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Abstract

In Run 3 of the LHC, the LHCb experiment faces megahertz-rates of data containing
beauty and charm hadron decays. Thus the task of the trigger is not to select any
beauty and charm events but to select specific beauty and charm decays interesting
for the LHCb physics programme. LHCb has therefore implemented a real-time data
analysis strategy to trigger directly on fully-reconstructed events. This is done in two
software-trigger stages, the first of which performs a partial event reconstruction on
GPUs, while the second stage reconstructs the full event with offline quality on CPUs.
This thesis describes LHCb’s CPU-based track reconstruction for Run 3, highlighting
the Forward tracking, which is the algorithm that reconstructs trajectories of charged
particles traversing the entire tracking system. It is shown that using the capabilities
of modern CPUs, the event throughput of the Forward tracking is improved by a factor
of 3.5 while reaching reconstruction efficiencies of more than 95% for tracks above
5 GeV/c originating from a 𝐵 meson.

Zusammenfassung

In Run 3 des LHC wird das LHCb-Experiment mit Datenraten von Beauty- und
Charm-Hadronzerfällen im Megahertz-Bereich konfrontiert. Die Aufgabe des Triggers
ist daher nicht jedes Kollisionsereignis, das solch einen Zerfall erzeugt hat, zu erkennen,
sondern nur Beauty- und Charm-Hadronzerfälle zu selektieren, die interessant für
LHCbs Forschungsprogramm sind. Um das zu erreichen hat LHCb eine Echtzeitda-
tenanalysestrategie entwickelt um direkt auf voll rekonstruierte Kollisionsereignisse
triggern zu können. Das passiert in zwei Schritten; der erste rekonstruiert Teile des
Kollisionsereignis auf GPUs, der zweite rekonstruiert das gesamte Ereignis in voller
Qualität auf CPUs. In dieser Doktorarbeit wird LHCbs CPU-basierte Spurrekon-
struktion für Run 3 beschrieben, wobei das Forward-Tracking hervorgehoben wird.
Das Forward-Tracking rekonstruiert Teilchentrajektorien, die sich durch das gesamte
Spurrekonstruktionssystem ziehen. Es wird gezeigt, dass der Ereignisdurchsatz des
Forward-Trackings mit Hilfe moderner CPUs um einen Faktor 3, 5 verbessert werden
kann, wobei eine Rekonstruktionseffizienz von über 95% für Spuren mit einem Impuls
von mehr als 5 GeV/c, und die von einem 𝐵-Meson stammen, erreicht wird.

i





Contents

1 Introduction 1

2 The LHCb Experiment 3
2.1 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 LHCb Detector Overview . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Tracking Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Vertex Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Upstream Tracker . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Scintillating Fibre Tracker . . . . . . . . . . . . . . . . . . . . . 9

2.5 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Data Acquisition System and Data Centre . . . . . . . . . . . . . . . . 12
2.7 LHCb Software Framework . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Analysing LHCb’s Data in Real-time 17
3.1 The Need for a Real-time Analysis Trigger . . . . . . . . . . . . . . . . 17
3.2 Data in Two Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 High-level Trigger One . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 High-level Trigger Two . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Online Alignment and Calibration . . . . . . . . . . . . . . . . 24

3.3 Tackling the Computational Performance Challenge . . . . . . . . . . 26

4 Tracking Down Charged Particles 31
4.1 On the Importance of Track Reconstruction at LHCb . . . . . . . . . 31
4.2 Passage Through the Tracking System . . . . . . . . . . . . . . . . . . 32

4.2.1 Material Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Motion in Magnetic Field . . . . . . . . . . . . . . . . . . . . . 34

4.3 Menu of Track Types at LHCb . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Reconstruction Performance Metrics . . . . . . . . . . . . . . . . . . . 37

4.4.1 Physics Performance . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.2 Computational Performance . . . . . . . . . . . . . . . . . . . . 39
4.4.3 Performance Trade-offs . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Track Reconstruction Sequences in HLT2 . . . . . . . . . . . . . . . . 40
4.5.1 Components and Baseline Track Reconstruction . . . . . . . . 40
4.5.2 Fast Track Reconstruction . . . . . . . . . . . . . . . . . . . . . 44

iii



Contents

5 Forward Tracking in HLT2 47
5.1 Objective and Requirements . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Algorithm Design and Description . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Estimating Trajectory Boundaries . . . . . . . . . . . . . . . . 52
5.2.4 Simplified Track Model . . . . . . . . . . . . . . . . . . . . . . 55
5.2.5 Optimised Hough-like Transform . . . . . . . . . . . . . . . . . 58
5.2.6 Track Candidate Selection . . . . . . . . . . . . . . . . . . . . . 66
5.2.7 Momentum Estimation . . . . . . . . . . . . . . . . . . . . . . 75
5.2.8 Fake Track Rejection and Duplicate Removal . . . . . . . . . . 75
5.2.9 Finding UT Hits . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.10 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Reconstruction Performance . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Physics Performance . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Computational Performance . . . . . . . . . . . . . . . . . . . . 87

5.4 Comparison to Neural-Network-based Approach . . . . . . . . . . . . . 89
5.4.1 The Matching Algorithm . . . . . . . . . . . . . . . . . . . . . 90
5.4.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . 92

5.5 Summary and Future Prospects . . . . . . . . . . . . . . . . . . . . . . 97

6 Commissioning of the Long Track Reconstruction 99
6.1 The First Steps Toward Run 3 Data . . . . . . . . . . . . . . . . . . . 99
6.2 The Hunt for the First Mass Peak . . . . . . . . . . . . . . . . . . . . 100
6.3 Different Configurations of the Long Track Reconstruction . . . . . . . 105
6.4 Comparison of Data and Simulation . . . . . . . . . . . . . . . . . . . 107
6.5 Production of Charm Mesons . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 The Original Plan and its Status . . . . . . . . . . . . . . . . . 111
6.5.2 Trigger Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5.3 Mass Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusion 115

A Appendix 117
A.1 Equation of Motion w.r.t 𝐳 Coordinate of a Charged Particle in the

Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2 Linear Least-Square Fits . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.3 Parameterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3.1 Trajectory Boundaries . . . . . . . . . . . . . . . . . . . . . . . 121
A.3.2 Magnet Centre . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3.3 Track Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3.4 Hough Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . 125

iv



Contents

A.3.5 Momentum Estimation . . . . . . . . . . . . . . . . . . . . . . 125
A.3.6 Parameterisations of the Matching Algorithm . . . . . . . . . . 126

A.4 Reconstruction Performance . . . . . . . . . . . . . . . . . . . . . . . . 126
A.4.1 VELO Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.4.2 Forward Tracking on UT-filtered VELO Tracks . . . . . . . . . 127
A.4.3 Forward Tracking on Upstream Tracks . . . . . . . . . . . . . . 131
A.4.4 Comparison to Matching Algorithm . . . . . . . . . . . . . . . 136

A.5 Magnet, Beam Pipe, and the SciFi Tracker . . . . . . . . . . . . . . . 139
A.6 Tracking Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.7 Charm Meson HLT2 Trigger Lines . . . . . . . . . . . . . . . . . . . . 141

Acknowledgments 143

Bibliography 145

Self References 153

v





1 Introduction

Since the emergence of particle physics in the early 20th century, the science of making
charged particle trajectories visible and thus measurable has driven the design of
experiments that aim at revealing the underlying mechanics of nature. Fundamental
discoveries like the existence of the electron [1], the positron [2] and the muon [3],
all applied techniques that made it possible to follow a particle’s path through the
experimental setup. It is this path that forms a bridge between the quantum world
and its macroscopic limit, from where we try to catch a glimpse of what is on the other
side. Nowadays, it is not expected anymore to directly discover a new particle by the
track it left in an apparatus; however, studying the properties and particularly the
origins of particle trajectories has led and will still lead to a deeper understanding of
the universe. The unbowed timeliness of track reconstruction becomes apparent in
the structure of the large contemporary high-energy physics experiments at the Large
Hadron Collider (LHC) and other facilities. They all employ various technologies to
record the passage of charged particles precisely. While cloud chambers and nuclear
emulsion plates showed trajectories visible and interpretable by the eye in the past,
today’s tracking systems are designed for high spatial track densities and ultra-fast
data-taking rates to collect large amounts of statistics. The particle trajectories must
be reconstructed from discrete space point measurements with the help of dedicated
hardware and computers running specialised track reconstruction software.

The work presented in this dissertation has been conducted with the objective of
developing fast and efficient track reconstruction software for the new tracking system
of the upgraded LHCb experiment in Run 3 of the LHC and beyond. In its endeavour
to precisely measure and compare the rates and topologies of heavy-flavour hadron
decays, LHCb, described in Chapter 2, aspires to shine light on physics beyond the
Standard Model of particle physics by studying 𝐶𝑃 symmetry violation [4], discover
new particles either directly [5] or indirectly via their occurrence as virtual particles in
loop corrections [6], and challenge predictions of the Standard Model such as lepton
flavour universality [7]. All these studies have in common that they require vast data
sets of reconstructed high-energy proton-proton collisions. Yet because it is impossible
to determine beforehand whether a collision produced a process of interest, it is vital to
reconstruct the event quickly, decide on the presence of interesting particle decays, and,
if applicable, store the information or discard it to spare computing resources. The novel
approach LHCb adopts for this, summarised in Chapter 3, is an entirely software-based
two-stage trigger system performing a real-time analysis of the collision event. Part
of this real-time trigger strategy is the full offline-quality event reconstruction in the
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1 Introduction

second trigger stage, with the reconstruction of tracks as a central component described
in Chapter 4. The author’s main work addresses the fast and efficient finding of tracks
traversing LHCb’s entire tracking system. The corresponding algorithm developed in
the course of this dissertation is called the Forward tracking, detailed in Chapter 5,
together with the Matching algorithm, a neural-network-based approach the author
also contributed to. The track reconstruction algorithms were designed and tuned on
simulation before the start of Run 3. The first track-reconstruction tests and studies
on data were performed by the author during the detector commissioning in 2022 and
are highlighted in Chapter 6.

The track reconstruction development in LHCb’s real-time trigger software is strongly
interconnected with the development of other software components not explicitly
documented in this thesis. The author contributed in particular to LHCb’s Kalman
filter, the framework handling the decay selections, and the components monitoring
the quality of the event reconstruction during data taking. The work on the selection
framework was conducted along with preparations for the author’s Run 3 data analysis,
measuring the charm-production cross-section, also mentioned in Chapter 6. Moreover,
the author joined the team maintaining the software stack which organises the code
review and testing across all projects for the Run 3 software to ensure high code quality.
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2 The LHCb Experiment

This chapter overviews the LHCb experiment (the ’b’ stands for beauty) with its
detector located at Interaction Point 8 of the LHC organised in the Conseil Européen
pour la Recherche Nucléaire (CERN). Only the upgraded LHCb detector with its
sub-detectors, data acquisition system and software framework as of 2022 during
Run 3 of the LHC is discussed. Information about the previous LHCb setup can be
found in Ref. [8].

2.1 Large Hadron Collider

The LHC is the world’s largest and most powerful particle accelerator located roughly
100 m below ground near Geneva, Switzerland. It is a hadron-hadron collider composed
of two superconducting magnet-rings with 26.7 km circumferences storing two counter-
rotating particle beams. The particle beams collide in four interaction points around
which the four large experiments, ATLAS, CMS, ALICE and LHCb, are built. The LHC
was planned for a maximum centre-of-mass energy of

√
𝑠 = 14 TeV and instantaneous

luminosities of 𝒪(1034 cm−2s−1) for proton-proton (𝑝𝑝) collisions. The operation of the
LHC is divided into Runs, the first of which took place from 2009 to 2013; Run 2
started in 2015 and ended in 2018, and Run 3 has begun in 2022 and is planned to
continue until 2026. During Run 3, the LHC collides protons with a centre-of-mass
energy of

√
𝑠 = 13.6 TeV. While ATLAS and CMS operate at a peak instantaneous

luminosity of ℒ = 2 × 1034 cm−2s−1 decreasing with time during a fill, LHCb uses
luminosity levelling [9] to keep the instantaneous luminosity lower but constant. This
is done to ease physics analyses by delivering steady conditions, but also because
the processes LHCb is designed to study occur at high rates in the forward region of
hadron collisions, and it is a challenge to efficiently record them at high luminosity
as described in Section 3.1. For Run 3, LHCb aims at an instantaneous luminosity
of ℒ = 2 × 1033 cm−2s−1 which yields about five 𝑝𝑝 collisions per bunch crossing on
average. A bunch crossing is the passing of particle clouds through each other at the
interaction points, as sketched in Figure 2.1. Nominally, this happens every 25 ns or
with a frequency of 40 MHz. In practice, bunches are grouped in bunch trains separated
by more than 25 ns, lowering the average collision frequency. Aside from colliding
protons, the LHC delivers collisions of heavy ions, such as lead and xenon, as well as
proton-ion collisions.
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2 The LHCb Experiment
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Figure 2.1: Sketch of the LHC with its accelerator ring containing two beam pipes and the
four main interaction points with their experiments. The beam pipes contain the particle
bunches that cross at the interaction points [10].

2.2 LHCb Detector Overview

The LHCb detector, shown in Figure 2.2, is a single-arm forward spectrometer covering
angles from 10 mrad to 300 mrad relative to the beamline in the 𝑥-𝑧 plane, and up to
250 mrad in the 𝑦-𝑧 plane, corresponding to a pseudorapidity range of approximately
2 < 𝜂 < 5. The coordinate system has its origin at the nominal interaction point in
the centre of the Vertex Locator (VELO) with the 𝑧 axis pointing along the beam
pipe into the detector (downstream), the 𝑦 axis vertically oriented towards the surface,
and the 𝑥 axis pointing away from the centre of the accelerator ring (into the plane in
Figure 2.2). The detector’s single-arm forward design is unique among the experiments
at the LHC and was chosen because pairs of 𝑏 quarks are predominantly produced at
small angles around the beamline in 𝑝𝑝 collisions [11]. The resulting hadrons containing
heavy quarks, for example 𝐵 and 𝐷 mesons, are enormously boosted with respect to
the laboratory frame and thus exhibit significant flight distances before they decay.
Precisely reconstructing their displaced decay vertex in distinction to the primary 𝑝𝑝
collision vertices is a key feature of LHCb and is the purpose of the first sub-detector,
the VELO. Stable particles, like protons and electrons, or particles with a longer lifetime,
like pions, kaons, and muons, further travel through the first Ring-imaging Cherenkov
detector (RICH1), the Upstream Tracker (UT), the magnet, the Scintillating Fibre
(SciFi) tracker, the second RICH detector (RICH2), the electromagnetic calorimeter
(ECAL), and the hadronic calorimeter (HCAL). Muons also reach the four muon
stations (M2-M5) at the end of the detector. The RICH detectors, the calorimeters
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2.3 Magnet

Charged track reconstruction Particle Identification

Figure 2.2: Layout of the LHCb spectrometer shown from the side. Particles collide in the
Vertex Locator.

and the muon stations make up the particle identification (PID) system, which is only
described briefly in Section 2.5 as it plays a minor role in the work presented in this
thesis. The VELO, UT and SciFi tracker, together with the magnet, constitute LHCb’s
tracking system and are described in more detail in the following sections.

LHCb features new tracking detectors in Run 3 to record data at a five times higher
instantaneous luminosity than during Run 2. All sub-detectors are upgraded with new
electronics allowing for a trigger-less data acquisition system as outlined in Section 2.6.

2.3 Magnet

The spectrometer’s magnet consists of two saddle-shaped aluminium coils in a window-
frame steel yoke. The magnet poles are tilted towards the interaction point, following
the acceptance of LHCb. It is a water-cooled warm magnet with a bending power of
∫ 𝐵d𝑙 ≃ 4 T m for tracks traversing the entire tracking system [12]. The strength of
the individual field components as seen by a charged particle is shown in Figure 2.3.
Particle trajectories are bent most by the 𝐵𝑦 component, deflecting the particles in the
𝑥-𝑧 plane. While the 𝐵𝑥 component is negligible, the effect of 𝐵𝑧 must be accounted
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2 The LHCb Experiment
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Figure 2.3: Magnetic field strength components in dependence on 𝑧 position within LHCb’s
tracking system. The 𝐵𝑦 component is shown ”on-axis” for a particle travelling along the 𝑧
axis. The components off-axis are shown for a particle with positive slopes in 𝑥 and 𝑦. The
vertical grey lines denoted T1, T2, and T3 represent the position of the three SciFi tracker
stations. Adapted from Ref. [13].

for when accurately describing trajectories through the tracking system. The magnetic
field is mapped by measuring its strength with 3D Hall probes in the relevant regions
of the detector, creating a grid of field values [14]. Simulations of the magnetic field
complement the grid in regions where measurements are not feasible. The sign of the
current flowing through the coils is reversed every few weeks during data taking such
that data sets of roughly equal size for both polarities are recorded. This reduces
potential particle detection asymmetries which could otherwise affect measurements of
fundamental asymmetries.

2.4 Tracking Detectors

The tracking system employs three different detector types to measure the trajectory
of charged particles and to estimate their momentum from the bending caused by the
magnet. Each of the three sub-detectors is new and was developed specifically for the
conditions during Run 3 and beyond.

6



2.4 Tracking Detectors

2.4.1 Vertex Locator

The VELO is the most vital sub-detector for the LHCb experiment. It detects particles
created in or close to the beam collision region and is used to locate the primary 𝑝𝑝
collision vertices and displaced vertices from particle decays. Furthermore, it seeds
the reconstruction of tracks in other sub-detectors. The closer the detector is to the
interaction region, the better the vertex resolution. The VELO modules are therefore
located 5.1 mm from the beam, only separated from it by the RF boxes located 3.5 mm
from the beamline. The RF boxes, made of 150 µm thin aluminium foil, are corrugated
enclosures providing the necessary barrier between the beam vacuum and the VELO
vacuum and protect the sensors from electromagnetic induction caused by the beam.
The VELO consists of 52 L-shaped modules, 26 on each side of the beamline, forming
a movable half, as shown in Figure 2.4. The module positions are chosen such that
particles within LHCb’s acceptance traverse at least four modules. Until the LHC
declares stable beams, the two halves are separated by about 50 mm, which is called
open VELO. During stable beams, the VELO is moved into its closed position, depicted
in Figure 2.4 on the right.

Each VELO module is composed of four sensors with three VeloPix [16] chips. The
chips have an active matrix of 256 × 256 pixels with a size of 55 µm × 55 µm [15]. The
entire VELO thus totals almost 41 million channels. Pixels are clustered into hits on
the readout cards during data acquisition as explained in Section 2.6. The reached hit
resolution is about 12.5 µm in the 𝑥 and 𝑦 coordinate [17], which allows the most precise
track segment reconstruction of LHCb. However, the position close to the beam with
the necessity for the RF foil has the downside of adding a significant material budget
in the path of the particles, amounting to a radiation length fraction of 𝑥/𝑋0 ≃ 21.3%,

Figure 2.4: The left image shows the schematic top view of the VELO’s 𝑥-𝑧 plane at 𝑦 = 0
with an illustration of the luminous region and the nominal pseudorapidity acceptance in the
two halves. On the right, two modules with the nominal layout of the sensors around the 𝑧
axis in the closed configuration are shown with half of the ASICs facing upstream (grey)
and the other half facing downstream (blue) [15].

7



2 The LHCb Experiment

half of which is attributed to the RF foil [18].

2.4.2 Upstream Tracker

The UT is the second tracking detector particles encounter. It is located around 𝑧 =
2485 mm right in front of the magnet and thus already contains a significant magnetic
field, which makes the UT interesting for fast track reconstruction approaches exploiting
the momentum estimated from the combination of VELO and UT measurements (see
Sections 3.2.1 and 5.3.2). The four layers of the UT are illustrated in Figure 2.5. The
UT’s silicon micro-strip sensors are shown as coloured boxes in the figure and sit on
vertical staves. They vary in length and pitches, matching the expected occupancy, i.e.
a decreasing particle flux away from the centre around the beam pipe hole. The green
sensors reach a hit resolution of about 55 µm, while the sensors in the centre resolve
hits at around 27 µm [19]. The layers are arranged in a 𝑥-𝑢-𝑣-𝑥 layout, i.e. the first
and the last layer only measure the 𝑥 coordinate of a track, while the two layers in
the middle measure a 𝑦 component with their stereo angle of ±5∘. Because the UT is
positioned between the VELO and the SciFi tracker, where scattering of the particles
can severely obstruct their reconstruction, it is essential to the track reconstruction that
the material budget is kept low. This was considered in the detector design, and the
average radiation length fraction in the pseudorapidity region 2 < 𝜂 < 5 is relatively

Figure 2.5: Sketch of the four UT silicon planes [19]. Different colours mark sensors with
different pitches and lengths: pink sensors in the centre have a pitch of 93.5 µm at a length
of roughly 5 cm, yellow sensors have the same pitch, but twice the length and green sensors
have a pitch of 187.5 µm and are also twice as long the sensors in the centre.
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2.4 Tracking Detectors

small with 𝑥/𝑋0 ≃ 7% [15].
The UT was the last sub-detector to be installed, completed in March 2023 and

therefore too late to include its measurements for the data studies performed in this
thesis.

2.4.3 Scintillating Fibre Tracker

The SciFi tracker is the largest track reconstruction sub-detector in LHCb and the only
one located downstream of the magnet. It thus complements trajectories starting in
the VELO or UT and provides measurements to best estimate a particle’s momentum.
The plastic-scintillator fibres are arranged in multi-layer fibre mats with silicon photo-
multipliers (SiPM) at their outer edge to detect the scintillation light. The mats have
a length of about 2.4 m with a mirror glued to their end at 𝑦 = 0 to reflect light back
to the SiPMs. There are twelve detection layers distributed over three stations (T1,
T2, T3), i.e. four layers each in an 𝑥-𝑢-𝑣-𝑥 configuration, as shown in Figure 2.6. The
𝑥 layers have their fibres oriented vertically, and the stereo layers, 𝑢 and 𝑣, are rotated
by ±5∘ to be able to measure the 𝑦 component of a track. To ensure the mechanical
stability of the SciFi tracker, the mats are arranged in modules hinged into the support
structure such that gravity pulls longitudinally on them. This introduces a tilt with
respect to the 𝑦 axis of around 0.2∘ in LHCb’s global coordinate system used for track
reconstruction.

Figure 2.6: Front and side view of the SciFi tracker [15]. The acceptance ranges from around
20 mm from the edge of the beampipe to ±3186 mm horizontally in the last station, and
±2425 mm vertically in all stations.
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2 The LHCb Experiment

Figure 2.7: Illustration of different cluster types created by the SciFi FPGA clustering algorithm
[15].

Gaps between fibre mats and modules lead to a total geometric inefficiency of
approximately 1.7% per layer. Excluding these gaps, the SciFi detector’s single-hit
efficiency is estimated to be larger than 99% with a single-hit position resolution of
(64 ± 16)µm for perpendicular tracks estimated during test-beam campaigns [15]. The
fibre and readout-channel density and thus the granularity is the same across the entire
sub-detector. A particle passing through all SciFi layers traverses material worth at
least 𝑥/𝑋0 = 12.4% radiation length fraction.

The SciFi hits used for the particle tracking are created from clustered SiPM
channels. The clustering is performed in the SciFi tracker’s front-end electronics on a
field-programmable gate array (FPGA) [19]. The FPGA algorithm groups neighbouring
SiPM channels into clusters of different sizes according to three comparator thresholds,
as shown in Figure 2.7. The cluster size eventually determines the uncertainty on
the hit position used by the track reconstruction and currently ranges from 50 µm to
290 µm. The hit position is calculated from a weighted average of all participating
channels in the cluster. The data bandwidth limits the number of clusters the FPGAs
can send per event. This sets an upper bound of 45568 hits the SciFi tracker can
provide for the track reconstruction per event. This upper bound is hardly ever reached
in 𝑝𝑝 collisions1, yet it poses a measurable restriction for ion-ion collisions.

2.5 Particle Identification

The information from the particle identification system is crucial to reduce the com-
binatorial background when searching for specific particle decays. It furthermore
allows controlling the rates of particle misidentification in data analyses. Charged
particle identification relies on tracks reconstructed using the system presented in the
previous sections. Three technologies are employed: Ring-imaging Cherenkov detectors
[20], calorimeters [20, 21], and multi-wire proportional chambers interleaved with iron
absorbers for muon detection [20, 22].

1Under nominal Run 3 conditions the average number of SciFi hits is around 6000.
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RICH Two RICH detectors are used in LHCb, providing charged particle discrimina-
tion between pions, kaons and protons in the 2.6 − 100 GeV/𝑐 momentum range. Both
detectors are filled with fluorocarbon gaseous radiators but with different refractive
indexes. The Cherenkov photons produced by a charged particle traversing the radiator
are reflected by mirrors focusing the ring images on photon detector planes. From
the ring images, the opening angle under which the Cherenkov light was emitted is
reconstructed, which depends on the momentum, the refractive index of the gas, and
the particle’s mass. Thus, a momentum known from track reconstruction in combina-
tion with a precisely estimated trajectory through the radiator allows distinguishing
particles with different masses by their Cherenkov light’s angle.

RICH1 is located upstream of the magnet, between the VELO and the UT. It has
a radiator with a higher refractive index than RICH2, targeting the identification of
particles with momenta below 60 GeV/𝑐. Below 5 GeV/𝑐, RICH1 can also be utilised
for electron and muon identification. With its location amidst the tracking system,
RICH1’s material budget must be as low as possible. The total radiation length fraction
amounts to 𝑥/𝑋0 ≃ 4.8%, dominated by the radiator gas and the mirrors. This amount
has little impact on the track reconstruction but does not include the beampipe within
RICH1. Yet, the beampipe has a conic shape with an edge at the RICH1 exit window
[23], which obstructs the track reconstruction in this region as is shown in Section 5.3.1.

RICH2 is positioned between the SciFi tracker and the ECAL. It is designed to
provide PID for higher momentum particles, between 15 GeV/𝑐 and 100 GeV/𝑐, using
a radiator with a lower refractive index than RICH1. Unlike RICH1, RICH2 does
not cover LHCb’s whole acceptance, but only angles up to 120 mrad in the 𝑥-𝑧 plane
because particles in the targeted momentum range are produced predominantly at low
angles and are hardly bent by the magnet. The material’s radiation length fraction of
𝑥/𝑋0 ≃ 12.4% is irrelevant for the track reconstruction because of RICH2’s location
downstream of the tracking system. For the matching between tracks and calorimeter
clusters, however, the material adds uncertainty when extrapolating the track into the
ECAL.

Calorimeters The ECAL is located downstream of RICH2 and is used to identify
electrons and photons. It comprises cells with alternating layers of scintillator tiles
and lead absorbers to contain and measure the energy and position of electromagnetic
showers. In addition to characteristic shower shapes, electrons are distinguished from
photons by matching their ECAL clusters to reconstructed tracks.

Behind the ECAL, the HCAL collects the energy from hadronic showers using
alternating layers of scintillator tiles and iron absorbers. Because hadrons are identified
using the RICH system, the HCAL was mainly used by the hardware triggers during
Runs 1 and 2. For Run 3, its role is reduced to shielding the muon stations by stopping
hadrons and providing additional PID information only if necessary.
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Muon Stations The four muon stations are the detector parts farthest from the
interaction point. The first muon station, M2, is located directly downstream of the
HCAL and is followed by alternating iron absorbers and stations M3-M5. The large
amount of iron stops most particles such that only muons leave signals in all multi-wire
proportional chambers. These signals are matched to the trajectory of reconstructed
tracks to identify the muons.

2.6 Data Acquisition System and Data Centre

The LHCb data acquisition (DAQ) system, illustrated in Figure 2.8, consists of event
builder (EB) servers with AMD EPYC 7502 32-core CPUs hosting custom-made FPGA
detector read-out boards (TELL40) and NVIDIA RTX A5000 graphics processing units
(GPU) on the Peripheral Component Interconnect Express (PCIe) interface. Because
LHCb follows a real-time analysis strategy for Run 3, the DAQ design is trigger-less,
i.e. the detector is read out at the nominal LHC bunch-crossing frequency of 40 MHz.

Data is transported via optical fibres from the detector front-end electronics in the
cavern through a service shaft up to the data centre on the surface (see Figure 2.9)
where it is received by the EBs’ TELL40s1. Each TELL40 only receives data from
a single sub-detector and thus has a specific firmware decoding the data, ordering it
according to the bunch crossings, building a sub-detector-specific event package and
sending it to the network interconnecting the EB servers. To use the TELL40s efficiently,
parts of the event data reconstruction for the sub-detectors can be implemented in the
FPGA firmware. This is done for the VELO, the pixel data of which are clustered
into hits on the TELL40s, as described in Ref. [24]. One EB node collects all sub-

1The ”40” refers to the detector read-out at 40 MHz. Its predecessor was the TELL1, which readout
the detector at 1 MHz.

Figure 2.8: Overview of the LHCb data acquisition system [15].
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Figure 2.9: Sketch of the LHCb site at Point 8. The readout system is located in the data centre
connected with the front-end electronics in the cavern underground through long-distance
optical fibres in the PM85 shaft [15].

detector event packages, builds a full event out of them, and stores the full-event
packages in a shared memory buffer. From there, the software trigger application
Allen (see Section 2.7) performs a partial event reconstruction and selection, outlined
in Section 3.2.1, using the GPUs hosted in the EB servers. Events selected by Allen
are sent to the buffer storage network where they are kept temporarily until accessed
and processed by the alignment and the trigger application Moore, which performs
the full event reconstruction and selection, summarised in Section 3.2.2, concluding
the real-time analysis of the event. The computing farm running Moore, also called
event-filter farm, currently consists of more than 3000 general-purpose CPU servers of
different kinds and processing power. The farm can be viewed as a computing cloud,
with all nodes running the same operating system1 and no relevant local storage such
that each node can be easily replaced. A replacement of the oldest nodes might be
reasonable in the future as they have bad performance-to-energy-consumption ratios.

Data processed by the computing farm is subsequently sent to permanent storage,
e.g. the Worldwide LHC Computing Grid.

2.7 LHCb Software Framework

Most of the LHCb software framework was rewritten and updated to accommodate
the changes necessary to run the offline-quality event reconstruction in real-time in the
trigger. This goes along with unifying the code base of the trigger and the offline event
reconstruction such that offline processing merely becomes a special configuration of
the underlying algorithms. The dominant programming language for the back-end

1Still CentOS Linux 7, as of writing this thesis.
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code is modern C++. The configuration of the components is done in Python. The
code targeting CPUs is built on top of the Gaudi framework [25], which is actively
developed and used by the LHCb and ATLAS collaborations. The GPU code base is
implemented in the cross-architecture Allen framework [26], which can be compiled
for execution on CPUs and GPUs. This allows an integration of Allen into the Gaudi
framework.

LHCb’s real-time analysis strategy risks data loss if the software trigger implemen-
tation is erroneous. A code review system, including automated unit and integration
tests, is in place to avoid breaking the functionality of the latest software stack [27].
The system is maintained by a team of LHCb developers, in which the author took
an active role. The software stack is released and deployed regularly to ensure the
reproducibility of physics results.

The LHCb code base is split into several projects, which are versioned and managed
independently using the git version control system. The code is publically available in
Ref. [28] and distributed under the GNU General Public License v3, except for the
code of the Allen project which uses the Apache License v2. The projects relevant to
the work presented in this thesis are:

Gauss and Boole To tune and validate reconstruction and selection algorithms,
Monte Carlo samples are produced using the Gauss application [29], which
interfaces with Pythia 8 and EvtGen for generating the physics processes, and
Geant4 for the transport through the LHCb detector. The output of Gauss is
processed by Boole to simulate the detector response by converting simulated
detector hits into the same format created by the DAQ. Boole, therefore, simulates
the electronic response, including noise, cross-talk and dead channels. For the
track reconstruction, the effect of radiation damage to the tracking system
simulated by Boole is most relevant for efficiency studies. The simulation versions
used in this work are given in the text where applicable.

LHCb The LHCb software project contains LHCb-custom implementations of
data structures and provides additional framework utilities. In particular high-
performance data structures developed and used in this thesis are implemented
there. LHCb v54r3 or later is used.

Rec Code related to the event reconstruction is versioned in the Rec software
project. It includes the components for the track reconstruction, reconstruction
in the calorimeters, RICH detectors and muon stations, and monitoring of these.
Furthermore, the event and decay selections code is located in this repository.
Rec v35r3 or later is used.

Allen The Allen project is a standalone GPU-trigger framework which can also
be run within Gaudi to fit into the LHCb software framework. It contains
components for the partial event reconstruction and coarse selections. Allen v3r3
or later is used.

