(x̂))‖2 − 1)2

]

CWGAN-GP(log) – ResNetLN – QCD

0 10 20 30 40 50
×103
10−2

10−1

1

10
G
ra
d
ie
n
t
p
en

a
lt
y

(b) Wasserstein loss’ components

Plot 6.17: The Wasserstein loss (6.17a) and its components (6.17b) for W jets.

164

6.4. CONDITIONAL WGAN

According to Figure 6.17, the results in case of W initialized jets are very similar to
QCD’s. The curve progression of the loss’ components shown in Figure 6.17b are even
closer to the optimum outcome since the components even out at roughly Ex∼Pr [fφ(x)] ≈
Ez∼Pz [fφ(gθ(z))] ≈ −27, which means that both networks fφ and gθ are well balanced.
Nonetheless, better networks should be able to archive larger values.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

Weights w

0

50

100

150

200

250

×103

E
ve
n
ts
/
0.
00
35

Ep. 02 it. 1000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

Critic’s network

(a) Weights w ∈ W ⊂ P

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Biases b

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

E
ve
n
ts
/
0.
00
35

Ep. 02 it. 1000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

Critic’s network

(b) Biases b ∈ B ⊂ P
Plot 6.18: The distribution of the critic’s weights (without biases W = P \ B) for
different iterations (6.18a) and the distribution of biases (6.18b).

Besides of studying the loss and its components, it is revealing to look at the evolution
of the distribution of the model’s trainable parameters for different training iterations
(configuration of the model of the generator network). For this purpose, the values of the
respective parameters (weights) are filled separately into a histogram for the generator
and the critic. Furthermore, the values for the weights and the biases (both of which are
trainable model parameters) are presented separately due to the significant difference in
their number in the network (N c,g

w ∼ O(106) and N c,g
b ∼ O(103)).

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Weights w

0

20

40

60

80

100

120

140

160

180

200

×103

E
ve
n
ts
/0
.0
03
5

Ep. 02 it. 1000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

Generator’s network

(a) Weights w ∈ W ⊂ P

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Biases b

0

500

1000

1500

2000

2500

3000

3500

4000

E
ve
n
ts
/0
.0
03
5

Ep. 02 it. 1000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

Generator’s network

(b) Biases b ∈ B ⊂ P
Plot 6.19: The distribution of the generator’s weights (without biases W = P \ B)
for different iterations (6.19a) and the distribution of biases (6.19b).

165

The distributions for the critic are shown in Figure 6.18. Similarly, Figure 6.19 shows
the distribution of parameter values at different instances of the neural network trained
on QCD samples (the respective distributions for the model trained on W samples are
not shown since they mostly correspond to the one shown in Figure 6.18 and 6.19). The
distribution of weights in case of the critic (Figure 6.18a) shows some interesting features
since there is a significant change in the shape of the distribution compared to the early
stage of the network; the target distribution becomes apparent. From the peak around
zero it can be concluded that the network has not yet reached its optimum (compare the
significant change from 30, 000 to 40, 000 iterations) and/or the model is too complex
regarding its number of weights, with the network correcting for this fact by setting a
large fraction of weights to zero in order to disable interconnections between nodes in
the graph. In fact, this is precisely what residual network have been invented for (see
Figure 5.2). The distributions of the generator’s trainable parameters are less conspicuous.
The “suction-bell-like” shape at the early stage of the network is a consequence of the
initialization of the weights in the network that is a mixture of Gaussian and uniform priors
– whether this initialization scheme is reasonable or not is certainly a worthwhile discussion.

6.4.2 Samples and average jet images
As previously done, the first step is to ensure that the generative model produces reasonable
samples that visually resemble the training data. Figure 6.20 and 6.21 shows three randomly
simulated jet images (random seed z ∼ Pz and labels Ejet ∼ PE , ηjet ∼ Pη given by the
squared matrix element) for QCD and W initialized jets.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
g
y
E

p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
g
y
E

p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25
A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
g
y
E

p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

Plot 6.20: Three randomly simulated QCD jets after 40, 000 iterations.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

Plot 6.21: Three randomly simulated W jets after 40, 000 iterations.

Like in the previous section, the results shown above vary significantly from the images

166

6.4. CONDITIONAL WGAN

that have been generated with the Gaussian variational autoencoders and its variations
(cf. Figure 5.3, 5.4; 5.14, 5.15; and 5.32, 5.33). The simulated jet images are quite in
accordance with the training data. Indeed, it can be stated that the generated data is
visually indistinguishable compared with points sampled from the training set as in Figure
4.3 and 4.5. Of cause, it would be foolish to solely rely on the visual comparison of images
on an event-on-event base. Therefore, the following two Plots 6.22a and 6.22b show once
again the average jet image for QCD and W initialized jets.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

WGAN-GP(log), ResNetLN, QCD

(a) QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

CWGAN-GP(log), ResNetLN, W

(b) W

Plot 6.22: Average jet image for 50, 000 events and 40, 000 iterations.

Also, the average images do look much closer to the training data (cf. Figure 4.2 and 4.4).
Particularly in the case of the W jets in Figure 6.22b, the improvement compared to the
VAEs is clearly visible. This can be seen (among other things) by the distinct two-peak
structure that is much more pronounced than it was the case for VAEs. However, this
result must be interpreted with caution as it was pointed out in the previous chapter since
the average jet only gives the sample mean of the energy distributions in each pixel of the
image. This does not mean that the respective distributions are learned correctly. On the
contrary, it is easy to think of different distributions that have exactly the same mean value
but completely different shapes. In total, there are npix′η ·npix′φ individual energy distribution
that are highly correlated among each other. For the purpose of an example, Figure 6.23
shows the correlation between two selected pixels close to the center of the high-active
image for the Monte Carlo based training data 6.23a and the generated distribution 6.23b
for QCD.

167

(a) Generated from training data (b) Generated after 40, 000 iterations

Plot 6.23: “Energy correlation” between pixel no. 312 and pixel no. 337 for the
training data (6.23a) and the generated distribution (6.23b). The correlated pixels
have been highlighted in the subfigure in the left corner.

Figure 6.23 is only one possible correlation among a total number of npix′η · npix′φ · (npix′η ·
npix′φ − 1)(= 390, 000) similar diagrams; it is therefore hardly representative but rather
educational in its nature. Nonetheless, the plots do provide some valuable insights. As
can be seen in Figure 6.23a, the correlation of the energy values in the individual pixels
is non-trivial. The neural network does provide a good description of the distribution.
However, compared to the real data, the sharp edges are smoothed out with the overall
structure being rather well described.

0.5

1

1.5

2

2.5

3

S
ta
ti
st
ic
al

m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 02 it. 01000

Ep. 32 it. 20000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

1 2 3 4 5 6 7 8 9

nth ordinal

0.6

0.8

1

1.2

1.4

R
at
io

(a) Statistical moments QCD

0

1

2

3

4

5

S
ta
ti
st
ic
al

m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

1 2 3 4 5 6 7 8 9

nth ordinal

0.6

0.8

1

1.2

1.4

R
at
io

(b) Statistical moments W

Plot 6.24: The first nine statistical moments according to Equation 5.3 for the
training data and the generated distribution of the generative model. In case of
QCD, the two distributions almost perfectly coincide, which is why other instances
of the neural network (besides the one corresponding to 40, 000 iterations) have been
included to illustrate the progression of the model.

168

6.4. CONDITIONAL WGAN

A more reliable estimation of the similarity between the real and the generated dis-
tribution is provided by the direct comparison of the statistical moments according to
Equation 5.3. The results for QCD (6.24a) and W jets (6.24b) are shown in Figure 6.24.
After studying the similarity of the statistical moments of the two distributions Pr and
Pg, there is no longer any doubt that the Wasserstein generative adversarial networks
are superior to the Gaussian variational autoencoders in Chapter 5 (compare Figure 6.24
with Figure 5.7 and 5.24) regarding their description of the underlying distribution of
the training data. This statement claims validity since any probability distribution fX(x)
(for reasons of simplicity only defined on R) for which the series of statistical moments
E[Xn] =

∫
R dxxnfX(x) is defined can be expanded in terms of the inverse Fourier transform

fX(x) =
∫
R ds e2iπxs

(∑∞
k=0

(−2iπs)2

n! E[Xn]
)
. Hence, the probability distribution fX(x) can

be expressed as an infinite series over the distribution’s statistical moments E[Xn]. This
Furthermore means that two distributions f(x) and g(x) coincide if they agree on all
statistical moments f(x)− g(x) =

∫
R ds e2iπxs

{∑∞
k=0

(−2iπs)2

k!

(
E[Xk]f − E[Xk]g

)}
= 0⇒

E[Xk]f = E[Xk]g for all orders k ∈ N. This property – two distributions being identical if
they agree on all moments – is used by the aforementioned generative moment matching
networks [Li et al., 2017] and GANs based on the (kernel) maximum mean discrepancy
(see Section 3.6.3). The MMD between the two distributions Pr and Pg was given by
MMD(Pr,Pg) =

∥∥Ex∼Pr [φ(x)]− Ex∼Pg [φ(x)]
∥∥
H with φ : X → H being a feature map and

H denoting the so-called reproducing kernel Hilbert space. For the most simple example
possible with X = H = RN and φ = id, the MMD is just given by the Euclidean distance be-
tween the mean of the respective distributions MMD(Pr,Pg) =

∥∥µPr − µPg
∥∥. This quantity

is simple and was also well described in case of VAEs. However, the MMD is much stronger
if φ maps to a general space H, which allows its application to the so-called kernel trick that
leads to a MMD that is zero iff the distributions under considerations are completely identi-
cal. As described in Section 3.6.2 of Chapter 3, the Wasserstein distance as a representative
of an integral probability metric, is closely related to the MMD as is directly apparent from
the alternative representation MMD(Pr,Pg) = supf∈H,‖f‖H≤1 Ex∼Pr [φ(x)]− Ex∼Pg [φ(x)].
Due to this relationship, the Wasserstein loss will learn the underlying distribution of the
training data by “fitting” the statistical moments, which explains the astonishing accordance
in Figure 6.24 (deviations can be observed for much higher moments). The mechanism
described above differs fundamentally from the operating principle of Gaussian VAEs (or
VAEs in general) that optimize the network’s parameters by optimizing the log-likelihood
of the data based on probabilistic assumptions. This is an important result: Wasserstein
GANs provide a significantly better description of the data because they fit the statistical
moments and hence directly model the underlying distribution of the data. Consequently,
this should imply an improved description of the introduced jet observables compared to
the VAEs in Chapter 5. Reviewing this assumption is the objective of this section.

Finally, Figure 6.25 shows the correlation between the energy and the unique latent-
space seed z̃ as defined in Section 5.3.2 for QCD jets only. Like in case of conditioned
and unconditioned VAEs, the unique seed shows a clearly visible dependence on the recon-
structed energy of the jet. Since the model in Figure 6.25a is unconditioned, the network
has to learn a hidden structure that relates the images and their associated reconstructed
energy (similar to the (discrete) classification illustrated in Figure 3.4). Regardung condi-
tioned GANs in Figure 6.25b, the unique seed and the energy are obviously independent.
Hence, the latent vector z ∈ Z serves indeed exclusively as a seed for the structure (shower)
of the image and not its energy.

169

100 200 300 400 500 600

Energy Eimg [GeV]

440

450

460

470

480

490

500

510

520

530

540

U
n
iq
u
e
av
er
a
ge

se
ed

z̃
=
∑
N i=

0
h
(z̃
i)
lo
g
p
i

WGAN-GP – ResNetLN – QCD

(a) Unconditioned (Section 5.3)

100 200 300 400 500 600

Energy Eimg [GeV]

440

450

460

470

480

490

500

510

520

530

540

U
n
iq
u
e
av
er
a
ge

se
ed

z̃
=
∑
N i=

0
h
(z̃
i)
lo
g
p
i

CWGAN-GP – ResNetLN – QCD

(b) Conditioned

Plot 6.25: Correlation between the unique seed z̃ and the reconstructed energy Eimg

for an unconditioned (6.25a) and an conditioned (6.25b) Wasserstein GAN.

