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Zusammenfassung

Diese Arbeit stellt eine Messung der Differentialverzweigungsverhältnis des Zer-
falls Bs → φµ+µ−. Das Datensatz verwendet in dieser Analyse wurde im Jahr
2011 und im Jahr 2012 vom LHCB Experiment aufgezeichnet und entsprich einer
integrierten Luminosität von 3 fb−1. Der Differentialverzweigungsverhältnis ist
entschlossen im Kasten von q2, die Invariante dimuon Massen. Ein Integra-
tion über den gesamten q2 Bereich wird durchgeführt, um die Gesamtverzwei-
gungsverhältnis von Br(Bs → φµ+µ−) = (7.954+0.458

−0.445±1.13±6.69)×10−7 wobei
die erste Unsicherheit statistische ist, die zweite systematischen ist und die dritte
systematischen ist aufgrund der Unsicherheit der Normalisierung Kanal zu bes-
timmen. Das Ergebnis ist in guter Übereinstimmung mit der aktuellen Welt-
durchschnitt.

Abstract

This thesis presents a measurement of the differential branching fraction of the
decay Bs → φµ+µ−. The dataset used in this analysis was collected by the LHCb
experiment in 2011 and 2012 and corresponds to an integrated luminosity of 3
fb−1. The differential branching fraction is determined in bins of q2, the invariant
dimuon mass. An integration over the full q2 range is performed to determine the
total branching ratio of Br(Bs → φµ+µ−) = (7.954+0.458

−0.445 ± 1.13 ± 6.69) × 10−7

where the first uncertainty is statistical, the second systematic and the third
is due to the uncertainty of the normalization channel. The result is in good
agreement with the current world average.
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1 Introduction

The Standard Model of Particle Physics describes elementary particles and their

interactions. In the last fifty years it has been tested in many experiments and in

2012 the last particle predicted by the Standard Model, the Higgs boson, has been

discovered. However, while the Standard Model is extremely successful it still has

shortcomings. The Standard Model doesn’t include gravitational force and doesn’t

have explanations for the dark matter or for baryogenesis. This among other things

means that the Standard Model cannot explain the Big Bang and the following

evolution of the Universe. Many models based on the Standard Model have been

developed in the last decades in attempt to describe these phenomena. Most such

models predict existence of new, yet undiscovered particles and the experimental

search for physics beyond the Standard Model is an important goal in modern par-

ticle physics.

While the search for the Higgs boson has been the main reason behind LHC, the

largest particle accelerator built, the high luminosity and energy make the searches

for new physics possible. ATLAS and CMS experiments are general purpose experi-

ments designed for direct searches of undiscovered particles. The LHCb experiment

is in contrast designed to measure processes related to decays of b and c hadrons

with high precision. Many models predict new particles to be very heavy and direct

searches might require very big energies. However such particles should also appear

in quantum loops as virtual particles. Existence of new particles would change the

amplitudes of various processes compared to the Standard Model predictions. De-

cay rates of rare decays and CP violating asymmetries are particularly sensitive to

such changes. The LHCb experiment uses decays of B hadrons to investigate these

quantities.

In this thesis the measurement of the differential branching fraction of the rare

flavour-changing neutral current Bs → φµ+µ− decay is presented. The dataset used

in the analysis consists of data collected by LHCb during 2011 and 2012 runs. It

corresponds to an integrated luminosity of 3.0 fb−1. The analysis is part of the effort

to measure angular observables of the final states of the Bs → φµ+µ− decay.
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The thesis is structured as follows: Chapter 2 gives an introduction to the Stan-

dard Model and the flavour-changing processes such as Bs → φµ+µ−. In Chapter

3 the LHCb experiment is introduced. Reliable particle identification is crucial for

the analysis and the LHCb PID system is described in detail. Chapter 4 outlines

the strategy of the analysis. Chapters 5 - 8 describe the analysis in details. Chapter

9 discusses the systematic uncertainties and Chapter 10 presents the results of the

analysis.
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2 Theoretical Introduction

In this chapter a brief overview of the Standard Model is given and the CKM

mechanism is described. Furthermore the possibilities of flavour changing neutral

currents are discussed.

2.1 Standard Model of Particle Physics

The Standard Model (SM) of particle physics is a renormalizible quantum field the-

ory that combines the electromagnetic force, the weak force and the strong force.

The Standard Model Lagrangian is gauge invariant under local transformation of

the SU(3) × SU(2)L × U(1)Y symmetry group. Gravity is negligible at the scales

below the Planck scale (1.22 · 1019GeV) which is far above energies that are cur-

rently possible to reach with experiments. The Standard Model is very successful

in providing precise experimental predictions. There is a lot of literature available

on the subject, for example [13] and [18]. In the following the main focus will be on

the Glashow-Salam-Weinberg electroweak theory that unifies electromagnetism and

weak force as it is most relevant to the analysis performed.

The fundamental particles that build up the matter as well as the carriers of the

forces are described in the Standard Model as fields. Fermions, fields of spin 1/2, are

quarks and leptons. Quarks have both color and electroweak charge and leptons have

only electroweak charge. Both quarks and leptons are divided in three generations

with different mass scales, but the same quantum numbers. Each fermion has a

corresponding antiparticle with the same mass, but the opposite quantum numbers.

The strong force is mediated by 8 massless gluons, the electroweak force by massless

photons γ and three massive gauge bosons W+, W− and Z0. Force carriers have spin

1. The masses of gauge bosons are generated by spontaneous symmetry breaking

of the electroweak symmetry group, SU(2)L × U(1)Y . A mechanism suggested by

Higgs et. al. [10], [19], [14] predicts existence of the Higgs field that breaks the

SU(2) symmetry without disturbing the gauge invariance which leads to a massive

spin 0 particle, the Higgs boson. It has remained the last undiscovered particle, but
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Figure 2.1: Constituents of the Standard Model [3]

its discovery has been announced in 2012 further validating the Standard Model.

Figure 2.1 shows all the fundamental particles of the Standard Model with their

measured mass, spin and charge. For each of the fermions an antiparticle exists

with the same mass and spin, but opposite charge. Antiparticles are not treated

separately as they mostly behave like their counterpart.

2.2 The Electroweak Standard Model Lagrangian

The electroweak Standard Model Lagrangian is

LSM = Lgauge + Lfermion + LHiggs + LY ukawa.

The gauge term is

Lgauge = −1

4
W i
µνW

µνi − 1

4
BµνB

µν

where W i
µν = ∂µW

i
ν − ∂νW

i
µ − gεijkW j

µW
k
ν and Bµν = ∂µBν − ∂νBµ are the field

strength tensors for SU(2) and U(1) respectively. This term includes the gauge

bosons kinetic energy terms and describes the self-interactions of Wµν gauge bosons.

The abelian U(1) gauge bosons Bµν have no self-interactions.
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The fermion part of the Standard Model is

Lfermion = Σ3
j

(
q̄′jLi /Dq

′
jL + l̄′jLi /Dl

′
jL + ū′jRi /Du

′
jR + d̄′jRi /Dd

′
jR + ē′jRi /De

′
jR + ν̄ ′jRi /Dν

′
jR + h.c.

)
where q′jL =

(
u′i
d′i

)
L

represents the left-handed doublets of quarks, l′jL =
(
e′i
ν′i

)
L
are the

left-handed doublets of leptons, q′jR, d
′
jR are the right-handed quark singlets and

e′jR, ν
′
jR are the right-handed lepton singlets. This term describes the interactions

of fermions with gauge bosons.

The Higgs part of the Lagrangian is given by

LHiggs = (Dµφ)†(Dµφ)− V (φ)

where φ =
(
φ+

φ0

)
is a complex Higgs scalar and V (φ) = −µ2φ†φ+λ(φ†φ)2 is the Higgs

potential. This term describes the Higgs interactions with the gauge bosons and the

Higgs self-interactions.

The Yukawa Lagrangian is given by:

LY ukawa = −Σi,j

(
q̄′iLg

(d)
ij φd

′
jR + q̄′iLg

(u)
ij φ̃u

′
jR + l̄′iLg

(e)
ij φe

′
jR + l̄′iLg

(ν)
ij φ̃ν

′
jR

)
− h.c.

where g(u), g(d), g(e), g(ν) are 3× 3 matrices that describe the so called Yukawa cou-

plings between the single Higgs doublet φ and the fermions.

A schematic overview of the electroweak Standard Model is given in Figure 2.2.

2.3 CKM Mechanism

Suppose that the Higgs potential has a minimum at φ = v where v is the vacuum

expectation value of φ. After the symmetry breaking φ =
(

0
v+h(x)

)
/
√

2.The Yukawa

Lagrangian can be rewritten as:

LY ukawa ⊂ −Σi,j

(
d̄′iL

g
(d)
ij v√

2
d′jR + ū′iL

g
(u)
ij v√

2
u′jR

)

The M
(u,d)
ij =

g
(u,d)
ij v
√

2
can be interpreted as the quark mass matrix.

LY ukawa ⊂ −(ū′LM
(u)u′R + d̄′LM

(d)d′R)
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Figure 2.2: A schematic overview of different types of interactions described by each
term of the electroweak Standard Model Lagrangian.

where u′L =

u
′
1L

u′2L
u′3L

, d′L =

d
′
1L

d′2L
d′3L

 and M (u) and M (d) are the non-diagonal mass

matrices. The mass matrices can be diaganolized to find the physical ”mass states”

(e.g. ūLmuuR):

U †dM
(d)Vd = Dd =

md 0 0

0 ms 0

0 0 mb


U †uM

(u)Vu = Du =

mu 0 0

0 mc 0

0 0 mt


where UuU

†
u = VuV

†
u = UuU

†
u = VuV

†
u = 1.

With this the Lagrangian describing the quark masses can be rewritten as:

−L ⊂ d̄LD
ddR + ūLD

uuR

where uL, uR, dL, dR are the mass eigenstates now.

The Lagrangian describing the weak charged current interaction of quarks

LCC = − g√
2
W †
µū
′
Lj[UuU

†
u]γµ[UdU

†
d ]d′Lj + h.c.
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can be expressed through the quarks mass eigenstates.

LCC = − g√
2
W †
µūLj[U

†
u]γµ[Ud]dLj + h.c.

Introducing the weak eigenstates of the down-type quarks dWL , sWL , bWL one can

rewrite the weak charged current interaction

LCC ⊂ −
g√
2
Wµ[ūLγ

µdWL + c̄Lγ
µsWL + t̄Lγ

µbWL ] + h.c.

where the weak eigenstates are defined byd
W
L

sWL
bWL

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


dLsL
bL


and the matrix V is given by V = [UuU

†
d ] and is called Cabibbo-Kobayashi-Maskawa

(CKM) matrix. It is unitary, but not diagonal. The CKM matrix has four free pa-

rameters, three real amplitudes and a phase. There are several ways to parametrize

it, a usual choice is the Wolfenstein parameterisation:

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

The CKM matrix contains information on the strength of flavour-changing weak

decays. The Wolfenstein parameterisation shows that transition from up-type quark

to down-type in the same generation is not suppressed, transitions between neigh-

boring generations are suppressed by factors λ and λ2 while the transition from first

to third generation is suppressed by the factor of λ3. For the parameter λ one finds

λ ≈ 0.22 Other parameters in the Wolfenstein parameterisation have values between

0.1 and 1 and they do not change the order of magnitude.
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2.4 Flavour Changing Neutral Current Decays

The part of the Lagrangian describing the weak neutral current interactions is given

by

LNC ⊂ −(uLj, dLj)γ
µ(gτ3W

3
µ/2 + g′Y Bµ/2)

(
uLj
bLj

)
.

Since τ3 and Y are diagonal (in contrast to τ1 and τ2) it can be concluded that

the neutral current part of the Lagrangian is diagonal in the mass basis. As a

consequence there are no Flavour Changing Neutral Currents (FCNC) in Standard

Model at tree level.

While FCNC processes are forbidden at tree level, they can still proceed through

loops. The most common diagrams that describe such decays are penguin diagrams

and box diagrams, see Figure 2.3. If new particles exist even if they are very heavy

they can still appear in quantum loops. Processes to which the tree contributions

are forbidden are very sensitive to the appearances of new particles in the loops.

