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Zusammenfassung

Diese Arbeit befasst sich mit der Klassifizierung primärer Photonen aus sogenannten V 0-
Kandidaten mithilfe des XGBoost-Algorithmus. Die Kandidaten stammen aus einer Monte-
Carlo Simulation in ALICE. Dabei erkennt man Photonen durch das Finden von Photon-
Konversionen unter den Kandidaten. Diese müssen von Untergrund-Daten unterschieden wer-
den, welche sich aus Zerfällen und zufälligen kombinatorischen Kandidaten zusammensetzt.
Letzteres sind Teilchenpaare, welche nicht vom selben Mutterteilchen stammen. Zudem wer-
den die V 0-Kandidaten durch eine Vorselektion mehr auf die Photon-Konversionen beschränkt.
Durch Monte-Carlo simulierte Kollisionen ist die wahre Identität der V 0-Kandidaten bekannt.
Bei den hoch entwickelten Simulationen werden kollidierende Teilchen erzeugt und darauf-
folgende Interaktionen mit den ALICE-Detektoren simuliert. In diesem Fall handelt es sich
um Simulationen von Proton-Proton und Blei-Blei-Kollisionen. Während die Proton-Proton-
Kollisionen als Referenz dienen, sind die Blei-Blei-Kollisionen interessant, weil sich Effekte
des Quark-Gluonen-Plasma besonders deutlich zeigen. Die Kollisionen werden unter anderem
vom V 0-finder ausgewertet, welcher anschließend V 0-Kandidaten vorschlägt. In dieser Arbeit
werden Modelle mit den unterschiedlichen Algorithmen auf den simulierten Daten für binäre
Klassifizierung trainiert und mit der normalerweise verwendeten Schwellenwert-Klassifizierung
verglichen. Neben dem XGBoost-Algorithmus wird auch der Random-Forest-Algorithmus ver-
wendet. Eine Hyperparameter-Optimierung wird für die XGBoost Modelle durchgeführt, um
die mögliche Verbesserung zu erforschen. Im interessanten Fall des Blei-Blei-Kollisionssystems
können die trainierten Modelle im Vergleich zum Schwellenwert-Modell bei gleicher Signalef-
fizienz Photonen mit etwa 30% höherer Reinheit identifizieren. Dabei sind die Unterschiede
zwischen den trainierten Modellen vernachlässigbar klein.

Abstract

This thesis deals with the classification of primary photons from so-called V 0-candidates using
the XGBoost algorithm. These candidates originate from Monte-Carlo Simulations in ALICE.
The algorithm identifies photons by finding photon conversions among the candidates. It is
necessary to distinguish the photon conversions from the background data, which comprises
decays and random combinatorial candidates. The latter describes particle pairs, which do not
originate from the same mother particle. Moreover, a preprocessing cut restricts the set of
V 0-candidates more to the photon conversions. The use of Monte-Carlo simulated collisions
makes it possible to know the true identity of the so-called V 0-candidates. The sophisticated
simulations create colliding particles and simulate subsequent interactions with the ALICE-
detectors. In this case, proton-proton and lead-lead collisions are simulated. While proton-
proton collisions serve as a reference, the lead-lead collisions are interesting because the effects
of the quark-gluon plasma are more apparent. Then the V 0-finder evaluates these collisions
and subsequently proposes the V 0-candidates. This thesis deals with the training of machine-
learning models with simulated data for binary classification and the comparison to the typically
used cut-based model. The main task is to train models with two machine-learning algorithms
on simulated data for binary classification and compare them with the typically used cut-
based model. Besides the XGBoost algorithm, the comparison also includes the random-forest
algorithm. The hyperparameter optimization is part of the comparison. It should explore the
possible improvement of an XGBoost model. In contrast to the cut-based model, the XGBoost
models achieve around 30% higher purity at the same signal efficiency in the lead-lead collision
system. At the same time, the difference between the machine-learning models is negligible.
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Chapter 1