6.4.3 Kinematic distributions
Before studying some kinematic distributions in this section and other jet observables in
the following section (6.4.4), one has to verify that the neural network is indeed conditioned
using the energy of the jet. Like it was done in 5.4, the input to the model, i.e., the energy
Ejet is plotted against the reconstructed jet energy Eimg =

∑N
k=1E

pix
θ,k (z, Ejet, ηjet) that is

the scalar sum of all pixels in an image.

100 200 300 400 500 600

Input energy Ejet [GeV]

100

200

300

400

500

600

R
ec
o
n
st
ru
ct
ed

en
er
gy

E
im

g
[G

eV
] Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

100 200 300 400 500 600

Input energy Ejet [GeV]

100

200

300

400

500

600

R
ec
on

st
ru
ct
ed

en
er
gy

E
im

g
[G

eV
] Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.26: Correlation between the reconstructed jet energy from the generated
image Eimg and the conditioning label Ejet for a logarithmic energy scale and 50, 000
events.

The neural network has mostly learned to correctly reproduce the jet energy; however, the

170

6.4. CONDITIONAL WGAN

correlation is not exactly linear (as it is desired), but shows some non-linear boundary
effects that are certainly non-negligible. In order to understand the cause of this undesirable
effect, it is enlightening to show the very same plot for a network that has been trained on
a linear energy scale (Epix → %Epix) instead.

100 200 300 400 500 600

Input energy Ejet [GeV]

100

200

300

400

500

600

R
ec
on

st
ru
ct
ed

en
er
g
y
E

im
g
[G

eV
]

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(lin) – ResNetLN – QCD

(a) QCD

100 200 300 400 500 600

Input energy Ejet [GeV]

100

200

300

400

500

600

R
ec
o
n
st
ru
ct
ed

en
er
gy

E
im

g
[G

eV
]

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(lin) – ResNetLN – W

(b) W

Plot 6.27: Correlation between the reconstructed jet energy from the generated
image Eimg and the conditioning label Ejet for a linear energy scale and 50, 000
events.

In Figure 6.27 the effect is significantly reduced compared to the corresponding Figure
6.26; though, it is still present. So, the problem is most likely related to the logarithmic
energy scale as described in Section 4.3 concerning the “invertible preprocessing”. At this
point, this problem must remain unsolved. Nonetheless, one possible attempt to solve the
issue could be to use a customized input/output layer in the critic/generator network that
implements the transformation T%(x) = log(1 + %x) and its inverse T−1

% (x). By doing so,
the transformation is hard coded into the network’s architecture.

0 1 2 3 4 5 6

Energy log(1 + Epix/1GeV) [1]

1

10

102

103

104

105

106

107

108

109

E
ve
n
ts
/0
.1
6

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN(log) – ResNetLN – QCD

(a) QCD

0 1 2 3 4 5 6

Energy log(1 + Epix/1GeV) [1]

1

10

102

103

104

105

106

107

108

109

E
ve
n
ts
/0
.1
6

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN(log) – ResNetLN – W

(b) W

Plot 6.28: Pixel activation values Epix on an event-on-event base for 50, 000 events.

171

Before the generated manifold is further explored in more detail, the distribution of
the pixel activation values Epix is analyzed again since it provides important information
about the average description of the energy spectra learned the generative model (note that
the distribution of energy activations is less conclusive than studying all energy spectra in
each pixel individually since the position information is marginalized). The comparison of
Plot 6.28a and 6.28b and the corresponding histograms in Figure 5.22 reveals a significant
improvement in the agreement of the description. There is almost a perfect correspondence
between the generated distribution and the one that is based on the training data. Even
for regions with high “pixel energies” – with comparatively low statistics –, the generative
model shows a good performance within statistical uncertainties. The same holds true
for rather low pixel activations despite of the obvious dominance of empty pixels with
Epix = 0; this was not the case for Gaussian variational autoencoders (see, e.g., Figure
5.22a for log(1 + x) < 1). The indisputable enhancement that can be seen in Figure
6.28 is a consequence of the improved correspondence between the generated and the real
distribution at the level of their respective statistical moments. Furthermore, the figures
above once again nicely illustrate the strong correlation between reduction of the earth
mover’s distance for larger number of training iterations and the visual improvement in
the description of the data (compare the curve for 1000 training steps with corresponding
graph at 40, 000 iterations).

From the pixel activations, it is just a small step to the total energy Eimg and the
transverse momentum of the jet, i.e., the scalar sum of Epix on an event-on-event base3.

0 100 200 300 400 500

Transverse momentum pimg
T [GeV]

0

2

4

6

8

10

12

14

16

18

×103

E
ve
n
ts
/1
9.
43

G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 100 200 300 400 500 600

Transverse momentum pimg
T [GeV]

0

2

4

6

8

10

×103

E
ve
n
ts
/2
1.
55

G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.29: Reconstructed transverse momentum pimg
T /Eimg for 50, 000 events.

3This is in general not true, since the pjetT of the jet is given by
(
pjetT

)2
=
(
pjetx

)2
+
(
pjety

)2
=(∑

i p
pix
x,i

)2
+
(∑

i p
pix
y,i

)2
; hence, the transverse momentum in terms of the constituent’s/pixel’s position

in the η-φ grid is
(
pjetT

)2
=

(∑
i E

pix
i

cosφ
pix
i

cosh η
pix
i

)2

+

(∑
i E

pix
i

sinφ
pix
i

cosh η
pix
i

)2

. Due to the Lorentz boost and

rotation (see 4.2), the azimuthal angle as well as the pseudorapidity of the constituents are restricted to a
small window that roughly corresponds to 2R in which the “small-angle” approximations cosh ηpix ≈ 1,
cosφpix ≈ 1 and sinφpix ≈ 0 are mostly valid. So, within the scope of this approximation, the transverse
momentum corresponds to a simple scalar sum pjetT ≈ Ejet =

∑
i E

pix
i .

172

6.4. CONDITIONAL WGAN

The overall spectra are well described – which was expected from the results in Figure 6.26.
The remaining discrepancies are a consequence of the aforementioned small non-linearity
between the conditioning label and the reconstructed output; thus, this spectrum is better
described by a linear scale.

The distribution of the mass as a representative of a Lorentz invariant and a “non-
trivial” jet observable (in the sense that is also accounts for the relative position of the
pixels/particles) is shown in Figure 6.30.

0 10 20 30 40 50 60 70

Mass mimg [GeV]

0

2

4

6

8

10

12

14

16

18

×103

E
ve
n
ts
/2

.5
9
G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 10 20 30 40 50 60 70 80

Mass mimg [GeV]

0

1

2

3

4

5

6

7

8

×103

E
ve
n
ts
/2

.6
7
G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.30: Reconstructed jet mass mimg for 50, 000 events.

The distributions are in good agreement. The small bias towards lower mass values in
case of the QCD spectrum is a consequence of the reduced occupancy of the images. The
average occupancy of the images for the training set in case of QCD is roughly 12 %; the
generative model, however, only populates approximately 8 % of the pixels on average. In
case of W jets, the effect is less pronounced.

6.4.4 Other jet observables
This section studies further jet observables and their correlations among each other. The
first quantity, which was not shown for VAEs, is the so-called energy fraction f img

n . This very
simple observable gives the energy ratio f img

n = Epix
n /Eimg of the largest Epix

1 = maxi,j E
pix
ij ,

second largest Epix
2 etc. constituent/pixel in the jet/image and the total energy Eimg. (The

observable f img
n is obviously not IRC safe, however, in this instance this circumstance does

not represent a serious problem.) The results for the largest energy fraction f img
max := f img

1

are shown in Figure 6.31.

173

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Leading energy fraction f1 = Epix
max/E

img

0

1

2

3

4

5

6

7

×103

E
ve
n
ts
/0
.0
3

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Leading energy fraction f1 = Epix
max/E

img

0

1

2

3

4

5

×103

E
ve
n
ts
/0
.0
3

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.31: Reconstructed leading energy fraction f img
1 for 50, 000 events.

The very same is done for the second largest energy fraction in the image f img
2 .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Subleading energy fraction f2 = Epix
2 /Eimg

0

1

2

3

4

5

6

7

8
×103

E
ve
n
ts
/0
.0
2

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Subleading energy fraction f2 = Epix
2 /Eimg

0

1

2

3

4

5

6

7

×103

E
ve
n
ts
/0
.0
2

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.32: Reconstructed subleading f img
2 for 50, 000 events.

The “beauty” of this jet observable lies in its simplicity, notwithstanding of its already
mentioned flaw of not being IRC save. But, this is of no importance in this context
because the comparison of the training data and its approximation by the generative model
is consistent in every way. Both observables f img

1 and f img
2 are well described for both

processes.
In order to estimate the performance of the neural network in different regions of

phase space, the mass of the reconstructed jet is correlated with its respective transverse
momentum. The results are summarized in Figure 6.33.

174

6.4. CONDITIONAL WGAN

100 150 200 250 300 350 400 450 500 550

Transverse momentum pimg
T [GeV]

5

10

15

20

25

30

35

40

45

50

55

M
as
s
m

im
g
[G

eV
]

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

100 200 300 400 500 600

Transverse momentum pimg
T [GeV]

0

20

40

60

80

100

120

140

160

180

200

M
as
s
m

im
g
[G

eV
]

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.33: Correlation between the reconstructed average mass mimg and the trans-
verse momentum pimg

T for 50, 000 events.

The improvements of the generated data in case of conditional Wasserstein GANs are again
obvious compared to the corresponding results in Figure 5.28 obtained with the CVAE.
This statement holds true for the entire range of pimg

T values. The same applies for the
correlation between the invariant mass and the transverse momentum normalized to the
number of active pixels in the image pimg

T /Npix
0 .

0 2 4 6 8 10 12 14 16 18 20

Mean transverse momentum pimg
T /Npix

0 [GeV]

0

5

10

15

20

25

30

M
as
s
m

im
g
[G

eV
]

Training data Ep. 002 it. 001000

Ep. 016 it. 010000 Ep. 032 it. 020000

Ep. 048 it. 030000 Ep. 064 it. 040000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 2 4 6 8 10 12 14 16 18 20

Mean transverse momentum pimg
T /Npix

0 [GeV]

0

5

10

15

20

25

30

M
as
s
m

im
g
[G

eV
]

Training data Ep. 002 it. 001000

Ep. 016 it. 010000 Ep. 032 it. 020000

Ep. 048 it. 030000 Ep. 064 it. 040000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.34: Correlation between the reconstructed average mass mimg and the mean
transverse momentum per constituent pimg

T /Npix
0 for 50, 000 events.

The systematic discrepancies that can be observed in Figure 6.34 can be explained by the
underestimated occupancy in the generated jet samples. However, as already stated before,
this result should be treated with caution since the number of constraints Npix

0 is not IRC.
A deeper look into the data’s manifold is once more provided by the N -subjettiness

175

that probes the substructure of the jet while being collinear and infrared safe at the same
time. The results for 1-subjettiness, i.e., one subjet are shown in Figure 6.35.

0 0.05 0.1 0.15 0.2 0.25

1-subjettiness τ1

0

1

2

3

4

5

6

7

8

9
×103

E
ve
n
ts
/0
.0
08

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 0.05 0.1 0.15 0.2 0.25

1-subjettiness τ1

0

2

4

6

8

10

×103

E
ve
n
ts
/0
.0
08

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.35: Reconstructed 1-subjettiness τ img
1 for 50, 000 events.