The aim of this analysis is to measure the branching fraction of the decay Bs →
φµ+µ−. As can be seen in Figure 2.3 this decay involves a b̄ → s̄ transition, it

is thus a FCNC process. That means that Bs → φµ+µ− is suppressed compared

to e.g. Bs → J/ψ(→ µ+µ−)φ that is not forbidden at the tree level. The yield

of Bs → J/ψ(→ µ+µ−)φ is expected to be roughly 150 times larger than that

of Bs → φµ+µ−. In extensions of the Standard Model contributions from new

particles can change the branching ratio. For example in Figure 2.4 the dependence

of branching ratio on the mass of the charged Higgs for a two Higgs doublet model.

The theoretical prediction for the SM branching ratio of the Bs → φµ+µ− decay

range from to 14.6−7 to 19.2× 10−
7

[15], [8], [27].

To conclude Bs → φµ+µ− and analogous decays such as Bd → K∗µ+µ− and

Λb → Λµ+µ− are interesting to analyze since they are sensitive to the gauge structure

and various extensions of the SM. Such decays can be used not only for testing the

Standard Model, but also for probing new physics.
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Figure 2.3: Decay of Bs → φµ+µ− mediated via (a) penguin diagrams, (b) box
diagram. Figure taken from [22].

Figure 2.4: Dependence of BR(Bs → φµ+µ−) on the mass of charged Higgs for a
two Higgs doublet model. Solid lines show the prediction for the model,
dotted lines show prediction for the SM . Figure taken from [15].
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3 The LHCb Experiment

The LHCb experiment (Large Hadron Collider beauty experiment) is one of the

four main experiments at the Large Hadron Collider (LHC) at CERN. It is primarily

dedicated to the measurements of b- and c-hadron decays and searches for CP vio-

lation and rare B and D meson decays. The following chapter will briefly introduce

the LHC and LHCb experiment and discuss the detector components important for

this analysis.

Figure 3.1: Schematic overview of the LHC main experiments and underground ac-
celerator ring. Taken from [17]

3.1 The Large Hadron Collider

The Large Hadron Collider is a proton-proton (pp) collider located at CERN in

Geneva, Switzerland. Two proton beams are accelerated in a 27 km long under-
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ground tunnel and brought to collision at four interaction points where the main

LHC experiments are placed: ATLAS, CMS, ALICE and LHCb. Figure 3.1 shows

the tunnel and the position of the four experiments. ATLAS and CMS are general

purpose detectors, ALICE is designed to observe heavy ion collisions and LHCb

focuses on b physics.

The design centre-of-mass energy of the proton collisions of LHC is
√
s = 14 TeV.

The proton beams are separated into 2808 bunches to reach the design luminosity

of L = 1034cm−2s−1, each bunch containing ≈ 1011 protons. The time separation

between the bunches is 50 ns, the resulting interaction rate is 15 MHz. In 2011

during the data-taking the center of mass energy was
√
s = 7 TeV and in 2012 it

was increased to
√
s = 8 TeV.

3.2 The LHCb Experiment

The LHCb detector is a single-arm forward spectrometer designed to cover the

acceptance for b-hadrons. It covers a pseudo rapidity range of 1.8 < η < 4.9. 25%

of bb̄ quark pairs are produced inside the LHCb acceptance, see Figure 3.2. The

LHCb detector cannot operate at the (maximum) instantaneous luminosity of LHC,

so the proton beams are slightly defocused before collision. Furthermore a hardware

trigger is used to reduce the event rate to about 1MHz, at which the entire detector

can be read out.

Many events in the LHCb acceptance are background events containing no B

meson. Furthermore not all B meson decays are equally interesting for e.g. CP vi-

olation studies. A combination of hardware and software triggers is used to achieve

the highest efficiency for the events interesting to offline analyses while rejecting as

much background as possible. The detector itself consists of several subdetectors

used either for track reconstruction or particle identification (PID). Calorimeters

measure the energy of the decay products. A dipole magnet produces an approx-

imately homogeneous vertical field to separate positively and negatively charged

particles. Figure 3.3 shows a vertical cross-section of the whole detector.

The LHCb coordinate system has the origin at the interaction point. The z-axis

runs along the beam-line from with the detector being in the positive direction. The

positive y-axis points upwards. This fixes the positive x-axis to point toward the

cavern access.
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Figure 3.2: Simulated distribution of polar angles Θ1 and Θ2 of produced bb̄ pairs.
Most of the b and b̄ are produced in either forward or backward direction.
The LHCb acceptance is colored red. Taken from [17]

3.2.1 Track Reconstruction System

The LHCb tracking system consists of the vertex locator system (VELO) and

the Tracker Turicensis stations (TT) upstream of the magnet and three tracking

stations(T1-T3) downstream of the magnet. The purpose of the tracking system is

to combine measurements of position before the magnet and after the magnet to

form trajectories of the charged particles and subsequently measure the momentum

of the particles.

Dipole Magnet The dipole magnet is designed such that the magnetic field is

nearly homogenous with a large component in y-direction (”upwards”) and as small

as possible component in x- and z-direction. Therefore particles moving in the z-

direction will bend mostly in x-z plane. The integrated magnetic field over distance

of 10 m is ∫
Bdl = 4 Tm.

The layout of the magnet and the strength of the field as function of the distance

along the beam line can be seen in Figures 3.4a and 3.4b. The polarity of the

magnet can be flipped so that positively (negatively) charged particles are bent

in the direction negatively (positively) charged particles were bent before. During

the data taking the polarity is changed periodically and the physics analyses are

17



Figure 3.3: Vertical cross-section of the LHCb detector. Taken from [17]

performed on the combined data. This approach allows to cancel many detector

asymmetries.

Vertex Locator The Vertex Locator (VELO) is a silicon strip detector positioned

around the interaction point. The purpose of the VELO is to perform precise mea-

surements of the primary and secondary vertices and to distinguish particles pro-

duced from secondary and primary vertices (prompt particles). Figure 3.4 shows

the location of VELO stations. Each VELO station measures the distance from the

beam axis r and the polar angle φ of the tracks. Such cylindrical coordinates are

chosen since they allow fast track reconstruction in the software trigger. Addition-

ally two pile-up stations are placed upstream of the VELO. The hardware trigger

uses them to detect beam-gas interactions. To achieve high sensitivity the VELO

stations are placed at 8 mm distance from the beam axis. During the injection of

the beam the VELO sub sensors are retracted to prevent radiation damage.
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(a) Schematic view of LHCb dipole magnet
(units in mm). Taken from [11]

(b) Magnetic field along the z axis. Taken
from [11]

Tracker Turicensis The Tracker Turicencis (TT) is a silicon detector positioned

upstream of the dipole magnet and downstream of the RICH1 detector. It consists

of two stations with two layers of silicon strips each. The distance between the

stations is 27 cm. In the two inner layers the strips are rotated by 5◦ to also perform

measurements in the y-plane.

Inner Tracker The main tracking stations (T1-T3) are divided into Inner Tracker

(IT) and Outer Tracker (OT). The IT is a silicon strip detector positioned in the cen-

tre of the main tracking stations. Each station consists of four layers with geometry

similar to that of TT and the inner layers are also rotated by 5◦.

Outer Tracker In contrast to other tracking detectors the OT is a straw tube

drift-time detector. It covers the acceptance outside of the IT acceptance.

3.2.2 Particle Identification System

Particle identification is the process of identifying the type of the particle passing

the detector using the information left by the particle. It is an essential requirement

for the reconstruction of B meson decays. At LHCb an especially difficult problem is

separating pions from other charged particle because pions are much more abundant.

RICH detectors The Ring Imaging Cherenkov detectors (RICH) are used to iden-

tify charged particles over a wide momentum range. The RICH detectors measure
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Figure 3.4: Cross section in the x-z plane of the VELO sensors. The VELO consists
of 21 stations along the beam pipe. Until the beam stabilizes the modules
are kept open. Taken from [11]

so-called Cherenkov radiation: photons emitted when a particle travels through

a medium with refractive index n (also called radiator) with velocity higher than

c′ = c
n
, the speed of light in this medium. Cherenkov radiation is emitted in a cone,

in analogy to sound waves generated by a supersonic body propagating through a

medium. The opening angle of the cone is given by: cos ΘC = c′

v
= 1

nβ
.

If in addition one knows the particle’s momentum (from the tracking system)

and refractive index n one can predict v and subsequently ΘC . It can then be

compared to the measured ΘC . Different hypotheses (particle being proton, kaon,

pion, electron or muon) are tested and the likelihood of each hypotheses is returned.

There are two RICH detectors installed at LHCb to cover a larger momentum range

and to better separate charged particles. Figure 3.5 shows the Cherenkov angles for

different particle species over the momentum range. From the plot it can be seen

that the aerogel radiator offers good separation at lower momentum while CF4 gas

is better for separation of high momentum particles.
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Figure 3.5: Cherenkov angle versus particle momentum for the RICH radiation.
Taken from [11]

The upstream RICH1 is placed close to the VELO. RICH1 covers the full LHCb

acceptance (±25 mrad to ±300mrad in the horizontal and ±250 mrad in the vertical

planes). It uses aerogel and C4F10 gas as radiators and covers the low-momentum

range of 1-60 GeV. A schematic layout of the RICH1 can be seen in Figure 3.6a.

RICH2 is located between the T-stations and the electromagnetic calorimeter and

has a smaller acceptance than RICH1 (±15 mrad to ±120 mrad the horizontal and

±100 mrad in the vertical planes). It uses CF4 as radiator and covers the higher-

momentum range of 15-100 GeV. RICH2 does not need to cover the whole LHCb

acceptance since it is primarily used for separation of high-momentum particles

that pass the detector with small opening angle. A schematic layout of the RICH2

is presented in Figure 3.6b.

Muon System The LHCb muon system is composed of five stations (M1-M5)

placed along the beam axis, see Figure 3.7. The muon system provides data used
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(a) Side view schematic layout of RICH1.
Taken from [11]

(b) Top view schematic layout of RICH2.
Taken from [11]

Figure 3.6

for identification and reconstruction of muons as well as for muon triggering. Also

it provides muons pT to the hardware trigger for the online triggering.

The first station M1 is placed before the calorimeter, its purpose is to improve the

measurement of muon transverse momentum pT of the trigger before scattering in

the calorimeter takes place. Stations M2-M5 are placed downstream of the calorime-

ter with 80 cm thick iron absorbers between them to absorb all non-muons. The

total thickness corresponds to roughly 20 hadronic interaction lengths, the minimum

momentum of the muon required to cross all five stations is around 6 GeV.

The muon stations are partitioned in four regions with increasing distance from

the beam axis. The linear ratio is 1 : 2 : 4 : 8 and it is chosen such that the

particle flux is approximately the same in each quadrant see Figure 3.8 for further

information.

Calorimeters The LHCb calorimeter system selects high transverse energy (ET )

hadrons, photons and electrons for the hardware trigger and provides measurements

of particles’ energies and positions. It is also the only system that is sensitive to

neutral particles so it is essential for reconstruction of π0 and prompt photons.
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Figure 3.7: Side view schematic layout of LHCb muon system. Taken from [11]

The calorimeter system consists of several sub-detectors. The electromagnetic

calorimeter (ECAL) is followed by the hadronic calorimeter (HCAL). For rejection

of background a scintillator pad detector (SPD) and a pre shower detector (PS) are

used. All detectors use a lateral segmentation, with granularity being finer closer

to the beam. All calorimeters work by the same principle - first particles traverse

absorber material to induce particle showers. The showers pass scintillating material

emitting photons. The scintillation light is transmitted by wavelength-shifting fibers

to photo-multipliers. The energy of a particle is measured from the photomultiplier

signal.

SPD and PS detectors are located behind the M1 muon station. The SPD/PS

detector consists of two layers of scintillator pads separated by 15 mm of lead. The

SPD is used to separate electrons from photons (photons do not create a signal in

the scintillator). The purpose of the PS detector is to suppress π± background.