Moore The Moore package is used to configure and run the trigger application.
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This includes everything from configuration of the detector hit decoding, track
reconstruction and PID to event and decay selections. It is mostly Python-based,
easing the development of trigger selections (trigger lines) and defining the data
flow. Moore v54r3 or later is used.
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3 Analysing LHCb’s Data in Real-time

This chapter gives an overview of LHCb’s real-time analysis trigger deployed for Run 3
of the LHC. The developments are organised by the Real-time Analysis Project (RTA),
in which the author of this thesis took an active developer role with contributions to
many of the necessary software components. The main focus, however, lies on HLT2
track reconstruction. This chapter intends to give merely enough information to put
the following chapters into a broader context. The reader can follow the references in
the next sections for more detailed information. The bigger picture and perspective
are informatively drawn in Ref. [30].

3.1 The Need for a Real-time Analysis Trigger

When talking about real-time applications, it is generally good practice to define
how the term is used in the application context. For LHCb, real-time is the whole
period between a particle-bunch crossing with an inelastic collision and writing the
data recorded by the detector to a permanent storage space. This can be a matter of
days, a time span most people would not immediately identify as real-time. However,
the keyword here is permanent storage. The amount of data produced by each of
the four large high-energy particle detectors at the LHC is far too enormous to be
transported to a remote data centre economically, let alone persisting it on disk or
tape. For example, a typical event at LHCb under Run 3 conditions results in around
100 kB of data, which at a 𝑝𝑝-collision rate of 40 MHz gives a data rate of 4 TB/s.
In 2017, the LHC provided stable beams for 1634 hours [31], so assuming the same
availability for Run 3, the amount of data adds up to 18 EB per year. The other three
large detectors, covering almost the entire solid angle, produce even more recordable
signals, pushing the sum to 𝒪(100 EB), which is comparable to the monthly global
internet traffic [32] and not feasible to store permanently. To cope with this data
surge, all large high-energy physics experiments use sophisticated trigger systems that
filter out uninteresting collision events. If the processes the experiment wishes to study
are sufficiently rare, e.g. with a cross-section smaller than 10 nb such as top-quark
or Higgs-boson production [33], triggers implemented in hardware performing a fast
but coarse classification of the collision event are sufficient to reduce the amount of
data to a manageable level and with a high selection efficiency. The processes LHCb
was designed to study, i.e. production and decays of hadrons containing 𝑏 or 𝑐 quarks,
have cross-sections of several millibarns in 𝑝𝑝 collision at

√
𝑠 = 13.6 TeV. As shown

in Figure 3.1, with the foreseen instantaneous luminosity of ℒ = 2 × 1033 cm−2s−1 (or
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Figure 3.1: Production rates of main particles under study by LHCb and ATLAS/CMS [34].

ℒ = 2 nb−1s−1) provided to LHCb during Run 3, this means that at least every tenth
bunch crossing produces an event with a particle decay LHCb would like to study.
This comes with two issues for the conventional hardware triggers LHCb employed
during Runs 1 and 2. First, their output rate is limited to 1 MHz at which the LHCb
detector could be read out. This implies that some interesting decays do not fit into
the output bandwidth even with perfect hardware-trigger signal efficiency. This was
already observed during Run 2 for hadronic final states from heavy flavour decays as
shown in Figure 3.2. Moreover, the higher instantaneous luminosity planned for Run 3
also leads to more combinatorial background. Therefore, the selection thresholds, e.g.
for transverse momentum, used in a hardware trigger, must be higher, which might
even reduce the signal yield for hadronic final states despite higher production rates.
For the many statistically limited analyses at LHCb [36], this poses a serious problem
because an increase in luminosity no longer translates to an increase in signal statistics
if an inclusive trigger is used. Second, even if all interesting decays could be selected
and output by the hardware trigger, the amount of storage space needed to persist all
their events is beyond what is affordable. Hence, triggering at LHCb is figuratively
coined as finding a specific needle in a haystack of needles.

The solution to this problem is to remove the inefficient hardware trigger, read out
the detector at the LHC’s bunch crossing frequency and perform the offline-quality
event reconstruction on the incoming data directly, i.e. in real-time, and only select
and store the reconstructed decay trees the data analysts want to study. The trigger
does not anymore select whole collision events. Instead, only the interesting bit of
the collision is carved out, solving the bandwidth and storage problem by drastically
reducing the average size of data persisted per event [37]. Performing the offline-
quality event reconstruction followed by a fine-grained selection is only possible using a
software-based trigger system with a real-time aligned and calibrated detector. Passing
the amounts of data mentioned above through such a system is challenging. It requires
the reconstruction software to be fast, precise and efficient simultaneously, which is
only possible if the detector is aligned and calibrated while taking data. To tackle this
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𝐵0 → 𝜋+𝜋−

𝐵0
𝑠 → 𝜙(→ 𝐾−𝐾+)𝛾

𝐵0
𝑠 → 𝜓(2𝑆)(→ 𝜇+𝜇−)𝜙(→ 𝐾−𝐾+)

𝐵0 → 𝐷−
𝑠 (→ 𝐾+𝐾−𝜋−)𝐾+

Figure 3.2: Signal yield for several interesting final states of LHCb’s Run 1 and Run 2 trigger,
relative to the yield at the design luminosity, in dependence on the instantaneous luminosity
(adapted from [35]). For hadronic final states (black squares, red upward triangles and empty
blue circles) the hardware trigger scheme limits the trigger yield. Only final states with
muons (green downward triangles) can be efficiently triggered at higher luminosities.

challenge, the high-level trigger (HLT) is split into two parts separated by a storage
buffer, as described in the next section, which allows for stretching the real-time interval
up to days in which the events can be analysed automatically before writing their
interesting parts to permanent storage.

3.2 Data in Two Steps

The purely software-based trigger developed and commissioned for LHCb in Run 3 is
illustrated in Figure 3.3. The detector data coming from the sub-detectors’ front-end
electronics is transmitted to the data centre (see Section 2.6), where it is read out at
the nominal LHC bunch-crossing frequency, i.e. every 25 ns, followed by the events
being partially reconstructed and selected using the High-level Trigger One (HLT1)
software running on GPUs. Because not every bunch crossing results in an inelastic
𝑝𝑝 collision and not all 25 ns bunches are filled, in practice, HLT1 needs to process
events at a rate of about 30 MHz. The HLT1 selections reduce the number of events
by roughly a factor of 30, and the raw detector data, together with trigger decision
reports, are written to the buffer storage network. The reduction factor depends on the
size of the buffer and the amount of data the second trigger stage can process, i.e. how
fast the buffer can be emptied again. Parts of the HLT1 data are specifically selected
for the detector alignment and calibration performed as soon as a sufficient amount of
data is collected. In the subsequent data-taking runs, HLT1 can already profit from
an aligned and calibrated detector, which is why the term real-time alignment is used.
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Figure 3.3: Data flow inside LHCb’s purely software-based trigger performing a real-time
analysis to efficiently select particle decays of interest [38]. The bandwidth numbers and
percentages in the right part of the figure are only examples and do not necessarily reflect
the actual stream distribution.

The High-level Trigger Two (HLT2) also uses the same alignment when processing the
output of HLT1 from the buffer. HLT2 performs the full event reconstruction on CPUs
and selects particle decay candidates according to many trigger lines implemented by
the data analysts who want to study these decays. The amount of data must have been
reduced to 10 GB/s at this point, a bandwidth that can be written to state-of-the-art
permanent storage systems. This is done in three streams. Some data is collected
for data-driven calibration, such as evaluating tracking and particle-identification
efficiencies [39, 40] needed by data analysts. A substantial part of the bandwidth
is used to store entire events, e.g. selected by an inclusive topological trigger. Yet,
these and the offline-calibration data undergo a post-processing step to save disk space
further. Most events are immediately available after HLT2 for further physics analyses
(turbo events), which constitutes the actual real-timeliness of the data.

3.2.1 High-level Trigger One

The first trigger stage has a strict requirement on the time it takes to reconstruct the
incoming raw detector data partially: it must process 30 million events per second,
on average. Two solutions were developed before the start of Run 3. The first is
based on the existing reconstruction code targeting the x86 CPU architecture; the
second is based on the new, standalone trigger application Allen running on GPUs. A
comparison between the two solutions can be found in Ref. [41]; both are viable for
HLT1 but only the GPU solution was commissioned for Run 3.

Allen’s partial event reconstruction steps are shown in Figure 3.4. The raw event
data is transferred from the detector to LHCb’s data centre, packed by event builder
nodes and processed by GPUs hosted in the same nodes. Prior to any reconstruction, a
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Figure 3.4: HLT1 reconstruction flow [42]. Note that the VELO decoding and clustering on
GPU are optional. By default, they are performed upfront on the TELL40s when the event
is built.

global event cut (GEC) is applied1, rejecting around 10% of incoming minimum bias2

events due to their high occupancy3 in the tracking detectors. This is motivated by
high occupancy events taking a disproportionate amount of resources to be processed,
while the reconstruction quality is significantly lower than for other events [43]. For
events passing the GEC, a Search by Triplet algorithm [44] finds hits that form straight
lines in the VELO detector and fits the corresponding trajectory. The tracks in the
VELO predominantly originate directly from the inelastic 𝑝𝑝 collision and are thus used
to reconstruct the primary vertices [45]. Additionally, the straight tracks are extended
to the UT detector where decoded UT hits are added to the track using the Compass
algorithm [46]. Due to the magnetic field reaching into the UT, these tracks feature a
first estimate of their charge and momentum, which is used to extrapolate them into
the SciFi detector using parameterisations of the magnetic field. The extrapolation and
SciFi-hit finding are performed by the HLT1 Forward tracking [42], which focuses on
the reconstruction of tracks with momenta typical for particles created in heavy-flavour
decays, i.e. 𝑝T > 500 MeV/𝑐 and 𝑝 > 3 GeV/𝑐. For the first data-taking period in 2022,
an HLT1 Forward tracking without dependency on the UT detector was also developed,
which, however, is restricted to finding tracks with 𝑝T > 1 GeV/𝑐 and 𝑝 > 5 GeV/𝑐 due
to the computational performance loss of not having initial momentum information

1This is at least still the case as of writing this thesis. The HLT1 GEC will probably be removed
soon as enough computing resources are available.

2Minimum bias refers to the exclusion of events without a visible 𝑝𝑝 collision. In LHCb, the term
is usually used in the context of simulation in which invisible collisions are not recorded to save
resources.

3This is estimated based on the size of the SciFi’s and UT’s raw data.
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from the UT.1 Tracks found by the Forward tracking have a momentum resolution
of slightly better than 1%. The momentum estimate is used to improve the track
parameter estimates of the track segment inside the VELO detector by using a Kalman
filter with a parameterised noise matrix similar to what is described in Ref. [48]. The
Kalman filter is not applied to the full trajectory to save processing time and because
it was found that fitting the VELO segment is sufficient to allow efficient selections
based on vertex information. VELO-(UT)-SciFi tracks are further extrapolated to the
Muon stations, where they are matched to hits to identify muons [49]. Electrons are
identified by matching their tracks to ECAL cell clusters and potentially correcting
their momentum by recovering bremsstrahlung photons. Before a set of trigger lines
selects events, pairs of fitted VELO track segments are used to find displaced secondary
vertices, a feature of heavy-flavour decays.

The purpose of the HLT1 trigger selection is to reduce the event rate to a level
that can be processed by HLT2. The great advantage compared to a hardware trigger
is that reconstructed objects combine information from the entire tracking system
and parts of the PID system, which allows selections specifically targeting the decay
topologies of heavy-flavour decays with cuts the data analysts would also apply offline.
Furthermore, trigger selections can be quickly adapted to changing needs, in principle
even during data taking. Typical selections require a secondary vertex significantly
displaced from any primary vertex and high-momentum tracks which do not point
back to any primary vertex. Inclusive selections use one- and two-track neural network
classifiers to improve the selection efficiency [26, 50].

The HLT1 reconstruction is performed on the EB servers in the data centre (see
Section 2.6), where a single GPU processes roughly 120 thousand events per second.
The raw detector data of the selected events and reports about which HLT1 trigger
line fired are written to the buffer.

3.2.2 High-level Trigger Two

The second high-level trigger stage runs asynchronously on server CPUs in the data
centre’s event-filter farm (see Section 2.6). Asynchronously means that the event
processing does not necessarily start immediately after HLT1 has written selected
events to the buffer and the detector has been calibrated and aligned. The buffer size
of around 30 PB was chosen such that HLT1 can take data for up to 80 hours at an
output rate of 1 MHz before the storage space is filled to a critical level [15]. The
processing delay is a crucial data quality safety measure as data not being selected
by HLT2 is lost forever. Therefore, only a tiny fraction of the data on the buffer is

1This momentum restriction triggered the development of a standalone SciFi reconstruction on GPU
following the recipe of the corresponding HLT2 algorithm. Then, analogously to what is done in
HLT2, the SciFi tracks are matched to tracks found in the VELO to reconstruct the same tracks as
the Forward tracking [47]. Both options are being commissioned for Run 3 and will likely run in
the same arrangement as in the fast reconstruction discussed in Section 4.5.
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reconstructed directly, and key quantities like spatial hit distributions in the tracking
system, number of reconstructed tracks, and invariant mass spectra are monitored in
the control room. If the data and reconstruction quality in the monitoring is satisfying,
HLT2 starts to process the respective runs1. Nevertheless, the event throughput of
HLT2 should roughly match the output rate of HLT1 not to risk filling up the buffer
and loose data when the LHC delivers collisions during a long fill.

The offline-quality full-event reconstruction consists of three main components:
charged particle track reconstruction, calorimeter reconstruction, and particle identi-
fication. The reconstruction of charged particles is described in Section 4.5.1. From
the calorimeter system, only the ECAL is reconstructed for event selection purposes;
the HCAL has no dedicated use case in the real-time software trigger and is mostly
used for monitoring and improving PID performance. ECAL clusters are formed from
a 3 × 3 block of readout cells around an energy peak using a graph-based clustering
algorithm [51]. The clusters are classified using multivariate algorithms trained on
the shower shapes and individual ECAL cell energies to distinguish single-photon
clusters from those containing multiple photons. Electron clusters are identified by
extrapolating reconstructed tracks to the ECAL, where matching energy depositions
are searched. Some effort was put into optimising the ECAL algorithms for Run 3
regarding their physics and computational performance, documented in Ref. [15]. Iden-
tifying electrons, muons, pions, kaons, and protons in HLT2 is done by combining
information from the two RICH detectors, the ECAL and the muon stations. The
identification relies on reconstructed charged particle trajectory information for all
particle species. Similarly to HLT1, muons are identified by extrapolating tracks into
the muon stations and searching for hits matching the track. Because HLT2 is less
constrained by the processing time, a multivariate classifier is employed additionally
to optimise muon identification performance [49]. Identification of pions, kaons and
protons mostly relies on matching Cherenkov-light rings to reconstructed tracks as
described in Refs. [52, 53]. The information from all sub-detectors is combined into
global multivariate PID classifiers, which are used in the trigger selections to reduce
background from misidentification of particles.

The reconstructed event information is used by 𝒪(1000) trigger lines, written by
the data analysts to select decays of interest exclusively. This is a crucial part of the
real-time analysis strategy to cope with the high signal rates and large amounts of
data recorded by LHCb. Most selections follow the Turbo analysis concept (see Turbo
in Figure 3.3), which allows full flexibility on the amount of event information that is
stored, from merely two tracks and a vertex for a two-body decay to all reconstructed
objects in the event if necessary. This increases the rate of events that can be stored by
decreasing the data volume persisted for each event significantly [37, 54, 55]. Examples
of trigger lines using this reduced persistency model are given in Section 6.5.

1A run here means a short data-taking period of up to one hour with a unique run number. The
shift leader in the control room either starts a run manually, e.g. when conditions change, or the
experiment control software does it automatically.
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Figure 3.5: Breakdown of each component’s HLT2 event throughput using the fast reconstruc-
tion sequence (cf. Section 4.5).

The selections are the single most time-consuming part of HLT2, as shown in
Figure 3.5, measured on a reference node representative for the servers available in
the event-filter farm (see Section 4.4.2 for specifics of the computational performance
measurements). Developments to improve the throughput of the selections have
been made [56, 57], using the performance optimisation techniques summarised in
Section 3.3. However, they are still being integrated into the HLT2 software as of
writing this thesis. They are needed because, with the current HLT2 throughput of
around 235 events per second, and computing node, more than 4200 servers with a
performance equivalent to the reference node would be needed to process the design
output rate of HLT1. Currently, the event-filter farm consists of around 2400 reference-
node equivalents. The lack of computational performance in the selections conversely
highlights the tremendous achievements in improving the other components’ throughput.
In particular, the goal for the track reconstruction was to reach 500 evts/s to fit into
the computing budget of HLT2 and thus was optimised extensively.

3.2.3 Online Alignment and Calibration

A crucial ingredient of the real-time analysis trigger paradigm is the online alignment
and calibration of the detector to ensure that event selections in HLT1 and particle
decay selections in HLT2 can be performed with high signal efficiency. The alignment
proceeds in a sequence, with the VELO aligned first, followed by the UT and the SciFi
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Figure 3.6: Schematic view of the real-time alignment and calibration procedure starting at
the beginning of each LHC fill [15].

tracker, the RICH mirror alignment, and finally the muon detector alignment as shown
in Figure 3.6 [15].

The alignment constants for the tracking detectors are determined by minimising
the 𝜒2 of reconstructed tracks with respect to the degrees of freedom of each alignable
detector element, i.e. translations and rotations in each spatial dimension [58]. The
VELO alignment is performed at the start of each LHC fill after the VELO was moved
from its safe open position to its closed data-taking position close to the beam. It
requires a sample of tracks crossing all VELO modules at any azimuthal angle, which
is collected in a few seconds after the start of the data taking. The alignment quality is
checked by comparing primary vertex positions reconstructed with tracks from the left
and right VELO halves, respectively. The UT and the SciFi tracker are aligned next,
relying on reconstructed tracks traversing the entire tracking system. Because the SciFi
stations are located downstream of the magnet, aligning them is essential to achieve
high track-momentum resolution. The alignment can be improved by constraining the
kinematics of tracks to the mass of their mother particle. HLT1 selects 𝐷0 → 𝐾−𝜋+

and 𝐽/𝜓→ 𝜇+𝜇− decays for this purpose, large samples of which can be collected within
minutes of data taking following the VELO alignment. The best decay to improve the
alignment is 𝑍→ 𝜇+𝜇− as the muon tracks have high momentum and thus suffer less
from multiple scattering. Recording a sufficiently large sample containing this decay,
however, takes much longer.

The RICH mirror alignment requires a sample of well-reconstructed tracks to compare
the detected photons’ Cherenkov angles with the expected angles inferred from the
tracks’ traversal through the gas. The sample tracks need to be distributed equally
among the different RICH1 and RICH2 mirrors, i.e. sufficiently many tracks in the
peripheral areas of the RICH system must be collected. Consequently, selecting the
RICH alignment samples and aligning the mirrors can take up to hours, which is
unproblematic as HLT1 does not use the RICH system and the buffer stores the events
for HLT2 in the meantime.
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3 Analysing LHCb’s Data in Real-time

The muon station alignment uses muon tracks constrained to the decay 𝐽/𝜓→ 𝜇+𝜇−.
Updates of this alignment are expected to be rare and necessary only at the beginning
of a data-taking period and in case the muon stations were opened.

In addition to the alignment of various detector parts, the ECAL and the RICH
system must be calibrated. The ECAL is fine-calibrated about once a month using
the observed 𝜋0 mass from the decay 𝜋0 → 𝛾𝛾 in each calorimeter cell, and its
photomultiplier tubes’ high-voltages are adjusted after each fill to compensate ageing
effects. The gas radiator refractive index of the RICH is sensitive to temperature and
pressure variations. It is thus calibrated on a per-run basis while the data is stored in
the buffer.

3.3 Tackling the Computational Performance Challenge

Operating a purely software-based trigger system in a large hadron-collider experiment
puts much pressure on the computing resources. It is therefore vital to follow best
practices of high-performance computing, described e.g. in Ref. [59]. Yet most recent
developments in this field can be found in blog posts and conference documentation, e.g.
Refs. [60, 61]. The most fundamental guideline is always that avoiding computations in
the first place is the best performance optimisation. In addition, LHCb aims to follow
the C++ Core Guidelines [62] throughout its software, which include performance
considerations. Beyond that, the computational performance challenge can be tackled
by applying techniques broadly falling into two categories:

Physics considerations can lead to performance optimisations if they allow for avoid-
ing computational work. This might be, for example, a simplified description of
the particle motion in the magnetic field by using parameterisations if their pre-
cision is sufficient. Also, the geometry or objective of the experiment might limit
possible or necessary measurements. The software should not waste resources by
trying to measure a physically impossible, improbable or undesired process. While
this can significantly improve computational performance without drastically
changing the codebase or hardware, it might impact physics performance, and
tradeoffs must be studied.

Hardware exploitation concerns efficient use of available hardware resources. For
the event-filter farm, this means fully utilising the capabilities of modern CPUs
with their multicore architecture, on-chip accelerators, and other CPU features
described below. In general, this may also include accelerators like GPUs and
FPGAs. The physics performance is usually preserved when the computational
performance is improved by more efficient hardware usage. Yet it does not come
for free as deep changes in the codebase are often necessary to interface with
the accelerators, which has staff costs in addition to the potentially expensive
hardware.

26



3.3 Tackling the Computational Performance Challenge

A simplistic example of these two categories is the structure of HLT1. The partial
event reconstruction performed in HLT1 mostly considers high-momentum physics in
the sense that the algorithms are tuned to reconstruct high-momentum tracks and
avoid the work involving reconstructing the low-momentum regime, hence performing
an optimisation from the first category. Running the HLT1 reconstruction on GPUs
belongs to an optimisation of the second category. Details on meeting the computing
challenge in HLT1 can be found in Ref. [43].

More complex examples of the optimisations from the two categories can be found in
HLT2. The following references examples of the first category and describes techniques
belonging to the second category proven helpful for the performance optimisation of
the HLT2 event reconstruction on CPUs.

Optimisations from the first category can be found throughout Section 5.2, where it is
shown that segments of the particle trajectory or track parameters can be approximated
by polynomials instead of numerically solving the equations of motion. Other physics-
motivated optimisations include introducing an artificially increasing granularity of the
SciFi tracker towards its edges where the particle flux is lower (see Section 5.2.5) and
the division of the SciFi tracker into two distinct halves according to the properties of
the magnetic field (see Section 5.2.3).

In the second category, only optimisations available for CPUs are relevant for the
HLT2 track reconstruction. Yet, the concepts often also find applications on other
architectures like GPUs.

A key feature of modern CPUs is their multicore architecture which allows the
execution of several applications in parallel or splitting the workload of a single
application into pieces processed in parallel. LHCb’s Gaudi-based C++ software
framework used to implement the trigger application defines functional algorithm
templates, which model functions with no side effects and return results only depending
on their explicitly declared inputs [63, 64]. This ensures thread safety so the trigger
application can process events in parallel via multi-threading. Each thread manages an
event-local storage space keeping the input and output data of the functional algorithms
and possibly storing temporary algorithm-internal data if requested. This avoids costly
memory (de-)allocations and locks that could otherwise block the execution of other
threads.

Since the multi-threading is handled on the framework level, developers can focus on
more low-level optimisation of the software components. For the track reconstruction,
it was vital to understand and use modern CPU features beyond their multicore
architecture. The logical CPU core running a thread uses multiple processing units,
each dedicated to a single task, such as arithmetic or memory operations. When the
thread executes a specific instruction on one unit, other units can be used to process
other instructions in parallel. This is called pipelining1, is done automatically by the
processor and increases the number of instructions the CPU can process per clock cycle.

1A CPU with this capability is called superscalar.
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It, however, only works efficiently if the pipeline can be filled with enough independent
instructions. The CPU and the compiler reorder1 instructions from the program such
that independent tasks are clustered together, and the entire pipeline is used if possible.
This includes the speculative execution of code branches, e.g. due to an if-statement,
based on the decision of the CPUs branch predictor. The branch predictor follows
static rules to detect simple patterns like the backward jump at the end of a loop but
can also factor in dynamic patterns by saving the history of previous branch outcomes.
If the branch predictor succeeds, the pipeline can be filled with the correct instructions.
If the conditions are not predictable, the speculative execution is harmful because a
pipeline containing the wrong instructions must be flushed and re-filled with the correct
ones, introducing a latency of typically 15-20 CPU cycles that can significantly throttle
the whole program. In that case, the bottleneck can often be resolved by reordering
the code so conditions become transparent for the branch predictor. A well-known
algorithm where this is not possible is binary search. However, binary search can be
implemented such that branches are avoided altogether by predication, i.e. execution
of both branches followed by selecting the correct result. In performance-critical parts
of the event reconstruction, a branchless implementation of binary search [65] is used
to optimise the CPU’s instruction throughput and, consequently, the component’s
speed. To keep the pipeline filled in general, it should be avoided to implement long
interdependent calculations and tight loops with dependencies on calculation results
from the previous iteration.

A more direct way to optimise performance is to use processing units that execute a
single instruction on multiple data (SIMD). Unlike pipelining, this optimisation must
be explicitly used in the implementation2 and is often referred to as vectorisation.
Different instruction sets using the SIMD paradigm are available depending on the CPU
architecture. LHCb’s reconstruction software targets the Advanced Vector Extension 2
(AVX2) instruction set operating on 256-bit SIMD registers, i.e. processing eight single
or four double precision floating point or integer numbers at once, illustrated in Fig-
ure 3.7. The most abundantly used vectorisation library in LHCb is the SIMDWrapper
[66], explicitly developed for LHCb’s needs.

Additionally, the instruction set is extended by fuse-multiply-add operations (FMA),
which combine a multiplication followed by an addition into a single micro-operation.
This yields performance improvements, especially for the evaluation of polynomials
which are heavily used throughout the track reconstruction, e.g. for parameterisations
mentioned above.

However, two other concepts need to be considered for vectorisation to yield significant
performance improvements.

The first concept deals with the fact that a significant bottleneck for CPU calculations
is the speed with which data in the memory can be accessed. All modern CPUs,

1This is called out-of-order execution.
2Under certain circumstances, the compiler can also auto-vectorise code. However, it is difficult to

rely on that as it depends on the compiler versions and the exact implementation of the program.
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Figure 3.7: Illustration of data processing using SIMD instructions [67].

therefore, embed small but fast memory storage directly on the die to cache data
from the main memory. The CPU cache is organised in multiple hierarchical levels,
each increasingly large but with decreasing access speed as shown in Figure 3.8. For
computations depending on data not already in a register, the CPU checks if the data
is in the L1 cache. This will, for example, be the case if the same data or data close
in memory was already used shortly before. The L1 data cache has a size of usually
32 KiB per core and a latency of around 4 cycles or 1 ns. It thus can hold one thousand
single-precision values, which is too few for the track reconstruction that operates on
several thousands of spatial position measurements, e.g. in the SciFi tracker. The
goal is, therefore, to have most quantities used by the tracking in the L2 cache, which
typically has a size of 256 KiB per core and a latency of around 10 cycles. If the data
is not cached, a cache miss occurs, and the data must be fetched either from a higher
cache level or from main memory, but in any case, with a higher latency. Already
the L3 cache often has a latency of several hundreds of cycles as it is shared between
cores. The latency also occurs for writing values to the cache. Therefore, any memory
operation needs to be handled with care so that it does not become a severe bottleneck.

The CPU fetches and writes data in units of 64 B called a cache line. Hence, for
performance optimisation, it is essential to keep data being processed together also

Figure 3.8: Sketch of the cache hierarchy, including CPU registers and larger storage devices
ordered with increasing storage capacity and access latency from top to bottom [66].
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stored together (temporal and spatial locality), preferably within the same cache line,
but at least within the two fastest cache levels to avoid long latency. This directly
leads to the second concept, which defines the data layout in memory according to the
typical access pattern when using SIMD instructions.

The usual human-friendly data layout used in object-oriented languages like C++

packs data into a structure reflecting a higher-level object, e.g. a detector hit containing
two positions 𝑥 and 𝑦, and a weight 𝑤. Storing many hits in a container, this conceptual
layout is also the layout in memory with each 𝑥-𝑦-𝑤 collection next to each other, called
an Array of Structures (AoS) shown in Figure 3.9. Suppose the program performs
calculations on single hits using these three quantities. In that case, this layout is
cache-efficient following spatial locality because the CPU will likely fetch all three using
one cache line. If, however, many hits are processed, calculations can be optimised
using the SIMD instructions. For this, the AoS layout is suboptimal because multiple
𝑥 values cannot be directly loaded as a block to the SIMD registers to apply a single
instruction. Therefore, a Structure of Arrays (SoA) layout is preferred, illustrated in
Figure 3.9. This memory layout allows directly loading several values into the SIMD
registers using a single cache line.

Related to these two concepts is the choice of the basic data type used for calculations.
For most components in the event reconstruction, it is sufficient to use single precision
data types for calculations.1 This is beneficial for the performance because twice as
many numbers fit in both the cache line and the SIMD register compared to double
precision.

The techniques mentioned above are merely a subset of possible ways to tackle the
computational performance challenge posed by LHCb’s software trigger but are the
ones proven successful during the development. To prove a technique successful, it
is crucial to carefully measure the performance, e.g. in terms of execution time. For
this, code profiling tools must be used to get to the root of an observed performance
bottleneck. Within LHCb, Intel’s VTune Profiler, Callgrind and Linux’s perf are
common and were also used for performance optimisation of the algorithms presented
in this thesis.

1An exception is, for example, the current implementation of the Kalman filter. The calculations
performed with the covariance matrix are slightly unstable using single precision. However, ways
around this, e.g. storing the Cholesky decomposition of the matrix, are being discussed to optimise
the performance.

Figure 3.9: Illustration of the two different memory layouts for data [66].
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The reconstruction of charged particle trajectories is a crucial component in the event
analysis of high-energy physics experiments. It aims to estimate the momentum vectors
of single particles along their path through the experiment’s detectors. To achieve
this, tracking detectors record ionisation signals left by the particles. Specialised
methods then group these signals to form track candidates. This is referred to as track
finding and often uses well-known techniques from pattern recognition, a comprehensive
summary of which can be found in Refs. [68, 69]. Although generalised approaches
for common tracking problems across different experiments are actively developed
[70], the peculiar constraints of LHCb’s high-level trigger, described in Chapter 3,
and the unique geometry makes it, for now, favourable to implement fully custom
solutions. This chapter, therefore, gives an overview of the charged particle trajectory
reconstruction at LHCb and discusses physical processes that govern the particle’s
traversal of the detector.

4.1 On the Importance of Track Reconstruction at LHCb

When LHCb was first proposed [71], its design was largely influenced by the then-
contemporary HERA-B experiment [72], which would operate under similar conditions.
The study of 𝐵 mesons being the main objective of the experiments, it was clear that a
high track finding efficiency, precise track reconstruction combined with excellent vertex
resolution is necessary to trigger on and fully reconstruct the final states of interesting
decays, which often contain more than four particles. To study the 𝐶𝑃 violation in the
decay 𝐵0

𝑠 → 𝐽/𝜓𝜙, for example, two muons from the decay 𝐽/𝜓→ 𝜇+𝜇−, two kaons from
the decay 𝜙→ 𝐾−𝐾+, at least one more particle to tag the flavour of the 𝐵0

𝑠 meson,
and the primary vertex have to be accurately reconstructed. Assuming an average
track reconstruction efficiency of 90% for the daughters of 𝐵0

𝑠 → 𝐽/𝜓𝜙 and 75% for a
soft kaon used for tagging, one out of two decays are not fully reconstructed on average,
which thus significantly lowers the statistics of an already statistically limited study [73].
Reconstruction can be challenging because large fractions of the final state particles
have total momenta smaller than 10 GeV/c and transverse momenta well below 2 GeV/c.
In this lower momentum regime, multiple scattering in the detector material becomes
an issue, making particularly robust track reconstruction algorithms necessary. At first
glance, a tracking system with many stations and layers eases the track finding because
the more measurements constrain the trajectory, the better it can be distinguished from
random signal combinations. This can help find low-momentum tracks particularly as
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they typically need more measurements to constrain their parameters. However, the
lesson learnt from HERA-B was that large radiation and nuclear interaction lengths
could severely obstruct the event reconstruction in a crowded hadronic environment,
such as collisions at the LHC [74]. The more detector material there is, the more final
state particles interact with the material, either altering their trajectory or stopping
them in a hadronic interaction (see also Section 4.2.1), which produces secondary
particles, complicates the event reconstruction and diminishes the available statistics.
This is why the initial LHCb design was re-optimised by reducing the material budget
of the tracking system [23] to a minimal amount necessary and still achieving high
track reconstruction efficiency by focussing on the implementation of efficient track
reconstruction algorithms. But also in LHCb’s Run 3 design, still 13% of the kaons are
lost due to hadronic interactions before reaching the end of the tracking system [75],
additionally penalising the decay-reconstruction yield. Then, with LHCb’s real-time
analysis strategy, the track reconstruction does not only need to be robust and efficient
in a light-weight detector, but also the computing time of the algorithms becomes more
crucial than ever as track reconstruction always posed one of the most time-consuming
components of the event reconstruction.

4.2 Passage Through the Tracking System

Before diving deeper into algorithmic track reconstruction of charged particles at LHCb,
it is useful to understand how particles interact with the tracking system itself.