The same is done for τ21 that is the ratio of τ2 and τ1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

21-subjettiness τ21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

×103

E
ve
n
ts
/0
.0
32

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

21-subjettiness τ21

0

100

200

300

400

500

E
ve
n
ts
/0
.0
27

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.36: Reconstructed 21-subjettiness τ img
21 for 50, 000 events.

All spectra are sufficiently well described by the generative model. The same accounts for
the correlation between τ1 and the transverse momentum pimg

T of the reconstructed jet.

176

6.4. CONDITIONAL WGAN

100 150 200 250 300 350 400 450 500

Transverse momentum pimg
T [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

100 150 200 250 300 350 400 450 500

Transverse momentum pimg
T [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.37: Correlation between the reconstructed average 1-subjettiness τ img
1 and

the transverse momentum pimg
T for 50, 000 events.

Since according to Equation 5.12 the 1-subjettiness can be regarded as the mean distance
(in the η-φ grid) from the barycenter of the jet τ1 =

∑N
i=1 (∆Ri/R))

(
ppixT,i/

∑N
j=1 p

pix
T,j

)
, the

generative model has correctly learned the correlation between the energy of the jet and its
width concerning its opening angle. If the system is boosted, the radiated bremsstrahlung
from the parton shower is more likely to be collinear to the initial parton. This effect can
be directly observed in Figure 6.37. For higher transverse momenta of the jet, τ1 decreases
monotonically, i.e., the mean distance between the constituents is reduced and so is the
(total) width of the jet (see Equation 1.31). This “hidden” information was not externally
provided, but has been solely reconstructed by the neural neural learning the respective
correlations that are encoded in the data.

Something similar can be done for the reconstructed invariant mass and τ1, which is
shown in Figure 6.38.

0 5 10 15 20 25 30

Mass mimg [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – QCD

(a) QCD

0 20 40 60 80 100 120 140

Mass mimg [GeV]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP(log) – ResNetLN – W

(b) W

Plot 6.38: Correlation between the reconstructed average 1-subjettiness τ img
1 and

the mass mimg for 50, 000 events.

177

As expected, τ1 increases with the mass of the jet. Again, the degree of agreement
between the generated histogram(s) and the distribution associated with the training data
is excellent.

6.5 Conditioned WGANs with RNNs

This is the final section in this chapter and contemporaneously in this report that will
present actual results. As it was done in case of Gaussian variational autoencoders in section
6.5, the conditioned GAN with Wasserstein metric of the previous sections is extended by
an RNN utilizing LSTM layers (see Figure 3.4). To allow for a fair comparison between
VAEs and WGANs with RNNs, the architecture of the critic network in the adversarial
system remain unchanged concerning the network introduced in section 6.1. Furthermore,
the architecture of the generator is the same as the one of the decoder network (including
the image generation layer (see Equation 5.16) with β = 0) in the VAE with LSTM layers
introduced in section 5.5.2 – aside from the aforementioned (see Section 6.1) modifications
that are required concerning the number of inputs to the neural network and the activations.
Besides striking resemblance between the sequential model in case of WGAN and VAE,
the hyperparameters of the LSTM layers (like gate weights, number of parameters etc.)
and the number of time steps nT = 64 remains unchanged too (see Figure 5.31). Based
on the observations in Section 6.5, a significant deterioration of the general performance
of the Wasserstein GAN compared to excellent results in Section 6.4 is to be expected.
Nonetheless, the comparison is reasonably taking into account the quite different operating
principles of WGANs and VAEs.

The structure of this section is inspired by the previous one. In the beginning, the
convergence of the model must be confirmed, i.e., the monotone decline of the earth mover’s
distance with an increasing number of generator iterations. This is again followed by the
visual inspection of some generated samples as well as the average image for both processes
under consideration. Afterwards, the generated data is used to construct a small subset of
the already familiar jet observables which are then compared to the results obtained in the
previous section 6.5 and the VAE with RNN in Section 5.5.2.

An additional note on the characteristics of this section. All plots presented here have
already been introduced – in one way or another – at some point in this report. Therefore,
most results presented in this section are left uncommented, with a reference made to the
corresponding figures for comparison.

6.5.1 Training and convergence
The combination of Wasserstein GANs and RNNs give rise to some interesting training-
and convergence behaviour that can bee seen in Figure 6.39 and 6.40.

178

6.5. CONDITIONED WGANS WITH RNNS

0 10 20 30 40 50
×103

Generator iterations (ngit : n
c
it = 1 : 10)

-10

-8

-6

-4

-2

0

W
as
se
rs
te
in

lo
ss
’
co
m
p
on

en
ts

0 10 20 30 40 50 60 70 80

Epochs

CWGAN-GP-RNN(log) – ResNetLN – QCD

(a) Wasserstein loss

0 10 20 30 40 50
×103

Generator iterations (ngit : n
c
it = 1 : 10)

-20

-15

-10

-5

0

W
a
ss
er
st
ei
n
lo
ss
’
co
m
p
o
n
en
ts

0 10 20 30 40 50 60 70 80

Epochs

Ex∼Pr
[fφ(x)] Ez∼Pz

[fφ(gθ(z))]

Ex̂∼Px̂

[
(‖∇x̂(fφ(x̂))‖2 − 1)2

]

CWGAN-GP-RNN(log) – ResNetLN – QCD

0 10 20 30 40 50
×103

10−1

1

10

G
ra
d
ie
n
t
p
en

al
ty

(b) Wasserstein loss’ components

Plot 6.39: The Wasserstein loss (6.39a) and its components (6.39b) for QCD jets.

As apparent from Figure 6.39, the difference between the two expectation values Ex∼Pr [fφ(x)]
and Ez∼Pz [fφ(gθ(z))], the approximation of the earth mover’s distance is rater “large”.
This “gap”, which ideally should be zero, increases with the number of time steps nT in the
recurrent neural network (not shown). This is effect is also present for the model that was
trained on W samples. However, as can be seen in Figure 6.40, the discrepancy shrinks for
larger number of iterations (this also applies to the QCD model); hence, it can be reduced
by increasing the number of training steps.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
×106

Generator iterations (ngit : n
c
it = 1 : 10)

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

W
as

se
rs

te
in

(e
ar

th
m

ov
er

’s)
di

st
an

ce

0 50 100 150 200 250

Epochs

CWGAN-GP-RNN(log) – ResNetLN – W

(a) Wasserstein loss

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
×106

Generator iterations (ngit : n
c
it = 1 : 10)

-60

-40

-20

0

20

W
as

se
rs

te
in

lo
ss

’c
om

po
ne

nt
s

0 50 100 150 200 250

Epochs

Ex∼Pr
[fφ(x)] Ez∼Pz

[fφ(gθ(z))]

Ex̂∼Px̂

[
(‖∇x̂(fφ(x̂))‖2 − 1)2

]

CWGAN-GP-RNN(log) – ResNetLN – W

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
×106

10−2

10−1

1
G

ra
di

en
t

pe
na

lty

(b) Wasserstein loss’ components

Plot 6.40: The Wasserstein loss (6.40a) and its components (6.40b) for W jets.

Again, this effect as well as the somewhat slower convergence (cf., for instance, Figure 6.16
and 6.17) is a consequence of the definition of the image generation layer accordingly to
Equation 5.16 that maps an array of images to one single image (hence the name time
projection layer). With the image generation layer, the gradients for the generator network

179

gθ are roughly given by

∇θfφ(gβθ (z)) = ∇θfφ
(
nT∑

i=1

E
(i)
θ ĝθ(z)ii

β

)
(6.1)

=

nT∑

i=1

iβ∇θ
(
E

(i)
θ ĝθ(z)i

)
∇x̃ifφ(x̃i) (6.2)

=

nT∑

i=1

iβ
(
ĝθ(z)i∇θE(i)

θ + E
(i)
θ ∇θ ĝθ(z)i

)
∇x̃ifφ(x̃i). (6.3)

Equation 6.3 shows the modification of the gradients if the time projection layer is used.
The factorization of the image into a scalar energy value E(i)

θ and a normalized image,
e.g., a discrete probability distribution ĝθ(z)i gives rise to additional contributions to the
gradients. This is potentially dangerous, which is why it would be reasonable to aim for a
long term alternative to the image generation layer if this path should be continued.

6.5.2 Samples and average jet image
Compared to the results obtained with the combination of VAE and RNNs (cf. Figure
5.32 and 5.33) and the real samples (cf. Figure 4.3 and 4.5), the generated samples for the
generative model with RNNs trained in a Wasserstein GAN look far more reasonable.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

a
n
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, QCD

Plot 6.41: Three randomly simulated QCD jets after 40, 000 iterations.

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
al

an
gl
e
φ
[p
x
/r
ad

]

10−1

1

10

E
n
er
gy

E
p
ix

[G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated jet,
√
s = 14TeV, W

Plot 6.42: Three randomly simulated W jets after 40, 000 iterations.

Still – like it was the case for the CVAE with RNNs –, the occupancy in the image is
increased (QCD samples in particular) compared to the previous setup. This becomes
especially apparent in the average jet image.

180

6.5. CONDITIONED WGANS WITH RNNS

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

CWGAN-GP-RNN(log), ResNetLN, QCD

(a) QCD

0 5 10 15 20 25

Pseudorapidity η [px]

0

5

10

15

20

25

A
zi
m
u
th
a
l
a
n
g
le
φ
[p
x
/r
ad

]

10−4

10−3

10−2

10−1

1

10

A
ve
ra
g
e
en

er
g
y
〈E

p
ix
〉[

G
eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

CWGAN-GP-RNN(log), ResNetLN, W

(b) W

Plot 6.43: Average jet image for 50, 000 events and 40, 000 iterations.

This is once more a consequence of the time projection layer (to be more precise: the
sum that merges the individual images). However, unlike in Figure 5.34, the additional
radiation in the image’s periphery is very soft and almost completely disappears for more
numbers of training iterations.

0

0.5

1

1.5

2

2.5

3

3.5

4

S
ta
ti
st
ic
al

m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – QCD

1 2 3 4 5 6 7 8 9

nth ordinal

0.6

0.8

1

1.2

1.4

R
at
io

(a) Statistical moments QCD

0

1

2

3

4

5

6

7

8

S
ta
ti
st
ic
al

m
om

en
t
[〈m

n
〉]1

/
n
[G

eV
]

Training data

Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – W

1 2 3 4 5 6 7 8 9

nth ordinal

0.6

0.8

1

1.2

1.4

R
at
io

(b) Statistical moments W

Plot 6.44: The first nine statistical moments according to Equation 5.3 for the
training data and the generated distribution of the generative model.

The high degree of agreement of the statistical moments between the underlying
distribution of the training data and the generated distribution was one of the milestones
of the previous section. It is therefore particularly interesting to study the changes in this
distribution for the new setup. The trend does not continue as can be seen in Figure 6.44.
For the same number of training iteration (40, 000), the agreement between the statistical
moments is significantly worse compared to Figure 6.24 but still considerably better than
the results based on the VAE in Figure 5.39.

181

6.5.3 Kinematic distributions
The deterioration of the agreement between the statistical moments according to Figure
6.44 already suggests that the same tendency is to be anticipated in case of the other
jet observables. This expectation is immediately confirmed by the distribution of pixel
activation values/energies in Figure 6.45.

0 1 2 3 4 5 6

Energy log(1 + Epix/1GeV) [1]

1

10

102

103

104

105

106

107

108

109

E
ve
n
ts
/0
.1
6

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – QCD

(a) QCD

0 1 2 3 4 5 6

Energy log(1 + Epix/1GeV) [1]

1

10

102

103

104

105

106

107

108

109

E
ve
n
ts
/0
.1
6

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – W

(b) W

Plot 6.45: Pixel activation values Epix on an event-on-event base for 50, 000 events.

The large discrepancy (which is hidden by the logarithmic representation) mostly affects
small energy values. This mismodelling of the energy propagates to other jet observables
like the mass which is shown in the following figure.