Particles passing through lead create showers, the difference in energy deposition

between π± and electrons of 50 GeV momentum is shown in Figure 3.9a.

The electromagnetic calorimeter, ECAL, is used to detect particle showers from

photons and electrons. It is build by alternating 2 mm thick layers of lead and 4mm
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Figure 3.8: Left: four regions of one quadrant, R1-R4. Each rectangle represents a
chamber. Right: division into logical pads of a chamber in each region.
Taken from [11]

thick scintillator tiles for the shower detection. The design energy resolution is

θE
E

=
10%√
E[GeV ]

⊕ 1%

where ⊕ means the summation in quadrature.

The hadronic calorimeter, HCAL, is used to detect showers from hadronic par-

ticles. The special feature of the detector is that the orientation of the scintillating

tiles is parallel to the beam line. The tiles are intersected with iron absorbers, with

a length equal to one hadronic interaction length in steel in longitudinal direction.

In the transverse direction the iron absorbers are 1 cm thick. See Figure 3.9b for

schematic view of the HCAL. The scintillation light is guided by fibers to the PMTs

at the back of the detector. The design energy resolution is

θE
E

=
80%√
E[GeV ]

⊕ 10%

where ⊕ denotes the summation in quadrature.

3.2.3 The LHCb Trigger System

LHCb is designed to work at an instantaneous luminosity much lower than the

maximum LHC luminosity. This means that there will be fewer events per beam

collision, but the LHCb keeps the instantaneous luminosity constant during the data-
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(a) Energy deposition of (a) 50 GeV electrons
and (b) pions in the PS detector (shown
in arbitrary units). Takein from [11]

(b) Schemetic view of the HCAL detector cell
structure. Taken from [11]

Figure 3.9

taking. To achieve the lower and constant instantaneous luminosity, the proton

beams are slightly defocused before interaction point. The LHCb trigger system

further reduces the number of events written to storage for offline analysis. The

main purpose of the trigger system is to reduce the event rate from 40MHz 1 to

about 5 kHz. The trigger system consists of a Level-0 hardware trigger and two

software based High Level Trigger stages. The process is schematically shown in

Figure 3.10.

Level-0 trigger The Level-0 (L0) trigger reduces the event rate from 40 MHz to

1 MHz. The L0 trigger system is fully synchronous with the 40 MHz interactiong

rate and is implemented in hardware. The latency of the L0 trigger, i.e. the time

between the pp interaction and the arrival of the trigger decision is fixed to be 4

µs. This time interval includes time-of-flight, cable delays and delays in front-end

electronics leaving 2 µs for the processing of data in the L0 trigger to arrive to a

decision.

Level-0 is subdivided into three components - the pile-up system, the Level-0

calorimeter trigger and the Level-0 muon trigger. Each component is connected to

140 MHz is the nominal machine bunch crossing frequency, for most of 2011-2012 data taking the
bunch crossing rate was 15 MHz.
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Figure 3.10: Overview over LHCb trigger system. Taken from [17]

the Level-0 decision unit (DU) which collects all the information and evaluates the

final decision. The pile-up trigger uses information from the VELO to distinguish

events with one of multiple interactions per bunch. This trigger is not used for

selection of events in flavour physics analysis. The L0 calorimeter looks for high

ET particles. The ET is measured using 2× 2 calorimeter cells, high ET events are

selected and a particle hypothesis (γ, electron or hadron) is assigned. The L0 muon

trigger selects two muons with highest pT for each quadrant of the detector. The

L0 muon processor searches for hits defining a curve through all five stations and

pointing towards the interaction point taking the magnet field into account. The

pT is determined by the position of the track in the first two stations. The event is

accepted if either the pT of a single track or the combination of the pT of two tracks

are higher then a threshold (L0Muon and L0DiMuon correspondingly).

High Level Trigger The purpose of the High Level Trigger (HLT) is to further

reduce the event rate from the 1 MHz output of the hardware L0 stage. The HLT is

divided in two stages. The first stage, HLT1, attempts partial event reconstruction
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of the events passing the L0 decision. This reduces the rate to about 80 kHz. At

this rate HLT2 can perform a full reconstruction similar to the offline reconstruction.

Several inclusive and exclusive selections are performed to reduce the rate to 5 kHz.

Several different sequences of reconstruction algorithms and selection called trigger

lines or alleys are used. Each of these trigger line returns a decision. An event is

accepted if it is accepted by at least one trigger line. HLT is completely software

based and therefore much more flexible than the L0 trigger.

3.3 Data Samples

The data used in the presented analysis was taken by the LHCb detector during 2011

and 2012. During 2011, the LHC was running at a center mass energy of s =
√

7

and during 2012 at s =
√

8. The data corresponds to 3 fb−1 of integrated luminosity.

The data consists of all events that have passed the trigger and reconstruction as

well as the centralized LHCb selection called stripping. Chapter 5 describes further

the selection that is applied to the data.

Monte Carlo simulated events Besides the real data sample the analysis uses

samples of simulated events to determine the efficiency of the selection and to study

systematic effects due to peaking backgrounds. The LHCb simulation program is

called Gauss [9]. Gauss generates the pp collisions and the decay particles produced

and tracks the particles through the detector. The simulated events are further

discussed in Chapter 6. Table 3.1 shows the Monte Carlo simulated samples (MC)

used for the analysis.
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Sample Decay File Events Simulation + Processing

Bs → φµ+µ− 13114006 546322 2012 Sim08c Pythia8, Reco14a-Strip20Filtered
Bs → φµ+µ− 13114006 535403 2012 Sim08c Pythia6, Reco14a-Strip20Filtered
Bs → J/ψφ 13114001 5114480 2012 Sim08a Pythia8, Reco14a-Strip20Flagged
Bs → J/ψφ 13114001 5129989 2012 Sim08a Pythia6, Reco14a-Strip20Flagged
Bd → K∗J/ψ 11144001 3014491 2012 Sim08c Pythia8, Reco14a-Strip20Flagged
Bd → K∗µµ 11114001 517748 2012 Sim08b Pythia8, Reco14a-Strip20Flagged
Bs → Dsπ 13264021 5009988 2012 Sim08c Pythia8, Reco14a-Strip20Flagged

Bs → D−s → (φµ−ν̄µ)µ+νµ 11174000 2M 2012 Sim08c Pythia8, generator level
Bd → D− → (K∗µ−ν̄µ)µ+νµ 11174000 2M 2012 Sim08c Pythia8, generator level

Λb → pKµµ 15114011
Λb → Λ(1520)µµ 15114000

Bs → φµ+µ− 13114005 10M 2012 Sim08c Pythia8, generator level

Table 3.1: Monte Carlo simulated samples used in this analysis for efficiencies, ac-
ceptances and background determination.
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4 Analysis Strategy

The goal of the analysis is to determine the differential branching fraction of the de-

cay B0
s → φµ+µ− relative to the normalization channel B0

s → J/ψφ. The branching

ratio is determined in bins of the dimuon invariant mass squared, q2. The bins are

selected such that the signal yield is approximately equal in each bin, see Table 4.1.

In addition the yield is determined in the 1 GeV 2 < q2 < 6 GeV 2 bin as this region

is best described by theory and can be used for comparison with theoretical models.

As a cross-check the yield is also determined in the 15 GeV 2 < q2 < 19 GeV 2 bin.

The measurements are performed in the Bs mass peak window [5316.3, 5416.3] MeV

(signal region). The q2 bins and the signal region are shown in Figure 4.1. The

analysis can be divided in several main stages:

• The data sample of Bs
0 → φµ+µ− is polluted with both physical and com-

binatorial background events. It is essential to reduce the number of back-

ground events as much as possible since the expected number of signal events

is very small. A combination of cuts is used to strongly reduce the physical

background while the combinatorial background is suppressed using boosted

decision trees (BDT), a multivariate analysis tool. This is further discussed in

Chapter 5.

• The analysis relies on the use of Monte Carlo simulated events, in particular to

determine the efficiency of the signal selection . However generated events do

not always accurately simulate distributions of some physical quantities that

are required for the analysis. Therefore an explicit correction of the Monte

Carlo data is performed so that the difference between simulated events and

real events is minimized. This is further discussed in Chapter 6. Another issue

that has to be addressed is the choice of the particle identification variables to

use.

• After the Monte Carlo simulated events are corrected a study of possible peak-

ing backgrounds is performed. Using Monte Carlo simulated data the amount
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of peaking background present in the signal region is estimated and, when

possible, reduced using veto cuts. This is further discussed in Chapter 7.

• After all veto cuts have been determined they are included in the selection

procedure and the Monte Carlo correction procedure and the data samples

are reprocessed.

• The differential branching ratio of the decay is determined using the data

samples produced in the previous step. The signal yield is found using an

unbinned extended maximum likelihood fit to the B0
s mass. The parameters of

the fit are determined from the fit of the Bs → J/ψφ reference channel. The fit

is performed in bins of q2. For each bin a separate scaling factor is calculated

to account for the dependence of the mass resolution on q2. The selection

efficiencies for signal and reference channels are calculated using corrected

Monte Carlo generated events. Then the differential branching fraction is

calculated. The full description of the procedure is given in Chapter 8.

• As the last part of the analysis possible systematical uncertainties are evalu-

ated. This is discussed in Chapter 9.

Bin Range [GeV2]

1 0.1− 2.0
2 2.0− 5.0
3 5.0− 8.0
4 11.0− 12.5
5 15.0− 17.0
6 17.0− 19.0
7 1.0− 6.0
8 15.0− 19.0

Table 4.1: q2 binning.
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Figure 4.1: Two dimensional plot of the invariant Bs mass versus the invariant
dimuon mass. The signal region in and the q2 bins in which measure-
ments are performed are marked.
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5 Data Selection

This chapter describes the selection procedure of B0
s → φµ+µ− signal events that

will be used for the determination of the differential branching ratio. The purpose

of the selection is to separate data and background such that as many signal events

remain as possible while as many background events as possible are removed. The

selection consists of several steps. At first the event candidate has to pass the LHCb

trigger system. Then a preselection is performed centrally for all LHCb data. After

that the final selection optimized to achieve optimal signal significance is applied.

For the analysis the decay mode Bs → φ(→ K+K−)µ+µ− is used. The corre-

sponding normalization (or reference) mode is B0
S → φ(→ K+K−)J/ψ(→ µ+µ−).

The final states of the signal and the reference channels are identical. The in-

variant dimoun mass is used to separate the muons originating from the resonant

J/ψ → µ+µ− from the non-resonant signal. The signal yield is not measured in the

dimuon mass windows corresponding to the J/ψ and ψ(2S) resonances.

The final state particles are stable in the sense that they mostly pass the detector

without decaying. The final state of the signal decay does not allow to determine

the decay flavour of the B meson so events originating both from B0 and B̄0 are

selected.

5.1 Trigger Selection

The first step in the selection of the events is the trigger. Normally an event is

accepted by LHCb if it satisfies at least one of each L0, Hlt1 and Hlt2 trigger lines.

For this analysis these conditions are tightened. It is required that events trigger

at least one of the lines given in Table 5.1 for each of L0, Hlt1 and Hlt2. Those

trigger lines were selected since they provide the optimal signal efficiency. Most of

the trigger lines used in the analysis select events based on the quality of the muon

candidates. For L0 trigger lines the choice depends on the transverse momentum

pT of the track. For the Hlt1 choice the trigger lines chose events based on the

invariant mass of dimuon system or on the pT of the muons. The Hlt2 trigger lines
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make the decision based on the topology of the tracks. The triggered on signal (TOS)

requirement means that the lines are triggered explicitly by the decay product of

the signal candidate.

5.2 Centralized Event Selection

All events at LHCb pass a centralized selection of events called stripping. A stripping

line is a sequence of selections used to create candidates and select final events,

similar to trigger lines. A generic stripping line used for many b → sµµ decays

called B2XMuMu is also used for the presented analysis . This stripping line selects

events with one primary vertex and two muons in the final state. Loose cuts are

applied on kinematical and PID variables of both mother and daughter particles.