Introduction

This chapter introduces the reader to the necessary terms for understanding the physical part of
photon identification. The study of today’s experimental particle physics extends way beyond
the study of particle collisions. Results in particle physics also teach about the development
of the universe. Nowadays, researchers expect that the universe fulfilled the conditions for the
existence of the quark-gluon-plasma (QGP) 10 µs after the big bang [1]. Thus, research on
the QGP also gives an understanding of the density and temperature of the early stages of
our universe. Calculations of quantum chromodynamics (QCD) predict this state of matter.
It is a state where hadrons devolve into a plasma of quarks and gluons. It only occurs when
the energy density is high enough, such as in heavy-ion-collisions or the early state of our
universe [2]. Researchers also expect quark-gluon plasma to exist in neutron stars [3]. The
current technology enables heavy-ion-collisions at high energy densities making research on
quantum chromodynamics (QCD) possible. The Large-Hadron-Collider (LHC) at CERN in
Geneva enables such high energetic heavy-ion-collisions. Located inside the ring at one of
the interaction points is the A Large Ion Collider Experiment (ALICE) for QCD research at
high multiplicities. Although the QGP is not directly observable, there are different ways to
detect its properties. One way to measure the properties of the QGP is to study the photons,
which originate from the QGP. Therefore, the main task here is to train a classifier to identify
primary photons from V 0-tracks, which get their name by their shape. V 0-particles are neutral
and include particles, which decay or convert into two daughter particles forming the V-shaped
track.

1.1 Photons

High energy photons, such as these originating from the QGP, convert into an electron and an
oppositely charged positron. This process is known as photon conversion or pair formation.
Thus, the classification task is to find photon conversions among the V 0-candidates. Photons
are essential probes for the QGP because they are produced during the complete collision
evolution and do not interact with the medium. We group the photons into direct and decay
photons based on their origin. As the name already suggests, decay photons originate from
hadronic decays. They represent the predominant proportion of photon yield. Therefore,
direct photons are the remaining photons, which do not originate from decays [2]. These direct
photons originate from the QGP.

1.2 Heavy-Ion-Collisions

Under normal circumstances, quarks and gluons occur in a confined state. Therefore, they
typically do not occur isolated. When heavy ions collide, they go through different states.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1 depicts the collision evolution. The first state is the pre-equilibrium, where the
partons scatter soft and hard. Hard interactions are interactions with a large momentum
transfer. They lead to hard partons and jets. Soft interactions include those, where such
jets do not occur. At high energy density, quarks and gluons are deconfined. This state is
called the quark-gluon-plasma. In other words, the partons reach thermal equilibrium through
interaction, as the quarks and gluons merge into a quark-gluon soup. Eventually, the QGP will
cool down due to the expansion, which causes the energy density to drop. The QGP will turn
into hadronic matter. The final state of the collision evolution is known as freeze-out. Here,
hadrons are free and do not interact with each other anymore [2].

Figure 1.1: Collision evolution [4].

1.3 A Large Ion Collider Experiment

ALICE is one of the main experiments at the 27 km ring accelerator LHC. It has multiple
sub-detectors and provides excellent particle identification at high multiplicities.
Figure 1.2a depicts the detectors from a side view, where one can distinguish the muon arm on
the right side and the central barrel on the left. The detectors of the central barrel, which are
relevant for this thesis, are the Inner Tracking System (ITS), the Time Projection Chamber
(TPC), and the Time-of-Flight (TOF) detector. Figure 1.2b illustrates the detectors from a
front perspective.
Since 2019, there is a Long Shutdown (LS2), which includes various detector updates. However,
the Monte-Carlo simulated data in this thesis does not incorporate these updates as they reflect
the situation before the shutdown.
The task of the ITS is particle tracking in the proximity of the particle collision and the
determination of the primary vertex with high precision (better than 100µm). Together with
the TPC it identifies secondary particles with low momentum (below 200 MeV/c) using the
energy loss dE/dx. Thus, it provides data for primary and secondary vertex reconstruction.
The primary vertex describes the position of the particle collision. Primary particles emerge
from this vertex. Analogously, the secondary vertex is the location at which the primary
particle decays or converts into the secondary particles. The upgrades of the LS2 led to an
improvement of the tracking performance and the momentum resolution of the ITS. Previously
it consisted of six cylindrical silicon detector layers surrounding the beam pipe at radii between
39 mm and 430 mm. If a charged particle crosses the detector, it ionizes the material and thus
creates measurable electrons and electron holes [5]. After the LS2 upgrade, the ITS consists
of seven silicon pixel detector layers of the so-called ALPIDE chips. This development of the
ALICE collaboration is a combination of the Monolithic Active Pixel Sensor (MAPS) with the
readout-circuit [6, p. 85].
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(a) Side view of the ALICE detector.