0 10 20 30 40 50 60 70

Mass mimg [GeV]

0

2

4

6

8

10

12

14

16

×103

E
ve
n
ts
/2
.5
9
G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – QCD

(a) QCD

0 5 10 15 20 25 30 35 40 45 50

Mass mimg [GeV]

0

1

2

3

4

5

6

7

8

9

×103

E
ve
n
ts
/1
.6
7
G
eV

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – W

(b) W

Plot 6.46: Reconstructed jet mass mimg for 50, 000 events.

Still, the approximation of the underlying distribution of the data is of rather high quality

182

6.5. CONDITIONED WGANS WITH RNNS

compared to Figure 5.40. Furthermore, contrary to the Gaussian variational autoencoder
with recurrent networks in the previous chapter, no energy cut needs to be applied in order
to archive this degree of agreement, making this method much more consistent and hence
less arbitrary.

6.5.4 Jet observables
The trend continuous for the other jet observables. Interestingly, the apparent simple
leading energy fraction f img

max (see Section 6.4.4) is badly described by the generative model
in the case of QCD (Figure 6.47a) as well as for W (Figure 6.47b) initialized jets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Leading energy fraction f1 = Epix
max/E

img

0

1

2

3

4

5

6

7

8
×103

E
ve
n
ts
/0
.0
3

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – QCD

(a) QCD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Leading energy fraction f1 = Epix
max/E

img

0

1

2

3

4

5

6

×103

E
ve
n
ts
/0
.0
3

Training data

Ep. 02 it. 01000

Ep. 16 it. 10000

Ep. 32 it. 20000

Ep. 48 it. 30000

Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – W

(b) W

Plot 6.47: Reconstructed leading energy fraction f img
1 for 50, 000 events.

This discrepancy is caused by the denominator, i.e., the total (jet/image) energy that is

given by Eimg =
∑nT ,n

pix′
η ,npix′

φ

i=1,j=1,k=1 iβ
(
E

(i)
θ ĝθ(x)i

)
kj
. The increased occupancy in the image

then causes an overestimation of the jet’s energy and hence a bias towards smaller values
of f img

max.
Surprisingly, the correlation between the mass of the jet and the transverse momen-

tum/energy is comparatively well described.

183

100 150 200 250 300 350 400 450 500 550

Transverse momentum pimg
T [GeV]

10

20

30

40

50

60

70

80

M
a
ss
m
im
g
[G

eV
]

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – QCD

(a) QCD

100 200 300 400 500 600

Transverse momentum pimg
T [GeV]

20

40

60

80

100

120

M
as
s
m

im
g
[G

eV
]

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – W

(b) W

Plot 6.48: Correlation between the reconstructed average mass mimg and the trans-
verse momentum pimg

T for 50, 000 events.

The same goes for the correlation between the 1-subjettiness τ1 and the transverse momen-
tum pimg

T (Figure 6.49) and the mass (Figure 6.50) of the jet.

100 150 200 250 300 350 400 450 500

Transverse momentum pimg
T [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – QCD

(a) QCD

100 150 200 250 300 350 400 450 500

Transverse momentum pimg
T [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – W

(b) W

Plot 6.49: Correlation between the reconstructed average 1-subjettiness τ img
1 and

the transverse momentum pimg
T for 50, 000 events.

184

6.6. FINAL NOTES

0 5 10 15 20 25 30

Mass mimg [GeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – QCD

(a) QCD

0 20 40 60 80 100 120 140

Mass mimg [GeV]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1-
su
b
je
tt
in
es
s
τ 1

Training data Ep. 02 it. 01000

Ep. 16 it. 10000 Ep. 32 it. 20000

Ep. 48 it. 30000 Ep. 64 it. 40000

CWGAN-GP-RNN(log) – ResNetLN – W

(b) W

Plot 6.50: Correlation between the reconstructed average 1-subjettiness τ img
1 and

the mass mjet for 50, 000 events.

All in all – based on the results presented in this section –, it can be said that unlike in the
case of VAEs with RNNs, the combination of recurrent networks with Wasserstein GANs
can produce reasonable results. Nonetheless, compared with the conditioned Wasserstein
GANs in Section 6.4 without RNNs, a clear deterioration can be observed – especially
in the description of the statistical moments of the generated distributions. Hence, the
combination of generative models and recurrent neural network for the modelling of the
underlying sequential particle shower has not proven to be particularly effective (at least
in combination with the simple time projection layer).

6.6 Final notes

This chapter studied the application of generative adversarial (deep neural) networks
based on the earth mover’s distance in the context of “full” event generation, i.e., matrix
element and particle shower as well as the exclusive simulation of parton showers. The
first section 6.1 quickly summarized all necessary changes that are required to apply the
network architectures introduced in the context of VAEs in Section 5.1 to Wasserstein
GANs with gradient penalty. Subsequently, the configuration of hyperparameters (such
as the learning rate αl, the optimization algorithm, and the dimensionality of the latent
space dim(X)) was motivated in Section 6.2. It has ben shown, that, especially the choice
of the optimization algorithm that is used for gradient descent is crucial. The optimization
algorithm should not rely on momentum to avoid problems with the gradient penalty term
in the loss function. Besides this observation, however, the training of Wasserstein GANs
has turned out to be very stable and reliable with little to no mode collapse as it was
constantly the case with classical GANs. In fact, without Wasserstein GANs, a systematic
study of the subject would have been impossible since the application of classical GANs
(in the context of event simulation) turned out to be a disaster. (Weeks were passing
and have quickly turned into months without any stable configuration found that would
allow for replicable results.) Almost all training sessions ended up in a collapsed mode
of the data set. For the rare occasions that, by chance, the training did not result in

185

mode collapse, vanishing gradient maliciously sprayed its poisonous breath and brought all
progress to a sudden halt. Furthermore, the hard-to-interpret loss function required close
monitoring of the training and early stopping. The combination of plenty methodes had
been tried in hope to somehow stabilize the training – without success. It was not until
Wasserstein GANs caught the attention of the author that this thesis was possible in the
first place. After the rather technical but important details, in Section 6.3 the Wasserstein
generative adversarial network (with gradient penalty) has been used to generate events
in high energy particle physics, i.e., matrix element at leading order with parton shower
simulation for some processes. Compared to the results obtained for Gaussian VAE for
the same scenario, the generative model has learned to simulate very realistic jets images
that are visually indistinguishable from the training data. Also, the closer inspection of
the generated manifold using other jet observables that probe deep substructure of the
jets could not reveal any significant deviations. Furthermore, this section showed that
the use of a logarithmic energy scale for the activation values in the pixels of the image
is beneficial – although it results in a non-linear relation between the energy input and
the output of the model. in Section 6.4, the information of the matrix element has been
marginalized by conditioning the previously introduced model regarding the energy as well
as the pseudorapidity of the jet; thus, the model is reduced to the simulation of parton
showers. Out of all models in this report, this one gave the best results. The generated
probability distribution, Pg, agreed with the training data Pr in several statistical moments
to a high degree of precision. This positively affected the description of the kinematic
distributions and other jet-like observables. Now all of them are in excellent agreement
with the expectations from the training data. The cause of this significant improvement
is a result of the earth mover’s distance; more precisely: its fundamental connection to
the maximum mean discrepancy as an integral probability metric. Based on the results
in Section 6.4, small deviations still present in the approximation of the training data
can likely be improved by increasing the number of generator iterations and/or increased
complexity of the network(s). Encouraged by the results, the (conditioned) model was
combined with recurrent neural networks – LSTM cells to be more precise – in Section
6.5. After the first experiences with this method in Section 6.5, the worst was to be
expected. But, contrary to the previous chapter, the combination of Wasserstein GANs
and RNNs provided reasonable results – although some deterioration in the description
of the observables could be seen. Based on this results, it has to be stated that recurrent
neural networks are not suited to model the sequential nature of the particle shower if this
information is not directly extractable from the training data (since the image represents a
time projection). However, there is another possible application of RNNs and generative
models in the context of the simulation of higher jet multiplicities in an event, which is
proposed in Section 7.2.3 of Chapter 7 in the context of future research suggestions.

Now that all networks have been evaluated, it remains to evaluate the speed performance
of the generative models compared to the conventional approach (i.e. event simulation
based on Monte Carlo) in the form of a “quick” benchmark test. For this purpose, 100, 000
QCD events have been simulated for twenty repetitions to average out fluctuations in
the processor’s load. The generative models are, in turn, assessed on a CPU (Intel R©

CoreTM i7-6800K processor (3.40GHz)) and a GPU (Nvidia-GeForce R© GTX 1060 6GB)
whereas the performance of the MC event generator (Pythia8.2) is evaluated on a different
number of CPU cores. The result of the benchmark test is shown in Figure 6.51.

186

6.6. FINAL NOTES

PY
T
H
IA

1
C
PU

PY
T
H
IA

5
C
PU

s

PY
T
H
IA

10
C
PU

s

W
G
A
N
G
PU

W
G
A
N
C
PU

VA
E
G
PU

VA
E
C
PU

VA
E-R

N
N
G
PU

VA
E-R

N
N
C
PU

W
G
A
N
-R
N
N
G
PU

W
G
A
N
-R
N
N
C
PU

102

103

104

105

S
im

u
la
ti
o
n
ti
m
e
fo
r
1
0
0,
00

0
ev
en
ts

[s
] Benchmark test

Architecture (NN): ResNetLN, Process: QCD

Intel R© CoreTM i7-6800K processor (3.40GHz)

Nvidia-GeForce R© GTX 1060 6GB

Experiments: 20× 100, 000 events

Plot 6.51: “Benchmark test” of the performance of several generative models on
CPUs and GPUs compared to the standard method of event simulation through
Monte Carlo generators for a different number of CPU cores.

As can be seen, the generative models based on machine learning methods allow for much
faster event simulation compared to the standard MC approach once the model has been
trained. Moreover, the time requires to simulate an event for higher orders through Monte
Carlo increases significantly while it remains unchanged in case of the generative model.
(Admittedly, this comparison is not entirely fair since the time required to train the networks
– which can easily take several days – has not been taken into account. But, once the
network has been trained, event simulation is very fast.)

187

188

Chapter 7

Conclusion

This chapter concludes this master thesis and thereby contemporaneously the adventurous
journey through the world of machine learning in the context of the simulation of QCD
radiation. Habitually, the last chapter provides a brief recapitulation of the objective,
the methods used, as well as the results gained through this report. Afterwards, the
discussion is followed by some personal suggestions concerning future research in this field
that, hopefully, serves as a inspirational seed for further projects and studies.

7.1 Discussion

This thesis is concluded by a brief summary and a subsequent assessment of the obtained
results as well as the insights gathered within the context of this report.

The objective of this Master’s thesis was to study the applicability and the feasibility
of event simulation in high-energy particle physics through generative models utilizing
machine learning methods. The main focus of attention was on variational autoencoders
with a Gaussian constraint on the latent space as well as generative adversarial models
based on the earth mover’s distance that are currently the two most prominent approaches
to generative models. This idea is appealing since the precision of Monte Carlo event-
simulation is limited by the fixed-order expansion of the matrix element calculation and the
approximation scheme in the parton shower simulation that is a Markov Chain process and
hence completely neglects quantum interference. Apart from that, the simulation of the
acceptance of the measuring apparatus that is used in the experiment is limited. A solely
data-driven approach through neural networks addresses both problems at once by directly
reproducing the data that is precise (to all orders in perturbation theory) by definition, as
well as going along with a complete detector simulation since the model is trained on data
that has been recorded with a particular particle detector.