4.2.1 Material Effects

Although one of LHCb’s design objectives is to keep its material budget small, any
matter that is used to detect charged particles still needs to interact with them via
ionisation or atomic excitation, i.e. the particle transfers a small amount of energy
to the detector material’s electrons. For track reconstruction, it is important to note
that ionisation does not significantly change the momentum direction of the particle if
it is much heavier than an electron. The amount of energy deposited in the detector
material depends on the particle’s charge and momentum and the material’s properties.
It is described by the Bethe equation, which has its minimum close to the lower end of
the momentum range observed by LHCb at 1 GeV/𝑐 and slowly rises towards higher
momenta [76]. Assuming a minimum-ionising particle1 traversing ten sensors of the
VELO detector or 2 mm of silicon, an energy of approximately 1 MeV is lost. For track
finding, energy losses of 𝒪(1 MeV) are negligible because the effect of multiple elastic
Coulomb scatterings off the atomic nuclei, further referred to as multiple scattering, is
dominating the momentum resolution.

1−⟨ d𝐸
d𝑥 ⟩ ≃ 𝜌 × 2 MeV cm2/g with e.g. 𝜌 = 2.3 g/cm3 for silicon.

32



4.2 Passage Through the Tracking System

x

splane

yplane
Ψplane

θplane

x /2

Figure 4.1: Illustration of multiple scattering of a charged particle on its way through some
material [76].

Conversely to the ionisation described before, multiple scattering in thin1 scatterers
only changes the direction of the momentum vector. This, however, complicates the
track finding and limits the precision of the track parameter estimation for particles
up to a momentum of 80 GeV/𝑐 [19], after which the track bending by the magnetic
field is small, and the tracking detector resolution becomes the dominating limitation.
To estimate the effect of multiple scattering on track reconstruction, the distribution
of small scattering angles can be approximated by a Gaussian distribution as done in
the Highland formula [77] and its modified version from Refs. [76, 78], which describe
the standard deviation by:

𝜎(𝜃plane) = 13.6 MeV
𝛽𝑐𝑝

𝑧√
𝑥

𝑋0
[1 + 0.038 ln ( 𝑥𝑧2

𝑋0𝛽2 )] (4.1)

where 𝑝, 𝛽𝑐 and 𝑧 are the particle’s momentum, velocity and charge, and 𝑥/𝑋0 the
distance travelled in the scatterer in units of its radiation length (see Figure 4.1 for
illustration).

While Equation 4.1 in principle also holds for electrons, their low mass leads to
particularly strong acceleration in the field of the nucleus, and above an energy of
𝒪(10 MeV) they predominantly lose energy via bremsstrahlung [76]. On average, the
energy loss is described by [68]:

⟨𝐸(𝑥)⟩ = 𝐸0 exp (− 𝑥
𝑋0

) (4.2)

where 𝐸0 is the initial energy of the electron and 𝑥/𝑋0 the distance travelled in the
scatterer in units of its radiation length2. Summing up the radiation lengths for the

1In a thin scatterer, the change in position of the scattered particle is negligible compared to the
spatial resolution of the detector system, which is the case for LHCb’s tracking system.

2Strictly speaking, this 𝑋0 is not the same as used in Equation 4.1, however, for an argument here it
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VELO, RICH1 and UT given in Sections 2.4 and 2.5, an electron with an initial
energy of 3.5 GeV thus loses 1 GeV before the magnet on average. The distribution
of the energy loss is not Gaussian, and the amount of energy lost is subject to large
fluctuations [68], which makes electron track finding and parameter estimation more
involved because it is difficult to predict and follow the trajectory through the magnet
and the energy loss biases the momentum estimate.

In addition to the electronic material interactions described above, hadrons also
participate in hadronic interactions with the atomic nuclei in the detector material.
These strong scattering processes either occur elastically and contribute to multiple
scattering or inelastically, in which case the incident particle is destroyed, and secondary
particles are created. Destructive hadronic interactions have a much higher cross
section at energies above 1 GeV than elastic ones [79] and thus can preclude the track
reconstruction if the mean free path through the detector material is too short. Even
with a light detector design as the one of LHCb, 13% of kaons and 21% of pions from
𝐵 or 𝐷 meson decays are lost for track reconstruction because they undergo a hadronic
interaction before the RICH2 detector [75].

4.2.2 Motion in Magnetic Field

The field of LHCb’s dipole magnet is strongest between the front of the UT detector
and the end of the last SciFi station (see Figure 2.3). With known field values and
directions 𝐁(𝐱) at points in space 𝐱, the trajectory of a charged particle traversing the
field is described by the equations of motion given by the Lorentz force:

d𝐩
d𝑡

= d(𝑚𝛾d𝐱/d𝑡)
d𝑡

= 𝑐2𝜅𝑞[𝐯(𝑡) × 𝐁(𝐱(𝑡))] (4.3)

with the momentum vector 𝐩, particle rest mass 𝑚 and signed charge 𝑞, the relativistic
Lorentz factor 𝛾, the speed of light 𝑐, velocity 𝐯, time in the laboratory frame 𝑡 and a
factor 𝜅 for convenient units1. As the main purpose of the magnetic field is to allow an
estimate of the particle’s momentum from geometrical measurements along its path, it
is useful to change the variable of the differential equation Equation 4.3 to the path
length 𝑠(𝑡) (see Ref. [69] for derivation):

d2𝐱
d𝑠2 = 𝜅𝑞

𝑝
[d𝐱

d𝑠
× 𝐁(𝐱(𝑠))] (4.4)

where 𝑝 = |𝐩| = 𝑚𝛾𝛽𝑐 is the absolute momentum in the laboratory frame. The forward
geometry of LHCb following the beam along the 𝑧 axis further makes it convenient
to express the differentials in Equation 4.4 with respect to the 𝑧 coordinate using
d𝑠/d𝑧 = √1 + (d𝑥/d𝑧)2 + (d𝑦/d𝑧)2. The result of the derivation, documented in

is convenient and fine to use the same quantity.
1𝜅 = 0.299 792 458 T−1m−1 GeV/𝑐 for high-energy physics units.
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Appendix A.1, is:

d𝑡𝑥
d𝑧

= 𝜅𝑞
𝑝

√1 + 𝑡2
𝑥 + 𝑡2

𝑦 [𝑡𝑦(𝐵𝑧 + 𝐵𝑥𝑡𝑥) − 𝐵𝑦(𝑡2
𝑥 + 1)] (4.5)

d𝑡𝑦

d𝑧
= 𝜅𝑞

𝑝
√1 + 𝑡2

𝑥 + 𝑡2
𝑦 [−𝑡𝑥(𝐵𝑧 + 𝐵𝑦𝑡𝑦) + 𝐵𝑥(𝑡2

𝑦 + 1)] (4.6)

with 𝑡𝑥 ≡ d𝑥/d𝑧 and 𝑡𝑦 ≡ d𝑦/d𝑧. While 𝐵𝑥 is negligible in LHCb’s magnet, Equa-
tion 4.6 shows that both 𝐵𝑦 and 𝐵𝑧 alter the 𝑦-𝑧 trajectory of the particle if it has
significant slopes 𝑡𝑥 and 𝑡𝑦. The strongest field component is 𝐵𝑦, i.e. the momentum
measurement is most sensitive using the bending of the track in the 𝑥-𝑧 plane1 and can
thus be measured well by comparing the slopes 𝑡𝑥 before and after the magnet. From
Equation 4.5 follows:

𝑞
𝑝

= 𝑡𝑥(𝑧2) − 𝑡𝑥(𝑧1)

∫
𝑧2

𝑧1

√1 + 𝑡2
𝑥 + 𝑡2

𝑦 [𝑡𝑦(𝐵𝑧 + 𝐵𝑥𝑡𝑥) − 𝐵𝑦(𝑡2
𝑥 + 1)] d𝑧

(4.7)

where 𝑧1 and 𝑧2 are positions at which the track’s slope is known, typically the end of
the VELO and the SciFi detector. The integral in the denominator has to be solved
numerically or approximated, as LHCb’s magnetic field is inhomogeneous. Moreover,
Equation 4.5 hints at the parameters that fully describe the motion of a particle in
the LHCb coordinate system; there are six constants of integration, one of which is
constrained by |(d𝐱/d𝑠)|2 being constant, leaving five free parameters at a reference
plane 𝑧ref. A natural choice for the definition of a track state vector in LHCb’s setup is:

𝐬 = (𝑥 𝑦 𝑡𝑥 𝑡𝑦 𝑞/𝑝)⊺
𝑧ref

(4.8)

As discussed in Section 4.2.1, multiple scattering limits the precision with which these
parameters can be estimated. The momentum resolution, in particular, is bound
from below by the amount of material between the end of the VELO and the SciFi
detectors. For a particle with 𝑝 = 2 GeV/𝑐, using the fractions of radiation lengths
given in Sections 2.4 and 2.5 together with an estimate for the air in the cavern2,
Equation 4.1 yields 𝜎(𝜃plane) ≃ 3 mrad. Taking this as the error on the slope difference
in Equation 4.7 and a mean slope difference of ⟨Δ𝑡𝑥⟩𝑝≃2 GeV/𝑐 ≃ 0.62 rad, the achievable
momentum resolution with the LHCb tracking system is Δ𝑝/𝑝 ≃ 0.5%.

1Therefore also known as the bending plane of LHCb.
2𝑋air

0 ≃ 36.1 gcm−2/1.2 kgm−3 ≃ 301 m [80] ⟹ 𝑥/𝑋air
0 ≃ 2%
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4.3 Menu of Track Types at LHCb

Tracks reconstructed in the LHCb detector come from charged kaons and pions, protons,
muons and electrons. Charged kaons and pions can be tracked because, at the energies
of the LHC and the length of the path a particle takes through the LHCb detector,
they usually decay outside of the detector volume. Only 5% of charged pions and
12% of charged kaons from 𝐵- or 𝐷-meson decays are lost for the track reconstruction
because they decay inside the detector [75]. Independently of the particle species, the
set of tracking detectors used to reconstruct a particle’s trajectory defines its LHCb
track type. As shown in Figure 4.2, the track types are:

VELO tracks are reconstructed from hits in the VELO detector only. They are used
for primary vertex reconstruction, seeding of other track types and reconstruction
efficiency studies. Without external constraints, no momentum measurement is
possible for these tracks as the magnetic field is too weak in the VELO detector.

T tracks are reconstructed from hits in the SciFi detector only. They are used as
seeds for the reconstruction of other track types and for studies of very long-lived
hadrons such as the Λ hyperon. Because of the fringe magnetic field at the
T stations, only a rough momentum estimate is possible, with a resolution of
25%-35% [81].

Upstream tracks are VELO tracks with an extension into the UT detector. They
often stem from very low-momentum particles bent out of LHCb’s acceptance by
the magnetic field. Using the fringe field upstream of the magnet, a momentum
resolution of 15%-25% is reached [82]. These tracks can also be referred to
as UT-filtered VELO tracks depending on the configuration of the algorithm
producing them (see Section 4.5.1).

Downstream tracks have hits in the SciFi and the UT detectors. They are important
for the reconstruction of decays of long-lived hadrons such as 𝐾0

S → 𝜋+𝜋−.
Long tracks have hits in the VELO and SciFi detector, and optionally also in the

UT stations. They reach the best momentum resolution of 0.5% on average and
are therefore best suited for precise measurements.

In addition to the physics track types described above, there are two more track-like
objects important for the reconstruction:

Fake tracks consist of hits that cannot be associated with a single particle. They
are therefore also called ghost tracks and can only be identified in simulation
where the origin of hits on a track is known. In physics analysis, they are a
potential background source. See also Section 4.4.1.

Clone tracks are copies or subsets of other tracks, i.e. they share a substantial part
of detector hits. A clone track cannot be a fake track and thus must be associated
to a single particle in simulation.
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VELO track Downstream track

Long track

Upstream track

T track

VELO
UT

T1 T2 T3

Figure 4.2: Visualisation of different track types reconstructed by the LHCb tracking system
[75]. The 𝑥-𝑧 plane is shown, with the magnet yoke drawn in the centre.

4.4 Reconstruction Performance Metrics

To evaluate and compare the performance of different track reconstruction approaches,
it is important to clearly define the metrics for which the reconstruction will be
optimised and, furthermore, identify those that conflict with each other. The metrics
relevant for track reconstruction fall into two categories, physics performance metrics
and computational performance metrics, which are not independent of each other. For
HLT2, with its aspiration to provide the highest-quality full-event reconstruction, there
is no obvious working point in the multidimensional metric space as briefly outlined in
Section 4.4.3. If not stated otherwise, results for the physics metrics are obtained from
a mixture1 of simulated2 𝑝𝑝-collision events containing the decays 𝐵0

𝑠 → 𝜙𝜙, 𝐵0
𝑠 → 𝐽/𝜓𝜙,

𝐵0 → 𝐾∗0𝑒+𝑒− and 𝐷+ → 𝐾0
S𝜋+. The samples were re-digitised to simulate radiation

damage in the VELO and SciFi detectors equivalent to 5 fb−1 integrated luminosity
seen by the experiment to obtain realistic estimates. These decays are chosen because
they reflect the core part of LHCb’s physics programme and provide various track and
particle species in the final states. The computational performance is evaluated on
simulated HLT1-filtered minimum-bias samples3 with a global event cut at a sum of
11000 UT and SciFi clusters.

1Also both magnet polarities are present in the samples, with 5000 events each.
2LHCb simulation version Sim10-Up08-Digi15-Up04.
3LHCb simulation version Sim09c-Up02.
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4.4.1 Physics Performance

The two most important physics performance metrics for track reconstruction using
pattern recognition at LHCb are the track finding efficiency and fake track rate. The
track-finding efficiency is defined as

𝜀 = 𝑁reconstructible&MC-matched
𝑁reconstructible

(4.9)

where 𝑁 denotes the number of tracks in the category specified by the subscript.
These categories are only well-defined using simulated tracks. A track is defined as
MC-matched if 70%1 of the hits it is made of belong to the same simulated particle; ap-
plication of this criterion is further referred to as truth matching. The reconstructibility
of a track is defined by the minimal amount of signals the simulated particle must have
left in the tracking detectors. The amount depends on the track type, was optimised
when the experiment was designed and is documented in Ref. [75]. Because electrons
undergo bremsstrahlung and their track reconstruction is thus more challenging, they
are excluded from the ratio yielding the efficiency for other particle species. For a Long
track to be reconstructible, the simulated particle must traverse at least three VELO
sensors leaving at least one hit in each and have a hit at least in one 𝑥 and one stereo
layer in each of the three SciFi stations. Related to the track finding efficiency, but
subtly different, is the track reconstruction efficiency. As described in Section 4.5, track
finding and precise determination of track parameters are done separately in LHCb,
and a found track can still be rejected after its parameters and covariance matrix have
been estimated by the track fit. The likelihood that a track is available for physics
analyses is, therefore, better estimated by

𝜀reco = 𝑁reconstructible&MC-matched&fit
𝑁reconstructible

(4.10)

where the numerator is the number of found tracks that survive the track fit. It
immediately follows that 𝜀reco ≤ 𝜀 and it is an implicit metric that the quality of the
tracks found by the pattern recognition should be such that 𝜀reco ≃ 𝜀.

If a track does not fulfil the truth-matching criterion, it is assumed to be a fake
track. The fake track fraction, or ghost rate, is defined as

𝑟fake = 𝑁fake
𝑁tot

(4.11)

where 𝑁fake is the number of tracks that could not be associated with a simulated
particle, i.e. it is not truth-matched, and 𝑁tot is the total number of tracks produced
by the algorithm. Similarly, the clone fraction is defined as the number of clone tracks

1This is an arbitrary choice made by LHCb and leads to uncertainties on reconstruction efficiencies
used in data analyses if determined by simulation, also known as truth matching inefficiency.
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relative to the number of truth-matched tracks.
To quantify the reconstruction quality on an ensemble of single tracks, the hit

efficiency and purity for truth-matched tracks are defined as

𝜖hit =
∑

𝑖

𝑛i,found,true

𝑛i,tot,true

𝑁reconstructible&MC-matched
(4.12)

and

𝑓pure =
∑

𝑖

𝑛i,found,true

𝑛i,tot

𝑁reconstructible&MC-matched
(4.13)

where 𝑛i,tot denotes the total number of hits on a single reconstructed track 𝑖, 𝑛i,found,true
is the number of found hits that truly belong to the particle matched to track 𝑖, and
𝑛i,tot,true is the true total number of hits the simulated particle left in tracking detectors.
The sum runs over all tracks accounted for by the denominator.

Eventually, when a truth-matched track is found, it is useful to evaluate how precise
its momentum is estimated. The momentum resolution of truth-matched tracks is
determined by

Δ𝑝/𝑝 = 𝑝true − 𝑝
𝑝

(4.14)

where 𝑝true is the momentum of the simulated particle. For the track finding, however,
this is merely a cross-check as the previously mentioned metrics already evaluate the
correctness of the reconstruction.

In summary, a well-performing track reconstruction algorithm has high track recon-
struction efficiency, low fake track rate, high hit efficiency and purity, and a momentum
resolution close to the limitations posed by the detector resolution and multiple scat-
tering. Yet, these metrics do not give insight into the importance of individual tracks.
The exact working point has to be defined according to the objectives of the whole
experiment, e.g. prioritising tracks from heavy-flavour particle decays over light-flavour
ones.

4.4.2 Computational Performance

The computational performance of the event reconstruction is measured in event
throughput per computing node. This metric is useful because it naturally translates
to the rate of 𝑝𝑝-collision events provided by the LHC and can be thought of as the
diameter of the event processing pipeline; the pipeline must be large enough to put
all interesting events through it. To estimate and compare the expected performance
of reconstruction algorithms in the HLT computing farm, a reference node with two
fully-loaded1 Intel Xeon E5-2630 v4 CPUs is used to measure the time 𝑡 it took
to process 𝑁 events. If not mentioned otherwise, the GCC11.3 compiler with O3

12 × 20 threads, each on its own NUMA domain.
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optimisation and AVX2 and FMA enabled is used. The event throughput rate on the
reference node is then defined as

𝑅TP = 𝑁
𝑡

[Hz or evts/s] (4.15)

To measure the performance of a single component 𝑖, the average processing time1 per
event and thread

⟨𝑡𝑖⟩ref = 𝑡𝑖
𝑁

(4.16)

is used.

4.4.3 Performance Trade-offs

A typical trade-off encountered when optimising track reconstruction algorithms is the
possibility of sacrificing low-momentum track reconstruction efficiency for improving
track processing speed, e.g. as is done in HLT1. For HLT2, this is not a useful trade-off
because tracks at the lower end of the momentum spectrum are potentially interesting
for physics analysis. Reconstructing low-momentum tracks, however, leads to a drop
in event throughput as more tracks are processed and increases the fake track rate, as
explained in Section 5.3.1. A higher fake track rate consequently increases the track
fit’s workload and can negatively impact the signal-to-background ratio in physics
analysis.

Ultimately, the successful but work-intensive way to deal with these trade-offs is
to optimise the throughput using techniques from the second category described in
Section 3.3, under which the physics performance is invariant. If the reconstruction
surpasses its computational performance goals, event throughput can be sacrificed to
increase the track-finding efficiency and lower the fake track rate.

4.5 Track Reconstruction Sequences in HLT2

This section overviews the track reconstruction components and sequences developed
for LHCb in Run 3 and shows key performance results.

4.5.1 Components and Baseline Track Reconstruction

The basic HLT2 track reconstruction sequence, illustrated in Figure 4.3, mostly follows
what was used by LHCb during Run 2 of the LHC [83] and has been used for the
Run 3 commissioning phase2 in 2022. The individual components have been redesigned
and optimised for Run 3. A new scheduler [63] determines the exact order of the

1The time is measured centrally by the HLT control flow manager using the C++ standard library’s
chrono header.

2The UT detector did not make it in time for the start of Run 3. The sequence was therefore run
without the VeloUT tracking.
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VELO Tracking

VELO Tracks

Forward TrackingVeloUT Tracking

Hybrid Seeding

T Tracks

Matching Long-lived Tracking

Long TracksLong TracksUpstream Tracks Downstream Tracks

Kalman Filter + Clone Killing

Best Downstream TracksBest Long TracksBest Upstream Tracks

Pattern Recognition

Track Fit

Figure 4.3: Data flow in the baseline reconstruction sequence. Algorithm components are
shown in rectangular nodes; track containers are depicted in trapezoidal shapes. Detector
hits, which are also inputs to the algorithm, are not shown.

components’ execution, which guarantees that the input to a component is available
before its execution using the thread-safe Gaudi functional-algorithm templates (see
Section 3.3). Track reconstruction algorithms usually take other track types as input
but also the detector hits, which can be prepared by separate components not shown
in Figure 4.3. The hit preparation typically converts the signal clusters recorded by
the tracking detector from readout-channel information to hit positions and properties
in the global coordinate system and thus takes not much processing time.

The VELO track reconstruction algorithm is usually the first tracking component
executed. It reconstructs straight lines from the 3-dimensional measurements provided
by the VELO’s pixel sensors and applies a simplified Kalman filter to improve the
parameters of the track state vector (Equation 4.8) close to the beam. The Kalman
filter considers multiple scattering using a parameterised noise matrix [48] for the pixel
sensors and the RF foil. Since no momentum measurement using the VELO detector
is possible, the Kalman filter uses noise parameters calculated for an average of the
momentum spectrum. The VELO track reconstruction is optimised for computational
performance using SIMD instructions. Details can be found in Ref. [84].

The T track reconstruction, better known as Hybrid Seeding, reconstructs tracks
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using only information from the SciFi detector stations. It first builds track seeds from
hits in two 𝑥 layers and subsequently tries to form a triplet by adding a hit from an 𝑥
layer in between. Then, 𝑥 hits from so far unused layers are added using a third-order
polynomial as the T-track model, followed by a search for matching stereo-layer hits.
The magnet’s fringe field reaching into the SciFi stations allows the momentum of T
tracks to be estimated with a resolution of about 25%-35%, enabling the reconstruction
of particles that decayed after the UT detector [81]. Details on the Hybrid Seeding
algorithm can be found in Ref. [85].

After the successful execution of the two components mentioned above, the core part
of the pattern recognition is run on their outputs.

The Downstream track reconstruction, also called Long-lived tracking, extrap-
olates T tracks through the magnet to the UT detector using a parametric model
of the expected trajectory for a track with the momentum estimated by the Hybrid
Seeding. UT hits close to the extrapolated positions are added to the T track to form
the Downstream track. These tracks are indispensable for the physics programme
of LHCb because they provide the bulk of statistics for studying decays involving
long-lived hadrons such as 𝐾0

S and Λ. The Run 3 algorithm is heavily based on its
Run 2 predecessor, detailed in Ref. [86].

The components that find Long tracks are even more important for the physics
output of LHCb. The Long track reconstruction consists of two algorithms, the
Matching and the Forward Tracking, both aiming to find as many Long tracks as
possible. This leads to a large overlap between the two sets of found Long tracks,
which is beneficial for the Long track reconstruction efficiency [83] but is costly from a
computational performance point of view. The redundancy can be resolved to obtain
a fast reconstruction sequence as explained in Section 4.5.2. The Forward Tracking
algorithm is described briefly in Ref. [87] and in great detail in Chapter 5. A comparison
to the Matching algorithm is given in Section 5.4.1.

The Upstream track reconstruction, also called the VeloUT tracking, extends
VELO tracks using hits in the UT detector. The VELO track is linearly extrapolated
to a reference surface in the UT detector, and hits within a tolerance around the
extrapolated position are collected from each layer. The UT hits are then clustered
by forming doublets and trying to complete these into triplets and quadruplets by
linearly extrapolating to the next layer, checking for matching hits. If at least three
VELO-track-compatible UT hits are found, the track parameters are estimated using a
simple least-square fit. If the fit quality is good enough, at most one Upstream track
per VELO track is created. The achieved momentum resolution in the fringe field
within the UT detector is around 15% in the mid and lower momentum range. More
details on the algorithm can be found in Ref. [82]. Upstream tracks are scarcely1 used
for physics analysis. Their primary purpose in Run 3 was to improve the computational

1There is particular interest in using them for analyses including electrons, as 11% of them are wiped
out of LHCb’s acceptance by the magnet because they have low momentum or lost a significant
part of their energy by bremsstrahlung [75].
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performance of the Forward tracking in a CPU-based HLT1. They would have replaced
the VELO tracks as input to the Forward tracking, allowing it to use the Upstream
track’s momentum estimate to narrow the search range for Long tracks and significantly
speed up their reconstruction at the cost of a lower track finding efficiency because of
the acceptance of the UT detector and inefficiencies of the VeloUT algorithm. More
on this approach in the context of a CPU-based HLT1 can be found in Ref. [13]. The
computational performance of the VeloUT algorithm itself was optimised by using SIMD
instructions to perform extrapolations and fits in parallel for multiple VELO tracks.
Of course, also in HLT2, the potential improvement of computational performance by
using Upstream tracks as the input to the Forward tracking is of interest. The author
of this thesis, therefore, implemented a filter mode for the VeloUT algorithm, which
only requires that at least three UT hits are found within the tolerance around the
extrapolated position. The filter mode accepts zero UT hits if the VELO track crosses
the hole in the UT detector close to the beam pipe (see Figure 2.5). The result is
a standard Upstream track if found UT hits can be clustered and successfully fitted.
Otherwise, the track is accepted without a momentum estimate. The Forward tracking
is designed to handle this kind of input as explained in Section 5.2. Note that in
filter mode, the resulting Upstream tracks do not contain the found UT hits because
these are not a requirement to form a Long track. Also, the Long track reconstruction
algorithms use a tool to add UT hits to a Long track (see Section 5.2.9), which achieves
a higher UT hit efficiency because of the more precise momentum estimate of Long
tracks. Upstream tracks created by the VeloUT algorithm in filter mode are sometimes
referred to as UT-filtered VELO tracks.

The pattern recognition algorithms only perform least-square fits to estimate track
parameters for the track segments they find. The final track-state vectors and their
covariance matrices are obtained by applying a Kalman filter [88, 89]. The Kalman
filter predicts the track parameters at a 𝑧 position of interest based on known track
parameters at a reference position. The propagation through the magnetic field is
done by a linear, parabolic or fifth-order Runge-Kutta method, depending on the step
size and the strength of the magnetic field at the 𝑧 positions [90]. For Run 3, LHCb’s
Kalman Filter algorithm has been re-implemented with contributions from the author
of this thesis. The main objective was to improve its computational performance, as
it was by far the most time-consuming component of the event reconstruction. This
was achieved by tailoring the algorithm to the data structures returned by the pattern
recognition algorithms, optimising the code used for track propagation in the magnetic
field and employing parameterisations of the noise matrix [48] as well as the energy loss
correction. For simplicity, the Kalman filtering and clone track removal are depicted
as a single component in Figure 4.3. In reality, the basic track reconstruction sequence
first fits the Long tracks found by the Forward tracking, then removes the overlap
(clones) between these and the Long tracks found by the Matching, and then fits the
remaining Long tracks, yielding the selection of the best Long tracks. By definition of
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the track types, a Downstream track might be a segment of a Long track. Therefore,
the overlap between them and the best Long tracks is removed before fitting the
Downstream tracks. The Upstream tracks are processed analogeously.

The reconstruction efficiencies of Long tracks in the basic sequence are shown
in Table 4.1. Tracks from a 𝐵-meson decay or with a momentum above 5 GeV/𝑐
are reconstructed with a likelihood of more than 90%. Electrons only reach 80%
reconstruction efficiency as they emit bremsstrahlung when traversing the detector
material (see Section 4.2.1) and are therefore harder to find. The fraction of clones is
negligible at below 0.3% in all categories and is thus not further discussed here. The
computational performance is shown in Figure 4.5a. Including the particle identification
algorithms, a throughput of 388 events per second and computing node is reached.
The track reconstruction takes roughly 60% of the computing time in this scenario.

4.5.2 Fast Track Reconstruction

The basic reconstruction sequence shown in Figure 4.3 is not optimal from a computa-
tional performance perspective. It does redundant work by finding almost the same
set of Long tracks twice, using the Matching and the Forward tracking. However, the
redundancy is easy to resolve by the sequence shown in Figure 4.4, which is the one
currently foreseen for nominal data taking during Run 3. In this fast track reconstruc-
tion sequence, the Matching algorithm is run first, pairing VELO tracks with T tracks
to form the first set of Long tracks. Subsequently, only the unmatched, residual VELO
tracks are passed on to the Forward tracking. In addition, also the hits in the SciFi
detector that are already used by the first set of Long tracks are removed, such that
the Forward tracking runs over a reduced set of hits as well.

Similarly, the Long-lived tracking only runs on T tracks that are not a segment of
a Long track in the first set and UT hits which are not part of the Long tracks. As
shown in Table 4.1, this leads to a drop in reconstruction efficiency of about 1% for
Long tracks. The decrease in efficiency is acceptable given that the event throughput
is increased by 28% with the fraction of time spent on the track reconstruction below
50% and reaching the goal of processing roughly 500 events per second and node as
shown in Figure 4.5b. More details on the track reconstruction performance can be
found in Refs. [15, 91].
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Figure 4.4: Data flow in the fast reconstruction sequence. Algorithm components are shown in
rectangular nodes; track containers are depicted in trapezoidal shapes. Detector hits, which
are also inputs to the algorithm, are not shown.

Table 4.1: Long track reconstruction efficiencies of the baseline and fast
sequence for different efficiency categories evaluated on simulation.

Baseline Sequence [%] Fast Sequence [%]

Ghost rate 11.64 ± 0.04 10.27 ± 0.04

𝜀reco

Long 89.02 ± 0.04 87.60 ± 0.05
Long 𝑝 > 5 GeV/𝑐 92.61 ± 0.05 91.60 ± 0.05
Long from 𝐵 92.0 ± 0.2 91.0 ± 0.2
Long 𝑝 > 5 GeV/𝑐 from 𝐵 94.7 ± 0.2 93.9 ± 0.2
Long 𝑒± from 𝐵 80.5 ± 0.5 77.4 ± 0.5
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a: Baseline reconstruction sequence.
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b: Fast reconstruction sequence.

Figure 4.5: Breakdown of the HLT2 reconstruction event throughput. The numbers right of the
bars are given in percent. The Kalman filter is called track fit here.
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This chapter describes the HLT2 Forward tracking algorithm, related components and
data structures developed and implemented by the author of this thesis. The intention
is to document the algorithm used in LHCb’s software trigger during Run 3 of the
LHC so that future development has an extensive reference. Documentation for the
Forward tracking algorithms in Runs 1 and 2, and the first developments made for
Run 3, can be found in Refs. [92–94]. A description of a CPU-HLT1 Forward tracking
is given in Ref. [13]. The GPU-HLT1 approach is summarised in Ref. [42].

5.1 Objective and Requirements

The goal of the Forward tracking is to find a forward extension of a given VELO track
in the SciFi tracker and to estimate an initial momentum of this Long track [87]. If
tracks from the VeloUT algorithm are available, the Forward tracking should be able
to use the additional, coarse momentum estimate and find a set of SciFi hits belonging
to these.

The specification of the SciFi tracker aims at 99% single-hit efficiency. Including
the 1.7% dead regions per layer (see Section 2.4.3), the probability of detecting a
single hit is around 97.3%; hence the number of SciFi hits on a Long track is expected
to be twelve only for 72% of the tracks. The Forward tracking, therefore, aims to
reconstruct the 99.6% tracks with ten or more SciFi hits. Furthermore, the objective is
to achieve a purity of 𝑓pure > 99% and a hit efficiency of 𝜖hit > 98% (see Section 4.4.1),
where having a pure track is more important than finding all possible hits. This is due
to the subsequent Kalman filter component, which must expensively remove outlier
hits. Regarding the track finding efficiency and fake track fraction, the obvious goal
is to have the former as high as possible while keeping the latter as low as possible.
More quantitatively, the objective is to meet at least the estimates made when the
LHCb upgrade was planned, shown in Table 5.1. There is no strict requirement on
the computational performance of individual trigger components. The whole HLT2
application, however, has to be able to process the 1 MHz output rate of HLT1 and
thus needs a certain amount of computing nodes, as explained in Section 3.2.2. In June
2019, the reconstruction sequence comparable to the baseline sequence (Figure 4.3)
had a throughput of 80 evts/s on the reference node2. The Forward tracking, which

2The best-performing platform in June 2019 was x86_64+avx2+fma-centos7-gcc8-opt, i.e. Advanced-
Vector-Extension 2. Fuse-multiply-add optimisation enabled with GCC8.1 on the O3 optimisation
level.
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Table 5.1: Forward tracking’s ghost rate and track finding efficiency
as estimated in Ref. [19] for the Run 3 upgrade and Run 1 for com-
parison. On average, Run 1 had one primary vertex per event, while
Run 3 has five.