There are more then 16 ·106 events that are contained in the B2XMuMu stripping

line. All events are interpreted as Bs → J/ψ(→ µ+µ+)φ(→ K+K−). It is however

clear that a large fraction of these events are misidentified background events, also

see Figure 5.1. Further cuts are needed to separate signal from background. It is

important to mention that it is non-trivial to separate Bs → J/ψ(→ µ+µ+)φ(→
K+K−) from Bs → φ(→ K+K−)µ+µ− events. However at this stage it is not a

problem since the reference channel is used for the determination of the branching

fraction and has to be selected anyway.

Figure 5.1: Distributions of the invariant mass of the Bs → φµ+µ− candidates after
the stripping.
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L0 B0 L0MuonDecision TOS
B0 L0DiMuonDecision TOS

Hlt1 B0 Hlt1TrackAllL0Decision TOS
B0 Hlt1TrackMuonDecision TOS
B0 Hlt1DiMuonLowMassDecision TOS
B0 Hlt1DiMuonHighMassDecision TOS
B0 Hlt1SingleMuonHighPTDecision TOS

Hlt2 B0 Hlt2Topo(2,3,4)BodyBBDTDecision TOS
B0 Hlt2TopoMu(2,3,4)BodyBBDTDecision TOS
B0 Hlt2SingleMuonDecision TOS
B0 Hlt2DiMuonDetachedDecision TOS
B0 Hlt2DiMuonDetachedHeavyDecision TOS

Table 5.1: Trigger line used for the selection of the signal decay

Variable Cut
K− PIDK PIDK(K−) > −3
K+ PIDK PIDK(K+) > −3
mφ 1007.455MeV < mφ < 1031.455MeV
mBs 5100MeV < mBs < 5800MeV
µK |m(K±, µ∓ as K∓)− 1019.455| > 8MeV
µK |m(u±, K∓ as µ∓)− 3096.916| > 50MeV
KK 5575MeV < m(K±, K∓ as p∓ < 5665MeV

and (PIDp(K∓)− PIDK(K∓)) > 10

Table 5.2: Selection requirements for the cut based selection

5.3 Cutbased Selection Procedure

After the trigger and the preselection a significant amount of background events

still remain. Another problem is the contribution from the non-resonant Bs →
J/ψK+K− decay channel (so called S-wave). To select only final states with a real

φ decay the fact that φ has a very narrow mass peak is used. A very tight cut of

±12MeV on the φ invariant mass allows keeps most of the signal events and reduces

the amount of background by a few orders of magnitude. The S-wave contribution in

the tight φ mass window is expected to be ∼ 2% [23] for the Bs → J/ψφ candidates.

For the Bs → φµµ selection a similar contribution is assumed. A wide cut on

the invariant mass of Bs is applied to reduce the amount of events and improve

performance. The final set of cuts (including vetoes) is given in Table 5.2.
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5.3.1 Vetoes

In addition to simple mass cuts there are additional vetoes applied against spe-

cific backgrounds. The cut on PIDK(K) 1 is done to reject pions misidentified as

kaons from B0
d → K∗(→ πK)µ+µ− decays. Another possible source of peaking

background is if a muon from a B0
s → J/ψφ is misidentified as kaon and a kaon

as a muon. This would change the invariant mass of the dimuon candidates which

is the only separation criterion between φµ+µ− and J/ψφ decays. To reject this

misidentification background two mass hypothesis are tested. First the kaon mass

is assumed for a reconstructed muon. If the invariant mass of the K± and the µ∓

as K∓ candidate is within 8MeV of the nominal φ mass 2 the event is rejected.

Then the muon mass is assumed for a reconstructed kaon candidate. If it lies within

50 MeV of the nominal J/ψ mass 3 the event is also rejected. The third possible

peaking background comes from Λb → Λ(1520)(→ pK)µ+µ− where the proton is

misidentified as a kaon. To suppress this background a combination of mass cuts

and PID cuts is used. The event is rejected if the invariant mass of the Bs candidate

where one of the kaon candidates is assumed to have proton mass lies within 45MeV

of the nominal Λb mass 4. In addition it is required that the difference of PIDp and

PIDK of the kaon candidate is larger then 10. The effect of the vetoes as well as

the peaking background contribution of different decays are discussed in Chapter 7,

they are included here for completeness.

5.4 Multivariate Selection Procedure

After the cut based selection (including the vetoes) around 90000 signal candidates

remain. The invariant mass of the Bs candidates versus invariant mass of the dimuon

system can be plotted to investigate how those events are distributed, see Figure 5.2.

There is a clear signal visible everywhere outside of the charmonium bins, that is

outside of J/ψ(1S) and ψ(2S) muons. There is still combinatorial background left,

that is Bs → φµ+µ− candidates reconstructed from final states of multiple different

decays. The problem with such background is that there is no straightforward

method to suppress it.

1PIDK(K) is a rather abstract value that describes the probability of a kaon candidate to really
be a kaon. Further explanations about the PID variables are given in Chapter 6.

21019.461± 0.019 MeV [12]
33096.916± 0.011 MeV [12]
45619.5± 0.4 MeV [12]
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Figure 5.2: Distributions of invariant mass of Bs versus the invariant dimuon mass
after the cutbased selection after the cutbased selection.

One wants to somehow separate signal events from background. A very simplistic

approach would be to define some measure of goodness of separation, for example

signal significance, S/
√
S +B, where S is the signal yield and B is the background

yield). When this quantity is maximal the separation is the best. In order to

find the best selection one changes one variable at a time until a local S/
√
S +B

maximum is found. Then the next variable is changed until a local maximum is

found etc. The problem is that many of the variables are correlated and in this case

the method doesn’t work reliably. In particle physics a usual way to handle such

multidimensional problems is to use a multivariate analysis (MVA), a mathematical

technique used for simultaneous observation and analysis of more then one outcome

variable. A package implementing many different MVA techniques called Toolkit

for Multivariate Data Analysis (TMVA) [20] is used in this analysis.

5.4.1 Boosted Decision Trees

In this analysis the suppression of the combinatorial background is performed by

a boosted decision tree (BDT) [21]. A BDT is one of the methods implemented

in the TMVA tool. A decision tree is a collection of if-statements that return 0

or 1. In the case of TMVA the decision trees are obtained by machine learning.
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Figure 5.3: Distributions of invariant mass of Bs versus the invariant dimuon mass
after the cutbased and the BDT selection has been applied.

A boosted decision tree is a collection of decision trees (forest) that is averaged

over. The process works as follows - first one decision tree is created. This tree has

limited precision. Now the data is reweighted - misidentified events gain weight and

correctly identified events lose weight. A new tree is trained on the data, it now

focuses on the problems that were not addressed by the first tree. A few hundred

trees are trained in this way (400 is a default value in TMVA). This process is

called boosting. For the analysis the AdaBoost algorithm [25] is used. Given two

algorithms that make the signal-background separation more effective then a random

choice the AdaBoost algorithm can always combine them to an algorithm that is

more effective than either of the original algorithms. So even if all of the trees in

the forest have very low efficiency the forest itself can have a high efficiency. This

makes AdaBoost a very good out-of-the-box choice for MVA analysis as it requires

very little adjustment.

For machine learning one needs a sample of signal events and background events.

Normally Monte Carlo simulated events are used as signal sample, but in case of the

Bs → φµ+µ− signal decay there is an easier alternative - real Bs → J/ψφ events are

used as signal proxy. There are slight kinematical differences between the reference

and the signal decays, but they are negligible for the purpose of training the BDT.
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Figure 5.4: BDT response distributions for the signal and the background training
and control samples.

Figure 5.5: Signal efficiency vs background rejection ROC curve. The BDT cut point
is given as black dot.

As the signal for the BDT machine learning the sWeighted 5 Bs → J/ψφ reference

decay is used. For the background the mass sidebands are used, that are events

that lie outside the Bs mass window mBs ∈ [5166.3− 5566.3]. Those events are not

used anywhere else in the analysis. To get more background events the φ mass cut

is relaxed to |mφ − 1019.455| < 50MeV.

5sWeighting technique [24] is a statistical technique that is designed to explore data samples
consisting of several sources of events (signal and background in our case) merged into a single
sample. This is further discussed in Chapter 6. Using variables for which distributions of all
the sources of events are known (e.g. Bs invariant mass) sWeighting allows to reconstruct
distributions for other variables independently for each source of events without any knowledge
of the variables as long as the variables are uncorrelated.
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Particle Variable
K± min(PIDK(K+), P IDK(K−))
K± max(PIDK(K+), P IDK(K−))
K± IP χ2

µ± min(PIDmu(µ+), P IDmu(µ−))
µ± IP χ2

Bs Vertex χ2

Bs IP χ2

Bs FD χ2

Bs DIRA
Bs pT

Table 5.3: Input variables used in BDT

Variables that were used for the BDT training are listed in Table 5.3. Figures A.1

- A.2 shows the distributions of the training variables for the signal and background

samples. The data sample is divided in two equal parts. The BDT is trained on one

sample and applied to the other sample. This is called cross-training. The reason

to do so is that if the BDT is trained on the whole sample it would be very effective

for the sample on which it was trained. However there wouldn’t be any independent

sample to determine the signal efficiency and to cross-check the BDT. The use of

cross-trained BDTs solves this problem at the cost of slightly decreased efficiency.

In TMVA the BDT selection assigns an abstract value called BDT response to

every event. As a rule the background events have lower BDT response values

than the signal events. Figure 5.4 shows the BDT response of the training sample

and the control sample for each of the BDTs trained. After the BDTs are trained

and applied to the data samples a BDT response cut value needs to be selected.

All values with the BDT response below the cut value are rejected as background.

The optimization of S/
√
S +B in the signal region is performed to determine the

cut value. The number of expected signal events is calculated using the relative

branching ratio Br(Bs→φµµ)
Br(Bs→J/ψφ)

= 0.00113 [7]. The expected background is determined

by interpolation from sidebands. The corresponding receiver operating characteristic

(ROC) curves are shown in Figure 5.5. The resulting cuts that maximize S/
√
S +B

are determined for each BDT separately and applied to the data samples. That is

the last step of the selection procedure. The distribution of events after the full

selection including BDT can be seen in the Figure 5.3. Comparing Figure 5.3 with

Figure 5.2 it can be seen that the combinatorial background has been decreased by

the BDT selection.
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6 Efficiency determination using simulated

events

To determine the efficiency of the selection Monte Carlo (MC) simulated events

are used. However Monte Carlo simulations are not perfect, not all distributions

of variables match those of the real data. So corrections have to be performed in

order to make the difference between real data and MC minimal. The variables that

have to be checked (and corrected if needed) are the ones used in the selection, see

Table 5.3. Since only a small number of real Bs → φµ+µ− events are available for

comparison Bs → J/ψφ decay channel and corresponding Monte Carlo simulations

are used instead.

LHCb Monte Carlo simulation The LHCb experiment simulation software is

Gauss [9]. It mimics the processes that occur in LHCb. That is done in two phases.

In the generator phase pp collisions are generated and then the subsequent hadro-

nisation is simulated. In the subsequent simulation phase the particles are tracked

through the detector and the detector response is simulated. This is done using

the Geant4 toolkit [1]. For the generation different generators are available. For

the MC samples used in the analysis Pythia8 [2] was used in the generation stage.

The simulation conditions used are Sim08 Beam4000GeV-2012-Nu2.5. That means

that Sim08 version of simulation conditions is used, collision of 4TeV protons with

average 2.5 pp interactions per bunch are simulated.

sWeighting To compare Monte Carlo simulated events with real data one needs

to extract pure signal distributions from the real data. The technique used for that

in the analysis is called sPlot [24]. It assumes that events from different sources are

mixed together in one sample (signal and background). Furthermore it is assumed

that those events are characterized by two sets of variables, discriminating variables

that are known and can be used to separate the two samples and control variables

which are not known. If discriminating variables are uncorrelated with the control

variables one can infer the distributions of control variables for the individual sources
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of events. In the case of Bs → J/ψφ decay the invariant Bs mass is used as the

discriminating variable, a model using a double crystal ball shape for signal and an

exponential for the background is used, and every event is assigned a weight. The

weighted events represent the contribution from signal only.