Gaussian VAEs have been extensively investigated in Chapter 5. The study revealed
that VAEs are only able to provide a decent description of the training data for the very
first statistical moment of the underlying distribution (see Figure 5.7, 5.24 and 5.39).
Thus, the generative model inevitably misses characteristic features of the data that are
not embedded in the latent space representation of the data. This circumstance becomes
particular apparent in the various distributions that have been studied during the course of
Chapter 5. The origin of this apparent mismodelling of the data is most likely caused by
the underlying probabilistic assumption of Gaussian VAEs, i.e., the Gaussian distribution
of reconstruction errors in the ELBO. More generally, the constraint on the shape of the

189

underlying probability distribution of the latent space, which is the absolute prerequisite
to use autoencoders to train generative models in the first place, gives rise to blurred and
noisy data (see, for instance, the individual jet images in Figure 5.3, 5.14, 5.32 and image
occupancy in Figure 5.5, 5.16b). This phenomenon does by no means come as a surprise; on
the contrary, it is a characteristic albeit undesirable property of VAEs, which is the subject
of many ongoing studies. Despite all efforts, this problem is yet unsolved and hence remains
a limiting factor in the application of variational autoencoders in the context of image
generation in general. Nonetheless, the performance of the Gaussian VAE showed significant
differences depending on whether the model is conditioned (Section 5.4) on the energy and
the pseudorapidity of the jet or not, i.e., the factorization of the model into matrix element
calculation and parton shower simulation. In case of an unconditioned model (Section 5.3),
the network has to construct a complicated representation of the data that categorizes the
images according to its associated continuous energy label. This task is highly non-trivial,
and the model apparently struggles to learn an appropriate representation in the latent
space. In case of conditioned VAEs, however, the performance of the neural network
significantly improves since the model focuses on the parton shower and doesnt have to
learn the information of the matrix element. Nevertheless, the agreement of the statistical
moments is still limited to the very first order (see Figure 5.24). This indicates that the
conditioned VAEs does not learn a proper approximation of the underlying distribution that
generated the training data. Hence, the problem is most likely related to the fundamental
probabilistic assumptions that are fundamental to Gaussian VAEs. Afterwards, recurrent
neural networks and VAEs have been combined with the objective to model the underlying
sequential nature of the splitting process that in the end gives rise to the particle jets
observed in the calorimeter of the detector. This modification of the model resulted in
no improvement, but, on the contrary, in a deterioration of the overall description. This
is hardly surprising since the sequential character is not directly present in the training
data that represents a time projection of the subsequent splittings of the partons (the next
section suggest an alternative application of RNNs in combination with generative models
in the context of HEP).

Chapter 5 revealed evident limitations in the application of Gaussian VAEs. This finding
was, among other aspects, a decisive motive to study a completely different approach to
generative models through adversarial networks, which was the main topic of Chapter 6.
In doing so, this report omitted a substantial portion of the actual study, which was the
investigation of classical GANs (see Section 3.6.1) that are based on the Jensen-Shannon
divergence. As it turned out, the notorious instabilities with regard to mode collapse
and vanishing gradients in particular ruled out any systematic analysis concerning those
kind of generative adversarial models. In fact, the somewhat cumbersome and excessive
preprocessing procedure of the data introduced in Section 4 actually directly emerged from
the effort to stabilize the training in the context of classical GANs – with moderate success
though. It was not until Wasserstein GANs or rather integral probability metrics caught
the attention of the author that a methodical study was within the realms of possibility in
the first place. After the aforementioned steep initial learning curve, Wasserstein GANs
quickly turned out to be very well suited for the application in the context of event
simulation in high-energy particle physics. This becomes particularly apparent in the
excellent agreement between the statistical moments of the generated distribution and the
distribution associated with the training data (see Figure 6.24b and 6.44b). This is an
unmistakable indication that the generative model indeed learned the actual distribution of
the training data since two probability distributions agree iff they coincide with each other
on all statistical moments. The origin of the good accordance between the generated and

190

7.1. DISCUSSION

the expected distribution is the aforementioned deep fundamental connection between the
earth mover’s distance and the maximum mean discrepancy that measures the similarity
of two distributions with respect to their statistical moments (see Section 6.4.2), while
the VAE directly optimizes the log-likelihood of the data. The high quality of the model
manifests itself in the accurate description of various figures of merit. Thus, for instance,
the generated samples are visually completely indistinguishable from the training data (cf.,
e.g., Figure 6.8 and Figure 4.3). Contrary to VAEs, the the overall performance of the
unconditioned (Section 6.3) and the conditioned model (Section 6.4) is almost identical.
This is an interesting observations since the factorization of matrix element and parton
shower was crucial in case of VAEs. Only in the event of Wasserstein GANs combined
with RNNs, a noticeable deterioration of the performance could be observed as it was
the situation for the corresponding setup in case of VAEs. One problem that remains
to be solved is the insufficient modelling of the number of active pixels in the generated
images, which can exemplary be seen by the deviations in Figure 6.34. First, it has to
be clarified whether this non-conformance in the number of active cells (which is related
to the number of “constituents” in a jet) poses a problem after all since this quantity is
not IRC save. As it turned out, the observed deviations are primarily due to very soft
activity in the image/jet that barely affects other jet obervables. Hence, the problem may
be avoided by applying a low cut on the energy threshold in the image from the beginning.
However, this minuscule flaw is bearable in view of the excellent agreement between the
generated distribution and the expectations from the training data. Additionally, with the
robust Wasserstein GANs available, the preprocessing of the data might be obsolete to
a certain extent since it does not affect the training stability. However, the utilization of
intrinsic symmetries in the data still reduces the training time as well as the necessary size
of the training set. But since according to Section 4.3 the preprocessing of the images is
accompanied by information loss (particularly due to to the rotation and the concomitant
interpolation between neighbouring pixels), it might be more reasonable to accept longer
training times in favour of unbiased or distorted data. In consideration of the aspect of
consistency, the entire preprocessing chain was applied to the data within the scope of this
thesis.

There is another, far more serious problem associated with this method: the problem
of double-counting. This issue was already discussed in Section 2.4 in the context of
Monte Carlo event generation; however, it is also relevant in the scope of the machine
learning method presented in this thesis. Solving this problem will be an important aspect
concerning further studies in this field.

To finally summarize: Wasserstein generative adversarial networks have proven to be
the method of choice over classical GANs (based on f -divergences) and Gaussian variational
autoencoders. They are superior with respect to the stability of the training routine (no
mode collapse nor vanishing or exploding gradients), the quality (good agreement of the
statistical moments) as well as the diversity (high entropy) of the generated data and its
associated probability distribution. Only with respect to the training performance, i.e.,
the overall time required to train the model, Wasserstein GANs using gradient penalty
have a considerable disadvantage compared to the other methods since the model requires
very small learning rates and the computation of the complicated gradient penalty term is
computationally quite expensive and consequently time consuming.

Last but not least, the two generative models, Wasserstein GANs and Gaussian VAEs,
have been compared with the conventional approach to event simulation through GPMC
event generators with respect to their time required to simulate 100, 000 QCD events by
means of a quick benchmark test (see Figure 6.51). The models are alternately evaluated on

191

a CPU and GPU, while the Monte Carlo simulations are performed on 1, 5 and 10 CPU(s)
respectively. After the networks have been trained and the model configuration is fixed,
the generative models allow for fast event simulation that is orders of magnitude lower
compared to the same task done with Monte Carlo. It should be emphasized again that the
benchmark test in Figure 6.51 was evaluated based on LO samples. The simulation of NLO
or even NNLO events through generative models however remains unaltered. With the
final discussion of the obtained results and the gathered insights, this Master’s thesis finally
reached its end. The last section is supposed to provide some further ideas, proposals and
research suggestions that are related to thematic framework covered in this thesis.

7.2 Future research suggestions

This master’s thesis is nothing but a small and insignificant piece in a large picture that
slowly starts to emerge. Hopefully, this work will contribute to a further development of
the field and help to build a bridge between machine learning and particle physics even
if only certain aberrations are not repeated by subsequent studies. Within the scope of
this project, many ideas have come to mind on how to proceed. Of course, all of those
suggestions are at a very early stage of development and have not been completely thought
through. However, the concepts proposed in this last chapter are not supposed to be the
answer to any question but to provide some inspiration for future research.

7.2.1 Bayesian networks – “I know what I don’t know”
There are two interpretations of probability distributions or probabilities in statistics: the
frequentist and the Bayesian approach. According to the frequentist interpretation, the
probability of an event to occur corresponds to the relative frequency of this event to
the total number of trials in the limit of infinite statistics. According to the Bayesian
interpretation on the other hand, the probability reflect the “degree of belief” and so
represent an “uncertainty” over unknown parameters.

A neural network can be considered as a probabilistic model that tries to model some
random process based on a finite random sample of events {x}Ni=1 from a data set DN
with size N through a parameterized probability distribution of p(DN |w). The objective
to learn the parameters of the network w to provide a good description of the data set DN
based one a likelihood function L(w|D) that gives the probability of the data based on
the unknown parameters w. The frequentist approach to the problem is to approximate
the unknown parameters of the distribution w by what is called an estimator ŵ by means
of maximum likelihood optimization such that p(w|DN) ≈ p(ŵ|DN). The law of large
numbers – on which the frequentist philosophy is founded on – says that the estimator will
converge to the true parameter in the limit of infinite statistics. So, the parameters are
fixed but unknown. The situation is fundamentally different in the Bayesian picture that
is based on Bayes’ rule and hence assumes a probability distribution p(w|DN) (posterior)
over the parameters of the model, which corresponds to probability of parameters given
the data p(DN |w) (likelihood) and some state of knowledge p(w) (prior). According to
Bayes’ rule, the posterior distribution is given by p(w|D) = p(DN |w)

p(w) . As a result of the
prior, the posterior is a probability distribution as well. Translated to neural networks
(or any parameterized distribution), this means that instead of an estimation of some
unknown parameter, Bayesian methods provide a probability distribution over weights
instead. Therefore, in Bayesian neural networks [MacKay, 1992, Neal, 1996], the weights

192

7.2. FUTURE RESEARCH SUGGESTIONS

of the model are random variables associated with some probability distribution in place of
an estimated (according to the frequentist interpretation) parameter (point estimate). This
may sound trivial, but it represents a considerable change. In practice, this means that the
neural network has to learn a distribution of each parameter in the model. This distribution
is unknown beforehand and needs to be determined by means of Bayesian inference,
which is numerically intractable. Therefore, the posterior distribution p(w|D) is usually
approximated by a variational posterior qθ(w|D) that optimizes the variational free energy,
i.e., the ELBO L(D, θ) = Eqθ(w|D) log qθ(w|D)−Eqθ(w|D) log p(w)−Eqθ(w|D) log p(D|w) by
means of, e.g., “Bayes by Backprop” [Blundell et al., 2015]. Furthermore, for most practical
applications the variational posterior of the weights is constrained to be a multivariate
Gaussian with mean µ(x) and variance σ(x). This procedure is conceptually very similar
to the Gaussian constraint of the latent space in case of variational autoencoders; but,
applied to all weights in the network. Despite being tractable, this still represents doubling
of the numbers of trainable parameters in the model compared to classical neural networks;
hence, significantly increase the training time. Nonetheless, with a distribution over each
parameter, the neural network does not represent a deterministic model anymore but a
random process. The probabilistic nature of the model now allows to associate uncertainties
with the prediction(s) ŷ = fw∼qθ(x) of the neural network that now is a random number.
So, the mean µ(x) and the variance σ(x) for a repeated number of experiments {ŷi}Ni=1

is simply given by µ(x) = 1
N

∑N
i=1 fwi∼qθ(x) and σ(x)2 = 1

N−1

∑N
i=1 (fwi∼qθ (x)− µ(x))

2.
This is a very promising approach since it allows to associate an uncertainty with the
prediction µ(x)± σ(x) of the model that depends on the number of data/training points
the network has seen in a neighborhood of x.