Upgrade TDR [%] LHCb Run 1 [%]

Ghost rate 38.2 25.4

𝜀
Long 85.2 91.9
Long 𝑝 > 5 GeV/𝑐 92.3 96.1
Long from 𝐵 91.1 94.8
Long 𝑝 > 5 GeV/𝑐 from 𝐵 94.7 96.8

took about 8% of this sequence, had a throughput of 1000 evts/s. At that time, the
usual assumption was that 1000 reference-node equivalents would be available for
HLT2 processing in Run 3. Hence, the Forward tracking alone would have consumed
all available resources to process the output of HLT1 and thus had to gain several
factors in throughput without compromising the physics performance.

5.2 Algorithm Design and Description

The central problem is finding the single correct combination of a VELO track with
SciFi hits among the many possible extensions or finding that no such combination is
present. The complexity scales with the number of input tracks and the total number
of hits the SciFi tracker recorded. Typical Run 3 events with inelastic 𝑝𝑝 collisions at
LHCb lead to 𝒪(102) VELO tracks and 𝒪(103) SciFi hits. In simulated HLT1-filtered
minimum-bias samples, only about 50% of the VELO tracks are part of a trajectory
through the whole tracking system, and most SciFi hits are left by secondary particles
which do not have a VELO-track segment. Therefore, the immediate design goal of the
Forward tracking is to provide a procedure that quickly decides whether a VELO track
can have a reasonable extension in the SciFi tracker. If it is not possible to reject a
VELO track early in the algorithm, at least the number of SciFi-hit sets considered as
extensions to the VELO tack should be reduced fast to control the complexity. Hence,
the initial combinatorics reduction is critical to performance and, therefore, heavily
uses the full capabilities of modern CPUs described in Section 3.3.

5.2.1 Overview

Figure 5.1 illustrates the most important parts of the Forward tracking, which are
explained in more detail in the following sections. The flow chart shows method
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Pr::<Velo,Upstream>::Tracks
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Figure 5.1: HLT2 Forward tracking algorithm overview. The top layer shows the inputs to the
Forward tracking where the oval field contains inputs from the conditions database. The
red dashed box contains the methods executed within the algorithm. The blue dotted box
indicates methods performing the Hough-like transform. The bottom layer shows the output
of the algorithm. The solid black arrows hint at which methods use the respective inputs.
The dashed black arrow indicates a loop over the input tracks.

names also used in the algorithm’s implementation such that the detail-interested
reader can navigate the code more easily. The sections contain documentation of the
parameterisations used to model certain trajectory parameters. It is not necessary
to understand the exact polynomial expressions as they are not unique (see also
Appendix A.3); they are only given for completeness.

Algorithm Concept The Forward tracking takes a track found by the VELO or
VeloUT tracking algorithm as input seed. The seed contains information about the
trajectory upstream of the magnet, which is used to set limits on the hit-search region
within the SciFi tracker downstream of the magnet (calculateMomentumBorders).
Hits within the search window are projected to a reference plane according to the
trajectory expected from the input track (projectHitsToHoughSpace). This is done
for SciFi hits from both 𝑥 and stereo layers. The reference plane is divided into bins
that count the number of SciFi layers from which the projected hits originate (see
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Figure 5.8 for illustration). Only the projected position of 𝑥-layer hits is kept for later
use. The bins are scanned for high numbers of accumulated SciFi layers, indicating
a promising candidate set of SciFi hits (pickUpCandidateBins). Subsequently, the
stored 𝑥-layer projection from candidate bins and their neighbours are examined to
form one or several initial track candidates by clustering the projected 𝑥-layer hits.
The 𝑥𝑧 trajectory of the track candidates within the SciFi tracker is determined,
and low-quality tracks are rejected (selectXCandidates). The 𝑥𝑧 trajectory is then
used to select the correct stereo-layer hits which complete the Long-track candidate
(selectFullCandidates). The procedure is repeated for each input track. After all
Long-track candidates have been found, duplicates are removed (removeDuplicates)
and matching UT hits are added to each Long track (addUTHits).

5.2.2 Inputs

The algorithm has three inputs: detector conditions such as the magnet current, VELO
or Upstream tracks and SciFi hits.

The SciFi hit container is prepared by the PrStoreScifiHits component that uses
already clustered detector channels (see Section 2.4.3) to store their SciFi layer index
(plane code), and the 𝑥 position at 𝑦 = 0 within LHCb’s coordinate system. These two
quantities are vital for the first, most performance-critical part of the Forward tracking
and therefore stored in an SoA format as shown in Figure 5.2. The twelve SciFi
planes are divided into upper and lower halves, defining 24 zones shown in Figure 5.3.
The hits are stored in ascending order of their 𝑥 positions in each zone. For easy
access to the hits in each zone, their start and end indices are also stored in the hit
container. Each zone end is protected by a sentinel hit with an unphysically large 𝑥
position, simplifying navigation in the container, as will become clear later. Additional

𝑥0 𝑥1 𝑥2 𝑥n𝑥n−1 𝑥n+1 𝑥n+2 𝑥m 𝑥m+1 𝑥k𝑥k−1

𝑝0 𝑝1 𝑝2 𝑝n𝑝n−1 𝑝n+1 𝑝n+2 𝑝m 𝑝m+1 𝑝k𝑝k−1

sentinels
memory addresses

zone 0 zone 23zone 1 ... 22

Figure 5.2: Storage layout of SciFi hits 𝑥 positions and layer number 𝑝 structured into zones,
each of which ends with a sentinel entry.
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Figure 5.3: Overview of the zone numbering for each SciFi tracker layer and their positions
within the global LHCb coordinate system.

information about the hits is split into a hot and a cold part1 and stored in an AoS
layout to maximise spatial cache-locality for this particular data (see Section 3.3). The
hot part contains the reciprocal of the variance of the measurement determined by
the size of the cluster (see Section 2.4.3), i.e. the hit weight, the stereo angle d𝑥/d𝑦,
tilting d𝑧/d𝑦 and 𝑧 position of the SciFi mat. The cold part stores information about
the 𝑦 endpoints of the SciFi detector at the position of the hits and a unique identifier
for the central detector channel used to build the cluster. To avoid dynamic memory
(de)allocations, each field in the hit container uses LHCb’s event-local memory pool.
The SciFi hits’ positions are derived from the detector conditions and thus include the
best available alignment of the tracking stations.

Furthermore, the Forward tracking algorithm reads the sign of the magnet current
from the conditions database. For the computational performance, it is helpful to keep
geometric zone information derived from alignable objects in a cache (ZoneCache) that
gets updated in case the detector conditions change (see Section 3.2.3).

The input tracks for the Forward tracking are produced either by the VELO tracking
or the VeloUT algorithm. They are already available in an SoA data structure, which,
however, in the current implementation of the Forward tracking, does not lead to
computational performance benefits as the loop over the input tracks is scalar and

1Hot and cold here refer to the frequency with which the CPU accesses the corresponding memory.
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encloses most of the algorithm as shown in Figure 5.1. Thus, the first step in the
input-track loop is to transform the input track into a more useful data structure called
the seed, which contains track-state-vector parameters at the end of the VELO detector
(𝑧v = 770 mm) and pre-computes useful quantities like the Jacobian (Equation A.2)
already encountered in Equation 4.5, polynomial terms used in extrapolations and
reference positions using linear extrapolation of the VELO track state.

5.2.3 Estimating Trajectory Boundaries

After the initialisation of the seed, the next step is to choose the SciFi hits that
are considered for an extension. A precise choice is beneficial for the computational
performance of the algorithm because it reduces the number of hits that must be
processed in the subsequent steps. The first property of the trajectories to notice is
their approximate straightness in the 𝑦-𝑧 plane due to the negligible magnitude of the
magnetic field’s 𝐵𝑥 component and 𝑡𝑥, 𝑡𝑦 ≪ 1. Only 0.02%1 of reconstructible Long
tracks traverse both the upper and lower halves of the SciFi tracker. Thus, the search
for extending hits is restricted to only one half of the detector, corresponding to even
or odd zone numbers. While in the 𝑦 direction, there is nothing more to gain because
the scintillating fibres run mainly along the 𝑦 axis, boundaries of the trajectory in
the 𝑥 direction can be found if a minimum momentum is assumed. The track state
vector of the seed is then given by (𝑥v, 𝑦v, 𝑡𝑥, 𝑡𝑦, ±𝑞/𝑝min) at the end of the VELO 𝑧v,
with a sign ambiguity because of the unknown charge of the seed particle.2 Using
this state vector and the magnetic field map, the two 𝑥𝑧 trajectories enveloping the
SciFi area interesting for reconstruction can be determined by numerically solving the
equations of motion from Section 4.2.2, which, however, is computationally not cheap.
Instead, a parameterisation is used to estimate the difference between the straight-line
extrapolation and the position of the trajectory 𝑥extp

ref at a reference plane:

Δ𝑥border ≔ |𝑥straight
ref − 𝑥extp

ref |

with
𝑥straight

ref ≔ 𝑥v + 𝑡𝑥(𝑧ref − 𝑧v)

at 𝑧ref = 8520 mm and parameterised by

Δ𝑥min
border = 1

𝑝min
[𝐿 + 1

𝑝min
(𝑄 + 1

𝑝min
(𝐶 + 𝑐8

1
𝑝min

))] (5.1)

with

𝐿 = 𝑐0 + 𝑐1𝑡2
𝑦 + 𝑐2𝑡2

𝑥 + 𝑞mag𝑐5𝑡3
𝑥 + 𝑐9𝑡2

𝑥𝑡2
𝑦 + 𝑐12𝑡4

𝑥

1The magnetic field is only responsible for half of these; the rest crosses from one detector half to the
other via scattering.

2Note that for simplicity, 𝑡𝑥 and 𝑡𝑦 are the slopes at 𝑧v if not explicitly stated otherwise.
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𝑄 = 𝑞mag(𝑐3𝑡𝑥 + 𝑐10𝑡𝑥𝑡2
𝑦) + 𝑐6𝑡2

𝑥

𝐶 = 𝑐4 + 𝑞mag𝑐7𝑡𝑥 + 𝑐11𝑡2
𝑦

𝑞mag = {
𝑞 ⋅ 𝑟𝐼 if 𝑞

𝑝 known
|𝑟𝐼| else

where 𝑟𝐼 is the signed relative current through the magnet; under nominal detector
conditions, the relative current is 𝑟𝐼 = ±1, with negative and positive signs defining the
Down and Up magnet polarities, respectively. The |𝑟𝐼| ≠ 1 case has not been studied
and is thus not guaranteed to be covered by the parameterisations. The sign of 𝑞mag
determines the sign of the track curvature; a negative 𝑞mag deflects the particle to the
left, i.e. in the positive 𝑥 direction. The coefficients 𝑐𝑖 are determined using simulated
tracks and given in Table A.1. A general method to obtain these parameterisations is
described in Appendix A.3. The default configuration of the Forward tracking uses
𝑝min = 1500 MeV/𝑐 and 𝑝T,min = 50 MeV/𝑐; below these values, most tracks are not
reconstructible anymore because they are deflected out of acceptance by the magnet,
or the particle decays before the SciFi tracker [75].

The minimum momentum requirement can be configured for different physics use
cases. An example is the ion-ion collision programme in which it makes sense to restrict
the reconstruction to higher momenta to cope with the high track multiplicity.

The minimum 𝑝T value is projected to a minimum 𝑝 value, using the known track
slopes 𝑡𝑥 and 𝑡𝑦. The smaller Δ𝑥min

border calculated from both momenta is eventually
used to define the border of the trajectory, also called the search window. At the
reference plane, it is given by

𝑥min = 𝑥straight
ref − Δ𝑥min

border

𝑥max = 𝑥straight
ref + Δ𝑥min

border

There is no profound reason to define the search window on the reference plane
initially; it simply is convenient as this reference plane is used in the context of other
parameterisations too. To select the hits, the search window must be adjusted to the 𝑧
position of each SciFi layer (see Section 5.2.5). The search window efficiency is shown
in Figure 5.4. The turn-on-curve shape of the efficiency is due to multiple scattering,
which smears the momentum border; the efficiency difference between the first and
the last SciFi layer is an artefact of the simplistic adjustment to account for the 𝑧
position of the layer. Because HLT2 aims at reconstructing the whole event, including
low-momentum particles, the search windows can be significant to the extent that they
cover the whole SciFi tracker and thus collect all hits of one half. Figure 5.5a gives
two examples of how these search windows look.

The only way to avoid extensive search windows is to either increase the minimum-
momentum requirement, i.e. limiting the physics reach of the experiment or to use an
initial estimate of charge and momentum. The latter is also supported by Equation 5.1,
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Figure 5.4: The search window efficiency is defined as the sum of all SciFi hits within
the search window truth-matched to reconstructible Long tracks, divided by all
true hits from the reconstructible Long tracks. The blue circles and orange stars
show the search window efficiency for the first and last SciFi layer, respectively, in
bins of true momentum with 𝑝min = 1500 MeV/𝑐.

e.g. using Upstream tracks, in which case it returns an estimate for the actual deviation
from the straight-line trajectory at the reference plane. The search window size is then
driven by the momentum resolution of the input tracks and thus becomes asymmetric
because Δ𝑥border ∝ 1/𝑝. This has been studied in Ref. [13], the result of which is used
to define the momentum-dependent search window as:

𝑥min = {
𝑥straight

ref − Δ𝑥border − Δlower if 𝑞mag > 0
𝑥straight

ref + max(Δ𝑥border − Δhigher, 0) if 𝑞mag < 0

𝑥max = {
𝑥straight

ref + min(−Δ𝑥border + Δhigher, 0) if 𝑞mag > 0
𝑥straight

ref + Δ𝑥border + Δlower if 𝑞mag < 0

with

Δlower = max(𝛿min, min(𝛿lower + 𝑏𝛿/𝑝, 𝛿max))
Δhigher = min(𝛿higher + 𝑎𝛿/𝑝, 𝛿max)

The 𝛿 values are momentum-resolution dependent. For Upstream tracks from the
VeloUT tracking with a resolution of roughly 15%, the parameters are 𝛿min = 150 mm,
𝛿lower = 100 mm, 𝑏𝛿 = 2800 mm GeV/c, 𝛿higher = 50 mm, 𝑎𝛿 = 1400 mm GeV/𝑐 and
𝛿max = 600 mm. The momentum-dependent search window is visualised in Figure 5.5b.
More on this approach can be found in Section 5.5.
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Figure 5.5: Visualisation of hit-search windows for minimum-momentum boundary
at 𝑝min = 1500 MeV/𝑐 (a) and momentum-dependent boundary using the true
momentum of the simulated tracks (b). The red solid line and empty circles
are the momentum borders and the SciFi hits, respectively, left by a 𝜋+ with
𝑝true = 1508 MeV/𝑐. The green dashed line and filled circles show the equivalent
for a 𝜋− with 𝑝true = 2999 MeV/𝑐.

5.2.4 Simplified Track Model

Before discussing the next step in the algorithm, it is instructive to define a simplified
track model following the Optical Model method [92] in which the magnetic field is
treated as a thin lens refracting tracks like light rays. The goal is to identify a small
set of parameters that effectively describe the state transfer from before the magnet
to downstream of the magnet. This is useful because no measurements are made
within the core part of the magnetic field, and the track finding is not interested in the
exact path the particle took through the magnet. Furthermore, the model allows to
perform linear projections within the SciFi tracker needed for the optimised Hough-like
transform described in Section 5.2.5. The Optical Model is sketched in Figure 5.6, with
the trajectory described by the input track state, the magnet kick position 𝑧mag (optical
centre), and the difference between the incoming and outgoing slopes Δ𝑡𝑥. Once a
single hit (𝑥hit, 𝑧zone)1 downstream of the magnet is taken into account, predicting the
x coordinate at a given z position is a simple linear extrapolation within the model:

𝑥proj(𝑧) = 𝑥mag +
𝑥hit − 𝑥mag

𝑧zone − 𝑧mag
(𝑧 − 𝑧mag) (5.2)

with 𝑥mag = 𝑥v + 𝑡𝑥(𝑧mag − 𝑧v). LHCb’s magnetic field, however, fringes into the SciFi
tracker (see Figure 2.3). Hence, the hits do not fall on a straight line, and for track
finding, the Optical Model method has to be extended by a model for the trajectory
within the SciFi tracker. The 𝑥 projection of the trajectory within the SciFi stations is

1The 𝑧 position of the hit is taken as equivalent to the global 𝑧 position of the detector layer. This is an
approximation reducing the necessary memory accesses as 𝑧zone can be taken from the ZoneCache.
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Figure 5.6: Illustration of the Optical Model method to effectively describe a trajectory through
the magnet. Using the model, measured hit positions can be projected to the reference as
indicated by the magnet arrow. Note that the reference plane is drawn between T2 and T3
only for illustration purposes.

described by a third-order polynomial

𝑥(𝑧) = 𝑎𝑥 + 𝑏𝑥(𝑧 − 𝑧ref) + 𝑐𝑥(𝑧 − 𝑧ref)2 + 𝑑𝑥(𝑧 − 𝑧ref)3 (5.3)

where the higher-order monomials can be seen as the fringe-field correction to the
Optical Model

Δ𝑥(𝑧) ≔ 𝑐𝑥(𝑧 − 𝑧ref)2 + 𝑑𝑥(𝑧 − 𝑧ref)3 (5.4)

The 𝑧 position of the reference plane is set to 𝑧ref = 8520 mm and defines the origin of
the local coordinate system used to describe the tracks within the SciFi tracker. The
choice is in principle arbitrary, yet a position within the SciFi detector gives the notion
of a virtual detector layer such that the coefficients are easy to understand, e.g. 𝑎𝑥 can
be seen as a virtual hit on the reference plane.

The slope difference used in the Optical Model method is defined as

Δ𝑡𝑥 ≔ 𝑏𝑥 − 𝑡𝑥 (5.5)

The optical centre of the magnet is defined as the intersection between the trajectory
tangents before and after the magnet:

𝑧mag = 𝑥v − 𝑡𝑥𝑧v − 𝑎𝑥 + 𝑏𝑥𝑧ref
Δ𝑡𝑥

Both Δ𝑡𝑥 and 𝑧mag are a priori unknown for a given input track because they directly
depend on the final track state that has yet to be found. The slope difference is not
accessible as it is a proxy parameter for the momentum, Δ𝑡𝑥 ∝ 1/𝑝, which is not
directly inferrable from the initial track state. The magnet centre, however, is at least
partly a property of the apparatus, constrained by the position of the magnetic field as
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shown in the histogram in Figure 5.7a. Furthermore, Figures 5.7c and 5.7d show that
𝑡𝑥 and 𝑡𝑦 are correlated enough to 𝑧mag that an initial estimate is possible using only
this information from the input track. Thus the initial estimate called 𝑧′

mag is given by
Equation 5.7 neglecting the last term, which is not accessible yet because of the cyclic
dependency with Δ𝑡𝑥. Then, combining 𝑧′

mag with a single measurement (𝑥hit, 𝑧zone) in
the SciFi tracker gives a first estimate of Δ𝑡𝑥 by

Δ𝑡′
𝑥 =

𝑥hit − 𝑥mag

𝑧zone − 𝑧′
mag

− 𝑡𝑥

= 𝑥hit − (𝑥v + 𝑡𝑥(𝑧zone − 𝑧v))
𝑧zone − 𝑧′

mag
(5.6)

The correlation between 𝑧mag and Δ𝑡𝑥, shown in Figure 5.7b, is then used to improve
the 𝑧mag estimate by

𝑧mag = 𝑐0 + 𝑐1𝑡2
𝑥 + 𝑐3𝑡2

𝑦 + Δ𝑡′
𝑥(𝑐2𝑡𝑥 + 𝑐4Δ𝑡′

𝑥) (5.7)
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Figure 5.7: Regression plots for the 𝑧mag model and the variables it depends on.
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with the coefficients listed in Table A.2. In principle, this procedure could be repeated
to refine the respective estimates further. In practice, calculating 𝑧mag once using Δ𝑡′

𝑥
is sufficient for the precision needed for the pattern recognition in the next section.
The residuals achieved by Equation 5.7 are shown in Figure 5.7a. They indicate that
the calculated 𝑧mag is slightly biased depending on the true magnet centre position.
Yet, because 𝑧mag is still determined with a precision up to a few millimetres, the bias
picked up by 𝑥proj from Equation 5.2 is much less than a millimetre and thus negligible
given that the single-hit resolution is of the same order.

In principle, the same model can be defined for the 𝑦 projection of the trajectory.
However, the minor bending of the track in the 𝑦 − 𝑧 plane and the accordingly small
Δ𝑡𝑦, combined with the lack of precise 𝑦-coordinate measurements in the SciFi tracker,
make the Optical Model method impractical in this case.

5.2.5 Optimised Hough-like Transform

This part of the algorithm performs the actual pattern recognition; it takes care of
the bulk of the combinatorics reduction and is the most time-consuming within the
algorithm. It, therefore, needs to be implemented with computational performance in
mind. The pattern recognition is inspired by the Hough transform [95] and follows
a map-reduce strategy to sieve out sets of SciFi hits that do not form a matching
extension to the input track. The 𝑥 positions of SciFi hits selected by the search
window are mapped to the reference plane using the simplified track model. They are
then filled into a histogram (projectHitsToHoughSpace in Figure 5.1). The histogram
counts the number of unique SciFi detector layers present among the hits in one bin
as the number of layers is the best discriminant against random combinations. This
way, hits that match the input track accumulate layers in a few bins as depicted in
Figure 5.8. Subsequently, the histogram is scanned for small groups of neighbouring
bins exceeding a layer-count threshold, thus reducing the large set of hits from within
the search window to none, one or several small sets of hits, which become candidates
for the extension of the input track (pickUpCandidateBins in Figure 5.1).

Hit selection First, for each zone, the SciFi hits within the search window must be
found. Equation 5.1 only gives the momentum borders at the reference plane and thus
has to be scaled to the individual SciFi layers. A simple linear scaling

𝑥min(𝑧zone) = 𝑥straight
zone − 𝑠 ⋅ Δ𝑥min

border

𝑥max(𝑧zone) = 𝑥straight
zone + 𝑠 ⋅ Δ𝑥min

border

with
𝑠 ≔

𝑧zone − 𝑧mag

𝑧ref − 𝑧mag
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Figure 5.8: Sketch of the Hough-like transform. Different hit projections for one input track
are shown. The hits are collected in a histogram, where the true hits belonging to the input
track (green) reach bin counts over the threshold, while wrong hits (red) form a more uniform
distribution.

yields a sufficient1 hit efficiency at the momentum border (see Figure 5.4). Next,
the hits with the smallest and largest 𝑥 positions within the search window must be
searched for. The hit container data structure, depicted in Figure 5.2, is well-suited
for this because 𝒪(100) hits are stored in ascending order for each zone. This makes
binary search [96] the optimal algorithm in terms of computational complexity to find
the hits at the edges of the search window. Yet it was found that the vanilla binary
search suffers from branch mispredictions2 by the CPU (see Section 3.3) and poses
a bottleneck in the performance of the optimised Hough-like transform. Therefore, a
branchless implementation of binary search is used [59, 65], which avoids the bottleneck.
Because the search typically needs seven iterations3 to find the lower bound, the first
iterations are implemented as an unrolled loop to avoid the loop overhead. Yet without
additional checks, if the search window is larger than the largest hit position, the
unrolled binary search loop makes an out-of-bounds access. This is avoided by putting
the sentinel at the end of the zone (see Figure 5.2).

Hit projection Before reducing the selected SciFi hits to track candidates, they
must be mapped to a space that reveals their interconnection. The mapping is done
by projecting SciFi hits to the reference plane using the simplified track model. If

1The hit efficiency could be increased by enlarging the search window for the last SciFi station.
However, the recovery of some low-momentum tracks does not seem worth the extra computational
effort.

2The CPU cache is not the most pressing bottleneck here because the data is stored sequentially in
memory and typically only spans 𝒪(10) cache lines.

3Complexity of binary search is 𝒪(log2 𝑛), which gives 6 + 1 iterations for 100 hits.
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hits come from the same particle, they form local clusters in this Hough space. For
a projection using Equation 5.2, knowledge about the input track’s magnet kick 𝑧
position is required. As described in Section 5.2.4, an iterative method is applied to
infer 𝑧mag from an initial estimate of Δ𝑡𝑥 via Equation 5.7. However, the projection
still has to be corrected for the fringe field within the SciFi tracker. This is done using
a parameterisation of the expected curvature within the SciFi tracker (see Equation 5.4
and Figure 5.6). An important parameterisation feature is that it vanishes for high-
momentum tracks (𝑝 → ∞ ⟹ Δ𝑡𝑥 → 0) because they hardly deviate from a straight
line in the SciFi tracker. The fringe-field correction is obtained by

Δ𝑥 = Δ𝑡′
𝑥 [𝑇𝑐 + 𝑇𝑑 (𝑧zone − 𝑧ref)] (𝑧zone − 𝑧ref)

2 (5.8)

with
𝑇𝑐/𝑑 = 𝑐0 + 𝑐1𝑡𝑥 + 𝑐2𝑡𝑦 + 𝑐3𝑡2

𝑥 + 𝑐4𝑡𝑥𝑡𝑦 + 𝑐5𝑡2
𝑦

and the coefficients for 𝑇𝑐 and 𝑇𝑑 given in Tables A.3a and A.3b, respectively. They
are found by extrapolating simulated input track states into each SciFi layer to get a
set of perfect1 track measurements. These are then fitted using Equation 5.3 such that
the distributions of 𝑐𝑥 and 𝑑𝑥 in dependence on other track parameters can be studied
using the method described in Appendix A.3. The projection including the correction
reads:

𝑥proj = 𝑥mag +
𝑥hit − Δ𝑥 − 𝑥mag

𝑧zone − 𝑧mag
(𝑧ref − 𝑧mag) (5.9)

In the low-momentum regime, hits in the first SciFi station deviate up to several
millimetres from the straight-line trajectory, making this correction an essential in-
gredient for precisely projecting the hits to the Hough space. The relevant metric
here is the width of the local hit cluster in Hough space shown in Figure 5.9. The
narrower the clusters are on average, the easier they are to distinguish from random
hit-input-track combinations. Low-momentum tracks, in particular, exhibit cluster
widths that, without the correction, would be larger or of the same magnitude as
accidental combinations2 of the input track with a set of SciFi hits.

Additionally, for the projection of stereo-layer hits, the difference between the
measured 𝑥 value at 𝑦 = 0 (𝑥′

hit in Figure 5.10) and the actual 𝑥 position at 𝑦track
(𝑥hit in Figure 5.10) has to be taken into account. Otherwise, the 𝑥proj positions of
stereo-layer hits would systematically deviate from the ones of 𝑥-layer hits, impeding
spotting a local hit accumulation in Hough space. The difference can be accounted for
by

𝑥′
hit = 𝑥hit − tan(𝛼stereo)𝑦track (5.10)

1Perfect here means that only the trajectory through the magnetic field is taken into account, and no
material effects are considered.

2Such combinations often occur when a particle decays between the UT and the SciFi tracker: a real
VELO track is then often paired with the SciFi hits from one of the decay products.
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Figure 5.9: Median Hough cluster width comparison between Optical Model
method without correcting for the fringe field, with correction for the
𝑥 position (Equation 5.8), and with randomised track parameters. The
randomised track has its VELO track parameters smeared by a Gaussian
to mimic a close-by input track for which the SciFi hit set would also be
a possible extension.

x1 x2vu

𝑧

𝑦

𝑥

track

𝑥′
hit

𝑦track

𝑦

𝑥

𝑦track

𝑥′
hit

𝑥hit𝑥hit

Figure 5.10: Sketch of the measured 𝑥 position 𝑥′
hit and the real 𝑥 coordinate of the track’s

SciFi mat traversal 𝑥hit, which depends on the track’s 𝑦𝑧 trajectory.

where 𝛼stereo = ±5∘ is the nominal SciFi stereo-mat rotation. As shown in Figure 5.11
(red circles), using a simple straight-line 𝑦𝑧 trajectory with parameters taken from the
VELO track as a first approximation for 𝑦track already works well. This is due to the
small track curvature in the 𝑦-𝑧 plane (see also Section 5.2.3). Nevertheless, applying
a correction to the straight-line extrapolation

𝑦L
track = 𝑦v + 𝑡𝑦(𝑧L

zone − 𝑧v) + 𝑦L
corr (5.11)

where 𝑦L
corr is calculated using a parameterisation for each stereo layer

𝑦L
corr =Δ𝑡𝑥(𝑐L

0 + 𝑐L
2 𝑡𝑥𝑡𝑦 + 𝑐L

5 𝑡𝑥𝑡3
𝑦 + 𝑐L

6 𝑡3
𝑥𝑡𝑦) (5.12)

+ |Δ𝑡𝑥|(𝑐L
1 𝑡𝑦 + 𝑐L

3 𝑡3
𝑦 + 𝑐L

4 𝑡2
𝑥𝑡𝑦 + 𝑐L

7 𝑡2
𝑥𝑡3

𝑦) (5.13)
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Figure 5.11: Median Hough cluster width comparison between estimating 𝑦track
using a straight line (no 𝑦 correction), with correction of the 𝑦 coordinate
(Equation 5.12), and with randomised track parameters.

with coefficients listed in Table A.4, can significantly decrease the width, as shown in
Figure 5.11 with green triangles. This is particularly the case for low-momentum tracks
(Figure 5.11a) and tracks with a steep slope in 𝑥 (Figure 5.11b). The latter is due to
the larger momentum 𝑝𝑥 orthogonal to the magnetic field component 𝐵𝑧 deflecting the
trajectory in the 𝑦-𝑧 plane. The need to estimate 𝑦track makes the projection of stereo
hits less precise than the 𝑥-hit projection (cf. Figures 5.9 and 5.11).

Looking at the projected hit positions on the reference plane, i.e. in Hough space, a
human could now already spot good hit-cluster candidates that match the input track
pattern as shown in Figure 5.12. Fortunately, the spotting of candidate clusters and
the projection must happen so fast that humans are unfit for this job. However, the
CPU must also be carefully instructed on how to project, spot and pass on candidates

2000 2100 2200 2300 2400 2500 2600
xproj [mm]

Figure 5.12: Hit projections for a simulated 𝜋+ with 𝑝 = 2.5 GeV/𝑐. A red circle marks the hit
cluster belonging to the pion.
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fast. This is achieved by fully implementing the loop over the measured 𝑥 positions
per zone with SIMD instructions. The platform foreseen for data taking during Run 3
enables vectorisation with AVX2 and FMA (see Section 3.3). The projection thus
happens for eight single-precision 𝑥-positions in parallel with the evaluation speed of
the polynomials used in the simplified track model additionally profiting1 from fewer
CPU operations due to FMA. The design of the hit container data structure with all 𝑥
positions sequentially in memory was chosen precisely to perform this vectorisation
efficiently.

Hough histogram A key optimisation ingredient for the Hough transform is a fast
way to find the Hough clusters. Three observations can give guidance on how to do
this:

1. the number of SciFi layers within a cluster is the strongest discriminant against
random clusters

2. projected hits from 𝑥 layers are more reliable
3. the centre of the SciFi tracker has the highest hit density and thus the largest

potential for random clusters

The data structure used to collect the projected hit position should, therefore, be able
to exploit these three properties efficiently. The first is simply a matter of counting,
for which the histogram is a natural choice. The second is taken into account by only
persisting the projection of 𝑥-layer hits, which saves memory space and improves cache
locality but, more importantly, saves the time it takes to write the less useful stereo-layer
information to memory. The third can be used to define a non-uniform binning for the
histogram. In an average event, most projected hit positions are distributed around
the beam-pipe position at 𝑥 = 0, with the distribution quickly falling off towards the
edge of the detector as shown in Figure 5.13a. It would be a waste of resources to
have the same histogram granularity at the edges of the detector as in the centre.
For the same reason, detectors are often designed with coarse granularity in regions
of low particle flux, which is not the case for the SciFi tracker. The shape of the
desired non-uniform binning is obtained by transforming the bin edges such that the
hit distribution becomes uniform. To do this, the 𝑖-th bin edge is identified with the
𝑖-th quantile 𝑥𝑖

Q, defined via the cumulative distribution:

𝐹(𝑥𝑖
𝑄) = ∫

𝑥𝑖
Q

−∞
𝑓(𝑥)d𝑥 = 𝑖

𝑁bins
(5.14)

1Depending on how the compiler implements multiplication followed by addition, FMA might even
yield a more precise floating-point result, because only one rounding step is necessary. This potential
precision difference does not matter for the physics performance but can cause numerical differences
between results obtained on different platforms.
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Figure 5.13: Distributions used to determine the binning scheme of the Hough
histogram.