Figure 6.1: Ratios of muon ID efficiencies in bins of momentum and transverse mo-
mentum.

6.1 Track Efficiency

The Monte Carlo simulations do not always perfectly describe the tracking effi-

ciency. The tracking efficiency is dependent on momentum and pseudorapidity of

the particle. The tracking efficiency for J/ψ → µ+µ− events is measured in bins

of momentum and pseudo rapidity for both real data and MC and the ratio of the

efficiencies is determined. Figure 6.1 shows the resulting ratios of tracking efficiency

of data over Monte Carlo, εtrack(data)
εtrack(MC)

that are used as weights. Those weights are

assigned to the Monte Carlo tracks that lie in the corresponding bins. To correct

each Bs → φµ+µ− Monte Carlo simulated event the product of weights of the four

tracks is used for each event.
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Figure 6.2: Ratios of tracking efficiencies in bins of momentum and pseudorapidity.

6.2 Muon ID Efficiency

The muon identification algorithm at LHCb consists of two parts. First a boolean

decision called IsMuon is applied to the tracks. For a given track and field of interest

(FOI) IsMuon is true if the track has at least one hit in FOI in a certain number

of muon stations (depending on momentum of the track). In the second step the

proper PID variable is calculated. The B2XMuMu line requires IsMuon = 1 so it is

a relevant variable to correct for inefficiencies. The IsMuon efficiency is determined

in bins of momentum and transverse momentum. Figure 6.2 shows the ratios of
εIsMuon(data)
εIsMuon(MC)

that are assigned as weights to the Monte Carlo simulated muons. The

weight assigned to each event is once again the product of weights assigned to the

two muons.

6.3 PID Resampling

The simulation of the particle identification performance, in particular that of RICH

detectors, is not accurate. There are two different types of particle identification

(PID) variables, CombDLL and ProbNN, available for LHCb events. For PID par-

ticle likelihoods are calculated separately by RICH, CALO and the muon system.
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A combined likelihood L can be determined for each particle type by multiplying

the RICH, CALO and muon likelihoods. The probability for a particle to be e.g a

kaon is related to the combined ∆ log L (CombDLL) PID variable defined as

∆ ln LKπ = ln L(K)− ln L(π).

A shorthand notation for this value is PIDK. This is a straightforward way to define

PID variables. The problem with such definition is however that the value of the

variable by itself doesn’t have any meaning. One would prefer to have PID variables

that could be interpreted as probability for a track to be the corresponding particle.

The ProbNN PID variables are created using neural networks, one for each particle

hypothesis and the output is a value from 0 to 1 that can be interpreted as Bayesian

probability.

Figure 6.3: Comparison of BDTs trained using ProbNN and CombDLL PID vari-
ables. The BDT cut points are given as dots.

The ProbNN PID variables are expected to behave better then the CombDLL

on data. In case of this analysis the selection procedure has been performed using

either ProbNN or CombDLL and the ProbNN PID variables were indeed found to

behave marginally better. Figure 6.3 shows the signal efficiency and the background
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rejection efficiency of the BDTs trained using the ProbNN and the CombDLL PID

variables. The BDT trained using the ProbNN PID variables has higher signal

efficiency and background rejection then the BDT trained using the CombDLL vari-

ables. One therefore would ideally use the ProbNN variables, however simulating

them is challenging.

Figure 6.4: Distributions of PID variables of K− in the real data and in the Monte
Carlo generated sample after the PID resampling. To the left is the
distribution of the PIDK(K−) variable, to the right is the distribution
of the ProbNNk(K−) variable.

For the Monte Carlo simulated events a correction of PID variables to account

for differences between data and Monte Carlo simulation is applied. To perform

the correction the PIDCalib tool [4] is used. The main idea behind the tool is

the assumption that the PID variables are strongly dependent on momentum and

pseudorapidity (η) of the particle and on the track multiplicity. One can use abun-

dant (and relatively clean) decay modes such as D∗(2010)+ → D(→ K−π+)π+
s and

J/ψ → µ+µ− to extract distributions of PID variables in bins of momentum, η and

event multiplicity. Then one can resample the PID variables in the Monte Carlo

data, that is to completely discard the old values and to assign new values chosen

at random from the corresponding bins. For the analysis 20 bins in momentum, 4

bins in η and 4 bins in track multiplicity are used. If a particle is outside of the bins

range the old PID values are kept. However even after the corrections are applied

there are significant differences in PID variables for the data and the Monte Carlo

simulation. A comparison of PIDK(K) and ProbNNk(K) for sWeighted Bs → J/ψφ

reference events in data and for Monte Carlo generated events are shown in Figure

6.4.
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(a) Distributions of track multiplicity (nTracks) in the real data and MC
generated data.

(b) Distributions of Bs pT in the real data and MC generated data.

(c) Distributions of Bs vertex χ2 in the real data and MC generated
data.

Figure 6.5
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6.4 Further Corrections

After the reweighting some of the variables used in the BDT and for the resampling

of the PID variables still show significant disagreement between data and Monte

Carlo simulation. Figures 6.5a - 6.5c show transverse momentum of Bs, vertex χ2

of Bs and event multiplicity from data and MC. To correct for these discrepancies

each of the variables is reweighted. The distributions of each of the variables for

the simulations are divided in bins and assigned weights to match the distributions

of the corresponding variable in the corresponding bins for the data. Since the

variables are not highly correlated such an approach gives better precision then

a simultaneous reweighting in three dimensions which is limited by the statistical

significance. It is also expected that the reweighting of the track multiplicity is going

to improve the distributions of PID variables since they are assigned in bins of the

track multiplicity.

6.5 PID Variables

After the described reweighting most of the variables relevant for the analysis look

reasonable in Monte Carlo simulated data. However the PID variables are still not

perfect. Figure 6.6 shows the distributions of the ProbNNk and CombDLLk of the

K+ candidate for both data and simulation. Distributions of CombDLL(K) do look

like they reproduce the general shape of the data, but for ProbNNk(K) even that is

not true. The PID variables are used for the BDT training so the question is how

is the BDT selection affected. Figure 6.7 shows output of the two different BDTs,

trained using the CombDLLs or ProbNNs as the PID variables. The distributions of

the BDTs trained using CombDLLs is much more consistent. However training the

BDTs using ProbNNs gives a somewhat better efficiency (as was already shown in

Figure 6.3) so it would be preferential to be able to use the ProbNN PID variables.

The main difference between MC and real data seems to be in the lower values

of the ProbNNk(K). So the first thing to check is whether there is any background

contribution that causes the difference between MC and real data. The cut on the

invariant φ mass can be used to suppress the possible background. The largest

contribution to the background is expected to be from B0 → J/ψ(→ µ+µ−)K∗(→
πK) where pion is misidentified as kaon. Applying the full selection procedure to

the B0 → J/ψ(→ µµ)K∗(→ πK) MC around 230 events are estimated that pass

46



Figure 6.6: Distributions of PID variables of K+ in the real data and MC generated
data. To the left are the distributions of ProbNNk, to the right are
distributions of PIDK.

the selection of data. Introducing stronger cuts of mφ ± 4MeV and mBs ± 50MeV

decreases that the background yield by a factor of three while the signal yield is only

decreased by a factor of 1.33. So if the unsatisfactory performance of the ProbNNs

was due to background an improvement should be seen. However there doesn’t seem

to be a large difference after the cuts have been introduced, see Figure 6.8a.

Figure 6.7: BDT output after processing of MC simulated data compared to BDT
output of real data.

Next step is to check whether the tool itself works properly, i.e. whether the

distributions that are produced by the tool really are similar to those extracted
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(a) Distributions of ProbNNk(K−) in the
real data and MC generated data after
suppressing the possible background.

(b) Distributions of ProbNNk(K+) in the
real data and calibrations samples
reweighted in p, η, ntracks.

Figure 6.8

from calibration samples. For this the calibration samples of D∗(2010)+ → D(→
K−π+)π+

s are reconstructed, sWeighted to separate signal to background and then

a 3d reweighing in momentum, pseudo rapidity and track multiplicity is performed

to compare calibration samples in data to the ProbNNk(K) for Bs → φµ+µ− data.

However the resulting shape of ProbNNk(K) for the calibration sample shows ex-

actly the same discrepancies from the data as the ProbNNk(K) for the resampled

MC. Figure 6.8b shows the comparison of the ProbNNk(K+) distributions for the

calibration sample and the Bs → J/ψφ data. It can be seen that the discrepancies

are similar to those in Figure 6.6. The conclusion is that the tool works properly.

Another possibility that is worth investigating is that ProbNNk(K) should also

be reweighted in other variables, not only in p, η and number of tracks for the K.

First the track χ2 of kaons is checked as it is easily accessible. The distribution of

track χ2 for the Bs → φµ+µ− data and for the calibration samples is given in Figure

6.9. There is indeed some difference in the two distributions. It was therefore tried

to reweight in track χ2 and to see whether that changes anything. Figure 6.9 shows

that reweighting in track χ2 for the K does not have any effect on the shape of the

ProbNNk(K).

At this point it was decided to use CombDLL PID variables. The resampling

tool works well with CombDLL based variables and the resulting distributions of

PIDK(K) and PIDmu(µ) are shown in Figures 6.10a - 6.10d. The combinations of

PID variables that are used to train the BDTs are given in Figure A.5.
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Figure 6.9: To the left - comparison of track χ2 of K+ of the Bs → φµ+µ− data and
the calibration samples. To the right - comparison of the ProbNNK(K+)
distributions for the Bs → φµ+µ− data and the calibration samples with
the track χ2 weights applied.

(a) Distributions of PIDK(K−) in the real data
and Monte Carlo generated data after all cor-
rections have been applied.

(b) Distributions of PIDK(K+) in the real data
and Monte Carlo generated data after all cor-
rections have been applied.

(c) Distributions of PIDmu(µ−) in the real data
and Monte Carlo generated data after all cor-
rections have been applied.

(d) Distributions of PIDmu(µ+) in the real data
and Monte Carlo generated data after all cor-
rections have been applied.
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7 Background Contamination From B

Decays

In this chapter sources of possible peaking background are discussed. The number of

background events in the signal mass window is estimated and the effects of various

vetoes are evaluated.

Figure 7.1: Distribution of Bs → J/ψ(→ µ+µ−)φ(→ K+K−) Monte Carlo events
after full selection.

7.1 Bs → J/ψφ

The largest background source present in Bs → φµ+µ− is obviously the Bs →
J/ψφ reference decay. Cuts on the invariant dimuon mass are used to suppress this

background. To evaluate how efficient those cuts are the Bs → J/ψφ Monte Carlo

sample is used. The Bs → J/ψφ simulated events are selected in the same way
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as the real signal events and are also corrected as described in Chapter 6. Figure

7.1 shows two dimensional distribution of the invariant dimuon mass (mµµ) versus

the invariant Bs mass (mBS) for Bs → J/ψ(→ µ+µ−)φ(→ K+K−) Monte Carlo

generated events. The charmonium mass window is large enough to include all

Bs → J/ψφ events.

It is also important to estimate the efficiency of the selection. The efficiency of

selection is defined as ε(x) = selected events
generated events

. 376594 Bs → J/ψφ events remain

after selection in the signal region 5316.3 < mBs < 5413.6. 29897085 events have

been generated when producing the Monte Carlo sample. The efficiency is then

ε(J/ψφ) = 0.012596± 0.0000021.

Figure 7.2: Distribution of Bs → J/ψφ Monte Carlo events after full selection where
a µ is misidentified as K. K µ vetoes were not applied in this plot.

7.2 Bs → J/ψφ with final state particles misidentified.

With the charmonium mass window chosen wide enough all Bs → J/ψφ events are

excluded from the range in which the branching ratio is determined. However if

a K is swapped with a µ of the same charge the reconstructed invariant dimuon

mass of the event can end up outside the charmonium mass window. Therefore

such misidentifications are a source of a peaking background for Bs → φµ+µ−. In
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this case two particles have been misidentified, a true K± as s µ± and a true µ±

as a K±. Figure 7.2 shows two dimensional distribution of the mµµ versus mBS for

Bs → J/ψφ Monte Carlo generated events where a µ was swapped with a K of the

same charge during the reconstruction.