The combination of Bayesian neural networks and generative models (Wasserstein
GANs in particular) is therefore very appealing since it allows for the estimation of model
uncertainties. This becomes particular important if the generative model is supposed to
interpolate to “regions” where training data is rare, non-existent, or even purposely withhold.
This is, for instance, the situation in many particle searches in experimental particle physics
where control, validation and signal regions are defined. So, the network could be trained
to reproduce a control region as good as possible and thereafter interpolate to one of
the validation regions. In this case, the Bayesian neural network would assign a higher
model uncertainty to the unseen data in the validation/signal region. The uncertainties
provided by the neural network should be taken with care since their physical interpretation
appears to be non-trivial and requires critical reflection. Nevertheless, the combination of
model uncertainties and generative adversarial network appears to be very promising and
is definitely worth trying. To summarize, Bayesian neural networks are like Sokrates once
said: “I know that I know nothing” (Οἶδα οὐδὲν εἰδώς) – except for what I’ve seen.

Proposal (Bayesian Neural Networks). Combine generative models (GANs and VAEs)
with Bayesian neural networks based on (Gaussian) variational posterior approximation to
incorporate uncertainties into model’s predictions.

7.2.2 Image-to-image or jet-to-jet translation
The objective of unpaired image-to-image translation is to learn a transformation G that
allows to map images between different classes or categories X,Y “in the absence of paired
[training] examples” (Zhu et al. [2017]). This transformation is realized through neural
network. The goal is achieved if the transformed data G(X) is indistinguishable from the
data in class Y , i.e., G(X) ≈ Y . Furthermore, the transformation must be cycle-consistent :

193

the map F : Y → X applied to G(X) must result in the original data F (G(X)) ≈ X. The
crucial aspect, however, is the fact that the method can be trained on un-paired examples.
This means that the network actually learns the features of the different classes. The
paper by Zhu et al. [2017] provides some nice examples that shows the performance of the
network and illustrates the principle concept. Figure 7.1 shows some translated images for
the example of only four classes; furthermore, it demonstrates cycle-consistency.

Monet Photos

(a) Monet
 photo

Summer Winter

(b) Summer
 winter

Fig. 7.1: Image-to-image translation with the condition of cycle-consistency (adapted
from Zhu et al. [2017] Fig. 1, p. 1).

Since the model has been trained on unpaired examples, the translation from one class
to another (e.g. from a Monet painting to the corresponding photo-realistic image) is an
extrapolation between features of the respective categories. The next logical step is to
translate one image (or data in general) into several classes. To give a simple example, take
a model that has been trained on actual photos, the paintings of several artists (Monet,
Van Gogh, Cezanne), as well as Ukiyo-e paintings as an example of genre of art with
very distinctive features. If the model has been trained on unpaired examples of photos
and paintings, the learned function allows to transform a photo to several works of art
each one reflecting the art style of the respective artist or genre. A visual example of the
aforementioned procedure is given by Figure 7.2

Photograph Van Gogh CezanneMonet Ukiyo-e

Fig. 7.2: Extrapolation from one class to several classes (adapted from Zhu et al.
[2017] Fig. 1, p. 1)

He, who is familiar with the period of impressionism or with traditional Japanese art will
immediately associate the paintings in Figure 7.2 with the respective artist or genre. Not
because he knows the paintings – these can not be found in any museum on earth –, but
because he recognizes the unique style that has been learned by the neural network. This

194

7.2. FUTURE RESEARCH SUGGESTIONS

method has far more potential than pure entertainment. On the contrary, it provides a
possible application in experimental particle physics – especially in the context of particle
searches.

As described in 7.2.1, a common strategy in particle searches is to divide the recorded
data into several regions (or classes) CRiαjα...kα that are pairwise disjoint CRiαjα...kα ∩
CR′iβjβ ...kβ = ∅, i.e., no pairs of classes should – ideally – contain the same event. The
indices iαjα . . . kα are the features of the respective class, e.g. b-tags, region of phase
space, mass etc., while R ∈ {CR,VR, SR} denotes the type of class, i.e., Control Region
(CR), Validation Region (VR) and Signal Region (SR). The objective is to get an accu-
rate background prediction for the SR estimated from the CR and validated in the VR.
However, to get a prediction of the background in CRiαjα...kα based on the background
measured in CR′iβjβ ...kβ , one needs (loosely speaking) a transformation TTRR

′
iαβjαβ ...kαβ

with

TRR
′

iαβjαβ ...kαβ

(
CRiαjα...kα

)
≈ CR′iβjβ ...kβ . The usual procedure is to make assumption regard-

ing the distributions in the individual control regions. It could be argued, for instance,
that the shape of the distributions remains unchanged (i.e. the statistical moments are
identical up to a global factor) but the number of events differ. Hence, the transfor-
mation would be given by a normalization factor. This is just a very simple example
and there are far more elaborate methods besides global normalization. However, al-
ready this simple example reveals the close connection to the concept of circle-consistent
image-to-image translation introduced previously. So, instead of making assumptions
regarding the transformation TRR

′
iαβjαβ ...kαβ

, train a neural network with unpaired examples
from different classes CRiαjα...kα and learn a continuous map that allows for the extrapo-
lation between different regions through cycle-consistent image-to-image translation, i.e.,
TRR

′
iαβjαβ ...kαβ

(
CRiαjα...kα

)
≈ CR′iβjβ ...kβ and TRR

′
iαβjαβ ...kαβ

TR
′R

iβαjβα...kβα

(
CRiαjα...kα

)
≈ CRiαjα...kα .

The combination of cycle-consistent image-to-image translation with Bayesian neural net-
work (see 7.2.1) would furthermore allow to get an extrapolation error from one class into
another.

Proposal (Class extrapolation through image-to-image translation). Given a set of classes
CRiαjα...kα associated with region R ∈ {CR,VR,SR} that are pairwise disjoint CRiαjα...kα ∩
CR′iβjβ ...kβ = ∅ if α 6= β. Learn a transformation TRR

′
iαβjαβ ...kαβ

through image-to-image

translation utilizing adversarial networks such that TRR
′

iαβjαβ ...kαβ

(
CRiαjα...kα

)
≈ CR′iβjβ ...kβ

and the transformation is cycle consistent, i.e., TRR
′

iαβjαβ ...kαβ
TR

′R
iβαjβα...kβα

(
CRiαjα...kα

)
≈

CRiαjα...kα . Furthermore, combine the generative model with Bayesian neural networks to
get extrapolation uncertainties associated with TRR

′
iαβjαβ ...kαβ

.

7.2.3 RNNs for higher jet multiplicities
Recurrent neural networks have turned out to be rather inappropriate for modeling the
sequential character of the underlying particle shower if this information is not directly
extractable from the training data. However, there are plenty other possible applications
of RNNs in particle physics.

All results given in this thesis are based on the leading pT jet of an event; all other jets
are ignored for the time being. This is fine within the context of this feasibility study but of
course totally inconceivable in a real application. A possible next step, therefore, would be
to allow for higher jet multiplicities in an event. In principle this is already possible at this

195

point: given a generative model conditioned on the transverse momentum of the respective
jet pT, an event with a jet multiplicity N (itself being a random variable N ∼ PN) can be
subsequently generated according to the following factorization:

p(xN ,xN−1, . . . ,x1, pTN , pTN−1
, . . . pT1

) ≈
N∏

i=1

p

xi

∣∣∣
i⋂

j=1

pTj

 . (7.1)

This factorization, however, is only an approximation since it does only account for the
correlations between the transverse momentum of the different jets in an event but discards
the correlation between the different jet images that would be

p(xk, . . .x1, pTk , . . . , pT1
) =p

xk

∣∣∣
⋂

i=1

i≤k−1

(xi ∩ pTi) ∩ pTk

 · p

⋂

i=1

i≤k−1

(xi ∩ pTi) ∩ pTk

 .

(7.2)

Equation 7.2 is exact and should therefore allow the neural network to learn all kinds of
effects like, for instance, colour flow between jets [Collaboration, 2018] since the generated
jet xk depends on all previous jets. However, by now the situation is starting to become
complicated. To account for the full correlation between all jets in an event, one needs
to include the correlation between the conditioning labels and to provide the previously
generated jet image to the neural network, i.e., the previous state. This, however, is
precisely the reason why recurrent neural networks have been invented in the first place.
Therefore, a possible application of RNNs combined with generative models would be to
learn correlations between different jets in an event. Contrary to the parton shower, the
“sequential” information is available on an event-on-event basis; hence, can be used for
training. Furthermore, RNNs – unlike feed-forward neural networks – allow for a variable
number of inputs and outputs which is essential to simulate different jet multiplicities in
an event.

Proposal (Higher jet multiplicities with generative RNNs). Combine generative models
(GANs and VAEs) with Recurrent neural networks to allow for a variable number of in-
and outputs to model the distribution of jet multiplicities PN jet .

196

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 30.08.2019 .

197

198

Bibliography

Georges Aad et al. Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC. Phys.Lett., B716:1–29, 2012.

F. et. all Abe. Topology of three-jet events in pp collisions at
√
s = 1.8 tev. Phys. Rev. D,

45:1448–1458, Mar 1992.

K. Ackerstaff et al. Production of K0(S) and Lambda in quark and gluon jets from Z0
decay. Eur. Phys. J., C8:241–254, 1999.

Guido Altarelli and G. Parisi. Asymptotic Freedom in Parton Language. Nucl. Phys.,
B126:298–318, 1977.

Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, and Tim Stelzer. Madgraph
5 : Going beyond, 2011. arxiv:1106.0522.

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower
simulations. 2014.

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower
simulations. JHEP, 07:079, 2014.

Peter Loch and. Jet measurements in ATLAS. Journal of Physics: Conference Series,
323:012002, nov 2011.

Bo Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand. Parton Fragmentation and
String Dynamics. Phys. Rept., 97:31–145, 1983.

Bo Andersson, G. Gustafson, and B. Soderberg. A General Model for Jet Fragmentation.
Z. Phys., C20:317, 1983.

Bo Andersson. THE LUND STRING MODEL. In 7th European Symposium on Antiproton
Interactions: From LEAR to the Collider and Beyond Durham, England, July 9-13,
1984, pages 447–462, 1986.

L Archambault, Beaulieu, et al. Overview of geant4 applications in medical physics. pages
1743 – 1745 Vol.3, 11 2003.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks, 2017.

199

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

Ryan Atkin. Review of jet reconstruction algorithms. J. Phys. Conf. Ser., 645(1):012008,
2015.

Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

M. Bahr et al. Herwig++ Physics and Manual. Eur. Phys. J., C58:639–707, 2008.

B. L. G. Bakker, A. I. Veselov, and M. A. Zubkov. Internal structure of discretized
Weinberg-Salam model. Phys. Lett., B583:379–382, 2004.

Dana H. Ballard. Modular learning in neural networks. In Proceedings of the Sixth National
Conference on Artificial Intelligence - Volume 1, AAAI’87, pages 279–284. AAAI Press,
1987.

D. P. Barber et al. Discovery of Three Jet Events and a Test of Quantum Chromodynamics
at PETRA Energies. Phys. Rev. Lett., 43:830, 1979.

Shane Barratt and Rishi Sharma. A note on the inception score, 2018.

Wulfrin Bartel, Lizandra Becker, Rolf Felst, D Haidt, G Knies, H Krehbiel, P Laurikainen,
N Magnussen, R Meinke, B Naroska, J Olsson, D Schmidt, G Dietrich, Timothy Green-
shaw, J Hagemann, G Heinzelmann, H Kado, C Kleinwort, M Kuhlen, and S Yamada.
Experimental studies on multijet production ine+e− annihilation at petra energies.
Zeitschrift für Physik C, 33:23–31, 03 1986.

Marc G. Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshmi-
narayanan, Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to
biased wasserstein gradients. CoRR, abs/1705.10743, 2017.

Johannes Bellm et al. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J., C76(4):196,
2016.

Christoph Berger et al. Jet Analysis of the Υ (9.46) Decay Into Charged Hadrons. Phys.
Lett., 82B:449–455, 1979.