The distribution of the projected hits 𝑓(𝑥) and its cumulative distribution are solved
numerically1 for the 𝑖-th bin edge 𝑥𝑖

Q. The number of bins 𝑁bins is a vital parameter for
the Hough histogram because it specifies the scale of the bin size; a small number can
be processed fast but makes it difficult to spot real hit clusters in the noise of random
hits also being present in a bin, while a large number impacts the computational
performance because clusters may be split across many bins, each of which must be
processed. Conveniently, the necessary scale of the bin size is already known from the
precision of the hit projection shown in Figure 5.9. The smallest clusters have a width
of about 1 mm, which is the smallest bin size in the cumulative distribution plotted in
Figure 5.13b with 1152 bins. Now for each projected hit position, a mapping is needed
to determine which bin it belongs to. There are two possibilities: calculate a look-up
table that stores the bin numbers corresponding to all possible 𝑥 positions on the
reference plane or find a function that effectively describes the shape of the distribution.
The former possibility was abandoned because the computational performance of the
loop over the hits already suffers from cache misses, which worsens if more information
stored in memory needs to be accessed (see Section 3.3). A function, however, is
only better if it can be evaluated fast and for multiple hits in parallel, i.e. with SIMD
instructions. This essentially leaves one choice for the description of the sigmoidal
form:

𝑖(𝑥proj) = ⌊𝑝0 +
𝑝1𝑥proj

1 + 𝑝2|𝑥proj|
⌋ (5.15)

Although it is adequate to use this function to fit the cumulative distribution, the
smallest bin size was chosen a bit too tight. In the end, the average cluster width
depends on momentum and not on the position on the reference plane. Studying the
performance for different numbers of bins and coefficients in Equation 5.15, it was
found that 𝑁bins = 1152 performs well if the binning function is tweaked such that the

1The Python package pandas provides a neat function for this called qcut.
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5.2 Algorithm Design and Description

minimum bin width is 1.7 mm. The binning function used in the algorithm is shown in
Figure 5.13b; the coefficients are listed in Table A.9.

Because the loop over the hits within the search window is performed per zone,
the result of the vectorised Equation 5.15 is a vector of eight single-precision integers
representing the Hough histogram bins for projected hits from the corresponding
SciFi layer. The histogram counts the number of unique layers per bin, so a fast and
vectorised way to keep track of this is needed. In addition, the projected positions of
the 𝑥-layer hits and their indices in the SciFi hit container need to be stored. An SoA
data structure is used for this, with two fields storing the 𝑥proj values and hit container
indices per bin, respectively, and one field to encode1 the total number of layers per
bin, together with the information on which specific layers are present. To update the
layer information for all bins inside the vector, the encoded layer information for this
bin must be gathered from memory, updated, and scattered back2. This poses one
of two bottlenecks in the loop over the hits because these memory operations have
high latency. The other bottleneck is scattering the projected 𝑥-hit position and its
hit-container index to the memory representing the Hough histogram. An essential
subtlety about the data structure has to be noted: the number of hits stored per bin in
the first two fields is restricted to 16. In practice, this is enough to hold all 𝑥-layer hits
that fall into the bin on average. After all, the binning follows the hit density in the
detector, the total number of SciFi hits is restricted by the bandwidth of the read-out
hardware (see Section 2.4.3), and a global event cut3 is applied for nominal running.

Hough search After projecting every hit from within the search window to the
reference plane and storing the necessary information in the Hough histogram, the
candidate hit clusters must be extracted (pickUpCandidateBins in Figure 5.1). First,
a fast threshold scan over the field encoding the layer information is performed. This
can be done for eight bins in parallel using SIMD instructions because the field has the
SoA layout. If a single bin contains hits from at least four SciFi layers, it is promoted
to a cluster candidate. In a subsequent step, both neighbouring bins of a candidate
are checked for complementary layers, requiring a total of at least ten layers. This
is done for eight candidates in parallel. The distribution of the number of bins a

1For details of the encoding it is best to look into the code. The basic idea is to count the number of
unique SciFi layers in the first 8 bits of a 32-bit integer while the following 12 bits serve as flags,
keeping track of which layer is present in a bin. This slightly cumbersome approach was chosen to
use the SIMD instructions available with AVX2 efficiently.

2Gathering and scattering is SIMD instruction terminology, meaning that values are loaded and stored
from memory addresses reachable via shared base address, i.e. not necessarily directly sequential in
memory. According to Ref. [97] gathering needs 14 CPU micro-operations on the reference node’s
Broadwell architecture and is thus a heavy instruction. Scattering is not implemented in hardware
for AVX2 and is emulated by the SIMDWrapper library.

3For 𝑝𝑝 collisions, the global event cut currently removes events with more than 9750 SciFi clusters.
This might change in the future depending on the general performance of the experiment. For
heavy-ion collisions, the global event cut is best removed, in which case the restriction to 16 hits
per bin might need to be revised.
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Figure 5.14: Number of bins in the
Hough histogram the projected hits of
a reconstructible track are split across.

track is split across is shown in Figure 5.14; the median number is two, which is the
expected number if the binning has the right granularity. Building candidates using
three bins covers 96% of particles, where mainly tracks that scattered with large angles
and low-momentum particles are lost. Some low-momentum tracks can be recovered
later, however, only if a rogue hit is present, which lets the candidate pass the ten-layer
requirement.

5.2.6 Track Candidate Selection

The optimised Hough-like transform results in a list of bins containing a sufficient
amount of hits matching the pattern expected for the input track. The next step is
cleaning up the hit sets using the stored 𝑥proj values from the 𝑥 layers to eventually
form initial track candidates (selectXCandidates in Figure 5.1). This is necessary
because random hits can be present in candidate bins, and sometimes multiple track
candidates can be formed from the hit sets. Broadly, the approach is the following:

1. sort the 𝑥proj values in all selected bins and write them to a list
2. form reduced sets of hits from the list by checking for gaps and narrow sub-clusters
3. fit the 𝑥 hits with the 𝑥𝑧-trajectory model (Equation 5.3) and reject bad hit sets

If a candidate was found using the 𝑥-layer hits, it has to be confirmed by checking for
matching stereo-layer hits (selectFullCandidates in Figure 5.1). This uses the track
candidates found in the previous step to predict the position where the track traverses
the stereo layers:

4. select stereo-layer hits close to the 𝑥𝑧 trajectory by employing another Hough-like
transform

5. fit stereo-layer hits with a 𝑦𝑧-trajectory model and reject bad hit sets
6. fit all hits with the 𝑥𝑧-trajectory model
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All the above steps can be executed a second time if no appropriate track candidate
was found at first. This is called second loop and was found to balance the algorithm’s
overall performance by addressing the fact that the difficulty of finding a track candidate
depends on the quality of the hit projection. The first loop applies more strict selections
and thus mostly finds the high-quality1 tracks. The second loop is, on average, entered
for more than half of the input tracks that pass the Hough search. Omitting the
second loop costs 3.5% track finding efficiency but also detracts 1% from the fake track
fraction and reduces the time spent in the Forward tracking by 20%. It is a general
observation that a significant time in the algorithm is spent on recovering crude tracks.
In the following paragraphs, selection parameters that are different for the second loop
are given in brackets behind the values for the first loop.

Sorting The sorting of 𝑥proj values posed a serious computational bottleneck in the
early stages of the algorithm development. Various approaches have been tested, from
sorting algorithms specific to the order in which the projected positions appear in the
list [98, 99], over generally optimised sorting [100], to avoiding the sorting altogether
by using different hit clustering approaches. In the end, the best-performing approach
computationally and physics performance-wise was developed in conjunction with the
optimised Hough transform. Using the properties of the Hough histogram, the sorting
can be done in small chunks2 of work instead of one heavy sorting procedure. The
sorting profits, in particular from the ordering property of the Hough histogram: only
hits within a bin must be sorted, all 𝑥proj in the higher, adjacent bin are guaranteed to
be larger by the strict monotonicity of the binning function. Furthermore, the size of
each bin is restricted to 16 hits and is thus small from a computational point of view,
fitting inside a single cache line. The most efficient sorting algorithm on modern CPUs
for this scenario is Insertion Sort [59, 96], which is thus opted for here.

Clusterisation On the resulting list of sorted 𝑥proj values, the candidate clusterisation
starts by forming an initial cluster out of the first five(four) hits. The width of this
cluster is checked against

𝑤 = 𝑤max + 𝑏𝑤(|𝑥min
proj| + |𝑥min

proj − 𝑥straight
ref |) (5.16)

where 𝑥min
proj is the smallest 𝑥proj in the cluster and 𝑥straight

ref the straight line extrapolation
of the input track to the reference plane. The other two are configurable parameters
set to 𝑤max = 1.2 mm(1.5 mm) and 𝑏𝑤 = 0.002 mm−1. The width described by Equa-
tion 5.16 is larger for low-momentum candidates3, which accounts for the behaviour

1This is often the same as high-momentum tracks.
2This is an excellent example of the divide-and-conquer technique [96] from computer science.
3Momentum is not the only relevant track parameter here. Also steep tracks, i.e. with a large 𝑡𝑥,

tend to have larger cluster widths because they are less well modelled by the parameterisations
used for the hit projection.
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already seen in Figure 5.9. The cluster width function defined in Equation 5.16 mostly
overestimates the width. This is on purpose to not lose any candidates at this stage
and makes the cluster finding more robust against misalignment of the detector. Yet,
a better model for the width might pose a further optimisation opportunity.

If the width of the initial cluster is larger than 𝑤, the first hit is omitted, and the
next hit from the list is added. This is repeated until a cluster with a width smaller
than 𝑤 is found or the end of the list is reached, in which case no SciFi extension of
the input track is found. Otherwise, the next hits from the list are added to the cluster
if the width of the resulting hit cluster is smaller than 𝑤 and the hits’ 𝑥 layers are not
used in the cluster yet. If 𝑥proj of the next hit is less than 1.2 mm(0.5 mm) away from
the previous one, it is added regardless of the width 𝑤. The number of layers present
in a cluster is still the best discriminant against random hit combinations. Therefore, a
cluster candidate is rejected if it consists of less than five(four) 𝑥 layers. The accepted
clusters, then, on average, consist of seven(five) hits, ranging up to cluster sizes of
40(10) or more hits in rare cases. Of these, only up to six can be the true 𝑥 hits
belonging to the input track. Consequently, the clusters need to be stripped of rogue
hits. The most likely case is that the cluster has at least two SciFi layers contributing
a single hit while other layers contribute multiple hits. If so, a straight line is fitted to
the single-layer 𝑥proj values, and only hits with the smallest 𝜒2 with respect to that
line are used such that each SciFi layer only contributes a single hit (see also the next
paragraph on how fits are implemented within the algorithm). If the cluster has only
multiple hits, it is directly passed on to the next step.

Simple 𝐱-projection fits Although finding zero, one or two clusters per input track are
the most abundant cases with a median of 3(0), the average number is 15.7(11.8) and
thus, random hit combinations need to be rejected. Since the clusters are already made
of at least five(four) 𝑥 hits, the track model within the SciFi tracker from Equation 5.3
can be used to clean the sets of hits further and evaluate if they fit the expected
trajectory. It has to be noted that fitting the clusters is not a computationally cheap
operation. The reason is the minimisation of the model’s distance to the data points.
Conveniently, the track model applied here consists only of polynomials, hence fits using
the linear least-square method have an analytic solution to the minimisation problem.
Nevertheless, the analytic solution requires a potentially expensive matrix inversion.
The model from Equation 5.3 has four parameters, i.e. the inversion of a 4 × 4 matrix
would be needed. This could be done efficiently using Cholesky decomposition1 [101];
however, the inversion of matrices with lower rank is reasonably straightforward, a
summary of which is given in Appendix A.2. This, combined with the observation
that the parameter 𝑑𝑥 in Equation 5.3 can be kept at a fixed value to describe the
trajectory well, makes fitting the 𝑥 hits with only the parabolic part of the model a

1The decomposition involves evaluating square roots, which have some latency and can be a computa-
tional bottleneck for small matrices.
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good solution.

First, a track candidate is initialised with preliminary values for 𝑎𝑥, 𝑏𝑥, 𝑐𝑥 and a
constant for 𝑑𝑥. The initial offset 𝑎𝑥 is given by the mean of the 𝑥proj values. The slope
𝑏𝑥 is estimated using Equation 5.6 and the curvatures 𝑐𝑥 and 𝑑𝑥 are obtained evaluating
the same parameterisation already used during the hit projection (Equation 5.8). To
reject a first set of random clusters, it is enough to fit only the linear part of the track
model while the quadratic and cubic coefficients are kept constant. For each hit in the
cluster, the 𝜒2 with respect to the fitted model is calculated. The hit with the highest
𝜒2 is removed if the cluster has multiple hits on the corresponding SciFi layer or the
value is larger than 100. If a hit is dropped, the fit and hit removal is repeated until no
hit is rejected or the number of hits falls below 5(4), where the whole cluster is rejected.
After the linear fit, the cluster consists only of a single hit per layer. The updated
parameter estimates for 𝑎𝑥 and 𝑏𝑥 are then used to fill possible holes in the trajectory,
which improves the hit efficiency and, eventually, the track finding efficiency. Missing
hits can occur either because they were not picked up by the clusterisation or ended up
in a different bin than the ones considered during the Hough search (see Figure 5.14).
To recover those hits, the fitted model predicts the track’s 𝑥 position on a missing layer
and the 𝜒2 of hits within a search window, defined by Equation 5.16, is calculated.
The hits with the lowest 𝜒2 from each missing layer are added to the cluster, and the
linear fit is repeated. The effect on the track finding efficiency is substantial; without
the hit recovery, about 3% of reconstructible tracks are lost in this step. After the
linear fit, the number of cluster candidates is reduced to a median of 1(0) at the cost
of roughly 10% of the algorithm’s execution time.

For further fits, to ensure an accurate fit result, the tilting of the SciFi layers with
respect to the 𝑦 coordinate, d𝑧/d𝑦 (see Section 2.4.3), is taken into account from here
on, i.e. some knowledge about the 𝑦𝑧 trajectory is required to precisely know the 𝑧
position of the 𝑥 hits. Without any correction, the measured 𝑧 positions of the hits
would deviate up to several millimetres from their true value as shown in Figure 5.15.
A second-order polynomial models the 𝑦𝑧 trajectory

𝑦(𝑧) = 𝑎𝑦 + 𝑏𝑦(𝑧 − 𝑧ref) + 𝑐𝑦(𝑧 − 𝑧ref)2 (5.17)

Analogously to the estimates of the 𝑥-trajectory model parameters, the coefficients
of the 𝑦-trajectory model are parameterised using polynomials. An estimate for the
𝑦-offset at each layer was already used during the Hough transform to precisely project
the stereo hits, so the parameterisation function given by Equation 5.12 can be re-used
but with parameters listed in Table A.5. The slope 𝑏𝑦 is modelled by

̂𝑏𝑦 = 𝑡𝑦 + Δ𝑡𝑥(𝑐0𝑡𝑦𝑡𝑥 + 𝑐4𝑡𝑦𝑡3
𝑥 + 𝑐1𝑡𝑦Δ𝑡𝑥) + |Δ𝑡𝑥|(𝑐2𝑡3

𝑦 + 𝑐3𝑡𝑦𝑡2
𝑥 + 𝑐5𝑡3

𝑦𝑡2
𝑥) (5.18)
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Figure 5.15: Average residual of the hits’ measured 𝑧 positions for tracks with
momenta 𝑝 ∈ [1.5, 2] GeV/𝑐 in dependence of the absolute 𝑦 slope. The
dark-red crosses show the deviation if no correction is applied. The blue
circles demonstrate the residuals if the 𝑦𝑧 trajectory is assumed to be a
straight line with slope 𝑡𝑦, while the green triangles have the full correction
applied, using the parabolic 𝑦𝑧 trajectory with parameterised coefficients.
The histogram shows the distribution of |𝑡𝑦| for 𝑝 ∈ [1.5, 2] GeV/𝑐.

with the coefficients listed in Table A.6. Similarly, 𝑐𝑦 is estimated using

̂𝑐𝑦 = Δ𝑡𝑥(𝑐1𝑡𝑦𝑡𝑥 + 𝑐2𝑡𝑦Δ𝑡𝑥) + |Δ𝑡𝑥|(𝑐0𝑡𝑦 + 𝑐3𝑡3
𝑦 + 𝑐4𝑡𝑦𝑡2

𝑥) (5.19)

with the coefficients listed in Table A.7. The slope difference Δ𝑡𝑥 is determined using
the 𝑏𝑥 value from the previous linear 𝑥-trajectory fit as defined in Equation 5.5. A
better estimate using Equation 5.17 for the 𝑧 position of a hit is then calculated by

𝑧′
hit = 𝑧hit + tan(𝛼d𝑧/d𝑦)𝑦(𝑧) (5.20)

where the nominal tilting angle is 𝛼d𝑧/d𝑦 = 0.21∘. The correction given by Equation 5.20
removes the deviation almost completely, as shown in Figure 5.15. The candidates that
survived the linear fit are now fitted with 𝑐𝑥 as an additional floating parameter, i.e.
a parabola is fitted with the cubic coefficient 𝑑𝑥 kept constant. The procedure is the
same as for the linear fit, yet with slightly altered requirements for the hit removal: the
hit with the largest 𝜒2 is dropped if it is larger than 15 or the reduced 𝜒2 of the fit is
larger than 7. If the candidate also survives this fit, the updated model parameters are
used to search again for matching hits on missing layers. If successful, this is followed
by repeating the fit. Afterwards, a cluster is promoted to an 𝑥-track candidate, and its
hits are removed from the sorted list such that they cannot be used by the next cluster
or in the second loop.
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At this stage, the number of clusters has been reduced to 1.7(1.8). For the clustering,
only hits from the 𝑥 layers have been used so far and the clusters look like true
track candidates. However, only one extension per input track is expected, which
shows that further selection is needed. This is also reflected in the fake track fraction,
which is unacceptably high at 𝑟fake ≃ 83%(99%). Nevertheless, the heaviest part of the
combinatorics reduction is done at this point, with the selection of the 𝑥-track candidates
taking roughly 30% of the algorithm’s execution time. Due to its high computational
cost, it has been studied whether this part would profit from utilising SIMD instructions,
e.g. by fitting several clusters in parallel. It was found that vectorised versions are not
faster than the scalar implementation described above. The main reason is the already
small number of clusters coming from the Hough transform, which makes the necessary
changes for vectorised code inefficient for large chunks of the data. An additional
inefficiency of a SIMD version lies in the varying sizes of the clusters. A vectorised
loop over the clusters’ hits must always continue until the largest cluster is finished,
essentially introducing the worst-case execution time for all clusters in a SIMD vector.
The best performance, for now, was reached by storing the 𝑥proj values and their indices
in the SciFi-hit container in an SoA memory layout as these are accessed sequentially
during the clusterisation and kept in the CPU cache. The information used in the fits
is taken directly from the SciFi-hit container, where it is stored in an AoS layout to
improve cache locality (this is referred to as hot part in Section 5.2.2). This performs
better than an SoA layout since the memory access pattern is not sequential; the fitted
hits always come from different zones. Ultimately, the computational performance
of the clusterisation and the candidate selection strongly depends on the quality of
its input, i.e. any precision improvement of the Hough transform also improves the
computational performance of the subsequent step. This is, of course, only successful
if the precision improvement comes at a lower computational cost than what is gained
later.

Stereo-hit selection The compatible stereo hits must be found for each previously
found 𝑥-track candidate. The Hough transform already used stereo-hit information to
ensure that Hough clusters exhibit enough stereo layers to form an entire track, i.e.
at least ten hits from a different SciFi layer each. Because of the more considerable
uncertainty on the projection of the stereo hits, the information was not persisted,
though. Hence, the stereo hits must be collected from the hit container. With the
𝑥𝑧 trajectory already constrained by the 𝑥-layer hits and some input tracks having
already been rejected, this is more precise and computationally less expensive than
storing the stereo-hit information during the Hough transform.

The stereo hits are collected by extrapolating the 𝑥𝑧 trajectory into each stereo
layer. The predicted position 𝑥′pred

stereo of the stereo hit is obtained by correcting for the
stereo angle using Equation 5.10. The 𝑦track = 𝑦(𝑧zone) coordinate on the stereo layer
is calculated using the 𝑦-trajectory model from Equation 5.17 with the coefficients as
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set in the previous step. Similarly to the 𝑥-hit clusterisation (cf. Equation 5.16), stereo
hits from each stereo zone are accepted if they fall within a search window defined by

Δ𝑥stereo = Δ𝑥max + 𝑏Δ𝑥 (|𝑦(𝑧zone)| + ∣𝑥′pred
stereo − 𝑥straight

zone ∣) (5.21)

𝑥stereo,min = 𝑥′pred
stereo − Δ𝑥stereo

𝑥stereo,max = 𝑥′pred
stereo + Δ𝑥stereo

with Δ𝑥max = 5 mm and 𝑏Δ𝑥 = 0.002, which covers more than 99% of the sought-after,
true hits. The limiting factor here is the knowledge about the 𝑦𝑧 trajectory, which, at
this point, only comes from the parameterisations used to estimate the 𝑦𝑧-trajectory
model’s coefficients (Equations 5.18 and 5.19). Since the parameterisations yield merely
an initial guess for the 𝑦𝑧 trajectory, the calculated value of 𝑦track in each zone is usually
systematically over- or underestimated. This can be exploited to find the correct set of
stereo hits as the predicted stereo-hit position relative to the measured hit position
exhibits the same systematic shift. Only the sign of the deviation is different depending
on the sign of the layer’s stereo angle. The signed deviation of the measured hit position
from the prediction is thus defined as

𝛿𝑥signed = sgn(tan(𝛼stereo)) (𝑥′
hit − 𝑥′pred

stereo)

The stereo hits belonging to the track have similar values of 𝛿𝑥signed and are, therefore,
selected using another Hough-like transform. The 𝛿𝑥signed values of hits within the
search window span the Hough space and are filled into a Hough histogram with 15
bins and a bin width of 2 mm. The histogram’s range1 depends on the configuration of
Equation 5.21 and is calculated using reasonably large position values 𝑦(𝑧zone) = 2 m
and 𝑥′pred

stereo − 𝑥straight
zone = 3 m.

When collecting the stereo hits to confirm an 𝑥-track candidate, a subtlety regarding
the split of the zones into the upper and lower half of the detector must be considered.
The distinction hardware-wise comes from the fact that there are separate SciFi modules
for both halves of the tracker. However, the modules in the stereo layers reach into the
other half due to their rotation as illustrated in Figure 5.16. If the value of 𝑦(𝑧zone) is
smaller than 22.7 mm, stereo hits from the other half are therefore also collected in the
Hough histogram. Without this triangle search, the track finding efficiency is roughly
0.5% lower.

After filling the histogram, a threshold scan requires hits from at least three stereo
layers in one bin. If a bin is over the threshold, the two neighbouring bins are checked

1If this range needs to be changed for whatever reason, the proponent should ensure that the number
of bins, the bin width, and the range of the histogram work well together. They cannot be chosen
independently. The number of bins is static, i.e. hard-coded in the C++ code, and the current
configurable parameters are chosen such that the histogram covers 𝛿𝑥signed ∈ [−15, 15]mm, which
works well for a bin width of 2 mm. In practice, this only needs to be changed if there is reason
to believe that the magnitude of 𝛿𝑥signed values changed, e.g. because of massively improved
predictions or a massively misaligned detector.
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Figure 5.16: Illustration of the SciFi stereo modules reaching into the opposite side of the
detector.

for hits from other layers. If the three bins together exhibit enough stereo layers
such that a track candidate with at least ten hits can be formed, the set of stereo
hits is promoted to a stereo-track candidate. The median number of stereo-track
candidates created per 𝑥-track candidate is zero. This is precisely expected, given that
the fake 𝑥-track fraction is 83%. For about a quarter of the 𝑥-track candidates, a single
stereo-track candidate is found, 11% have two, and roughly 4% have three or more
stereo-track candidates. For this part of the algorithm, it was also studied whether
vectorisation can be used to improve the computational performance. However, the
effort was quickly abandoned because neither the number of stereo hits collected nor
the number of 𝑥-track candidates is sufficiently high to fill SIMD vectors.

Simple 𝐲-projection fits Just as was the case for the clusters of 𝑥 hits, the sets of
stereo hits can include rogue hits, which must be removed. This is again done by
fitting the track model to the stereo hits with a strategy analogous to the 𝑥-projection
fits described before. For each stereo-track candidate, first, only the linear part of
Equation 5.17 is fitted, and hits with a 𝜒2 > 60 are removed. The candidate is rejected
if the sum of the remaining stereo hits and the 𝑥 hits on the 𝑥-track candidate is
less than ten. Subsequently, the full parabolic 𝑦-trajectory model is fitted, dropping
hits with 𝜒2 > 4.5 and possibly rejecting the stereo-candidate according to the same
minimum hit requirement as previously. If the stereo candidate has missing SciFi
layers, the fitted 𝑦-trajectory model and the fitted 𝑥-projection are used to collect hits
within the window defined by Equation 5.21. The hit with the smallest 𝜒2 < 4.5 from
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each missing stereo layer is added before the 𝑦 projection is fitted a last time. Because
the stereo layers of the SciFi tracker still mostly measure the 𝑥 position, the hit has to
be projected onto the 𝑦 axis to be fitted by the 𝑦 model. The distance between the 𝑦𝑧
trajectory and the projected 𝑦 hit is given by

𝑑𝑦 = 𝑥(𝑧′
hit) − 𝑥hit

tan(𝛼stereo)

= 𝑥(𝑧′
hit) − [𝑥′

hit + tan(𝛼stereo)𝑦(𝑧′
hit)]

tan(𝛼stereo)

The covariance matrix holding the hit errors for the fit is populated with the stereo hits’
uncertainty due to the SiPM channel clusterisation (see Section 2.4.3). This neglects
the additional uncertainty picked up by the stereo hit projection onto the 𝑦 axis, i.e.
the errors used in the fit are underestimated, and the 𝑦-trajectory is actually poorly
constrained. The errors could be improved by studying the actual uncertainty of 𝑑𝑦
in simulation; however, the 𝑦-projection fits are merely used to confirm the 𝑥-track
candidate and neither their estimator covariance nor the 𝜒2 distribution are used
further. Instead, a virtual measurement at 𝑧mag is included in the fit to improve the
quality of the parabolic fits. This builds on the circumstance that the bending of the
𝑦𝑧 trajectory is small. The distance 𝑑mag

𝑦 = (𝑎𝑦 + 𝑏𝑦(𝑧mag − 𝑧ref)) − (𝑦v + 𝑡𝑦(𝑧mag − 𝑧v))
is used with a weight given by 𝑤 = (10 mm + 0.015Δ𝑡𝑥)−2.

Suppose multiple stereo candidates per 𝑥 candidate survive the fits. In that case,
the candidate with the most stereo hits is selected1. In case of an equal number of hits,
the candidate with the smallest mean squared distance to the model is chosen.

Final 𝐱-projection fit With an 𝑥 and stereo candidate found, all candidate hits within
the SciFi tracker are fitted. The hits from 𝑥 layers contain no information about
the 𝑦𝑧 trajectory, and also the stereo-layer hits carry mostly 𝑥-position information.
Furthermore, the track’s momentum is most sensitive to the bending of the track in the
𝑥𝑧-plane. Therefore only the 𝑥-trajectory model is fitted to the full hit set. Again, the
same strategy as before removes outliers and adds missed hits. The hit with the worst
𝜒2 is removed if it is larger than 15 or the reduced 𝜒2 of the fit is larger than four.

Technically speaking, the pattern recognition and the track finding are complete at
this point. The reconstructed tracks could be passed on to the Kalman filter, which
would reject low-quality tracks and provide the best estimate of the track parameters.
The Kalman filter, however, is the most expensive component of the reconstruction
sequence, as already seen in Figure 4.5b. It is, therefore, worthwhile to spend some
more time in the Forward tracking to improve the set of tracks handed to the Kalman
filter. For this, the essential track parameter estimated by the fit is the slope 𝑏𝑥, used

1This is the same as selecting the candidate with the most stereo layers because only one hit per layer
is used.
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in the next section to estimate the track’s momentum.

5.2.7 Momentum Estimation

The momentum of a track is estimated using Equation 4.7. The numerator is given
by Δ𝑡𝑥 = 𝑡𝑥 − 𝑏𝑥 where 𝑏𝑥 is the track’s slope at the reference plane within the SciFi
tracker as obtained by the fit in the previous section. Before attending to the integral
in the denominator, it is helpful to define the expectation on the momentum estimate.
At the end of the algorithm, a Long track must have a track state vector in the SciFi
detector, including the momentum, as input to the Kalman filter. As long as the hit set
on the track has high purity, the Kalman filter works well, even with only a rough initial
estimate of the track parameters. The momentum is further helpful for the fake track
rejection, particularly when the input tracks already have a momentum estimate to
which it can be compared, e.g. Upstream tracks. But also in this case, an approximate
momentum is sufficient. Eventually, the momentum is used to find UT hits that
belong to the Long track. The hits are searched for by using a simple parameterised
extrapolation into the UT for which the momentum resolution is not the limiting factor.
Hence, a highly accurate momentum estimate is not necessary here, and the integral
in the denominator of Equation 4.7 can be approximated using a polynomial1. This
avoids numerically solving the integral, which would be computationally expensive
because of the large distance between the VELO detector and the SciFi stations. The
integral is parametrised by

𝐵int =𝑐0 + 𝑡2
𝑦(𝑐1 + 𝑐5𝑡2

𝑦 + 𝑐6𝑡2
𝑥) + 𝑡𝑥𝑏𝑥(𝑐10𝑡𝑥 + 𝑐3 + 𝑐7𝑡2

𝑦) (5.22)
+ 𝑐11𝑏4

𝑥 + 𝑐2𝑡2
𝑥 + 𝑏2

𝑥(𝑐4 + 𝑐8𝑡2
𝑦) + 𝑐9𝑡4

𝑥

with the coefficients listed in Table A.10. The momentum is then calculated as

𝑞
𝑝

= Δ𝑡𝑥
𝑟𝐼𝐵int

(5.23)

with 𝑟𝐼 as the relative signed current through the magnet. The momentum resolution
achieved with this is Δ𝑝/𝑝 ≃ 1% and thus not too far from the multiple-scattering limit
of Δ𝑝/𝑝 ≳ 0.5% estimated in Section 4.2.2. More on this can be found in Section 5.3.1.

5.2.8 Fake Track Rejection and Duplicate Removal

After the final fit of the 𝑥 projection using hits from all layers and estimating the
momentum, the final piece of the algorithm is cleaning the set of found tracks to keep
away unnecessary work from the expensive Kalman filter. The fake track fraction at

1Even simpler would be integrating Equation 4.5 assuming a homogeneous magnetic field along the
𝑦 axis and 𝑡𝑥, 𝑡𝑦 << 1, √1 + 𝑡2

𝑥 + 𝑡2
𝑦 ≃ 1 yields Δ𝑡𝑥 ≃ −𝜅𝐵𝐿 𝑞

𝑝 , where L is the length of the
magnetic field.
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this point with VELO tracks as input is still significant at about 46%, out of which
roughly 12% qualify as duplicates, i.e. a track that shares many hits and a phase space
region with another track. The cleaning is done in two stages, the first of which is the
last part of the selectFullCandidates section in Figure 5.1, which employs a neural
network to estimate the goodness of a track and rejects low-scoring tracks. The second
stage operates on all Long tracks found by the Forward tracking in one collision event
and identifies track duplication (removeDuplicates in Figure 5.1).

Fake Track Classification Binary classification of tracks into real tracks and fake
tracks is a problem well-suited for supervised machine learning. The necessary labelled
data is obtained by running the detector signals left by a simulated particle through
the track finding and truth-match the found track candidates to the simulated particle.
The embarras de richesses1 of machine learning algorithms is avoided by opting for
one of the simplest neural networks: a multi-layer perception (MLP). This is a good
choice because MLPs model non-linear decision boundaries, which were found to be
necessary for the problem at hand, they are straightforward to implement, possibly
utilising SIMD instructions, and are fast to evaluate if designed with computational
performance in mind. The training is performed using the Toolkit for Multivariate Data
Analysis (TMVA) [102] on a mixture of simulated 𝐵0

𝑠 → 𝜙𝜙, 𝐵0
𝑠 → 𝐽/𝜓𝜙, 𝐵0 → 𝐾∗0𝑒+𝑒−,

𝑍 → 𝜇+𝜇−,𝐷∗+ → 𝐷0𝜋+ and 𝐷+ → 𝐾0
S𝜋+ decay samples2. The networks are fitted

using TMVA’s backpropagation to adjust the network weights with Cross-Entropy as
the loss function. To ensure a high computational performance of the classification task,
a rectifier linear unit3 is used as the neuron activation function. A logistic function
calculates the network response, mapping the output to the interval [0, 1]. After the
training, TMVA provides an implementation of the network in principle directly usable
by the Forward tracking. However, because the Forward tracking is not the only
algorithm in the reconstruction sequence making use of such a neural network, an
optimised generic implementation was added to the LHCb software stack, splitting
the network implementation from the definition of the network weights and allowing
to change the floating-point data type used by the network, i.e. single precision and
SIMD data types.