To suppress this source of background two vetoes are applied on the invariant

mass of Kµ system (K µ vetoes). Assuming K mass for a µ, the event is rejected

if the invariant mass of Kµ→ K system lies within 8 MeV of the nominal φ mass.

Effectively one is undoing the swap and checks if the event is then consistent with

the a J/ψφ decay. The second veto assumes µ mass for K and rejects events if the

invariant mass of µK → µ system lies within 50 MeV of nominal J/ψφ mass. After

the veto is applied no Bs → J/ψφ events where a µ was swapped with a K pass the

selection. Therefore this background is neglected in the analysis.

Figure 7.3: Distribution of B0
d → K∗µµ Monte Carlo events after full selection with-

out the PID cut applied.

7.3 B0
d → K∗µµ

If the pion in the final state of B0
d → K∗(→ Kπ)µ+µ− decay is misidentified as a K

the final state mimics a Bs → φ(→ K+K−)µ+µ− decay. Since K∗(892) is a broad

resonance a fraction of events will pass the φ mass cut after the π is misidentified as
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K. To suppress this background a cut on the PIDK(K) is introduced. To estimate

the efficiency of the PID cut as well as the effect of the remaining background, Monte

Carlo simulated B0
d → K∗µ+µ− events are used. The same selection procedure as

described in Chapter 5 is applied and the simulated events are corrected as described

in Chapter 6. Using Monte Carlo simulated B0
d → K∗µ+µ− events it is found that

requiring PIDK(K±) > −3 reduces the background by a factor of 6 in the signal

region. Figure 7.3 shows the distribution of B0
d → K∗µ+µ− Monte Carlo events

before the PID cut is applied and in Figure 7.4 the PID cut has been applied.

Figure 7.4: Distribution of B0
d → K∗µµ Monte Carlo events after full selection with

the PID cut applied.

The PIDK(K) > −3 is effective in the sense that it suppresses the peaking

background. However it does not suppress the background completely and it is

important to estimate how many background events are expected in the real data.

This number is calculated by the following formula:

Nx = NJ/ψφ ·
ε(x) ·BR(x) · fx

ε(J/ψφ) ·BR(J/ψφ) · fs

where BR(x) is the branching fraction of x, fx
fs

is the ratio of production of x primary

particle, in this case Bd, and Bs and NJ/ψφ = 60844 ± 245.2 is the number of

Bs → J/ψφ events obtained by a fit (for more information about the fit see Chapter
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8).

The relevant numbers are:

• 12.847 Monte Carlo simulated Bd → K∗µ+µ− events are observed in the signal

mass window.

• 2518808 Monte Carlo events Bd → K∗µ+µ− have been generated.

• ε(Bd → K∗µ+µ−) = 12.847
2518808

= (5.1± 1.42) · 10−6

• BR(Bd → K∗µµ) = (1.06± 0.10) · 10−6 [12]

• BR(K∗ → πK) = 1 [12]

• BR(J/ψ → µµ) = 0.05961± 0.00033 [12]

• BR(Bs → J/ψφ) = (1.07± 0.09) · 10−3 [12]

• BR(φ→ K+K−) = 0.489± 0.005 [12]

• fd
fs

= 3.79± 0.29 [16]

The result is NK∗µµ = 3.17 ± 0.86. So 3.2 background events are expected among

the signal Bs → φµ+µ− events. With a rough approximation of 400 signal events

expected this is ≈ 1.5% of the signal. However since the signal is measured in bins

of invariant dimuon mass the concentration of Bd → K∗µ+µ− background events

might be higher for some of the bins. This is further investigated in Chapter 9.

7.4 B0
d → K∗J/ψ

In analogy to Bs → J/ψφ the resonant decay B0
d → K∗(→ πK)J/ψ(→ µ+µ−) can

mimic the Bs → φµ+µ− decay if the π is misidentified as the µ of the same charge

and the µ is misidentified as a K during the reconstruction. After the full selection

and correction of the corresponding Monte Carlo sample 182 events remain, also

shown in Figure 7.5. All events are contained in the charmonium mass window, so

this background is neglected for the selection of Bs → φµ+µ−.
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Figure 7.5: Distribution of B0
d → J/ψK∗ Monte Carlo events after full selection.

7.5 Λb → Λ(1520)µ+µ−

Λb → λ(1520)(→ pK)µ+µ− can mimic the final state of Bs → φµ+µ− if the proton

is misidentified as a K. As for all other potential backgrounds the Monte Carlo

simulated events are selected and corrected. Figure 7.6 shows the distribution of

these events. For such events under assumption of a K having p mass of 938.3

MeV the invariant mass m(p→K)Kµ+µ− should be consistent with the Λb mass peak

[5575, 5665]MeV. However since the Bs mass peak is rather wide many Bs → φµ+µ−

also satisfy this condition. The contribution from Λb → Λ(1520)µ+µ− is removed

by vetoing events with m(p→K)Kµ+µ− around the nominal Λb mass. In addition it is

required that the proton candidate has a proton-like DLLpK > 10. This veto was

adjusted to reduce the expected background contribution to below 2% of expected

signal yield. Figure 7.7 shows the Λb → λ(1520)(→ pK)µ+µ− Monte Carlo events

after the veto is applied.

There are no measurements of the branching ratio of the Λb → Λ(1520)µ+µ− so

as a conservative estimate the branching ratio of Λb → Λµµ is used. The relevant

numbers are:

• 70.41 Monte Carlo simulated Bd → K∗µ+µ− events are observed in the signal

mass window.
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Figure 7.6: Distribution of Λb → λ(1520)(→ pK)µµ Monte Carlo events after full
selection without the K → p veto applied.

• The Monte Carlo sample consists of 1511006 events.

• ε(Λb → Λµµ) = 70.41
1511006

= (0.47± 0.05) · 10−4

• BR(Λb → Λµµ) = (0.96± 0.31) · 10−6 [6]

• BR(Λ(1520)→ Kp) = 0.225± 0.00225 [12]

• fΛb

fs
= 2.31± 0.24 [16]

Using these numbers one finds NΛ(1520)µµ = 3.63 ± 1.68 events expected outside of

the charmonium mass window. The effect this background has on the q2 bins is

discussed in Chapter 9.

7.6 Λb → pKµ+µ−

The products of the non-resonant decay of Λb → pKµ+µ− can also mimic the final

state of Bs → φµ+µ− if p is misidentified as K. However in comparison with the

resonant decay described in the previous section the invariant mass of pK is very

wide and therefore heavily constrained by the cut on the φ mass. Using the Λb →
Λµ+µ− branching ratio as the conservative estimate again one finds that N = 0.3
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Figure 7.7: Distribution of Λb → λ(1520)(→ pK)µµ Monte Carlo events after full
selection with the K → p veto applied.

events are expected outside of the charmonium mass window. This background is

ignored in the further analysis.

7.7 B0
s → Dsπ

The decay B0
s → Ds → (φ→ (K+K−)π)π can mimic the final state of Bs → φµ+µ−

if both π are misidentified as muons. After full selection no events of the Monte

Carlo remain in the signal region. So this background is ignored.

7.8 Semileptonic b→ cµ−ν̄µ, c→ sµ+νµ

Cascade decays like Bs → D−s → (φµ−ν̄µ)µ+νµ and Bd → D− → (K∗µ−ν̄µ)µ+νµ can

mimic the final state of the Bs → φµµ. These decays are much more abundant then

the signal decays. The branching fractions are 2 · 10−3 and 8 · 10−4 correspondingly.

However due to the two neutrinos in the final state the reconstructed mass of the

final state of these semileptonic decays peaks below the nominal Bs mass. For each

decay channel 2 · 106 generator level events have been generated. A conservative

momentum resolution of 1% is assumed. Figures 7.8 and 7.9 show the resulting
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Figure 7.8: Distribution of 2 million Bs → D−s → (φµ−ν̄µ)µ+νµ generator level
events. No events found in the signal region 5316.3 MeV < mBs < 5416.3
MeV.

distributions of reconstructed Bs mass. No events are found in the Bs signal region

so these backgrounds are ignored in the analysis.

58



Figure 7.9: Distribution of 2 million Bs → D−s → (φµ−ν̄µ)µ+νµ generator level
events. No events found in the signal region 5316.3 MeV < mBs < 5416.3
MeV.
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8 Differential Branching Fractions

The aim of the analysis presented in this thesis is to measure the differential branch-

ing fraction of the decay channel Bs → φµ+µ− as function of the invariant dimuon

mass . To determine the branching fraction three numbers are required. First the

signal yield has to be determined from the selected dataset. The yield of the refer-

ence channel Bs → J/ψφ is also required to determine the relative branching ratio
Br(Bs→φµ+µ−)
Br(Bs→J/ψφ)

. To be able compare the signal and the reference channel the relative

signal/reference efficiency has to be calculated as well.This chapter describes the

method used to determine the signal and the reference yields and the calculation of

the relative efficiency.

8.1 General Strategy

To determine the reference channel yield an extended maximum likelihood fit to the

invariant Bs mass distribution is performed in the range [5166.3, 5566.3]MeV. This

corresponds to a window of ±200 MeV around the world average of the Bs mass

measurements.

The shape of the invariant Bs mass observed is due to detector resolution and

can be reasonably described by a combination of two Gaussians with the same

mean. There are however several smaller contributions (such as radiative decays)

that change the signal shape, especially the tails. A useful function to describe such

shapes is a Crystal Ball function [26]. It consists of a Gaussian core with a power-law

tail, so that various tails can be described. For the signal fit the shape parameters

are fixed by the fit to the reference channel and only the absolute yield is left free.

Crystal Ball function The Crystal Ball function is a probability density function

that is often used in high-energy physics to account for energy loss due to photon
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radiation. The function is given by

f(x) = N ·

exp(− (x−x̄)2

2θ2 ), for x−x̄
θ
> −α

A · (B − x−x̄
θ

)−n, for x−x̄
θ
≤ −α

(8.1)

where N is a normalization factor, A = ( n
|α|)

n · exp(− |α|
2

2
), and B = n

|α| − |α|. In a

Crystal Ball function parameters x̄ and θ play a role similar to the mean and width

of a Gaussian. The α parameter determines at which point the Gaussian transitions

into the power-law tail. The n parameter determines the shape of the power-law

tail.

8.2 Extended maximum-likelihood fit

Let P (X|α) be the probability of measuring a value X for a given variable on an

event. α is a set of parameters that P depends on and X is some measured variable.

For N independent measurements the likelihood function L is defined as

L(α) = ΠN
j=1P (Xj|α)

It is important to note that L is a function of α, not of Xj. The value of α that

maximizes L is called Maximum Likelihood Estimator (MLE). It is the set of pa-

rameters for which P describes {Xj} the best. A convenient method of finding α is

working with ln (L) instead of just L. The product of probabilities becomes a sum

and working with derivatives becomes much easier.

Suppose that the invariant Bs mass distribution is described by some normalized

function S(α) and the background by some normalized function B(α). Then the

total distribution p is described by:

p = fsS(α) + (1− fs)B(α)

where fs is the fraction of signal events. Signal yield Ns is given by fsN where N is

the total number of events. However the statistical uncertainty ∆Ns is not described

by ∆fsN . One would like to describe the distribution P using Ns instead of fs to

easily access ∆Ns. Then one has to work with some unnormalized distribution P

instead of the normalized p. The number of observed events N is a Poisson random

61



variable with the mean value (Ns +Nb) where Ns and Nb are the expected number

of signal and background events. The likelihood function has to be modified by the

Poisson probability e−(Ns+Nb) (Ns+Nb)
N

N !
to account for that.

L(α) = e−(Ns+Nb)
(Ns +Nb)

N

N !
· ΠN

j=1

(
Ns

Ns +Nb

S(α) +
Nb

Ns +Nb

B(α)

)
=

=
e−(Ns+Nb)

N !
· ΠN

j=1 (NsS(α) +NbB(α)) . (8.2)

This is called extended likelihood function. After a maximum -likelihood fit is

applied to this function one gets a value for Ns and can easily calculate the ∆Ns.