J. Bernstein. Untersuchungen über den Erregungsvorgang im Nerven- und Muskelsysteme.
Carl Winter’s Universitätsbuchhandlung, Heidelberg, 1871.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. In Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15, pages 1613–1622.
JMLR.org, 2015.

F. F. Bonsall. L. v. kantorovich, g. p. akilov functional analysis in normed spaces, translated
from the russian by d. e. brown edited by a. p. robertson (pergamon press, 1964), xiii
771 pp., 140s. Proceedings of the Edinburgh Mathematical Society, 15(1):80–81, 1966.

E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. Savrin,
A. Semenov, and A. Sherstnev. CompHEP 4.4: Automatic computations from La-
grangians to events. Nucl. Instrum. Meth., A534:250–259, 2004.

200

BIBLIOGRAPHY

V. Bornyakov et al. Heavy quark potential in lattice QCD at finite temperature. In
Quark confinement and the hadron spectrum. Proceedings, 5th International Conference,
Gargnano, Italy, September 10-14, 2002, pages 294–296, 2003.

A Training Algorithm for Optimal Margin Classifiers, COLT ’92, New York, NY, USA,
1992. ACM.

Becker Bothe. Künstliche erregung von kern-γ-strahlen. Z. Phys., 66:289, 1930.

R. Brandelik et al. Evidence for Planar Events in e+ e- Annihilation at High-Energies.
Phys. Lett., 86B:243–249, 1979.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high
fidelity natural image synthesis. CoRR, abs/1809.11096, 2018.

Andy Buckley et al. General-purpose event generators for LHC physics. Phys. Rept.,
504:145–233, 2011.

Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm.
JHEP, 04:063, 2008.

Matteo Cacciari, Gavin P Salam, and Gregory Soyez. FastJet user manual. Eur. Phys. J.
C, 72(arXiv:1111.6097. CERN-PH-TH-2011-297):1896. 69 p, Nov 2011. Comments: 69
pages. FastJet 3 is available from http://fastjet.fr/.

Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet user manual. Eur.Phys.J.,
C72:1896, 2012.

Claudio Campagnari and Melissa Franklin. The Discovery of the top quark. Rev. Mod.
Phys., 69:137–212, 1997.

S. Catani, Yuri L. Dokshitzer, M. H. Seymour, and B. R. Webber. Longitudinally invariant
Kt clustering algorithms for hadron hadron collisions. Nucl. Phys., B406:187–224, 1993.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman,
Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. CoRR, abs/1611.02731,
2016.

Yang-Ting Chien and Ivan Vitev. Towards the understanding of jet shapes and cross
sections in heavy ion collisions using soft-collinear effective theory. JHEP, 05:023, 2016.

Vincenzo Chiochia, Günther. Dissertori, and Thomas Gehrmann. Lecture notes in phe-
nomenology of particle physics i, September 2010.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation, 2014.

François Chollet. keras. https://github.com/fchollet/keras, 2015.

On the histogram as a density estimator:l2 theory. Probability Theory and Related Fields,
57(4):453–476, 1981.

ATLAS Collaboration. Measurement of colour flow using jet-pull observables in tt̄ events
with the atlas experiment at

√
s = 13 tev. 2018.

201

https://github.com/fchollet/keras

John C. Collins. Sudakov form factors. 2003.

G. Cybenko. Approximation by superpositions of a sigmoidal function, 1989.

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak.
Hyperspherical variational auto-encoders. 2018.

Luke de Oliveira, Michela Paganini, and Benjamin Nachman. Learning Particle Physics
by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis.
Comput. Softw. Big Sci., 1(1):4, 2017.

Yuri L. Dokshitzer. Calculation of the Structure Functions for Deep Inelastic Scattering
and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics. Sov.
Phys. JETP, 46:641–653, 1977. [Zh. Eksp. Teor. Fiz.73,1216(1977)].

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

S. Eidelman, K.G. Hayes, K.A. Olive, M. Aguilar-Benitez, and journal = "Physics Letters
B" year = 2004 volume = "592" pages = 1+ url = http://pdg.lbl.gov others, title
= "Review of Particle Physics".

Albert Einstein. On the electrodynamics of moving bodies. Annalen Phys., 17:891–921,
1905. [Annalen Phys.14,194(2005)].

A. Einstein. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik,
354:769–822, 1916.

Stephen D. Ellis and Davison E. Soper. Successive combination jet algorithm for hadron
collisions. Phys. Rev., D48:3160–3166, 1993.

Stephen D. Ellis, Zoltan Kunszt, and Davison E. Soper. Jets at hadron colliders at order
α− s3: A Look inside. Phys. Rev. Lett., 69:3615–3618, 1992.

John R. Ellis. Limits of the standard model. In PSI Zuoz Summer School on Exploring the
Limits of the Standard Model Zuoz, Engadin, Switzerland, August 18-24, 2002, 2002.

F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys.
Rev. Lett., 13:321–323, 1964. [,157(1964)].

W. Feller. The fundamental limit theorems in probability. Bull. Amer. Math. Soc.,
51(11):800–832, 11 1945.

Enrico Fermi. Tentativo di una teoria dell’emissione dei raggi beta. Ric. Sci., 4:491–495,
1933.

R. P. Feynman. Space-time approach to quantum electrodynamics. Phys. Rev., 76:769–789,
Sep 1949.

Nobel Foundation. The nobel prize in physics, 1965.

Nobel Foundation. The nobel prize in physics, 2004.

Rikkert Frederix and Stefano Frixione. Merging meets matching in MC@NLO. JHEP,
12:061, 2012.

202

BIBLIOGRAPHY

Rikkert Frederix, Stefano Frixione, Fabio Maltoni, and Tim Stelzer. Automation of
next-to-leading order computations in qcd: the fks subtraction. 2009.

Stefano Frixione, Fabian Stoeckli, Paolo Torrielli, Bryan R. Webber, and Chris D. White.
The mc@nlo 4.0 event generator, 2010.

L. Galvani. De viribus electricitatis in motu musculari: commentarius. 1791.

M. Gell-Mann. The eightfold way: A theory of strong interaction symmetry. 3 1961.

Murray Gell-Mann. A Schematic Model of Baryons and Mesons. Phys. Lett., 8:214–215,
1964.

Claudia Gemme. Latest ATLAS results from Run 2. Technical Report arXiv:1612.01987,
CERN, Geneva, Dec 2016. 9th International Worshop on top quark physics Olomouc,
Czech Republic, September 19–23, 2016.

Felix A. Gers and Juergen Schmidhuber. Recurrent nets that time and count. Technical
report, 2000.

Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. Learning to forget: Continual
prediction with lstm. Neural Computation, 12:2451–2471, 2000.

S. L. Glashow. Partial Symmetries of Weak Interactions. Nucl. Phys., 22:579–588, 1961.

Tanju Gleisberg and Stefan Hoeche. Comix, a new matrix element generator. JHEP,
12:039, 2008.

T. Gleisberg, S. Hoeche, F. Krauss, M. Schoenherr, S. Schumann, F. Siegert, and J. Winter.
Event generation with sherpa 1.1. 2008.

E. W. Nigel Glover and David A. Kosower. Recombination methods for jets in p anti-p
collisions. Phys. Lett., B367:369–376, 1996.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc.,
2014.

V. N. Gribov and L. N. Lipatov. Deep inelastic e p scattering in perturbation theory. Sov.
J. Nucl. Phys., 15:438–450, 1972. [Yad. Fiz.15,781(1972)].

David J. Gross and Frank Wilczek. Ultraviolet behavior of non-abelian gauge theories.
Phys. Rev. Lett., 30:1343–1346, Jun 1973.

Martin W. Grunewald. Precision tests of the standard model. PoS, HEP2005:306, 2006.

Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C.
Courville. Improved training of wasserstein gans. CoRR, abs/1704.00028, 2017.

G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global Conservation Laws and Massless
Particles. Phys. Rev. Lett., 13:585–587, 1964. [,162(1964)].

D. Hanneke, S. Fogwell, and G. Gabrielse. New measurement of the electron magnetic
moment and the fine structure constant. Physical Review Letters, 100(12), 3 2008.

203

Stephan Hartmann. James t. cushing, philosophical concepts in physics. the historical
relation between philosophy and scientific theories. Erkenntnis, 52:133–137, 01 2000.

F. J. Hasert et al. Observation of Neutrino Like Interactions Without Muon Or Electron
in the Gargamelle Neutrino Experiment. Phys. Lett., B46:138–140, 1973. [,5.15(1973)].

F J Hasert, Helmut Faissner, W Krenz, J Von Krogh, and D Lanske. Search for elastic
muon neutrino electron scattering. Phys. Lett. B, 46:121–124, 1973.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

Donald O. Hebb. The organization of behavior: A neuropsychological theory. Wiley, New
York, June 1949.

Peter W. Higgs. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett.,
13:508–509, 1964. [,160(1964)].

Valentin Hirschi, Rikkert Frederix, Stefano Frixione, Maria Vittoria Garzelli, Fabio Maltoni,
and Roberto Pittau. Automation of one-loop QCD corrections. JHEP, 05:044, 2011.

Valentin Hirschi. New developments in MadLoop. 2011. [PoSRADCOR2011,018(2011)].

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

J. J. Hopfield and D. W. Tank. "neural" computation of decisions in optimization problems.
Biol. Cybern., 52(3):141–152, July 1985.

J. J. Hopfield. Neurocomputing: Foundations of research. chapter Neural Networks and
Physical Systems with Emergent Collective Computational Abilities, pages 457–464.
MIT Press, Cambridge, MA, USA, 1988.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.

Cuthbert C. Hurd. A note on early Monte Carlo computations and scientific meetings.
7(2):141–155, April/June 1985. Includes typeset reprint of Richtmyer et al. [1947].

John E. Huth et al. Toward a standardization of jet definitions. In 1990 DPF Summer Study
on High-energy Physics: Research Directions for the Decade (Snowmass 90) Snowmass,
Colorado, June 25-July 13, 1990, pages 0134–136, 1990.

Stefan Höche. Introduction to parton-shower event generators, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

Arthur M. Jaffe and Edward Witten. Quantum Yang-Mills theory. 2000.

L.V. Kantorovich and G.Sh.Rubinstein. On the space of completely additive functions.
Vestnic Leningrad Univ., Ser. Mat. Mekh. i Astron., 13(7):52–59, 1958. In Russian.

204

BIBLIOGRAPHY

Gregor Kasieczka, Tilman Plehn, Michael Russell, and Torben Schell. Deep-learning Top
Taggers or The End of QCD? JHEP, 05:006, 2017.

Eamonn Keogh and Abdullah Mueen. Curse of Dimensionality, pages 314–315. Springer
US, Boston, MA, 2017.

Vardan Khachatryan et al. Measurement of the inclusive 3-jet production differential cross
section in proton–proton collisions at 7 TeV and determination of the strong coupling
constant in the TeV range. Eur. Phys. J., C75(5):186, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd International
Conference for Learning Representations, San Diego, 2015.

Diederik P. Kingma, Tim Salimans, and Max Welling. Improving variational inference
with inverse autoregressive flow. CoRR, abs/1606.04934, 2016.

H.A. Kramers. Die grundlagen der quantentheorie: Quantentheorie des elektrons und der
strahlung. Number Bd. 2 in Die grundlagen der quantentheorie: Quantentheorie des
elektrons und der strahlung. Akademische verlagsgesellschaft m.b.h., 1938.

David Kriesel. A Brief Introduction to Neural Networks. 2007.

Thomas S. Kuhn. The structure of scientific revolutions. University of Chicago Press,
Chicago, 1970.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Yann Lecun. Generalization and network design strategies. Elsevier, 1989.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos.
MMD GAN: towards deeper understanding of moment matching network. CoRR,
abs/1705.08584, 2017.