Two different MLPs were trained for the Forward tracking, one for input tracks with
momentum information, i.e. tracks from the VeloUT algorithm, and one for tracks
without knowledge about the momentum, i.e. VELO tracks. The latter classification
problem is harder because less information about the input is available. This is also
reflected in the network architecture, which is given by two hidden layers with 𝑁 + 4
and 𝑁 +2 neurons, respectively, where 𝑁 is the number of input variables. The network
that has access to the momentum of the input track only has a single hidden layer
with 𝑁 + 2 neurons. The input variables are given in Table 5.2. They are essentially

1Qual der Wahl in German, freely translated to English: Agony of choice.
2LHCb simulation version Sim10-Up02-OldP8Tuning.
3ReLU(𝑥) = max(0, 𝑥)
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Table 5.2: Input variables of the two MLPs used in the Forward tracking.
Quantities with a hat denote the initial estimate via a parameterisation.

Input-track type Variable Preselection

VELO or Upstream |𝑎𝑦 − ̂𝑎𝑦| < 140 mm

|𝑏𝑦 − ̂𝑏𝑦| < 0.055

𝜒2/ndf < 8

𝐷match
𝑥 < 140 mm

𝐷match
𝑦 < 500 mm

|𝑡𝑥|

|𝑡𝑦|

|𝑞/𝑝|

|𝑏𝑥 − 𝑎𝑥−𝑥mag
𝑧ref−𝑧mag

|

Upstream log(|𝑞/𝑝 − (𝑞/𝑝)input|)

a collection of all the information encountered during the track finding and compare
the found track with on average expected properties. The only new quantity is the
deviation from a straight-line 𝑦 extrapolation of the input track at the end of the SciFi
tracker at 𝑧EndT = 9410 mm, defined by

𝑦EndT
corr =Δ𝑡𝑦(𝑐0 + 𝑐6𝑡2

𝑥 + 𝑐5Δ𝑡𝑦𝑡𝑦) + Δ𝑡𝑥(𝑐4Δ𝑡𝑥𝑡𝑦 + 𝑐3𝑡𝑦𝑡𝑥 + 𝑐8𝑡3
𝑦𝑡𝑥) (5.24)

+ |Δ𝑡𝑥|(𝑐1𝑡𝑦 + 𝑐7𝑡𝑦𝑡2
𝑥) + 𝑐2|Δ𝑡𝑦|𝑡𝑦

where Δ𝑡𝑦 = 𝑏𝑦 − 𝑡𝑦 and with coefficients listed in Table A.8. It is used to define the
𝐷match

𝑦 input variable as

𝐷match
𝑦 ≔ |𝑦v + 𝑡𝑦(𝑧EndT − 𝑧v) + 𝑦EndT

corr − 𝑦(𝑧EndT)| (5.25)

The idea behind this quantity comes from the other Long track reconstruction algo-
rithm, the Matching: the 𝑦 position of a real Long track at the end of the SciFi tracker,
once obtained by extrapolating the input track through the magnet using the parame-
terisation, and once calculated from the determined 𝑦𝑧 trajectory, match well. This is
possible because the VELO detector with its pixel sensors provides two-dimensional
measurements and hence has a superior 𝑦-coordinate resolution compared to the SciFi
tracker’s stereo layers. Extrapolating the 𝑦𝑧 trajectory of the input track to the end of
the SciFi tracker is, therefore, sufficiently reliable and provides a powerful variable for
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fake track discrimination. Similarly, the 𝐷match
𝑥 variable

𝐷match
𝑥 ≔ |𝑥mag − 𝑥(𝑧EndT) − d𝑥

d𝑧
∣
𝑧EndT

(𝑧mag − 𝑧EndT)| (5.26)

quantifies the match of the 𝑥 coordinate at the magnet kink position, which is a natural
quality-control variable within the Optical Model method used for pattern recognition.
The slopes 𝑡𝑥 and 𝑡𝑦, and the track’s momentum have little direct discrimination power.
However, they provide useful information via correlations with the other input variables
in the same way they were useful for all previously used parameterisations. Preselection
cuts are applied to variables to remove obvious fake track contributions before the
training such that the neural networks only model the decision boundary in regions
without efficient one-dimensional separation. The classifier responses are shown in
Figure 5.17. The networks separate real from fake tracks well and correctly model
the decision boundary, as seen from the comparison between the training and the test
sample. A Kolmogorov-Smirnov (KS) test yields distribution consistency probabilities
of 99.7% for the true and 62.7% for the fake tracks with VELO tracks as input. The
corresponding probabilities with Upstream tracks as input to the algorithm are 81.5%
and 26.4%. A cut on the MLP’s response now controls the fake track fraction and
the track reconstruction efficiency. If VELO tracks are given as input to the Forward
tracking, Long tracks with a response smaller than 0.14 are rejected. The cut has a
true track efficiency of 97% and removes 77% of fake tracks. It is chosen relatively loose
because true tracks rejected here are lost for physics data analysis. In contrast, fake
tracks can still be rejected later by the Kalman filter or, lastly, by the data analyst. If
the input track momentum is available, the cut value is 0.1 with a true track efficiency
of 99% and a fake track rejection of 90%. The evaluation of the network for a given
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Figure 5.17: Output of the MLPs for the training (bar) and test (data point with error)
sample. The distribution of true tracks is green with triangular markers, and the
distribution of the fake tracks is red with circular markers.
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track candidate is fast; the calculation of the response takes, on average, 0.5% of the
Forward tracking’s execution time, which is why it was decided not to make use of
vectorisation here.

Even though zero or one Long track candidate per input track are the most frequent
cases, the algorithm allows for more than one SciFi extension per input track. The
only reason for this is a peculiarity mostly1 observed with electron pairs created in
photon conversions. The angle between the two electrons can be so small that the
VELO detector and accordingly the VELO track reconstruction cannot resolve them,
i.e. they share a VELO track. The magnet then splits the pair, and two valid SciFi
extensions can be found for a single VELO track2. Therefore, multiple track candidates
per VELO track are accepted if their response value is close to the highest scoring
SciFi extension. This concludes the full candidate selection. The result is a container
of Long tracks (PrForwardTracks in Figure 5.1), with at least ten SciFi hits each and
reasonable confidence that they are actual tracks.

Duplicate Removal Finally, the container of Long tracks is scanned for track dupli-
cation, which happens if two input tracks have similar track state vectors. First, the
tracks are sorted in increasing order according to their 𝑥 position at 𝑧EndT. Duplicates
are then efficiently found by checking for each track if any following track in the
container has an 𝑥 position within 50 mm of the track under consideration. If that is
the case, whether the 𝑦 position is within 100 mm and whether the two tracks share
more than half of their SciFi hits is checked. Only the one with the highest score from
the fake track rejection is kept from the tracks fulfilling these criteria.

5.2.9 Finding UT Hits

The final change to the Long tracks is the addition of UT hits. This is not required but
improves the momentum resolution of the Long tracks achieved later by the Kalman
filter, and also helps to filter out fake tracks after a successful track fit. Since access to
the UT hits and the geometry of the UT is necessary, but executing the hit addition is
optional in the Long-track reconstruction, it is implemented as a Gaudi tool handling
its own data dependencies. This way, the code can be used by other algorithms too,
e.g. by the Matching, and the UT hits addition can be switched off centrally in case
there is a problem with the detector it depends on, without jeopardising the Long track
reconstruction.

The distance from the end of the VELO detector to the UT is around 1.5 m with
a relatively weak magnetic field integral in between. The Long track is therefore
extrapolated into each UT layer by a straight line from the VELO track segment with

1For other processes, this happens extremely rarely. But it was also seen for e.g. 𝜙→ 𝐾+𝐾−.
2The current implementation of the VeloUT algorithm does not allow for more than one UT-hit

set per VELO track and therefore cannot reconstruct these pairs. It is planned to change this
behaviour, at least for the VeloUT tracking in filter mode.
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a small correction for the 𝑥 position depending on the Long track momentum. UT
hits around the predicted track-layer crossing are collected, and their deviation from
the predicted track position is projected to a reference plane in the centre of the UT
detector, resembling the projection from Equation 5.2. Starting from the hit with
the smallest projected deviation from the track, a group of at least three hits from
three or more different UT layers is formed by adding the hit with the next smallest
deviation. A group of hits is fitted with a straight line, and the hit with the worst 𝜒2

is removed if the group consists of too many hits, similar to the fit procedure described
in Section 5.2.6. If multiple groups of UT hits match the Long track, the one with the
lowest total 𝜒2 and most hits is selected. The tool adds four UT hits to a Long track
on average. The UT hit efficiency on Long tracks from a 𝐵 meson is above 98% with a
purity of 99.4%. For general Long tracks, the hit efficiency and purity are a bit lower
at 96.5% and 97.8%, respectively.

5.2.10 Output

The Forward tracking outputs the found tracks in an SoA container (Pr::Long::Tracks
in Figure 5.1) that is further processed by the Kalman filter. The index of the Long
track’s ancestor, i.e. a VELO or Upstream track, is stored along with the number of
VELO hits, UT hits, and SciFi hits the Long track is made of. For the hits themselves,
a unique identifier is stored together with their indices in the hit container, which
makes it easy for the Kalman filter algorithm to access hit information directly. Finally,
the track state vector at the end of the SciFi tracker is stored, closing the Long track
finding.

5.3 Reconstruction Performance

The performance of the track finding is evaluated using the metrics defined in Section 4.4.

5.3.1 Physics Performance

If not stated otherwise, all efficiencies given in this section refer to the Long-track
finding efficiency of the Forward tracking defined by Equation 4.9. This implicitly
includes the input-track finding efficiency in the numerator because the track segment
upstream of the magnet is a prerequisite to finding the corresponding Long track. In
practice, this has hardly any effect as finding the VELO-track segment of a Long track
is more than 99% efficient (see Appendix A.4.1).

The Long-track reconstruction efficiency of the full sequences can be found in Table 4.1
and Ref. [91].

Efficiencies and Fake Track Fractions First, the efficiency in dependence on various
kinematic variables of the Forward tracking using VELO tracks as input is presented
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in Figures 5.18 and 5.19. The former figure shows the general Long track category
without kinematic requirements except the track being in LHCb’s acceptance. The
efficiency drops rapidly at low momenta, which is due to three effects: the hit search
window exhibits a similar turn-on curve at low momenta as shown in Figure 5.4, the hit
projection during the Hough transform is less precise in the low momentum regime, and
in general low-momentum tracks undergo more multiple scattering and are thus harder
to reconstruct. The efficiency as a function of pseudorapidity and azimuthal angle
of the tracks gives some insight into the distribution of material within the detector.
Around 𝜂 = 4.3, a slight drop is visible, which comes from the conic shape of the beam
pipe within the RICH1 detector; after RICH1, the beam pipe has an edge and is smaller
again but still with a conic shape, i.e. increasing radius throughout the rest of the
LHCb detector (see Ref. [23]). Tracks around 𝜂 = 4.3 and 𝜂 > 4.5 cross beam-pipe
material, and its support structures (see the picture in Figure A.13), and thus undergo
more scattering or interact hadronically, visible as a slight drop in the 𝜂 distribution
of the reconstructible particles and the corresponding efficiencies as reconstructible
particles that scattered in the material are harder to find. The same effects can be
seen in the azimuthal angle where the efficiency drop due to the beam-pipe material
is visible at 𝜙 = 0, ±𝜋, which corresponds to the 𝑥-𝑧 plane. The low-𝜂 region also
exhibits a lower track finding efficiency. One reason is that the parameterisations used
during the pattern recognition perform worse for steep low-momentum tracks, which
is why the effect is not as pronounced when looking at Long tracks from a 𝐵 meson,
e.g. in Figure 5.19c, which have a harder momentum spectrum. The other reason is
that tracks with a large 𝑡𝑥 leave low-resolution hits in the SciFi tracker, which leads to
lower quality tracks and lower track finding efficiency. The efficiency in dependence on
the number of primary vertices, given in Figure 5.18e, is reasonably flat, showing that
the track finding works well also for busy events.

The efficiencies for electrons are shown separately. They are significantly lower than
the efficiencies of other particles as they emit bremsstrahlung in addition to undergoing
multiple scattering when traversing material. The emission of bremsstrahlung photons
upstream of the magnet makes it more difficult to follow and find the trajectory in
the SciFi tracker. All parameterisations created for the pattern recognition explicitly
exclude electrons for this reason, and currently, no measures are taken to recover
electron tracks.

The fake track fraction is shown in Figure 5.20. The most prominent feature in
the Figures 5.20a and 5.20b is the high fraction of ghosts at low momenta; low 𝑝T
in particular. They are typically built from VELO tracks with large pseudorapidity
and small 𝑡𝑦, which extrapolate well into the SciFi tracker region with the highest
hit occupancy. The abundance of hits in this region then makes it likely to find an
extension by chance. Moreover, the same reason that reduces the track finding efficiency
at high 𝜂 increases the fake track fraction in that region, as visible in Figure 5.20c;
for a particle scattering off the beam pipe before the UT detector, it is likely to find
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e: Efficiency vs. number of primary vertices.

Figure 5.18: Track finding efficiency of the Forward tracking algorithm with VELO input
tracks for simulated Long tracks with 2 < 𝜂 < 5 in dependence on various kinematic variables
and the number of primary vertices. The variables’ distributions and the efficiencies are
given separately for reconstructible electrons and other reconstructible particles; electrons in
blue with empty-circle markers and other particles in black with full-circle markers. The
true, simulated variable values are used for the distributions.
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Figure 5.19: Track finding efficiency of the Forward tracking algorithm with VELO input
tracks for simulated Long tracks with 2 < 𝜂 < 5 originating from a 𝐵 meson in dependence
on various kinematic variables and the number of primary vertices. The distributions of
the variables and the efficiencies are given separately for reconstructible electrons and other
reconstructible particles; electrons in blue with empty-circle markers and other particles
in black with full-circle markers. The true, simulated variable values are used for the
distributions.

a wrong set of SciFi hits, mimicking a low-momentum track because for these the
requirements during the pattern recognition are the weakest. Similarly, VELO tracks
left by unstable particles decaying between the VELO tracker and the SciFi stations
are often paired with the SciFi hits produced by their decay products, i.e. secondaries
and therefore real T tracks. Lastly and unsurprisingly, the fake track fraction rises
with the number of primary vertices. The reason is that events with many primary
vertices typically also exhibit many SciFi hits, which increases the probability to find
random hit combinations that look like a Long track.

Integrated efficiency numbers and other physics performance metrics are given in
Table 5.3. Comparing these to the objectives defined in Section 5.1 and Table 5.1 shows
that the Forward tracking surpasses the performance estimated during the planning of
the LHCb Upgrade. In particular, the fake track fraction is almost a factor of three
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Figure 5.20: Fake track fraction of the Forward tracking algorithm with VELO input tracks in
dependence on kinematic variables and the number of primary vertices.

smaller1 due to the precise track parameterisations and the neural network used for
ghost rejection. The Run 1 performance can be approached if a comparable fake track
fraction is accepted2. It is not reached, though, which is expected given that the
algorithm is much more constrained by execution time and that the instantaneous
luminosity is five times higher. The purity and hit efficiency show that the algorithm
constructs clean tracks on average. Again electrons exhibit a worse track quality than
other particles.

If the Forward tracking is fed with UT-filtered VELO tracks (see Upstream track
type in Section 4.3), similar efficiencies are reached at half the fake track fraction as
shown in Table 5.4 (see Appendix A.4.2 for efficiency plots). This is possible because
VELO tracks for which no UT hits are found likely also do not have an extension
in the SciFi tracker, and rejecting them upfront using the VeloUT algorithm avoids

1Removing the global event cut adds roughly 5% to the fake track fraction at comparable efficiencies.
2For example, by cutting at 0.01 on the neural network response and keeping candidates that have a

response within 0.4 compared to the best candidate.
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5.3 Reconstruction Performance

finding fake extensions and improves the computational performance. Suppose the
UT-filtered VELO track has a momentum estimate. In that case, the hit search window

Table 5.3: Integrated Forward tracking efficiencies with VELO input tracks obtained from
5000 simulated 𝐵0

𝑠 → 𝜙𝜙 events. Efficiencies for Long electron tracks from 𝐵 are obtained
from 5000 simulated 𝐵0 → 𝐾∗0𝑒+𝑒− events. Efficiencies for tracks from 𝐷 mesons are
obtained on 5000 simulated 𝐷+ → 𝐾0

S𝜋+ events. A category not marked with 𝑒± implies
that electrons are excluded. The uncertainties are below 10−3% and thus are not shown
here.

Category Efficiency 𝜀[%] Purity 𝑓pure[%] Hit Efficiency 𝜖Hit[%]

Long 87.97 99.26 98.45
Long 𝑒± 64.12 97.55 98.03
Long 𝑝 > 5 GeV/𝑐 93.41 99.38 98.83

Long from 𝐷 88.76 99.39 98.66
Long 𝑝 > 5 GeV/𝑐 from 𝐷 94.23 99.54 99.04

Long from 𝐵 92.59 99.45 98.86
Long 𝑝 > 5 GeV/𝑐 from 𝐵 95.77 99.52 99.06
Long 𝑒± from 𝐵 83.52 98.76 98.83
Long 𝑒± 𝑝 > 5 GeV/𝑐 from 𝐵 86.45 98.81 98.93

Fake track fraction 𝑟fake 14.00%

Table 5.4: Integrated Forward tracking efficiencies with UT-filtered VELO tracks
as input. Here, the same samples as for the training of the fake track rejection
classifier (Section 5.2.8) are used to avoid a specific bug related to UT hit decoding
present in the samples otherwise used for efficiency determination. This means
no radiation damage to the SciFi tracker is simulated here. The uncertainties are
below 10−3% and thus are not shown.

Category 𝜀[%] 𝑝-dependent search window 𝜀[%]

Long 87.49 85.83
Long 𝑒± 61.39 58.80
Long 𝑝 > 5 GeV/𝑐 92.78 91.60
Long from 𝐵 90.57 89.10
Long 𝑝 > 5 GeV/𝑐 from 𝐵 94.40 93.25
Long 𝑒± from 𝐵 75.06 71.36
Long 𝑒± 𝑝 > 5 GeV/𝑐 from 𝐵 81.29 77.38

Fake track fraction 𝑟fake 7.56% 6.60%
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Table 5.5: Integrated Forward tracking efficiencies with Upstream tracks from the
default VeloUT algorithm as input. Here, the same samples as for training the
fake track rejection classifier (Section 5.2.8) are used to avoid a specific bug
related to UT hit decoding present in the samples otherwise used for efficiency
determination. This means no radiation damage to the SciFi tracker simulated
here. The uncertainties are below 10−3% and thus are not shown.

Category 𝜀[%] 𝑝-dependent search window 𝜀[%]

Long 54.86 54.21
Long 𝑒± 16.99 16.06
Long 𝑝 > 5 GeV/𝑐 68.48 68.06
Long from 𝐵 71.85 71.10
Long 𝑝 > 5 GeV/𝑐 from 𝐵 83.01 82.42
Long 𝑒± from 𝐵 55.48 53.15
Long 𝑒± 𝑝 > 5 GeV/𝑐 from 𝐵 67.08 64.44

Fake track fraction 𝑟fake 2.08% 1.67%

in the Forward tracking can be configured to take advantage of that knowledge as
explained in Section 5.2.3. In the current configuration, the momentum-dependent
search window decreases the track-finding efficiency by roughly 1.5% and reduces the
fake track fraction by 1%. Electron efficiencies especially suffer in this scenario because
their momentum is reduced by bremsstrahlung, such that they move outside of the
search window. Also, electrons created in photon conversions that share a VELO track
are penalised here because the VeloUT algorithm only allows one Upstream track to
be created per VELO track. Similarly, nominal Upstream tracks further reduce the
fake track fraction but dramatically lower the efficiencies, as shown in Table 5.5. This
is because the nominal VeloUT algorithm was tuned to reconstruct higher momentum
tracks from 𝐵 decays with 𝑝 > 2.5 GeV/𝑐 and 𝑝T > 500 MeV/𝑐 in a CPU-HLT1 scenario.
The VeloUT filter mode can be viewed as the HLT2-tuning of the VeloUT algorithm.

Momentum Resolution The momentum resolution of the tracks found by the Forward
tracking is shown in Figure 5.21. The fast momentum estimate calculated using
Equation 5.23 performs reasonably well, reaching a resolution of Δ𝑝/𝑝 ≃ 0.8% over the
whole momentum spectrum. This momentum, however, is merely used as an input to
the full track fit performed using a Kalman filter, which provides the final estimate of
the track parameters. The Kalman filter’s momentum result is shown in Figure 5.21b,
which is slightly better than the rough estimate of the momentum-resolution limit
due to multiple scattering made at the end of Section 4.2.2. The effect of multiple
scattering on the resolution is evident at momenta below 5 GeV/𝑐. For high momenta,
the resolution gradually worsens because the track’s bending becomes less significant
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b: With Kalman filter applied.

Figure 5.21: Track resolution as a function of momentum for tracks reconstructed by the
Forward tracking.

compared to the single-hit resolution. The resolutions in Figure 5.21b are obtained
by fitting Long tracks that have UT hits added. Yet, UT hits are not a requirement
to form a Long track. Without them, the momentum resolution is 10% worse in the
low-momentum regime and 25% for high-momentum tracks. The pronounced resolution
degradation for high momenta can be explained by the single-hit resolution of the
UT’s silicon sensors, which is two to four times better than the single-hit resolution of
the SciFi tracker. Hence, because the UT is located in an area with a non-negligible
magnetic field, the UT hits add valuable information about the track momentum,
especially for high-momentum particles.

5.3.2 Computational Performance

Besides providing good physics performance, the other factor driving the work on
the Forward tracking and, in general, the whole reconstruction is the computational
performance in terms of event throughput or execution time of the algorithms. The
relevant metrics are defined in Section 4.4.2. A lot of effort was put into optimising
the computational performance of the Forward tracking using SIMD instructions
where appropriate, avoiding unnecessary work where possible and applying modern
implementations of search and sort algorithms where needed. The numbers in this
section only highlight the performance of the Forward tracking. It has to be noted,
though, that eventually, only the throughput of the whole HLT2 sequence is relevant
for the success of the real-time analysis strategy. And the performance, computational
and physics, of the individual components strongly depends on the performance of the
components before them in the sequence. This is to say that a lightning-fast Forward
tracking can be counter-productive if it finds many fake tracks, which slow down the
Kalman filter later in the sequence. Conversely, investing some more time executing a
Forward tracking at a low ghost rate can pay off with a faster sequence in total as the
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Kalman filter has to do less work.
The computational performance has already been revealed in Figure 4.5a: the

Forward tracking takes about 11% of the reconstruction sequence, which runs at
388 evts/s on a single reference node. This translates to a Forward tracking throughput
of around 3527 evts/s. Compared to the reference number from June 2019 from
Section 5.1, this shows a speedup by more than a factor of 3.5 and now fits into the
computing budget of HLT2, fulfilling the objective set in the beginning. Around 6% of
the throughput increase must be credited with optimisation improvements by more
recent compiler versions. The rest was achieved by the optimisations mentioned above.
The effect of explicitly using SIMD instructions is evaluated by running the scalar
version1 of the component. The scalar version shows a 57.5% higher execution time
than the vectorised version, demonstrating that the vectorisation is responsible for
a speed-up factor of almost 3. Enabling2 SIMD instructions from AVX512 but with
256-bit vectors, the Forward tracking gains another 5% in throughput. This is, however,
not foreseen to be enabled for the application running in the event-filter farm because
when using AVX512 instructions, the CPU dynamically scales down its frequency to a
level where the whole HLT2 sequence becomes slower3. Aside from that, most CPUs
in the HLT computing farm are not AVX512-compatible.

Known Bottlenecks The most time-consuming part of the Forward tracking is the hit
projection during the Hough transform (projectHitsToHoughSpace), taking around
44% of the component’s execution time, out of which 31% is spent on the projection
of the 𝑥 hits alone. There are two connected problems here which slow down the
tight loop: there is an instruction-dependency chain after the bin number for a hit is
calculated, which prevents efficient use of the CPU’s pipeline, and there are memory
operations necessary to fill the projected positions into the Hough histogram, e.g.
scattering values from a SIMD vector to non-sequential locations in memory, which
introduce some latency worsening the effect of the instruction dependencies. With
AVX512, this could be implemented more efficiently but would nonetheless throttle the
projection loop’s performance. No way around this particular bottleneck was found.
However, the problem can be mitigated by reducing the number of SciFi hits that
are projected, e.g. by using the momentum-dependent search window when Upstream
tracks or UT-filtered VELO tracks are given as input (see Table 5.6).

The second bottleneck is the selection of track candidates using the 𝑥 hits taking
29% of the execution time (selectXCandidates). This is driven by the quality of
candidates coming out of the Hough transform; to be able to reconstruct low-momentum
tracks, the threshold scan over the Hough histogram takes into account up to three

1This is configured manually in the SIMDWrapper because otherwise, vectorisation using at least
SSE4.2 is enabled by default. Also, this does not keep the compiler from auto-vectorising the code,
i.e. only the explicit vectorisation is switched off.

2This was tested on an Intel Xeon Silver 4214 CPU.
3Which shows that the fraction of code (efficiently) using SIMD instructions is small.
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Table 5.6: Average execution times per thread on the reference node for the Forward tracking
with different input tracks and with or without the momentum-dependent search window.

Input tracks ⟨𝑡VeloUT⟩ref [ms] 𝑝 search window? ⟨𝑡Forward⟩ref [ms] rel. Speed-up [%]

VELO - - 11.0 0
UT-filtered 0.4 no 9.3 16

yes 4.0 64
Upstream 0.2 no 3.3 70

yes 1.0 91

neighbouring bins with low thresholds which almost always pick up rogue hits that
have to be cleaned out again.

In general, most of the algorithm’s execution time is spent on reconstructing lower-
momentum tracks or trying to find a SciFi extension to VELO tracks, which do not have
one. Both are often done in the second loop, which itself can be seen as a bottleneck
of the algorithm.

UT-filtered VELO tracks and Upstream Tracks Since typically half of the VELO
tracks do not have a SciFi extension, it makes sense performance-wise to filter them
upfront using the VeloUT tracking. The efficiencies of the Forward tracking using
UT-filtered VELO tracks or Upstream tracks as input have been presented in the
previous section. However, the primary purpose of these running modes is to speed
up the Long track reconstruction, which only works because the VeloUT tracking is
much faster than the Forward tracking. Execution times per event and thread are
shown in Table 5.6. Reducing the number of input tracks by UT-filtering yields a
timing improvement of 16% without unacceptably lowering the track finding efficiencies.
Furthermore, the full reconstruction sequence profits from the reduced number of ghosts,
the throughput effect of which was not quantified in this work. If the momentum-
dependent search window is also used, the Forward tracking gains more than a factor of
two in throughput, partially solving the hit-projection bottleneck mentioned above. The
best computational performance is achieved when using Upstream tracks as input, but
it also has the worst physics performance. The default VeloUT tracking configuration
used here rejects low-momentum tracks and thus keeps most of the work away from
the Forward tracking.

5.4 Comparison to Neural-Network-based Approach

LHCb’s track-reconstruction design is modular, and the baseline track finding creates
the most important track-segment types, i.e. VELO and T tracks, independently of
each other (see Figure 4.3). This enables the possibility to create Long tracks by simply
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combining VELO and T tracks using a machine learning classifier. This is done by the
Matching algorithm, to which the author has contributed in the course of the natural
overlap with the Forward tracking. In particular, the parameterisations to effectively
model the passage through the magnetic field used in both algorithms are canonically
similar.

5.4.1 The Matching Algorithm

The Matching takes VELO and T tracks as inputs with the objective to combine pairs
of them into Long tracks. The basic idea is to define variables that quantify the level
of agreement, i.e. a match, between the track segment found in the VELO detector
and the segment reconstructed in the SciFi tracker, and evaluate a machine learning
classifier on them to obtain a combined estimate of the matching quality.

The algorithm is organised as a loop over the VELO track state vectors with a nested
loop over the state vectors of all T tracks, such that all possible combinations are
covered. To reject combinations that are obviously wrong, the 𝑦 component of both the
T track and the VELO track are extrapolated by a straight line to a position behind the
SciFi tracker at 𝑧match = 10 m, referred to as 𝑦T

straight and 𝑦V
straight, respectively. Because

the bending in the 𝑦-𝑧 plane is small, only T tracks with 𝑦T
straight < 𝑦V

straight +250 mm are
accepted. Subsequently, the matching variables used as input to a neural network are
calculated. Analogously to what was used during the fake track rejection in the Forward
tracking, the matching defines the 𝑥 distance at the magnet kick position within the
Optical Model method using Equation 5.26. Yet, a slightly different1 parameterisation
to determine the value of 𝑧mag is used because, for T tracks, the slope difference is
defined as Δ𝑡match

𝑥 ≔ 𝑡EndT
𝑥 − 𝑡𝑥, which is different to Δ𝑡𝑥 defined in the Forward

tracking. The magnet kick position in the Matching is given by

𝑧match
mag = 𝑐0 + 𝑐2|𝑥(𝑧EndT)| + 𝑐3𝑡2

𝑥 + |Δ𝑡match
𝑥 |(𝑐1 + 𝑐4|Δ𝑡match

𝑥 |) (5.27)

with coefficients listed in Table A.11. Similarly, the 𝑦 distance is defined by Equation 5.25
but with a different correction because the 𝑧 position where the two segments are
matched is 𝑧match. The correction is parameterised by

𝑦match
corr = 𝑡𝑦(𝑐0|Δ𝑡match

𝑥 |2 + 𝑐1|Δ𝑡match
𝑦 |2) (5.28)

with coefficients listed in Table A.12. This correction is less precise than the one given
by Equation 5.24, however, it was found that the matching neural network performs
better using this simple expression. The two matching distances are then used to define

1A different parameterisation also accounts for the fact that T tracks are not exactly the same as
SciFi hit sets found by the Forward tracking because T tracks also cover tracks from long-lived
particles and secondaries. It has been tested whether using the same parameterisation works. The
answer is yes, but using a dedicated one works better.
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Table 5.7: Input variables of the Matching MLP.

Variable Preselection

𝜒2
match < 15

𝐷𝑥 < 250 mm

𝐷𝑦 < 250 mm

|Δ𝑡match
𝑥 | < 1.5

|Δ𝑡match
𝑦 | < 0.15

𝑡2
𝑥 + 𝑡2

𝑦

a combined quality measure mimicking a 𝜒2

𝜒2
match = 𝐷2

𝑥
𝛿𝑥2 + 𝑡2

𝛿𝑥|Δ𝑡match
𝑥 |2

+
𝐷2

𝑦

𝛿𝑦2 + 𝑡2
𝛿𝑦(𝑡2

𝑥 + 𝑡2
𝑦)

+
|Δ𝑡match

𝑦 |2

var(𝑡EndT
𝑦 )

where var(𝑡EndT
𝑦 ) is the variance of the T track’s 𝑦 slope at the end of the SciFi tracker,

𝛿𝑥 = 8 mm with 𝑡𝛿𝑥 = 80 mm configures the 𝑥 uncertainty, and 𝛿𝑦 = 6 mm with
𝑡𝛿𝑦 = 300 mm configuring the 𝑦 uncertainty.

The architecture of the neural network used to classify the track-segment pairs is
almost the same as the one used for fake track rejection in the Forward tracking and
trained on the same data samples (see Section 5.2.8); the MLP has two hidden layers
with 𝑁 + 2 and 𝑁 neurons, respectively, where 𝑁 is the number of input variables,
listed in Table 5.7. It has been tested by the author whether adding the difference
between the T-track momentum and the Long track momentum to the input variables
improves the classification. No significant impact on the classification was achieved,
which is why this variable is not used. Electrons are banned from the training data
set as including them severely lowers the classifier’s performance for other particles
for the same reasons they were excluded when building the parameterisations for the
Forward tracking. The input variables’ distributions are shown in Figure A.10. The
MLP’s response is plotted in Figure 5.22 for the test and training sample. The neural
network models the data well with a KS-test probability of 31.3% for the good pairs
and 85.9% for the wrong pairs. Like the Forward tracking’s ghost rejection, a cut on
the classifier response controls the fake track fraction and track finding efficiency. The
current working point chosen for the Matching is at a response of 0.215, where 84% of
the wrong pairs are rejected while keeping 97% of the correct ones. The track-finding
efficiency and fake track fraction are discussed in the next section. The pair with the
highest response is selected. Other pairs can also be accepted if their response deviates
less than 0.1 from the highest one, which is helpful for the reconstruction of conversion
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Figure 5.22: Output of the Matching MLP for the training (bar) and test
(data point with error) sample. The distribution of true pairs is green
with triangular markers, and the distribution of the wrong pairs is red
with circular markers.

electron pairs as explained in Section 5.2.8.
Subsequently, the selected VELO-T track pairs are promoted to Long tracks; their

momentum is estimated using Equation 5.23 but with a parameterisation different1 to
the one applied in the Forwrad tracking, and they are stored in the same data structure
as the output of the Forward tracking. The final step is adding the optional UT hits
using the tool discussed in Section 5.2.9.