This is called extended maximum-likelihood fit, It is usually the most powerful fitting

method (compared to a binned likelihood and χ2 fit), but there is no goodness-of-

fit estimation. In the analysis the estimation of the errors of Ns is important so

extended maximum likelihood is used.

8.3 Bs → J/ψφ fit

The initial assumption is that the invariant Bs mass is well described by a combi-

nation of two Gaussians with exponential background:

PDF = f sig(f struc ·G1(x) + (1− f 1struc)G2(x)) + (1− f sig) · exp(x)

where G1 and G2 are Gaussians with same mean, but different widths, exp(x) is an

exponential function, f struc is the ratio of events described by the Gaussian G1 to

the number of events described by both Gaussians and f sig is the ratio of events

described by the two Gaussians to the total number of events. Both f struc and

f sig have values between 0 and 1. For the reference channel the fit is performed in

the mass window corresponding to dimuon mass [3021.9, 3171.9]MeV, the nominal

J/ψ mass ±75MeV. Figure 8.1 shows the results of the fit. The shape parameters

determined in the fit are given in Table 8.1. The double Gaussian model seems

to struggle with the description of the tails. This effect is likely due to photon

radiation.

The tails are better described by Crystal Ball based models so the PDF is changed

to:

PDF = f sig(f struc · CBS1(x) + (1− f struc)CBS2(x)) + (1− f sig) · exp(x)
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parameter result σdown σup

Nsig 62961.4± 254.1 -264.27 + 263.6
Nbkg 4111.0± 81.3 -102.95 + 105.0
mB0 5370.759± 0.078 -0.08 + 0.078

f sig
m,1 0.8073± 0.0036 -0.01 + 0.0096
σm,1 15.875± 0.068 -0.13 + 0.13
σm,2 37.28± 0.40 -0.94 + 0.97
αm 0.00410± 0.00016 -0.000172 + 0.00017

Table 8.1: Results of the double Gaussian fit to the Bs invariant mass of the reference
channel.
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Figure 8.1: Fit of the invariant mass spectrum of the reference channel Bs → J/ψφ
using double Gaussian to model the signal and an exponential to model
the background. Linear scale to the left, log-scale to the right. Results
of the fit are given in Table 8.1.

where CBS1 and CBS2 are Crystal Ball functions with common means, n and α,

but with different widths. The resulting fit for the reference channel is shown in

Figure 8.2 and the extracted fit parameters are given in the Table 8.2. This model

performs better then the double Gaussian and is used for all further fits.

Nsig gives the number of reference channel Bs → J/ψφ events in the whole Bs

mass range of [5166.3, 5566.3]MeV. For the analysis however, the yield in the mass

range [5316.3, 5416.3]MeV is interesting since the Bs → φµ+µ− signal events are

also measured in this mass window. To estimate this yield the double Crystal Ball

function with the parameters used to perform the fit is integrated twice, once over

the whole range and once only over the signal region. The fraction of these two
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parameter result σdown σup

Nsig 63192.6± 254.7 -266.67 + 269.3
Nbkg 3879.8± 81.5 -112.35 + 111.0
mB0 5371.347± 0.077 -0.095 + 0.097
f sig 0.8496± 0.0040 -0.017 + 0.015
σm,1 15.849± 0.069 -0.171 + 0.16
σm,2 34.76± 0.51 -1.57 + 1.7
αCB 1.498± 0.018 -0.069 + 0.070
nCB 8.82± 0.88 -2.47 + 5.3
αm 0.00347± 0.00016 -0.00014 + 0.00020

Table 8.2: Results of the double Crystal Ball fit to the Bs invariant mass of the
reference channel.

integrals multiplied by Nsig gives the signal yield of NJ/ψφ = 60844.0± 245.2.
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Figure 8.2: Fit of the invariant mass spectrum of the reference channel Bs → J/ψφ
using using double Crystal Ball function to model the signal and an
exponential to model the background. Normal scale to the left, log scale
to the right. Results of the fit are given in Table 8.2.

8.4 Scaling Factors

The yield of Bs → φµ+µ− signal events is determined in bins of q2. However the

mass resolution of the LHCb is q2 dependent. This means that the mass resolution

for the reconstructed Bs → φµ+µ− also varies with q2. The double Crystal Ball

model determined in the previous section for a single q2 bin cannot be used directly
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for all q2 bins. A q2-dependent scaling factor is introduced to scale the width of the

Crystal Ball functions in accordance to the bin the fit is performed in. All the other

fit parameters remain constrained to the values from the fit of the reference channel.

The scaling factors are determined from the Bs → φµ+µ− Monte Carlo simulated

events. First a single Crystal Ball function is fit to the Bs → J/ψφ Monte Carlo

sample to determine the reference width σJ/ψ and the best fit parameters. The fit

itself is shown in Figure 8.3 and the parameters are given in Table 8.3. For each

q2 bin a single Crystal Ball is fit to the Bs mass with all parameters, but width σi

constrained. The scale factor is defined as the ratio σi
σJ/ψ

. The scaling factors of

different bins as well as the widths σi are given in Table 8.4.
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Figure 8.3: A single Crystal Ball fit to the invariant mass spectrum of the Bs →
J/ψφ Monte Carlo events.
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parameter result σdown σup

Nsig 344400.3± 586.9 -586.49 + 587.2
mB0 5368.559± 0.031 -0.031 + 0.031
σm,1 16.907± 0.024 -0.024 + 0.024
αCB 1.8417± 0.0084 -0.0083 + 0.0084
nCB 7.940± 0.028 - 0.028 + 0.028

Table 8.3: Results of the single Crystal Ball function fit to the mass spectrum of the
Bs → J/ψφ Monte Carlo events.

Bin bounds width of MC Scaling factor
Bin1 0.1GeV < q2 < 2GeV 17.28± 0.10 1.02± 0.01
Bin 2 2GeV < q2 < 5GeV 16.75± 0.10 0.99± 0.01
Bin 3 5GeV < q2 < 8GeV 16.779± 0.08 0.99± 0.01
Bin 4 11GeV < q2 < 12.5GeV 17.02± 0.10 1.01± 0.01
Bin 5 15GeV < q2 < 17GeV 17.86± 0.10 1.06± 0.01
Bin 6 17GeV < q2 < 19GeV 18.65± 0.16 1.10± 0.01
Bin 7 1GeV < q2 < 6GeV 16.77± 0.07 0.99± 0.01
Bin 8 15GeV < q2 < 19GeV 18.08± 0.09 1.07± 0.01

All bins ∪ q2 bins 17.25± 0.04 1.02± 0.01

Table 8.4: q2-dependent scaling factors for the widths of the Crystal Ball functions.

8.5 Signal Yields

The signal yield for the Bs → φµ+µ− signal is determined in bins of q2 using an

extended unbinned maximum likelihood fit. A double Crystal Ball function is used

to describe the signal and an exponential is used to describe the background. The

parameters used in the model are given in Table 8.2. All the parameters except

Ns and Nb are constrained. The width σ1 and σ2 of the Crystal Ball functions are

modified by the scaling factors given in Table 8.4. The resulting fits are given in

Figures A.3 - A.4. The yields are given in Table 8.5.

8.6 Selection Efficiencies

In the presented analysis the branching ratio of the Bs → φµ+µ− is determined

relative to the branching ratio of the normalization decay Bs → J/ψφ.To do that

one has to know the relative efficiency of both selections. For both decays the

efficiencies are determined using the corrected Monte Carlo events, see Chapter 6.

The efficiency is defined as events selected
events generated

for the reference channel Monte Carlo
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q2 bin Nsig

0.1 < q2 < 2 84.74+9.71
−10.57

2 < q2 < 5 58.94+9.45
−8.87

5 < q2 < 8 72.95+10.82
−10.30

11 < q2 < 12.5 69.14+10.33
−9.72

15 < q2 < 17 84.71+10.54
−10.01

17 < q2 < 19 49.11+7.88
−7.22

1 < q2 < 6 99.71+12.47
−11.83

15 < q2 < 19 134.49+13.05
−12.54

Reference Bs → J/ψφ 60844.0± 245.2

Table 8.5: The signal yields of the Bs → φµµ signal

simulated events. The efficiency for the reference channel J/ψφ was calculated in

Chapterdatamc to be ε(J/ψφ) = 1.26± 0.02%. The efficiency of the signal channel

Bs → φµµ is calculated in bins of q2. For that purpose 10 million generator level

Bs → φµµ events have been generated. ε(φµµ) in a given bin i is determined as

events selected

events generated
· 107

generator level events in bin i

Such a definition takes into account the possibly q2-dependent preselection. As

a crosscheck the separate efficiencies of the triggers εtrig, the cut based selection

εdel, the BDT selection εbet and the vetoes εveto are calculated for all bins and for

the reference channel. These efficiencies are given in Table 8.6. One sees that the

efficiency of the triggers and of the vetoes are highly q2 dependent while the cut

based selection and BDT selection have approximately the same efficiency over the

whole q2 range.

As a crosscheck the efficiency of the trigger cuts is calculated from the Bs →
J/ψφ reference data sample. A way to extract this efficiency from real data is to

compare the number of events that have been triggered independently of the Bs

decay products with the number of events that were triggered both on the Bs decay

products and independent of them. This ratio should also estimate the ratio of events

events total to events triggered by the Bs decay products, i.e. 1/trigger efficiency.

Calculating the trigger efficiency this way gives gives εTISTOS = 85.0±5.85%. From

Table 8.6 the εtrig for the reference Bs → J/ψφ Monte Carlo simulated events is

εtrig = 81.8±0.2% Within the statistical uncertainties the trigger efficiencies derived

from Monte Carlo sample and real data are in agreement.

67



Bin εtot εtrig εveto εbdt εsel

0.1GeV < q2 < 2GeV 0.009131± 6.3 · 10−5 0.63± 0.01 0.90± 0.01 0.97± 0.01 0.88± 0.01
2GeV < q2 < 5GeV 0.009481± 6.6 · 10−5 0.67± 0.01 0.93± 0.01 0.97± 0.01 0.88± 0.01
5GeV < q2 < 8GeV 0.010546± 6.4 · 10−5 0.73± 0.01 0.94± 0.01 0.97± 0.01 0.87± 0.01

11GeV < q2 < 12.5GeV 0.013184± 9.2 · 10−5 0.84± 0.01 0.99± 0.01 0.97± 0.01 0.88± 0.01
15GeV < q2 < 17GeV 0.012059± 8.2 · 10−5 0.89± 0.01 1± 0.01 0.97± 0.01 0.88± 0.01
17GeV < q2 < 19GeV 0.008602± 9.5 · 10−5 0.9± 0.02 1± 0.02 0.97± 0.026 0.88± 0.01
1GeV < q2 < 6GeV 0.009499± 5.0 · 10−5 0.68± 0.01 0.93± 0.01 0.97± 0.01 0.88± 0.01

15GeV < q2 < 19GeV 0.010861± 6.3 · 10−5 0.89± 0.01 1± 0.01 0.97± 0.01 0.88± 0.01
J/ψφ 0.0126± 0.0002 0.81± 0.01 0.97± 0.01 0.97± 0.01 0.88± 0.01

Table 8.6: Table of efficiencies for Bs → φµ+µ− Monte Carlo.

Bin Branching ratio [10−4]

0.1 < q2 < 2 1.144+0.131
−0.143

2 < q2 < 5 0.767+0.123
−0115

5 < q2 < 8 0.854+0.127
−0.121

11 < q2 < 12.5 0.647+0.097
−0.091

15 < q2 < 17 0.867+0.108
−0.102

17 < q2 < 19 0.705+0.113
−0.104

1 < q2 < 6 1.295+0.162
−0.154

15 < q2 < 19 1.5281+0.148
−0.143

Table 8.7: Relative branching ratios Br(Bs→φµ+µ−)
Br(Bs→J/ψφ)

.