Yuxi Li. Deep reinforcement learning: An overview. CoRR, abs/1701.07274, 2017.

Seppo Linnainmaa. The representation of the cumulative rounding error of an algorithm
as a Taylor expansion of the local rounding errors. Master’s thesis, Univ. Helsinki, 1970.

Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent
neural networks for sequence learning, 2015.

Leif Lönnblad. : A program for simulation of QCD cas-cades implementing the colour
dipole mode. pages 15–31, 1992.

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural
Comput., 4(3):448–472, May 1992.

Michelangelo L. Mangano, Mauro Moretti, and Roberto Pittau. Multijet matrix elements
and shower evolution in hadronic collisions: Wbb̄ + n jets as a case study. Nucl. Phys.,
B632:343–362, 2002.

205

Michelangelo L. Mangano, Mauro Moretti, Fulvio Piccinini, Roberto Pittau, and Antonio D.
Polosa. ALPGEN, a generator for hard multiparton processes in hadronic collisions.
JHEP, 07:001, 2003.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, and Zhen Wang. Multi-class
generative adversarial networks with the L2 loss function. CoRR, abs/1611.04076, 2016.

James Clerk Maxwell. A dynamical theory of the electromagnetic field. Philosophical
Transactions of the Royal Society of London, 155:459–513, 1865.

Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:127–147, 1943.

N. Metropolis and William Aspray. Oral history interview with Nicholas Metropolis. Audio
recording, 1987. The Charles Babbage Institute.

Nicholas Metropolis and S. Ulam. The Monte Carlo method. 44(247):335–341, September
1949.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational
Geometry. MIT Press, Cambridge, MA, USA, 1969.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. CoRR,
abs/1802.05637, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normal-
ization for generative adversarial networks. CoRR, abs/1802.05957, 2018.

Youssef Mroueh and Tom Sercu. Fisher GAN. CoRR, abs/1705.09675, 2017.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Conference on International Conference
on Machine Learning, ICML’10, pages 807–814, USA, 2010. Omnipress.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin,
Heidelberg, 1996.

Yurii Nesterov. Random gradient-free minimization of convex functions. CORE Discussion
Papers 2011001, Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE), 2011.

I. Newton, A. Motte, and J. Machin. The Mathematical Principles of Natural Philosophy.
Number Bd. 1 in The Mathematical Principles of Natural Philosophy. B. Motte, 1729.

XuanLong Nguyen, Martin J Wainwright, and Michael I. Jordan. Estimating divergence
functionals and the likelihood ratio by penalized convex risk minimization. In J. C.
Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 1089–1096. Curran Associates, Inc., 2008.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 271–279. Curran Associates, Inc., 2016.

206

BIBLIOGRAPHY

Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activation
functions: Comparison of trends in practice and research for deep learning. CoRR,
abs/1811.03378, 2018.

A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin,
S. Shichanin, and A. Semenov. CompHEP: A Package for evaluation of Feynman diagrams
and integration over multiparticle phase space. 1999.

A. Pukhov. CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and
generation of matrix elements for other packages. 2004.

J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, Pavel M. Nadolsky, and W. K. Tung. New
generation of parton distributions with uncertainties from global QCD analysis. JHEP,
07:012, 2002.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Netw.,
12(1):145–151, January 1999.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks, 2015. cite arxiv:1511.06434Comment:
Under review as a conference paper at ICLR 2016.

Santiago Ramón y Cajal. Revista trimestral de histología normal y patológica, año 1, n. 1.
1888.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. CoRR, abs/1904.09237, 2019.

Mark D. Reid and Robert C. Williamson. Information, divergence and risk for binary
experiments. J. Mach. Learn. Res., 12:731–817, July 2011.

Robert D. Richtmyer, Stanisław Ulam, and John von Neumann. Statistical methods in
neutron diffusion. Technical Report LAMS-551, April 1947. Republished in typeset form
in Hurd [1985].

F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain mechanisms.
Report (Cornell Aeronautical Laboratory). Spartan Books, 1962.

Kevin Roth, Aurélien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing
training of generative adversarial networks through regularization. CoRR, abs/1705.09367,
2017.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323:533–, October 1986.

Gavin P. Salam and Gregory Soyez. A Practical Seedless Infrared-Safe Cone jet algorithm.
JHEP, 05:086, 2007.

Abdus Salam and John Clive Ward. Electromagnetic and weak interactions. Phys. Lett.,
13:168–171, 1964.

207

Abdus Salam. Weak and Electromagnetic Interactions. Conf. Proc., C680519:367–377,
1968.

Gavin P. Salam. Towards Jetography. Eur. Phys. J., C67:637–686, 2010.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen,
and Xi Chen. Improved techniques for training gans. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 2234–2242. Curran Associates, Inc., 2016.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. CoRR, abs/1606.03498, 2016.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE
Trans. Signal Processing, 45:2673–2681, 1997.

Julian S. Schwinger. A Theory of the Fundamental Interactions. Annals Phys., 2:407–434,
1957.

M. H. Seymour. Jet shapes in hadron collisions: Higher orders, resummation and hadroniza-
tion. Nucl. Phys., B513:269–300, 1998.

Michael H. Seymour. Jets in hadron collisions. In Deep inelastic scattering. Proceedings,
8th International Workshop, DIS 2000, Liverpool, UK, April 25-30, 2000, pages 27–41,
2000. [,21(2000)].

Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The riemannian geometry of deep
generative models. CoRR, abs/1711.08014, 2017.

Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and
Manual. JHEP, 05:026, 2006.

Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. A Brief Introduction to
PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008.

Torbjörn Sjöstrand. A model for initial state parton showers. Physics Letters B, 157(4):321
– 325, 1985.

J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity:
The all convolutional net. In ICLR (workshop track), 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958, 2014.

T. Stelzer and W. F. Long. Automatic generation of tree level helicity amplitudes. 1994.

George F. Sterman and Steven Weinberg. Jets from Quantum Chromodynamics. Phys.
Rev. Lett., 39:1436, 1977.

Iain W. Stewart, Frank J. Tackmann, and Wouter J. Waalewijn. N-Jettiness: An Inclusive
Event Shape to Veto Jets. Phys. Rev. Lett., 105:092002, 2010.

Jesse Thaler and Ken Van Tilburg. Identifying Boosted Objects with N-subjettiness. JHEP,
03:015, 2011.

208

BIBLIOGRAPHY

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning,
2012.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The
missing ingredient for fast stylization. CoRR, abs/1607.08022, 2016.

W. von Waldeyer-Hartz. Ueber einige neuere Forschungen im Gebiete der Anatomie des
Centralnervensystems. Wochenschrift, Deutsche Medicinische 1891, No. 44 u. ff. Georg
Thieme, 1891.

Christopher J. C. H. Watkins and Peter Dayan. Technical note q-learning. Machine
Learning, 8:279–292, 1992.

P. M. Watkins. DISCOVERY OF THE W AND Z BOSONS. Contemp. Phys., 27:291–324,
1986.

B. Webber. Parton shower Monte Carlo event generators. Scholarpedia, 6(12):10662, 2011.
revision #128236.

Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the im-
proved training of wasserstein gans: A consistency term and its dual effect. CoRR,
abs/1803.01541, 2018.

Steven Weinberg. A model of leptons. Phys. Rev. Lett., 19:1264–1266, Nov 1967.

Steven Weinberg. The Making of the standard model. Eur. Phys. J., C34:5–13, 2004.
[,99(2005)].

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

M. Wobisch and T. Wengler. Hadronization corrections to jet cross-sections in deep
inelastic scattering. In Monte Carlo generators for HERA physics. Proceedings, Workshop,
Hamburg, Germany, 1998-1999, pages 270–279, 1998.

Yuxin Wu and Kaiming He. Group normalization. CoRR, abs/1803.08494, 2018.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. CoRR, abs/1505.00853, 2015.

Chen-Ning Yang and Robert L. Mills. Conservation of Isotopic Spin and Isotopic Gauge
Invariance. Phys. Rev., 96:191–195, 1954. [,150(1954)].

Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. Midinet: A convolutional generative
adversarial network for symbolic-domain music generation. ArXiv, abs/1703.10847, 2017.

Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin Duh, and Chris Dyer. Depth-gated
lstm, 2015.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701,
2012.

Junbo Jake Zhao, Michaël Mathieu, and Yann LeCun. Energy-based generative adversarial
network. CoRR, abs/1609.03126, 2016.

209

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks, 2017.

G. Zweig. An SU(3) model for strong interaction symmetry and its breaking. Version 2. In
D.B. Lichtenberg and Simon Peter Rosen, editors, DEVELOPMENTS IN THE QUARK
THEORY OF HADRONS. VOL. 1. 1964 - 1978, pages 22–101. 1964.

210

	List of Figures
	List of Plots
	Nomenclature
	Introduction
	I
	Theory
	The Standard Model of particle physics
	History of the Standard Model
	Elementary particle content
	The Standard Model as a QFT
	The QCD Lagrangian

	Perturbative QCD
	Renormalization and running coupling
	Asymptotic freedom and colour confinement
	Soft and collinear limits of QCD
	Factorization theorem and DGLAP equations
	Parton shower and Sudakov form factors

	QCD phenomenology
	Jets in particle physics
	Infrared and collinear safety
	Cone based algorithms
	Sequential recombination algorithms
	The kt algorithm
	The Cambridge-Aachen algorithm
	The anti-kt algorithm

	Jet-related observables
	Jet-shape
	Jet-width
	N-subjettiness

	Event Simulation in hep
	The ``Monte Carlo'' method
	Monte Carlo integration
	Monte Carlo simulation

	Monte Carlo event simulation
	The larger picture
	Fixed-order matrix element expansion
	Parton shower simulation
	Event simulation and event topology

	Types and examples of MC event generators
	Challenges in MC event generation
	Double-counting

	II
	Machine Learning
	A brief history of neural networks
	Trinity of machine learning
	Artificial neural networks
	Feed-forward neural networks
	Recurrent neural networks

	Training of neural networks
	The loss function
	Gradient descent and optimizers
	The backpropagation algorithm
	Training stability, regularization and normalization

	Variational Autoencoders
	Latent variable models
	Gaussian Variational Autoencoders
	Implementation
	Conditional variational autoencoders

	Generative Adversarial Networks
	GANs according to Ian Goodfellow et al.
	Wasserstein GANs
	Conditional Wasserstein GANs

	A kaleidoscope of GANs

	Training Data and Preprocessing
	Event simulation
	Underlying hard subprocess and parton shower

	Data preprocessing
	``Invertible preprocessing''
	Training data
	Average jet image
	Information loss

	III
	Jets with Gaussian Variational Autoencoders
	Model architecture specification
	Latent space and hyperparameter configuration
	Unconditioned VAEs
	Samples and average jet images
	Kinematic distributions and jet observables

	Conditional VAEs
	Conditioning the model
	Samples and average jet images
	Conditioning of the model
	Kinematic distributions
	Other jet observables
	Why the model ``fails''

	Conditioned VAEs with RNNs
	Why generative models with RNNs?
	Combining VAEs with RNNs
	Samples, average jet image and jet observables

	Final notes

	Jets with Wasserstein Generative Adversarial Networks
	Architecture specification
	Hyperparameter configuration
	Unconditioned WGAN – another attempt
	Linear versus logarithmic scale
	Samples and average jet images
	Kinematic distributions
	Other jet observables

	Conditional WGAN
	Training and model convergence
	Samples and average jet images
	Kinematic distributions
	Other jet observables

	Conditioned WGANs with RNNs
	Training and convergence
	Samples and average jet image
	Kinematic distributions
	Jet observables

	Final notes

	Conclusion
	Discussion
	Future research suggestions
	Bayesian networks – ``I know what I don't know''
	Image-to-image or jet-to-jet translation
	RNNs for higher jet multiplicities