The algorithm heavily uses SIMD instructions, processing eight T tracks per VELO
track in parallel when AVX2 is enabled. Hence, the generic custom implementation of
the neural network also used in the Forward tracking pays off here.

5.4.2 Performance Comparison

The first apparent difference between the two Long tracking algorithms is the Matching’s
striking simplicity compared to the Forward tracking. This is, however, only the case
because the complexity is hidden in the algorithm finding the SciFi track segments.
Therefore, a fair comparison of the computational performance must include the timing
of the Hybrid Seeding algorithm. Adding the numbers given in Table 5.8 shows that
the Matching finds Long tracks slightly faster than the Forward tracking. One reason
is the efficient usage of SIMD parallelism in the Matching. But also, the Hybrid
Seeding contributes to good computational performance because it does not re-use hits

1The parameterisation is not the same because the author of this thesis had not had the time yet to
unify all parameterisations used in the track reconstruction. In the future, all algorithms shall use
the same parameterisations if possible. The priority in this specific case is low as the Kalman filter
renders away any differences due to the parameterisations anyway.
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Table 5.8: Average execution times per thread on the
reference node for the Hybrid Seeding, Matching and
the Forward tracking.

Component 𝑖 ⟨𝑡𝑖⟩ref [ms]

Seeding 10.1
Matching 0.6

Forward 11.0

already associated with a found track. This makes the track-finding problem easier
along the way. The efficiency comparison is shown in Figures 5.23 and A.11. The
Forward tracking achieves slightly higher efficiencies in the high-momentum region,
at low transverse momentum and high pseudorapidity, while the Matching performs
slightly better in the low pseudorapidity region and around the beam pipe at 𝜙 = 0, ±𝜋.
The latter reflects a fundamental difference between the two approaches: the Forward
tracking uses parameterisations that do not take multiple scattering into account to
follow the VELO track into the SciFi tracker, while the Matching’s MLP is trained
on reconstructed T tracks and thus also models the effect of scattering before the
SciFi tracker. Overall, the track finding efficiency of the two Long tracking algorithms
is very similar, which is precisely the reason the fast reconstruction sequence avoids
running both on the same data. The resulting Long track reconstruction efficiency is
given in Table 4.1. Regarding the fake track fraction, however, the Forward tracking
outperforms the Matching significantly, as shown in Figure 5.24. One reason is the
different approach to using the information by the respective algorithm. While the
Matching directly considers the T track state vector at the end of the SciFi tracker,
the Forward tracking builds the entire SciFi track segment from scratch under the
assumption that it is connected to the VELO track. This way, each SciFi hit is matched
to the VELO track, instead of matching a whole track segment. Moreover, matching
an entire track segment suffers from the fact that many T tracks are associated with
secondary particles, which do not form a Long track. This increases the probability of
matching up unrelated segments given that roughly 50% of the VELO tracks are not
part of a Long track.

Last but not least, the electron track finding efficiencies of both algorithms are
compared in Figures 5.25 and A.12. Because electrons were explicitly excluded from
the training of the Matching’s MLP it is no surprise that the Forward tracking performs
better in finding electrons.
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c: Efficiency vs. pseudorapidity.
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d: Efficiency vs. azimuthal angle.
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Figure 5.23: Track finding efficiency of the Forward tracking algorithm with VELO input
tracks compared to the Matching algorithm for simulated Long tracks with 2 < 𝜂 < 5
in dependence on various kinematic variables and the number of primary vertices. The
Matching is shown in empty blue circles and the Forward tracking is in full black circles.
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Figure 5.24: Fake track fraction of the Forward tracking algorithm with VELO input tracks
compared to the Matching algorithm in dependence on kinematic variables and the number
of primary vertices. The Matching is shown in empty blue circles and the Forward tracking
is in full black circles.
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Figure 5.25: Electron track finding efficiency of the Forward tracking algorithm with VELO
input tracks compared to the Matching algorithm for simulated Long tracks with 2 < 𝜂 < 5
in dependence on various kinematic variables and the number of primary vertices. The
Matching is shown in full blue rectangles, and the Forward tracking is in empty blue circles.
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5.5 Summary and Future Prospects

The Forward tracking is one of the two algorithms finding Long tracks within LHCb’s
event reconstruction sequence running in HLT2. In simulation, it reaches track finding
efficiencies of more than 90% for particles from heavy-flavour decays at an event
throughput of 3527 evts/s, which fits into the computing budget of HLT2 for Run 3.
This is made possible by extensively optimising the computational performance of the
algorithm while keeping the physics performance high. As is typical for software-related
work, the Forward tracking and, generally, track reconstruction is part of an endless cycle
of planning, analysing, designing, implementing, testing and maintaining. The cycle is
reignited every time new circumstances evolve: new or missing hardware - be it detector
components like the absent UT or developments in computing architectures -, bugs that
only occur when running in production over trillions of collision events, misalignment
of the trackers; the list of caveats and problems under real-world conditions is long,
some of which are discussed in Chapter 6. The development cycle has been triggered
many times for the Forward tracking, which is why it is as complex of an algorithm as
it is now. But for the same reason, it is also a flexible track reconstruction algorithm.
If requirements on the track reconstruction change, e.g. during LHC operating as an
ion-ion collider, the Forward tracking can be easily configured to serve a different
momentum regime, to cope with larger fake track fractions due to high occupancies,
or to be more resilient against poor detector conditions. In hindsight, it was a wise
decision to keep the usage of UT hits optional in the HLT2 Forward tracking as the UT
was still missing during the first data-taking in 2022. For 2023 when the UT is being
commissioned, the Forward tracking is ready to use it, be it by only adding matching
UT hits or by taking UT-filtered tracks as input. Nevertheless, to fill performance gaps
of the reconstruction efficiencies and further optimise the computational performance
more work is needed.

On the physics performance side, the electron finding efficiency leaves a lot to be
desired, particularly with tests of lepton-flavour universality being a focus of the
flavour-physics community, in addition to angular analyses of 𝑏→ 𝑠ℓ+ℓ− transitions,
LHCb’s results of which being partially thwarted by the lack of electron statistics. A
possible way towards better electron efficiencies could be to implement a dedicated
electron reconstruction. It might run as a final stage of the Long track reconstruction
over residual VELO tracks, and SciFi hits, similarly to how the Forward tracking is
used in HLT2’s fast reconstruction sequence. To account for the different kinematics
of the electrons due to bremsstrahlung, all parameterisations could be re-calculated
and trained on samples only containing electrons. To ensure these electrons survive
the track fit, a specialised track parameter estimator like a Gaussian-sum filter [68,
103] could be applied.

On the computational performance side, the prospects are manifold, also in their
scale of necessary changes. With a relatively small effort, the Forward tracking could
gain around 5% more throughput by changing the binary search implementation to
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using static B-trees [104]. A bit more involved, but with all necessary (software)
components already in place, is reorganising the fast track reconstruction sequence
to utilise the VeloUT algorithm as a pre-filter for the Long track finding. Instead of
running the Matching first and subsequently the Forward tracking on residual hits
and tracks, the Forward tracking could run first on UT-filtered VELO tracks using
the momentum-dependent search window. As shown in Table 5.4, this would already
find the bulk of reconstructible Long tracks at a low fake track fraction and almost
three times the speed of the nominal Forward tracking or the Hybrid Seeding together
with the Matching. Subsequently, the Hybrid Seeding would run on residual SciFi hits,
followed by the Matching using residual VELO tracks. It is not expected that more
computational improvements of the Forward tracking are necessary for the current data
taking. However, if throughput gains of several factors again become necessary, e.g. for
LHCb Upgrade 2 at the high-luminosity LHC, a completely new implementation will
be necessary. It seems unlikely that CPU-only tracking can keep up with the increasing
performance needs. A future HLT2 Forward tracking must use more accelerators like
GPUs, FPGAs and generally heterogeneous computing chips to keep up with the
performance demands within a real-time application.

The industry is already going in that direction, e.g. with Intel’s oneAPI programming
model aiming to unify interfaces to accelerators like GPUs, FPGAs and AI-specific
circuits. Suppose this allows to easily develop the dispatching of a single algorithm’s
tasks to the accelerators, like performing the Hough-like transform of the Forward
tracking on an FPGA. In that case, performing the full event reconstruction in a single
high-level trigger stage might be within reach. Furthermore, the advances in machine
learning combined with specialised hardware to evaluate the data-driven models pose
opportunities to efficiently cope with the increasing complexity of track reconstruction
in high-rate and high-resolution particle detectors. So far, modern machine learning
techniques are hardly utilised in LHCb’s track reconstruction software; geometric deep
learning approaches like graph neural networks might be useful in the future to improve
the physics and computational performance of the software. The fast and specialised
developments in the computing domain and the accompanying software-maintenance
burden will also make it more necessary in the future to share event-reconstruction
software between large collaborations like ATLAS, CMS, ALICE and LHCb, and their
potential successors at future colliders. The foundation is already there with A Common
Tracking Software, and LHCb should contribute to and profit more from this in the
future.
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The track reconstruction developments for LHCb’s real-time trigger described in the
previous chapters have been proven to work well on simulated 𝑝𝑝-collision samples,
in which the detector is perfectly aligned and works as foreseen by its design. In
reality, a complex apparatus like the LHCb experiment has to be carefully tuned during
commissioning to approach the desired performance. This involves the sub-detector
experts preparing and testing the apparatus for data taking and the trigger experts
preparing and testing the data recording. For LHCb in Run 3, with its purely software-
based trigger system performing the whole event reconstruction in real-time, it is
crucial to validate before nominal operations that the software analysing the events
works. This is particularly the case for track reconstruction, as it constitutes the bridge
between the detector signals and the physics objects the data analysts want to study.
This point cannot be stressed enough: LHCb needs to maintain an operational tracking
system and real-time alignment at all times as in HLT1 it de facto picks up the task of
the removed hardware trigger.

Therefore, this chapter gives an overview of the author’s work as part of the commis-
sioning team, particularly regarding the HLT2 Long track reconstruction. Information
about the commissioning of HLT1 can be found elsewhere [105]. The computational
performance of the track reconstruction on data has not yet been studied because
in 2022 LHCb operated at a fifth of the foreseen instantaneous luminosity, and the
event throughput of HLT2 is not a concern until it is proven that the new detector can
deliver the data quality necessary to perform physics analyses.

6.1 The First Steps Toward Run 3 Data

The LHC started to ramp up its operations for Run 3 in April 2022 with experiment
cavern closure and the first beam at the end of that month. After the commissioning
of the beam, stable beams and the first collisions at the injection energy of 450 GeV
were provided from the end of May on. The commissioning of LHCb’s sub-detectors
was ongoing - with all of them in place except for the UT- testing the data acquisition
systems and the sub-detectors’ time alignment, when HLT1 reached the first milestone
by successfully triggering on the activity in the ECAL. The tracking detectors, however,
were not yet able to take data useful for track reconstruction. Although progress was
made, this had not changed when the LHC started regularly delivering stable beams
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at the nominal beam energy of 6.8 TeV at the beginning of July. Then finally, the first
success on the track reconstruction side was achieved toward the end of July when the
VELO detector was able to see the first VELO tracks and vertices, albeit still in its
safe, opened position with the modules separated by about 50 mm. Also, the Hybrid
Seeding found its first tracks; however, the number was low and thus not distinguishable
from fake tracks. Beginning to mid of August, the sub-detectors started to operate
more and more together, and the SciFi detector took data with the calorimeters and
the muon stations, and later with the VELO detector additionally. From a track
reconstruction perspective, however, this data was merely valuable to mechanically
test the reconstruction machinery because both the VELO and the SciFi detector had
no stable coarse time alignment yet, and several detector modules were excluded from
data taking because of problems with them. The coarse time alignment ensures that
the sub-detector is synchronised with a specific isolated bunch in the LHC such that
each recorded event can be assigned to a unique bunch-crossing identifier. Furthermore,
also no fine time alignment was yet ready for the SciFi tracker, drastically reducing
its hit efficiency to a level where hardly any tracks could be found. The fine time
alignment optimises the electronics’ integration window such that hits left by primary
tracks are recorded with high efficiency. Without a reasonable set of tracks also no
spatial alignment of the tracking system is possible (cf. Section 3.2.3). For the track
reconstruction to use a spatial alignment, the conditions database storing information
about the exact spatial positions of detector modules and the mapping of readout links
must be available, which was only the case around the end of August. Then at the
end of September, after a cooling incident had tied up the LHC for more than three
weeks, the individual sub-detectors approached an operational state in which the track
reconstruction should have been able to find its first real, confirmed Long tracks.

6.2 The Hunt for the First Mass Peak

In the beginning, when an essentially new particle physics detector with new reconstruc-
tion software is being commissioned, the best way to show that it works is to measure
the decay of a particle which is known to be produced abundantly in 𝑝𝑝 collisions
and which has some properties that make it easy to distinguish from the background.
Throughout September and the beginning of October 2022, hardly any data with all
tracking detectors operating together was available. The first1 decay reconstruction
attempts were therefore searching for the decay 𝐽/𝜓→ 𝜇+𝜇−, which in principle can be
cleanly reconstructed because the muons leave clear signatures in the muon stations.
Hence, the Hybrid Seeding and a simple muon track segment reconstruction were used
to reconstruct ”SeedMuon tracks”. The disadvantage of this decay is that it is relatively

1The ECAL by then already had its first success by reconstructing the decay 𝜋0 → 𝛾𝛾. The
calorimeters are not a new sub-detector, though, and usually sit behind the track reconstruction in
the processing chain.
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rare. But with a 𝐽/𝜓 cross-section in LHCb’s acceptance [106] of around 17 µb and
a commissioning instantaneous luminosity of roughly 300 µb−1s−1, half an hour of
data taking should have been enough to be able to reconstruct 𝒪(1000) 𝐽/𝜓→ 𝜇+𝜇−

candidates. Yet, the invariant mass distribution of the two reconstructed muons was
perfectly consistent with combinatorial background. Later it turned out that the
muon stations’ tiles were not correctly ordered in the geometry used by the software.
Therefore, no reasonable reconstruction was possible.

Then, towards the end of October 2022, things finally started to come together:
the VELO and the SciFi detector had been sufficiently tuned, i.e. the number of hits
they saw was of the order of magnitude of what was expected, and they were both
running stably except for some modules with known problems. Everything looked
ready to reconstruct some Long tracks. Without success in reconstructing 𝐽/𝜓→ 𝜇+𝜇−

because of problems with the muon stations, the decay of interest now was 𝐾0
S → 𝜋+𝜋−.

The 𝐾0
S particle is produced in almost every 𝑝𝑝 collision and lives long enough to

travel 𝒪(100 mm) in LHCb’s laboratory reference frame. A clean selection is, therefore,
possible by requiring the 𝑧 position of the 𝐾0

S vertex (𝑧vtx) to be displaced from the
interaction region. Furthermore, the two pions are required to have a small distance
of closest approach (DOCA), which ensures that a reasonable vertex can be formed.
These variables only use information from the tracking system and are chosen because
of their simplicity; after all, the detector is not aligned yet, and the selection can not
be reasonably tuned. The full selection is given in Table 6.1. The implicit momentum
cuts from the reconstruction (𝑝 > 1.5 GeV/𝑐 and 𝑝T > 50 MeV/𝑐) are not listed. All
tracks are reconstructed using the Forward tracking as described in Section 5.2, yet
without adding UT hits. The output tracks of the Forward tracking are fitted using
a Kalman filter, but no track quality cuts are applied. Moreover, using the PID
system to identify the pions is unnecessary since the geometric cuts already reduce the
background sufficiently. This was checked with simulated minimum bias 𝑝𝑝 collisions at√

𝑠 = 14 TeV and 𝜈 = 7.6 (𝜇 ≃ 5) shown in Figure 6.1. The fit model is an exponential
function for the combinatorial background and a Gaussian for the signal component.
The fit results are given in Table 6.2. The background in data is expected to be a
bit lower because of the lower number of visible collisions during the commissioning
compared to the simulation.

Table 6.1: Simple 𝐾0
S → 𝜋+𝜋− selection.

Variable Selection

DOCA(𝜋+, 𝜋−) < 0.3 mm
𝑧vtx(𝐾0

S) > 200 mm
𝑚(𝜋+𝜋−) > 400 MeV/𝑐2

< 600 MeV/𝑐2
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6 Commissioning of the Long Track Reconstruction

Table 6.2: Result of the fit shown in Figure 6.1.
The last row gives the number of events pro-
cessed by the reconstruction.

Parameter Estimated Value

𝜆expo (−5.7 ± 0.3) × 10−3( MeV/𝑐2)−1

𝜇Gauss (498.2 ± 0.2) MeV/𝑐2

𝜎Gauss (3.6 ± 0.2) MeV/𝑐2

𝑁sig 620 ± 33
𝑁bkg 4138 ± 68

𝑁events 4800

Figure 6.1: Selected 𝐾0
S → 𝜋+𝜋− candidates

using Long tracks from the Forward track-
ing with closed VELO after the Kalman
filter.
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Although things looked promising on the sub-detector side, very few Long tracks
were reconstructed from the data, on par with what was expected from random fake
tracks. Thus hardly any candidates for the decay 𝐾0

S → 𝜋+𝜋− were found, let alone a
visible mass peak. The crucial plots that lead to the underlying problem are shown in
Figure 6.2. They are created using the HLT2 Forward tracking on raw detector data,
passed through the first trigger stage without any selection but a pre-scale, and directly
written to the buffer to be independent of the HLT1 commissioning. In a spatially
and timely misaligned detector, the mode of the 𝜒2/ndf distribution is expected to be
shifted towards higher values with a more pronounced tail to the right. The reason is
the underestimated uncertainty on the hit positions and the fewer degrees of freedom
due to the lower single-hit efficiency of the detector. However, the distribution shown
in Figure 6.2a is consistent with random tracks. The 𝜒2/ndf shown there is calculated
by subtracting the 𝜒2 values of the VELO and SciFi track segments from the one of
the entire Long track, and the same for the degrees of freedom. The resulting 𝜒2/ndf
gives information about how well the VELO track segment and the SciFi track segment
match each other. Hence, the SciFi hit extension found by the Forward tracking is not
a good match to the VELO track on average. Because the confidence in the tracking
algorithms after years of studying them in simulation is relatively high, the findings of
Figure 6.2a lead to Figure 6.2b, which shows the number of SciFi hits in dependence
on the number of VELO hits. A linear correlation between these quantities should
be visible if both sub-detectors see the same 𝑝𝑝-collision event. The flat distribution
hints at a problem with the coarse time alignment between the VELO and the SciFi
detector. And indeed, subsequently, it was found that the VELO was off by four bunch
crossings compared to the other sub-detectors.

On the 27th of October 2022, the sub-detector experts had fixed the relative time
alignment. To verify that the problem indeed was fixed, the data taken afterwards
was immediately analysed, the result of which is shown in Figure 6.3. Given that the
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6.2 The Hunt for the First Mass Peak
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a: Matching 𝜒2/ndf between VELO and SciFi
track segments.
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b: Profile of the number of SciFi hits versus
the number of VELO hits.

Figure 6.2: Distributions used to commission the track reconstruction. VELO and SciFi
detector see different bunch crossings here.

detector was not aligned, the 𝜒2/ndf distribution in Figure 6.3a now looks as expected,
with its peak slightly above a value of 1 and a pronounced tail to higher values. Also,
the correlation between the number of SciFi and VELO hits is now clearly visible in
Figure 6.3b.

Then, using the Forward tracking for track reconstruction and the same selection
as used to reconstruct the decay 𝐾0

S → 𝜋+𝜋− in simulation for Figure 6.1, finally the
desired mass peak is visible in Figure 6.4, marking a major milestone in the development
of the LHCb experiment for Run 3, and a personal milestone for the author, as it
proves that the developed Forward tracking algorithm finds real tracks under real-world
conditions. After this data was taken, the VELO detector was put into its nominal
position, i.e. closed around the interaction region. The number of tracks reconstructed
in this position is much higher as the coverage of the high pseudorapidity region
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a: Matching 𝜒2/ndf between VELO and SciFi
track segments.
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the number of VELO hits.

Figure 6.3: Distributions used to commission the track reconstruction. VELO and SciFi
detector see the same bunch crossings here.
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6 Commissioning of the Long Track Reconstruction

Table 6.3: Result of the fit shown in Figure 6.4.
The last row gives the number of events
processed by the reconstruction.

Parameter Estimated Value

𝜆expo (−1.0 ± 0.1) × 10−2( MeV/𝑐2)−1

𝜇Gauss (499.0 ± 0.4) MeV/𝑐2

𝜎Gauss (5.6 ± 0.3) MeV/𝑐2

𝑁sig 313 ± 19
𝑁bkg 270 ± 18

𝑁events 3 × 106

Figure 6.4: Selected 𝐾0
S → 𝜋+𝜋− candidates

using Long tracks from the Forward track-
ing with open VELO after the Kalman
filter.
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increases. As expected, this also increases the yield of reconstructed 𝐾0
S candidates as

shown in Figure 6.5. The width of the mass peak is larger compared to simulation which
must be attributed to the misalignment of the detector. Even considering the lower
instantanous luminosity, the number of events that had to be processed to reconstruct
a similar amount of 𝐾0

S decays as in simulation is three orders of magnitude higher,
showing that without alignment the detector performance was nowhere near its design.
However, the fact that still a significant number of 𝐾0

S decays were reconstructed shows
the robustness of the Forward tracking even with its default configuration.

Table 6.4: Result of the fit shown in Figure 6.5.
The last row gives the number of events
processed by the reconstruction.

Parameter Estimated Value

𝜆expo (−7.6 ± 0.2) × 10−3( MeV/𝑐2)−1

𝜇Gauss (498.8 ± 0.2) MeV/𝑐2

𝜎Gauss (5.3 ± 0.2) MeV/𝑐2

𝑁sig 2185 ± 59
𝑁bkg 7372 ± 93

𝑁events 3 × 106

Figure 6.5: Selected 𝐾0
S → 𝜋+𝜋− candidates

using Long tracks from the Forward track-
ing with closed VELO after the Kalman
filter.
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6.3 Different Configurations of the Long Track Reconstruction

6.3 Different Configurations of the Long Track Reconstruction

The alignment procedure for the SciFi detector depends on the minimisation of the
residuals between a reconstructed track and the hits it is made of. This implies that as
a first step, tracks must be reconstructed in a misaligned detector, and it is essential
to find tracks in detector regions that are particularly misaligned so that these regions
can be aligned. In the previous section, it has already been shown that the Forward
tracking is robust enough to find real tracks in the misaligned detector. Nevertheless,
it might be helpful to re-configure the track reconstruction sequence to increase the
number of reconstructed true 𝐾0

S → 𝜋+𝜋− decays. In the track finding, the quantities
most sensitive to the misalignment are the 𝜒2 cuts in the trajectory fits and the track
classification neural network responses. Therefore, requirements on these quantities in
the respective algorithms are relaxed as shown in Table A.13. Additionally, the required
minimum number of hits on a track is lowered to account for the missed hits due to
misalignment and the lower single-hit efficiency of the detector. It has to be noted
that this configuration would severely increase the fake track fraction under nominal
Run 3 conditions; for the commissioning with its lower instantaneous luminosity, this
is not a concern. To test this configuration and the reconstruction sequences defined
in Section 4.5, a preliminary alignment of the VELO detector is used, which makes
it possible to select the 𝐾0

S candidate with respect to reconstructed primary vertices
instead of the simplistic selection from Table 6.1. The selection, which is more realistic
to what would be used during nominal data taking, is given in Table 6.5 with its
validation on simulation in Figure 6.6. The impact parameter (IP) is the smallest
DOCA of the particle trajectory with any primary vertex (PV). The flight distance
(FDPV) is the distance between the PV belonging to the particle and its decay vertex.
Low-𝑝T tracks are excluded here because they are expected to be dominated by fake
tracks (cf. Figure 5.20b). First, the baseline and the fast track reconstruction sequence

Table 6.5: 𝐾0
S → 𝜋+𝜋− selection using

primary vertices.

Variable Selection

𝑝T(𝜋) > 200 MeV/𝑐
IP(𝜋) > 0.4 mm
DOCA(𝜋+, 𝜋−) < 0.3 mm
FDPV(𝐾0

S) > 50 mm
𝑚(𝜋+𝜋−) > 400 MeV/𝑐2

< 600 MeV/𝑐2

Figure 6.6: Selected 𝐾0
S → 𝜋+𝜋− candidates

using Long tracks from the baseline se-
quence after the Kalman filter and the
selection from Table 6.5.
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6 Commissioning of the Long Track Reconstruction
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a: Default baseline reconstruction.
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b: Default fast reconstruction.
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c: Loose baseline reconstruction.
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d: Loose fast reconstruction.

Figure 6.7: Comparison of reconstructed and selected 𝐾0
S → 𝜋+𝜋− decays from the baseline

and the fast reconstruction sequence with and without loosened Long tracking configuration
as given in Table A.13. All candidates are built using Kalman filtered Long tracks.

are used to reconstruct the 𝐾0
S candidates. The resulting mass peaks are shown in

Figures 6.7a and 6.7b. With the baseline sequence, the fit estimates 1506 ± 42 𝐾0
S

candidates and 1605 ± 43 random pion combinations. The fast sequence reconstructs
tracks worth 1353 ± 40 𝐾0

S decays and 1415 ± 41 background candidates. From the
reconstruction efficiencies for both sequences shown in Table 4.1 naively a smaller
difference between the number of 𝐾0

S candidates would be expected. It is, however,
plausible that the simple Matching algorithm predominantly used in the fast sequence
is less robust against a misaligned detector than the Forward tracking. This impression
is confirmed by looking at the same mass peaks reconstructed using the loose tracking
configuration in Figures 6.7c and 6.7d. Here the baseline and fast scenarios yield
2697 ± 56 and 2288 ± 51 𝐾0

S decays, respectively, with a background contribution of
2850 ± 57 and 2337 ± 52 candidates. Using the loose baseline configuration recovers a
factor of 1.8 of 𝐾0

S decays compared to the default. The signal-to-background ratio
stays the same, indicating that not disproportionately more fake tracks are found.
Yet the difference between the baseline and the fast reconstruction sequence increases
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6.4 Comparison of Data and Simulation

compared to the default, reflecting the value of the Forward tracking as a more complex
algorithm with more configurable handles, compared1 to the Matching.

6.4 Comparison of Data and Simulation

Fast-forward to the last weekend of November 2022, which marks the end of the
data-taking period in 2022 and the start of the year’s end shutdown. For the data
taken this weekend, detector alignment constants for the tracking system are available,
reflecting the best knowledge about the detector so far. This data is therefore used
to compare to 𝑝𝑝 collisions simulated with conditions similar to the ones during data
taking. This is 𝜇 ≃ 1.1 at

√
𝑠 = 13.6 TeV and without a UT detector for data, and

𝜇 ≃ 1.5 for simulation. The data is taken from the NoBias stream, i.e. no trigger
selection is applied. The simulation was produced as a minimum bias sample. For
better comparison, every event must have at least one reconstructed primary vertex.
Tracks are reconstructed using the baseline sequence.

The 𝜒2/ndf of the Long tracks after the Kalman filter is plotted in Figure 6.8, which
shows that the alignment of the detector does not yet sufficiently correct the residuals
between the trajectory and its measurements. This is due to a convolution of multiple
problems that need to be solved iteratively; to align particularly misaligned parts of the
detector, first tracks must be found, which depends on the knowledge about the spatial
position of the detector, which is what the alignment tries to improve. Initially, a
coarse survey of the detector positions was made, which was found to have inaccuracies
in some areas of the SciFi detector impeding the track reconstruction. Furthermore,
the SciFi tracker has not yet reached its full hit efficiency and tracks thus often lack

1Arguably, the comparison is not fair because the Matching takes T tracks as input, the reconstruction
of which has not been tuned here. However, as of writing this thesis, no loose configuration for the
Hybrid Seeding is available.
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tribution between data and simulation.
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a: Number of SciFi hits on Long tracks.

0 2 4 6 8 10 12
SciFi hits on track per layer

0

20000

40000

60000

80000

100000

120000

N
um

be
ro

fT
ra

ck
s

(n
or

m
al

is
ed

) LHCb Unofficial

Best Long Tracks
Simulation
Run 256000 (aligned)

b: Number of SciFi hits on a Long track per
SciFi layer. Layers are numbered 0 − 11 and
ordered with increasing 𝑧 positions.

Figure 6.9: Numbers of SciFi hits on Long tracks reconstructed with the baseline sequence for
data (dashed black line) and simulation (solid blue line).

hits not only because they were not found due to misalignment but also because they
were not detected in the first place. This is visible in the number of SciFi hits per Long
track, shown in Figure 6.9a, which peaks at twelve hits in simulation, i.e. each layer
provides a hit to the track, while in data most tracks have ten hits. If a module is
inefficient and rarely provides a hit to a track, it can not be adequately aligned. Such
inefficiency is, for example, observed in the number of SciFi hits on tracks from the
first SciFi tracker station in Figure 6.9b. The SciFi hit distributions for the first two
layers are shown in Figure 6.10. Then moreover, the VELO was not running with
all its sensors operational, and the same misalignment argument holds. This results,
for example, in underpopulated regions around 𝜙 ≃ 2 rad as shown in Figure 6.11a.
This inefficiency consequently is visible in the same distribution for the Long tracks,
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a: First layer of the first SciFi station.
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b: Second layer of the first SciFi station.

Figure 6.10: Distributions of SciFi hits’ 𝑥 positions from Run 256000.
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Figure 6.11: Comparison between data taken during Run 256000 with aligned tracking system
(black dots) and simulation (solid blue line) using the baseline reconstruction sequence.

shown in Figure 6.11b, yet convoluted with inefficiencies of the SciFi tracker and its
misalignment. The abovementioned problems can be seen in Figure 6.12b. The region
around the beam pipe in the centre is populated well by tracks, while the edges of
the detector hardly provide accurate hit information to build tracks. The second
quadrant exhibits particularly few tracks with a large rectangular gap visible, hinting
at a macroscopic module misalignment in this region, coinciding with the low-efficiency
region observed in the azimuthal angle (Figure 6.11). Lastly, the momentum and the
pseudorapidity distributions are compared to simulation in Figure 6.13. After the
previous findings, the shapes shown here are straightforward to explain: the observed
momentum spectrum is harder than expected from simulation because low-momentum
tracks tend to be bent out of the central region around the beam pipe and thus traverse
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Figure 6.12: Distribution of reconstructed Long track positions in the last SciFi tracker station
T3 using the baseline sequence.

109



6 Commissioning of the Long Track Reconstruction

0 10000 20000 30000 40000 50000
p [MeV/c]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

N
um

be
ro

fT
ra

ck
s

(n
or

m
al

is
ed

) LHCb Unofficial

Best Long Tracks
Simulation
Run 256000 (aligned)

a: Momentum distribution.

0 500 1000 1500 2000 2500 3000
pT [MeV/c]

0

50

100

150

200

N
um

be
ro

fT
ra

ck
s

(n
or

m
al

is
ed

) LHCb Unofficial

b: Transverse momentum distribution.

2 3 4 5
η

0

10000

20000

30000

40000

50000

60000

N
um

be
ro

fT
ra

ck
s

(n
or

m
al

is
ed

) LHCb Unofficial
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Figure 6.13: Comparison between data taken during Run 256000 with aligned tracking system
and simulation for basic kinematic variables

badly aligned SciFi tracker regions, penalising their reconstruction. Additionally, the
low-momentum track finding depends heavily on the parameterisations in the pattern
recognition, which assume an aligned detector. This causes a lower hit efficiency for
low-momentum tracks from the reconstruction side, extra to the low hit efficiency on
the detector side, and prevents these tracks from reaching the minimum number of hits.
Steep tracks, i.e. tracks with small pseudorapidity, typically cross the SciFi tracker in
its outer regions and are therefore less likely to be reconstructed in the current setup.

All of this shows that the commissioning of the detector and the alignment are
incomplete. Further iterations of improving the detector performance and survey
and initial track reconstruction followed by the alignment procedure are necessary to
converge to a system that meets its design goals. For physics analysis, the data taken
so far is merely helpful to mechanically test the selections and validate their output
qualitatively. Selection efficiencies must be evaluated for quantitative results, relying
on the simulation to model the data at least approximately correctly, which is not yet
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6.5 Production of Charm Mesons

the case. Also, calibration samples need to be ready and understood for data-driven
efficiency evaluations, which is hardly possible under the current conditions.

6.5 Production of Charm Mesons

Although the detector is not yet in shape to perform robust physics measurements,
this section summarises parts of the developments made to validate the entire data
processing chain, from the new detector, over the online event reconstruction, to
selections via trigger lines.