8.7 Ratio of Branching Fractions

The relative branching ratio of the signal Bs → φµ+µ− to the reference channelBs →
J/ψφ is determined using:

Br(Bs → φµ+µ−)

Br(Bs → J/ψφ)
=
Nφµ+µ−

NJ/ψφ

Br(J/ψφ→ µ+µ−) · εtot(J/ψφ)

εtot(φµ+µ−)
(8.3)

The branching ratio Br(J/ψ → µ+µ−) = (5.961± 0.033) · 10−2. The efficiencies εtot

have been calculated and are given in Table 8.6. The signal yields Nφµ+µ− and NJ/ψφ

have been determine using maximum likelihood fit and are given in Table 8.5. The

resulting relative branching ratios are calculated using Formula 8.3 and are given in

Table 8.7.
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9 Systematic Uncertainties

In this chapter a summary of all studied systematic uncertainties for the determi-

nation of the differential branching fraction ratio is presented. All the systematic

uncertainties are gathered in Table 9.1.

9.1 Peaking Background

Products of various B decays, as discussed in Chapter 9.1, can mimic the final state

of the signal Bs → φµ+µ−. These peaking backgrounds are not included in the

fit and can bias the signal yield. The expected number of background events for

Bd → K∗µ+µ− and Λb → Λ(1520)µ+µ− are taken as the systematic uncertainty.

The q2 dependence is extracted from the corresponding Monte Carlo sample by

relaxing the PID cuts and the misID vetoes. The systematic uncertainty due to

peaking backgrounds is given in Table 9.1.

9.2 Branching Fraction of the Decay J/ψ → µ+µ−

The branching fraction of the decay J/ψ → µ+µ− is Br(J/ψ → µ+µ−) = 0.05961±
0.00033 [12]. This branching fraction is used in equation 8.3 to calculate the rela-

tive branching ratio of the signal to the reference channel. The uncertainty of the

branching fraction causes a systematic uncertainty which is given in Table 9.1.

9.3 Relative Efficiencies Precision

The relative efficiency ε(J/ψφ)
ε(φµµ)

are determined from Monte Carlo simulated events.

Due to limited statistics this relation can only be determined with a certain precision.

The systematic uncertainty resulting from the limited statistics is given in Table 9.1.
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9.4 q2 binning

The determination of the relative branching fraction ε(J/ψφ)
ε(φµµ)

assumes that the Bs →
φµ+µ− efficiency is constant over the respective bin. To estimate the possible sys-

tematic effect of this averaging every q2 bin is divided in four sub-bins. Each event

is assigned relative efficiency ε(Bs → J/ψφ)/ε(Bs → φµ+µ−) for the corresponding

sub-bin and the fit is repeated using the weighted events. For the determination of

the branching fraction ratio the fact that the fitted signal yield already contains the

relative efficiency is taken into account. The resulting deviations are given in Table

9.1.

9.5 Tracking Efficiency

The tracking efficiency is only determined to a certain precision and can be a source

of systematic deviations. To estimate the uncertainty the relative efficiency is recal-

culated using different weights. For tracks with momenta smaller then 10 GeV the

efficiency is increased by the statistical uncertainty of the efficiency given in Figure

6.1 and by an additional systematical contribution of 1.5% for kaons and 0.4% for

muons as recommended by the tracking group. For tracks with momenta larger then

10 GeV the efficiency is decreased by the the statistical uncertainty of the efficiency

plus the additional systematic contribution. The difference of the tracking efficien-

cies is taken as systematic uncertainty. The systematic uncertainty due to varied

tracking efficiency is given in Table 9.1.

9.6 Muon ID Efficiency

The corrections performed on the muon ID efficiency can lead to a systematic de-

viation. To estimate this systematic uncertainty the relative efficiency ε(J/ψφ)
ε(φµµ)

is

recomputed with the varied efficiency. For muons with momenta smaller then 10

GeV the efficiency is increased by the uncertainty of the calibration procedure which

is given in Figure 9.6. For muons with momenta larger then 10 GeV the efficiency

is decreased by the uncertainty of the calibration procedure. The difference of the

tracking efficiencies is taken as systematic uncertainty. The systematic uncertainty

due to varied muon ID efficiency is given in Table 9.1.
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9.7 Explicit Reweighting

The explicit reweighting in track multiplicity, Bs vertex χ2 and Bs pT can have an

effect on the relative selection efficiency ε(J/ψφ)
ε(φµµ)

. To estimate the effect on the relative

branching ratio the relative efficiency is recomputed without the reweighting. The

observed deviation from the nominal result is given in Table 9.1.

9.8 Particle Identification Resampling

The resampling of the PID variables as described in Chapter 6 can have an effect on

the relative selection efficiency for the signal and the reference channels. To estimate

the systematic effect the relative efficiency is recalculated using the original PID

values of the Monte Carle simulated events.

9.9 Signal Mass Model

To determine the influence of the mass model chosen for the fit of the signal yields

the yields are also calculated for the double Gaussian mass model. The resulting

systematic uncertainty is given in Table 9.1.

9.10 Branching Fraction of the Normalization

Channel

The branching fraction of the reference channel is given by Br(Bs → Jψφ) =

(1.07±0.09)·10−3 [12]. The uncertainty of this value leads to an additional systematic

uncertainty in the determination of the differential branching fraction Br(Bs →
φµ+µ−).
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Systematic uncertainties [10−5] in q2 [GeV2] bins
Section Systematic [0.1,2] [2,5] [5,8] [11,12.5] [15,17] [17,19] [1,6] [ 15,19]

9.1 Peaking Bkg. 0.15 0.27 0.25 0.09 0.04 0.01 0.42 0.05
9.2 Br(J/ψ → φµµ) 0.06 0.04 0.05 0.04 0.05 0.04 0.07 0.08
9.3 Rel. efficiency 0.08 0.06 0.06 0.05 0.06 0.08 0.07 0.09
9.4 q2 binning 0.23 0.13 0.15 0.10 0.06 0.19 0.23 0.13
9.5 Tracking 0.04 0.02 0.01 0.02 0.11 0.13 0.03 0.21
9.6 Muon ID 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
9.7 Reweighitng 0.08 0.02 0.06 0.03 0.04 0.23 0.09 0.19
9.8 PID Resampling 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02
9.9 Sig. model 0.15 0.10 0.01 0.07 0.06 0.07 0.15 0.13

Σ 0.34 0.33 0.31 0.17 0.17 0.35 0.52 0.36

Table 9.1: Systematic uncertainties on the differential branching fraction ratio
Br(Bs → φµ+µ−)/Br(Bs → J/ψφ).
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10 Results and Conclusion

10.1 Result

The relative branching fraction Br(Bs→φµ+µ−)
Br(Bs→J/ψφ)

has been determined in Chapter 8, the

results are given in Table 8.5. The differential branching fraction of the signal decay

in a q2 interval [q2
min, q

2
max] is determined using

dBr(Bs → φµ+µ−)

dq2
=

1

q2
max − q2

min

Nφµ+µ−

NJ/ψφ

εtot(J/ψφ)

εtot(φµ+µ−)
·Br(Bs → J/ψφ)·Br(J/ψφ→ µ+µ−).

The branching fractions used are Br(Bs → J/ψφ) = (1.07 ± 0.09) · 10−3 [12] and

Br(J/ψφ → µ+µ−) = 0.05961± 0.00033. The resulting differential branching frac-

tions are given in Table 10.1.

Summing over the full q2 range, excluding the charmonium mass window, the

relative branching fraction is Br(Bs→φµ+µ−)
Br(Bs→J/ψφ)

= (49.84+2.87
−2.79 ± 0.7) × 10−5. A simple

estimation using the generator level Bs → φµ+µ− Monte Carlo signal events de-

termines the fraction of events rejected by the charmonium mass windows to be

33.0%. The relative branching fraction is extrapolated to the full q2 range and is

determined to be (74.34+4.28
−4.16 ± 1.06)× 10−5. This corresponds to a total branching

fraction of Br(Bs → φµ+µ−) = 79.54+4.58
−4.45 ± 1.13± 6.69× 10−8 where the first error

is statistical, the second is systematic and the third comes from the uncertainty of

the branching ratio of the reference channel Bs → J/ψφ.

10.2 Conclusion

The differential branching fraction of rare flavour-changing neutral current Bs →
φµ+µ− decay has been determined in six nominal bins of q2. The results are pre-

sented in Table 10.1. The relative branching fraction Br(Bs → φµ+µ−)/Br(Bs →
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q2 bin (GeV2) Nsig dBr/dq2 (10−8 GeV−2)

0.1 < q2 < 2 84.74+9.71
−10.57 6.44+0.74

−0.80 ± 0.19± 0.54
2 < q2 < 5 58.94+9.45

−8.87 2.74+0.44
−0.41 ± 0.18± 0.23

5 < q2 < 8 72.95+10.82
−10.30 3.04+0.45

−0.43 ± 0.11± 0.26
11 < q2 < 12.5 69.14+10.33

−9.72 4.62+0.69
−0.65 ± 0.12± 0.39

15 < q2 < 17 84.71+10.54
−10.01 4.64+0.58

−0.55 ± 0.09± 0.39
17 < q2 < 19 49.11+7.88

−7.22 3.77+0.60
−0.55 ± 0.19± 0.32

1 < q2 < 6 99.71+12.47
−11.83 2.77+0.35

−0.33 ± 0.11± 0.23
15 < q2 < 19 134.49+13.05

−12.54 4.09+0.40
−0.38 ± 0.10± 0.34

Table 10.1: The Bs → φµ+µ− signal yields and the differential branching fractions
dBr(Bs→φµ+µ−)

dq2 in the q2 bins. The first error is statistical, the second
is systematic and the third is due to the uncertainties of the branching
fraction of the reference channel Bs → J/ψφ.

J/ψφ) is extrapolated to the full q2 range to yield

Br(Bs → φµ+µ−)

Br(Bs → J/ψφ)
= (74.34+4.28

−4.16 ± 1.06)× 10−5.

The world average of the branching fraction of the reference channel, Br(Bs →
J/ψφ) = (1.07± 0.09)× 10−3, is used to determine the total branching fraction

Br(Bs → φµ+µ−) = (7.954+0.458
−0.445 ± 1.13± 6.69)× 10−7

where the first error is statistical, the second is systematic and the third is due to

the uncertainty of the branching fraction of the reference channel. This value is

compatible with the previous measurement at LHCb [5] of (7.07+0.64
−0.59±0.17±071)×

10−7 and with the world average value of (7.6 ± 1.5) × 10−7 [12]. The measured

branching fraction is lower than the Standard Model theory predictions that predict

a range from 14.6−7 [8] to 19.2 × 10−
7

[27], [15], but such theoretical calculations

have an uncertainty of 20%− 30%.

The dominating uncertainty is due to the uncertainty of the branching fraction of

the Bs → J/ψφ decay. The second largest uncertainty is the statistical uncertainty.

There is definitely room for improvement and most likely after the new LHC run

the branching fraction of the Bs → φµ+µ− can be estimated with higher precision.
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A Appendix

In this Appendix a few plots that are relevant to the analysis are presented. Figures
A.1 - A.2 show the separation between the background and the signal distributions
for the variables that are used to train BDT. Figures A.3 - A.4 show the fits to
the invariant Bs mass in bins of q2. Figure A.5 shows the max and min of the
Monte Carlo simulated PID variables that are used for the BDT training. The
distributions of these PID variables is comparable with the distributions for the
Bs → Jψφ reference channel data.
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Figure A.1: Distributions of the BDT input variables. All input variables show large
separation between signal and background.

Figure A.2: Distributions of the BDT input variables. All input variables show large
separation between signal and background.
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Figure A.3: Mass spectrum fits of the Bs → φµ+µ− signal channel in bins of q2.
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Figure A.4: Mass spectrum fits of the Bs → φµ+µ− signal channel in bins of q2.
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Figure A.5: Distributions of the PID BDT input variables from the Bs → J/ψφ
Monte Carlo simulated samples after all corrections described in Chap-
ter 6 compared to the data. The distributions agree nicely.
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