6.5.1 The Original Plan and its Status

Before the LHC’s start for Run 3, LHCb made plans to measure various physics
quantities as early as possible to prove that the new detector and trigger system can
provide robust physics results. Among these early measurements is the determination
of the prompt charm production cross-section in bins of 𝑝T and rapidity 𝑦, using the
decays 𝐷∗+ → (𝐷0 → 𝐾−𝜋+)𝜋+, 𝐷0 → 𝐾−𝜋−𝜋+𝜋+, 𝐷+ → 𝐾−𝜋+𝜋+, 𝐷+ → 𝐾−𝐾+𝜋+,
and 𝐷+

𝑠 → (𝜙→ 𝐾−𝐾+)𝜋+. These measurements are particularly suited to validate
the real-time analysis trigger and the new detector as the expected production rate
of charm quarks at LHCb’s interaction point is in the millions of pairs per second (cf.
Figure 3.1) with many of them hadronising to one of the mesons as mentioned above.
Hence, an integrated luminosity of 𝒪(10 pb−1) 𝑝𝑝 collisions is sufficient to conduct the
measurement. Furthermore, the charm production cross-section was among the first
measurements performed after the start of Run 2 in 2015 [107, 108], already using
an early form of the real-time analysis strategy [37] to immediately analyse the data.
The Run 2 measurements can thus be used as a reference to verify early Run 3 results.
Besides the value for the LHCb experiment, the measurement is an important test of the
predictions of perturbative quantum chromodynamics down to low values of the initial
partons’ momentum fraction accessible by LHCb’s unique coverage of the high-rapidity
region. With the LHC providing a centre-of-mass energy of

√
𝑠 = 13.6 TeV for Run 3,

the measurement also enters so-far unexplored energy territory. The plan is furthermore
to extend the number of decays used to determine the cross-section. In particular,
charm baryon decays1 were not included in the measurement conducted in Run 2, as
well as studies of the charm hadron production from double parton scattering [109,
110].

The entry point for every Run 3 measurement that directly uses the full capabilities
of the real-time analysis trigger are the exclusive trigger lines selecting the decays of
interest and persisting only the relevant reconstructed objects. The trigger lines must
be prepared before the start of the data taking and thus rely on studies performed
on samples simulating the expected experiment conditions. This poses a challenge

1Ξ+
𝑐 → 𝑝𝐾−𝜋+, Ξ0

𝑐 → 𝑝𝐾−𝐾−𝜋+, Λ+
𝑐 → 𝑝𝐾−𝜋+
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6 Commissioning of the Long Track Reconstruction

because the entire system, from the detector, over the data acquisition and event
reconstruction software, to the software used by the data analysts to obtain the output
of the trigger lines, is still dynamically changing. The writing of trigger lines for
the early measurements, therefore, went along with actively developing and testing
the necessary selection tools1 for the framework, in which the author took an active
part. By now, most selection tools the data analysts need are in place, and not only
the trigger lines for early measurements are ready, but also more than a thousand
exclusive trigger lines covering the whole physics programme of LHCb. Because 2022
was a commissioning year for LHCb, and the early data-taking period of 2023 will
also be needed to iron out problems encountered in 2022 and to commission the UT,
the measurement of the charm production cross-section has not been conducted yet.
However, with the data taken in 2022, it was at least possible to verify that the
processing chain, including the trigger lines, is, in principle, operational.

6.5.2 Trigger Lines

There are two design goals for the trigger lines selecting the charm mesons for the
early measurement: they should be simple and loose enough to be able to select the
desired decays even if the detector is not perfectly performing yet, and they should
select the charm mesons over the whole 𝑝T and 𝑦 spectrum. The HLT2 selection cuts
for 𝐷0 → 𝐾−𝜋+ are listed in Table 6.6. All basic particles must be Long tracks, and

1These tools are called ThOr functors within LHCb. ThOr stands for ”throughput oriented”, which
are functors designed to be able to use SIMD instructions to perform the selections with higher
event throughput.

Table 6.6: HLT2 trigger selection for 𝐷0 → 𝐾−𝜋+.

Particle Selection

𝐾−, 𝜋+ 𝑝T > 250 MeV/𝑐
𝑝 > 2 GeV/𝑐

𝜒2
IP > 16

DOCA(𝐾−, 𝜋+) < 0.1 mm
𝑝T(𝐾−) + 𝑝T(𝜋+) > 1.5 GeV/𝑐

𝐾− DLL𝐾𝜋 > 5
𝜋+ DLL𝐾𝜋 < 5

𝐷0 𝑚𝐷0 − 80 < 𝑚(𝐾−𝜋+) < 𝑚𝐷0 + 80 MeV/𝑐2

𝜒2
FD > 49

DIRA < 20 mrad
𝜒2

vtx < 10
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6.5 Production of Charm Mesons

all events must have at least one reconstructed primary vertex (PV). After the Kalman
filter, a common track 𝜒2/ndf cut is applied, set to 𝜒2/ndf < 4.2 during commissioning
(cf. Figure 6.8). The momentum requirements are chosen not to cut out the low-𝑝T
region of the 𝐷0 but still reject most of the low-momentum background. The variable
𝜒2

IP is the impact parameter significance, i.e. tracks with a large 𝜒2
IP are significantly

displaced from any PV, a feature of tracks coming from the decay of a particle with
measurable lifetime like the 𝐷0. The variable DLL𝐾𝜋 is the log-likelihood difference
between the hypothesis that the particle is a kaon or a pion and is a combination of
information from the PID system. The variable 𝜒2

FD is the significance of the distance
between the PV and the secondary vertex (SV), where the 𝐷0 decayed, a significant
value of which is a crucial selection feature of the weakly decaying heavy-flavour hadrons.
The direction angle (DIRA) is defined as the angle between the momentum vector of
the 𝐷0 and the direction vector obtained by connecting the PV and the SV and ensures
that the decay is not only reconstructed partially. The quality of the SV is denoted by
𝜒2

vtx. The HLT2 trigger lines for the other charm meson decays apply similar cuts and
are listed in Appendix A.7.

6.5.3 Mass Distributions

Parts of the data taken during commissioning have been processed by HLT2 using the
selections to measure the charm production cross-section. As explained in the previous
section, the data quality is not yet good enough for physics analysis. Yet, the selections
were explicitly chosen to be loose to work under suboptimal conditions. The resulting
mass distributions are shown in Figure 6.14. Each channel exhibits a mass peak, albeit
dominated by background for all but the two-body 𝐷0 decay. This is expected, and
tighter selections are ready for nominal data taking, cutting harder on the impact
parameter, the flight distance, and the position of the SV with respect to detector
material to remove candidates from material interactions. The selections were tuned
on simulation where the detector is perfectly aligned, so the mass windows were chosen
a bit too narrow for the amount of misalignment present in the data. From a track
reconstruction point of view, it is reassuring to observe the four-body 𝐷0 decay, which
would suffer the most from a suboptimal tracking performance. All in all, successfully
reconstructing these decays with a not-fully commissioned detector shows that the
Run 3 apparatus and its software, in principle, work.
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Figure 6.14: 𝐷 meson invariant mass distributions as selected by the corresponding HLT2
trigger lines.
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7 Conclusion

The work presented in this dissertation highlights how classical pattern recognition
can be implemented as a component of a cutting-edge, purely software-based trigger
system on modern CPUs. For this, the track reconstruction software for LHCb’s Run 3
HLT2 with a focus on the Forward tracking has been described, including its first
commissioning using the decay 𝐾0

S → 𝜋+𝜋− and the prospect of further validation using
charm-mesons decays.

By using the capabilities of modern CPUs and following best practices of high-
performance computing, the track reconstruction’s event throughput was increased by
several factors such that particle collisions can be reconstructed with offline quality
already in the trigger using the limited resources provided by the event-filter farm.
The Forward tracking approach has been redesigned completely to gain a factor of
3.5 in throughput by utilising SIMD parallelism, efficient data structures and effective
descriptions of the particles’ passage through the magnetic field. This was achieved
without trading off on the physics performance of the algorithm; the Forward tracking
finds Long tracks using a Hough-like transform with an efficiency of 88% integrated
over the whole momentum spectrum and is 95.8% efficient for high-momentum tracks
originating from a 𝐵 meson. The event throughput of the Forward tracking reaches
3527 events per second and computing node, corresponding to an average single-thread
executing time of 11 ms per non-empty 𝑝𝑝 collision. The fake-track fraction is controlled
using a neural network reducing it to 14%, significantly lower than the ghost rate of
the presented neural-network-based Long track reconstruction algorithm, the Matching.
Both algorithms achieve comparable track-finding efficiencies for all reconstructible
particles except electrons, for which the Forward tracking is slightly more efficient.
Furthermore, it was shown that the throughput of the Forward tracking increases by
another factor of 2.7 by using the UT to filter the input tracks, which additionally
halves the fake track fraction while reaching similar track-finding efficiencies.

Eventually, the Forward tracking and the entire track reconstruction software were
demonstrated to work under challenging conditions in a not fully commissioned experi-
ment with a misaligned tracking system. To that end, the author was able to reconstruct
the first 𝐾0

S mass peak for LHCb in Run 3. Finally, it was shown that also charm-
hadron decays with up to four tracks in the final state can be reconstructed, which is
part of the preparations for detector- and trigger-validation measurements aiming to
determine the charm-production cross-section in the forward region at

√
𝑠 = 13.6 TeV.
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A Appendix

A.1 Equation of Motion w.r.t 𝐳 Coordinate of a Charged
Particle in the Magnetic Field

The goal is to transform the differential equation Equation 4.4 such that it depends on
the 𝑧 coordinate instead of the path length 𝑠. An infinitesimal piece of the path length
in cartesian coordinates is given by

d𝑠2 = d𝑥2 + d𝑦2 + d𝑧2 (A.1)

yielding the Jacobian determinant

𝐽 ≡ d𝑠
d𝑧

= √1 + (d𝑥
d𝑧

)
2

+ (d𝑦
d𝑧

)
2

(A.2)

The second derivative of 𝐱 with respect to 𝑠 can be written as

d𝐱
d𝑧

= 𝐽d𝐱
d𝑠

⟹ d𝐱
d𝑠

= 𝐽−1 d𝐱
d𝑧

(A.3)

d2𝐱
d𝑠2 = d

d𝑠
[𝐽−1 d𝐱

d𝑧
] = 𝐽−1 d

d𝑧
[𝐽−1 d𝐱

d𝑧
] (A.4)

= 𝐽−2 [d2𝐱
d𝑧2 − 𝐽−1 d𝐱

d𝑧
d𝐽
d𝑧

] (A.5)

with
d𝐽
d𝑧

= 𝐽−1(𝑥′𝑥′′ + 𝑦′𝑦′′) (A.6)

where the prime indicates a derivative with respect to 𝑧. Plugging Equation A.3 and
Equation A.5 into Equation 4.4 yields

d2𝐱
d𝑧2 = 𝐽−2 d𝐱

d𝑧
(𝑥′𝑥′′ + 𝑦′𝑦′′) + 𝐽𝜅𝑞

𝑝
[d𝐱

d𝑧
× 𝐁(𝐱)] (A.7)
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which shows that the system of differential equations is coupled. The first component
reads

𝑥′′ = (𝑦′ [𝑥′𝑦′′
𝐽2 + 𝐽𝜅𝑞

𝑝
𝐵𝑧] − 𝜅𝑞

𝑝
𝐵𝑦) [1 − (𝑥′

𝐽
)

2

]
−1

(A.8)

To find a useful expression for 𝑥′′, the analogous expression

𝑦′′ = (𝑥′ [𝑦′𝑥′′
𝐽2 − 𝐽𝜅𝑞

𝑝
𝐵𝑧] + 𝜅𝑞

𝑝
𝐵𝑥) [1 − (𝑦′

𝐽
)

2

]
−1

(A.9)

is plugged into Equation A.8, which after simplifying becomes

𝑥′′ = 𝜅𝑞
𝑝

𝐽 [𝑦′(𝐵𝑧 + 𝐵𝑥𝑥′) − 𝐵𝑦(𝑥′2 + 1)] (A.10)

and analogously
𝑦′′ = 𝜅𝑞

𝑝
𝐽 [−𝑥′(𝐵𝑧 + 𝐵𝑦𝑦′) + 𝐵𝑥(𝑦′2 + 1)] (A.11)

A.2 Linear Least-Square Fits

Trajectory fits in the Forward tracking are performed using the linear least-square
method. Following the description of the method from Ref. [111], the estimators for
the parameters of the track model are given by

̂𝜽 = (
𝑃

⏞𝐴𝑇𝑉 −1𝐴)−1⏟⏟⏟⏟⏟
𝑈

𝐴𝑇𝑉 −1𝐱 (A.12)

where 𝐴 is the feature matrix with elements 𝐴𝑖𝑗 = 𝑎𝑗(𝑧𝑖) calculated from the track
model’s linearly independent monomials of each measurement at 𝑧𝑖, 𝑉 is the covariance
matrix of the measurements and 𝐱 the corresponding measurement vector. The matrix
𝑉 is easily inverted, assuming that the errors on the hits’ 𝑥 positions are independent
of each other, in which case the matrix is diagonal. Calculating the inverse of the
matrix 𝑃 yields the covariance matrix 𝑈 of the estimators and can be computationally
expensive. That the inverse matrix exists is not guaranteed as the covariance matrix is
only positive semi-definite, in praxis though the invertibility is rarely an issue1. For
matrices up to rank three, which are by choice the only cases occurring in the Forward
tracking, decently simple solutions can be written down using the fact that the inverse
can be expressed as

𝑈 = adj(𝑃 )
det(𝑃 )

(A.13)

1Nevertheless, the implemented fits check if the determinant is different from zero to prevent division
by zero, which, as we all know, would have catastrophic consequences. :)
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i.e. using the determinant and the adjoint of the matrix [112]. To fit a straight-line
trajectory, for example, the estimator covariance matrix is calculated by

𝑈 = 1
𝑃11𝑃22 − 𝑃 2

12

⎛⎜
⎝

𝑃22 −𝑃12

−𝑃12 𝑃11

⎞⎟
⎠

(A.14)

For 3 × 3 matrices, a similar expression can be found using the algebraic Leibniz
formula.

The mathematics mentioned above should give the reader enough hints to understand
the implementation of the fits in the Forward tracking (in fact, also some other places
in LHCb’s software). However, as usual with floating-point arithmetic, some caution
has to be exercised regarding the numerical stability of calculation results. The whole
pattern recognition, and so the Forward tracking, is implemented using single-precision
floating-point numbers. It is therefore sound to not directly use the 𝑥 coordinate
measurements 𝐱, the values of which might span three orders of magnitude, but to
work with the distance 𝑑 = 𝑥𝑖 − 𝑥track, where 𝑥track is calculated using the prior best
knowledge of the model parameters. The fit method then estimates the change of the
parameters with respect to the prior knowledge instead of the absolute values, i.e. the
resulting ̂𝜽 has to be added to the prior parameters and it is possible to fit only a subset
of coefficients, while keeping others constant. Furthermore, when creating the matrix
𝑃 for a fit with three parameters, some matrix elements are proportional to the third
power of the 𝑧 coordinate, which is a huge number for 𝒪(𝑧) ≃ 1000 mm. Multiplying
this with distances 𝒪(𝑑) ≃ 1 mm should be avoided. Hence for the matrix calculations,
the 𝑧 coordinates are scaled to the same order of magnitude as the distances. The
resulting parameters must then be re-scaled.

A.3 Parameterisations

The parameterisations are a cornerstone of both the physics and the computational
performance of the pattern recognition in LHCb. The latter is the driving force
because effectively describing the particles’ passage through the magnetic field by an
approximation is calculated fast in contrast to expensively solving the equations of
motion using numerical methods. The quality of the approximation then drives the
physics performance. In a sense, the parameterisations are similar to a description by a
neural network that has learnt to predict particle trajectories from a given initial state.
Yet, because the underlying mechanics of the particle movement is not too complex, a
neural network would be unnecessarily complicated to describe the desired quantities.
Instead, simple linear regression is used to fit multi-dimensional dependencies and
obtain a polynomial that describes the quantity of interest on average. Because these
polynomials and neural networks, if necessary, occur in many of LHCb’s pattern-
recognition software components, I have implemented a Python-based software package
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that provides a central and reproducible way to obtain the parametrisations used in
LHCb’s pattern recognition. As of writing this thesis, the Reco-Parameterisation-
Tuner can be found in Ref. [113]. Still, the plan is to move it into the LHCb software
stack, where it will be located inside the Rec project in the pattern recognition part.
Wherever the package is to be found, the goal is to provide the code to reproduce
every single parameterisation used in the track reconstruction. So far, the package
features all parameterisations used in the Forward tracking and Matching, including
the training of the neural networks. The machine-learning library scikit-learn [114]
is used as the backend for the regressions. For training of the track reconstruction’s
MLPs, TMVA [102] is used.

Apart from documentation and reproducibility, reasons to implement, update or
change the parameterisations might be changes in the magnetic field, the geometry
or acceptance of the detector and better simulation. The intended workflow starts
with the production of training data from simulated collisions. The package provides
Moore option files that configure software components implemented to create ROOT
files containing the necessary data. Currently, the distributions are taken directly
from simulation, meaning that very high and very low momenta and very steep tracks
are less well represented in the training data. This should improve in the future; the
plan is to test sampling tracks equally in bins of 1/𝑝, 𝑡𝑥 and 𝑡𝑦 [69]. From the user’s
perspective, the next step is simply executing the predefined methods on the new data
to obtain the supported parameterisations, which are directly written into C++ files
from where the new coefficients can be directly copied or included into the software
stack. The neural network training works the same way but takes more time than
the linear regressions. The neural network weights are also written into C++ files
in a format understood by the LHCb’s custom implementation of the MLP’s matrix
evaluations.

If legacy parameterisations are to be ported to this package, I advise following
the same code structure as the already implemented ones have. This is using scikit-
learn’s PolynomialFeatures to the desired degree and removing unused monomials.
The coefficients are then found by employing LinearRegression. If entirely new
parameterisations need to be found, a bit of trial-and-error is necessary to find the
correct description. First, it can be helpful to study the distribution of the target
feature as a function of the training features to see to which degree the polynomial
needs to be defined. Additionally, it is helpful to know how precise and accurate
the parameterisation needs to be to fulfil its purpose. In Section 5.2.4, the 𝑧mag
parameterisation, for example, needs to be precise but not very accurate, i.e. a small
bias is acceptable as long as the variance is small. Only a rough estimate is necessary
for estimating the momentum in the Forward tracking (Section 5.2.7) because the
Kalman filter corrects deviations afterwards. When building the parameterisation, it
should thus be monitored on a test sample if the desired performance is reached. Many
different metrics are available; the mean-squared error or the R2 score are common for
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quick checks. To identify biases and study variances in different parameter regions, it
is, however, necessary to check the corresponding distributions, e.g. by regression plots
such as Figure 5.7a or the underlying 2D distribution of the residuals and the (target)
feature. The main problem with the polynomial features is that it is not obvious
which monomials actually contain information about the target feature. The simple
trial-and-error method is to systematically remove and add monomials until a minimal
polynomial is found that describes the target feature. The maybe faster and smarter
approach is to use least absolute shrinkage and selection operator (Lasso) regression.
This regularises the loss function such that coefficients of monomials contributing
little tend to zero. The regularisation parameter can be scanned to find the minimal
parameterisation that fulfils the needs. The standard linear regression can be applied
again to find the final coefficients as soon as the set of monomials, i.e. the polynomial
is found. Most of the parameterisations documented in the following sections were
found this way.

A.3.1 Trajectory Boundaries

Table A.1: Coefficients for Equation 5.1.

a: Linear coefficients (L).

Coefficient Value

𝑐0 4018.90
𝑐1 6724.79
𝑐2 3970.90
𝑐5 4934.08
𝑐9 106069
𝑐12 −23936.5

b: Quadratic coefficients (Q).

Coefficient Value

𝑐3 −4363.58
𝑐6 6985.25
𝑐10 −94446.8

c: Cubic coefficients (C).

Coefficient Value

𝑐4 1421.11
𝑐7 −5538.28
𝑐11 26489.8

d: Quartic coefficients.

Coefficient Value

𝑐8 1642.86
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A.3.2 Magnet Centre

Table A.2: Coefficients for Equation 5.7.

Coefficient Value

𝑐0 5205.14
𝑐1 −320.721
𝑐2 702.138
𝑐3 −316.364
𝑐4 441.599

A.3.3 Track Model

Table A.3: Coefficients for Equation 5.8.

a: Coefficients for 𝑐𝑥.

Coefficient Value

𝑐0 2.335 × 10−5

𝑐1 −5.394 × 10−8

𝑐2 −1.135 × 10−6

𝑐3 9.213 × 10−6

𝑐4 −6.764×10−7

𝑐5 −3.740×10−4

b: Coefficients for 𝑑𝑥.

Coeffiecent Value

𝑐0 −7.058×10−9

𝑐1 1.052 × 10−11

𝑐2 6.461 × 10−10

𝑐3 2.596 × 10−9

𝑐4 8.044 × 10−11

𝑐5 9.934 × 10−8
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Table A.4: Coefficients for Equation 5.12.

a: Coefficients linear in Δ𝑡𝑥.

Stereo layer 𝑐0 𝑐2 𝑐5 𝑐6

1 1.91414 3719.30 41484.8 30544.7
2 1.98021 3767.00 42635.3 31435.0
5 2.60366 4236.34 52670.2 39380.5
6 2.68024 4296.65 53813.8 40299.1
9 3.38271 4875.42 63618.0 48278.8
10 3.46572 4946.54 64707.5 49179.4

b: Coefficients linear in |Δ𝑡𝑥|.

Stereo layer 𝑐1 𝑐3 𝑐4 𝑐7

1 154.619 −6981.57 −67.7612 211219
2 146.342 −7381.00 18.4078 218404
5 53.2313 −10844.8 986.150 281251
6 40.7583 −11234.8 1115.36 288432
9 −76.6132 −14585.2 2322.16 350658
10 −90.5897 −14962.3 2464.76 357681

Table A.5: Coefficients for Equation 5.12 targeting the reference plane.

a: Coefficients linear in Δ𝑡𝑥.

𝑧 [mm] 𝑐0 𝑐2 𝑐5 𝑐6

8520 2.54155 4187.53 51730.0 38622.5

b: Coefficients linear in |Δ𝑡𝑥|.

𝑧 [mm] 𝑐1 𝑐3 𝑐4 𝑐7

8520 63.2584 −10520.3 881.686 275326
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Table A.6: Coefficients for ̂𝑏𝑦 (Equa-
tion 5.18).

Coefficient Value

𝑐0 0.93462
𝑐1 −0.46580
𝑐2 −4.11981
𝑐3 2.95148
𝑐4 12.5961
𝑐5 39.9847

Table A.7: Coefficients for ̂𝑐𝑦 (Equation 5.19).

Coefficient Value

𝑐0 −1.20348 × 10−5

𝑐1 8.34465 × 10−5

𝑐2 −3.92497 × 10−5

𝑐3 0.00025
𝑐4 0.00019

Table A.8: Coefficients for 𝑦EndT
corr , Equa-

tion 5.24.

Coefficient Value

𝑐0 4227.70
𝑐1 49.5714
𝑐2 1771.73
𝑐3 1939.31
𝑐4 1536.75
𝑐5 287.174
𝑐6 1901.27
𝑐7 −1757.69
𝑐8 17704.0
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A.3.4 Hough Histogram

Table A.9: Coefficients for Equation 5.15.

Coefficient Value

𝑝0 576.971
𝑝1 0.57803
𝑝2 0.00067

A.3.5 Momentum Estimation

Table A.10: Coefficients for Equa-
tion 5.22.

Coefficient Value

𝑐0 −1.20945
𝑐1 −2.78970
𝑐2 −0.359769
𝑐3 −0.47139
𝑐4 −0.56008
𝑐5 14.0093
𝑐6 −16.1628
𝑐7 −8.80799
𝑐8 −0.87532
𝑐9 2.98254
𝑐10 0.96254
𝑐11 0.10201
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A.3.6 Parameterisations of the Matching Algorithm

Table A.11: Coefficients for 𝑧match
mag (Equa-

tion 5.27).

Coefficient Value

𝑐0 5286.69
𝑐1 −3.25969
𝑐2 0.015616
𝑐3 −1377.32
𝑐4 282.982

Table A.12: Coefficients for 𝑦match
corr (Equa-

tion 5.28).

Coefficient Value

𝑐0 1974.64
𝑐1 −35933.8

A.4 Reconstruction Performance

The appendix is related to Section 4.4.1.

A.4.1 VELO Tracking

Track finding and efficiency plots for the VELO Tracking used as input to the Long
tracking algorithms.
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Figure A.1: Track finding efficiency of the VELO tracking algorithm for simulated Long
tracks with 2 < 𝜂 < 5 in dependence on various kinematic variables and the number of
primary vertices. The grey distributions show the true variable values of Long-reconstructible
particles.

A.4.2 Forward Tracking on UT-filtered VELO Tracks

Track finding and efficiency plots for the Forward Tracking with UT-filtered VELO
tracks as input. Two scenarios are shown, with and without the momentum-dependent
search window.
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e: Efficiency vs. number of primary vertices.

Figure A.2: Track finding efficiency of the Forward tracking algorithm with UT-filtered VELO
tracks for simulated Long tracks with 2 < 𝜂 < 5 originating from a 𝐵 meson in dependence
on various kinematic variables and the number of primary vertices. No momentum-dependent
search window is applied. The simulated distributions of the variables and the efficiencies are
given for reconstructible electrons and other reconstructible particles separately; electrons in
blue with empty-circle markers and other particles in black with full-circle markers. The
same samples as for the training of the fake track rejection classifier (Section 5.2.8) are used
to avoid a specific bug related to UT hit decoding.
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Figure A.3: Fake track fraction of the Forward tracking algorithm with UT-filtered VELO
tracks as input in dependence on kinematic variables and the number of primary vertices.
No momentum-dependent search window is applied.
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e: Efficiency vs. number of primary vertices.

Figure A.4: Track finding efficiency of the Forward tracking algorithm with UT-filtered VELO
tracks for simulated Long tracks with 2 < 𝜂 < 5 originating from a 𝐵 meson in dependence on
various kinematic variables and the number of primary vertices. The momentum-dependent
search window is applied. The simulated distributions of the variables and the efficiencies are
given for reconstructible electrons and other reconstructible particles separately; electrons in
blue with empty-circle markers and other particles in black with full-circle markers. The
same samples as for the training of the fake track rejection classifier (Section 5.2.8) are used
to avoid a specific bug related to UT hit decoding.
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Figure A.5: Fake track fraction of the Forward tracking algorithm with UT-filtered VELO
tracks as input in dependence on kinematic variables and the number of primary vertices.
The momentum-dependent search window is applied.

A.4.3 Forward Tracking on Upstream Tracks

Track finding and efficiency plots for the Forward Tracking with Upstream tracks as
input from the VeloUT algorithm with the default configuration. Two scenarios are
shown, with and without the momentum-dependent search window. The appendix is
related to Section 4.4.1.
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Figure A.6: Track finding efficiency of the Forward tracking algorithm with Upstream tracks
for simulated Long tracks with 2 < 𝜂 < 5 originating from a 𝐵 meson in dependence on
various kinematic variables and the number of primary vertices. The momentum-dependent
search window is applied. The simulated distributions of the variables and the efficiencies are
given for reconstructible electrons and other reconstructible particles separately; electrons in
blue with empty-circle markers and other particles in black with full-circle markers. The
same samples as for the training of the fake track rejection classifier (Section 5.2.8) are used
to avoid a specific bug related to UT hit decoding.
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0 1000 2000 3000 4000 5000
 [MeV/c]

T
p

0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n 

of
 f

ak
e 

tr
ac

ks

LHCb Simulation

particle

LHCb Simulation

particle

b: Fake track fraction vs. transverse momen-
tum.

2 2.5 3 3.5 4 4.5 5
η

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fr
ac

tio
n 

of
 f

ak
e 

tr
ac

ks

c: Fake track fraction vs. pseudorapidity.

0 2 4 6 8 10 12 14
# of PVs

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Fr
ac

tio
n 

of
 f

ak
e 

tr
ac

ks

d: Fake track fraction vs. number of primary
vertices.

Figure A.7: Fake track fraction of the Forward tracking algorithm with Upstream tracks
as input in dependence on kinematic variables and the number of primary vertices. The
momentum-dependent search window is applied.
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Figure A.8: Track finding efficiency of the Forward tracking algorithm with Upstream tracks
for simulated Long tracks with 2 < 𝜂 < 5 originating from a 𝐵 meson in dependence on
various kinematic variables and the number of primary vertices. No momentum-dependent
search window is applied. The simulated distributions of the variables and the efficiencies are
given for reconstructible electrons and other reconstructible particles separately; electrons in
blue with empty-circle markers and other particles in black with full-circle markers. The
same samples as for the training of the fake track rejection classifier (Section 5.2.8) are used
to avoid a specific bug related to UT hit decoding.
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Figure A.9: Fake track fraction of the Forward tracking algorithm with Upstream tracks
as input in dependence on kinematic variables and the number of primary vertices. No
momentum-dependent search window is applied.
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A.4.4 Comparison to Matching Algorithm
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Figure A.10: Distributions of the Matching MLP’s input variables listed in Table 5.7.
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Figure A.11: Track finding efficiency of the Forward tracking algorithm with VELO input
tracks compared to the Matching algorithm for simulated Long tracks with 2 < 𝜂 < 5 from
a 𝐵 meson in dependence on various kinematic variables and the number of primary vertices.
The Matching is shown in empty blue circles and the Forward tracking is in full black circles.
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Figure A.12: Electron track finding efficiency of the Forward tracking algorithm with VELO
input tracks compared to the Matching algorithm for simulated Long tracks with 2 < 𝜂 < 5
from a 𝐵 meson in dependence on various kinematic variables and the number of primary
vertices. The Matching is shown in full blue rectangles and the Forward tracking is in empty
blue circles.
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A.5 Magnet, Beam Pipe, and the SciFi Tracker

A.5 Magnet, Beam Pipe, and the SciFi Tracker

Figure A.13: Picture [115] of the beampipe and its support structures within
the magnet. On the left, the first layer of the SciFi tracker is visible. The
empty space on the right is where the UT and RICH1 detectors are located.
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A.6 Tracking Configuration

Table A.13: Loose track reconstruction configura-
tion used in Section 6.3.

Component Property Value

Forward MLP response > 0
ΔMLP response = 0

𝑛tot
Hits > 8

single 𝑥 hit 𝜒2 < 60
single 𝑢𝑣 hit 𝜒2 < 16
first fit 𝜒2/ndf < 50
last fit 𝜒2/ndf < 28

Matching 𝜒2
match < 20

MLP response > 0
ΔMLP response < 0.3

𝛿𝑦 = 12 mm
𝑡𝛿𝑦 = 600 mm

Track Fit 𝜒2/ndf < 20
outlier removal 𝜒2 > 25
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A.7 Charm Meson HLT2 Trigger Lines

A.7 Charm Meson HLT2 Trigger Lines

Table A.14: HLT2 trigger selection for 𝐷+
(𝑠) → ℎ−ℎ+ℎ+ with ℎ± ∈

{𝐾±, 𝜋+}.

Particle Selection

𝐾±, 𝜋+ 𝑝T > 250 MeV/𝑐
𝑝 > 2 GeV/𝑐

𝜒2
IP > 4

DOCA(ℎ𝑖, ℎ𝑗) < 0.2 mm
∑𝑖 𝑝T(ℎ𝑖) > 1.5 GeV/𝑐

∑𝑖 𝜒2
IP(ℎ𝑖) > 64

𝐾± DLL𝐾𝜋 > 5
𝜋+ DLL𝐾𝜋 < 5

𝐷+/𝐷+
𝑠 𝑚𝐷 − 80 < 𝑚(ℎ−ℎ+ℎ+) < 𝑚𝐷 + 80 MeV/𝑐2

𝜒2
FD > 50

DIRA < 30 mrad
𝜒2

vtx < 10
reconstructed lifetime > 0.15 ps
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Table A.15: HLT2 trigger selection for 𝐷0 → 𝐾−𝜋−𝜋+𝜋+.

Particle Selection

𝐾−, 𝜋± 𝑝T > 250 MeV/𝑐
𝑝 > 2 GeV/𝑐

𝜒2
IP > 4

DOCA(ℎ𝑖, ℎ𝑗) < 0.2 mm
∑𝑖 𝑝T(ℎ𝑖) > 1.5 GeV/𝑐

∑𝑖 𝜒2
IP(ℎ𝑖) > 50

𝐾− DLL𝐾𝜋 > 5
𝜋± DLL𝐾𝜋 < 5

𝐷0 𝑚𝐷0 − 80 < 𝑚(ℎ−ℎ+ℎ+) < 𝑚𝐷0 + 80 MeV/𝑐2

𝜒2
FD > 49

DIRA < 20 mrad
𝜒2

vtx < 10
reconstructed lifetime > 0.15 ps

Table A.16: HLT2 trigger selection for 𝐷∗+ → 𝐷0𝜋+. The
𝐷0 is selected by Table 6.6.

Particle Selection

𝜋+ 𝑝T > 100 MeV/𝑐
𝑝 > 1.5 GeV/𝑐

𝐷∗+ 𝑚(𝐷0𝜋+) − 𝑚(𝐷0) < 160 MeV/𝑐2

𝜒2
vtx < 25
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