(b) Front view of the ALICE detector.

Figure 1.2: The ALICE detector [5, p. 5].

A more precise measurement of the energy loss happens in the TPC, the main detector of
ALICE in the central barrel. It serves as particle identification and tracking system. It was
optimized to measure the momentum of particles and the energy loss dE/dx with high pre-
cision at very high charged particle densities in central lead-lead collisions. Inside the TPC,
charged particles pass through the gas chamber and ionize the gas. A uniform electrostatic
drift field then guides the electrons to the two read-out planes on the end caps. The TPC is
also used for vertex determination [5, p. 54]. Before LS2, the TPC had to operate in a gated
mode to suppress space charge-induced drift field distortions. In this mode, the gating grid
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closes the read-out chambers by default and only opens for one drift time interval triggered
by the L1 trigger. The updated TPC does not require gating because of the replacement of
the Multi-Wire Proportional Chamber (MWPC) based read-out chambers by Gas Electron
Multiplier (GEM) detectors [6, p. 85].

The TRD tracks and identifies particles. It also creates a fast trigger for charged particles with
high momentum. This detector is good at distinguishing pions from electrons. Electrons with
a high momentum above 1 GeV/c are particularly well distinguishable. As the name suggests,
it measures transition radiation. Highly relativistic charged particles emit this radiation when
they cross thin material layers of the TRD, which have different dielectric constants. The ra-
diation only extends to the X-ray domain for highly relativistic particles with a Lorentz factor
γ & 1000. Therefore, lighter and faster particles, such as electrons or positrons, can be easily
distinguished from the other particles, such as pions. The detector has 18 super-modules. Each
super module consists of 30 read-out modules allowing the TRD to host 540 read-out chambers
in total. But due to a not-installed stack, only 522 read-out chambers were available [7].
As the name already indicates, the TOF detector measures the time of flight of charged par-
ticles. It is a gas detector with Multi-gap Resistive-Plate Chamber (MRPC) technology. The
MRPC creates a strong and uniform magnetic field inside the gaseous volume of the detector.
When charged particles cross the ionization gas, they trigger an avalanche process creating a
measurable signal [5, p. 74].
For the data regarding a particle’s position, a coordinate system is necessary. The two rele-
vant systems here are the Cartesian and the polar coordinate system. Figure 1.3 shows the
coordinate systems. The origin lies in the interaction point (IP). In the Cartesian system, the
parameters x, y and z describe the position of a particle. Aligned with the beam axis is the
z -axis, which faces away from the myon arm. The y-axis points upwards and the x -axis points
left. The parameters θ, φ and r describe the position of a particle in a polar system. The
inclination θ is the angle between the z -axis and the vector r, which starts at the origin and
ends at the particle’s position. The azimuthal angle describes the angle between the x -axis and
the projection of r to the xy-plane. From θ, one can calculate the pseudo-rapidity η:

η = − ln [tan (θ/2)]
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Figure 1.3: ALICE coordinate system [8].

1.4 Research objectives

The main research objective of this thesis is to identify photon conversions among Monte-Carlo
simulated V 0-candidates using machine-learning algorithms. Chapter 3 documents the training
of sophisticated machine learning models, namely XGBoost models. The goal is to classify V 0-
candidates and find electron-positron pairs from primary photon conversions. In this process,
hyperparameter optimization should lead to hyperparameters, which result in better classifiers.
The training and the evaluation of the models happen on different datasets to ensure that the
examination is not affected by overfitting. The same chapter shows the comparison between
the XGBoost models and the cut-based model. Here, the focus is on the signal efficiency at
different transverse momenta. For this purpose, an algorithm adjusts the purity of the models.
As one would use these XGBoost models to create photon datasets of high purity, the XGBoost
models also have to complete classification tasks with high purity. It is also of interest how
a simpler machine learning model performs this task. Therefore, the random forest model
trains on the same training data and completes the corresponding comparisons as the XGBoost
models. In the end, this thesis should show how well the machine learning algorithms perform
this classification task in comparison to the cut-based algorithm.
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Chapter 2

Classification

This chapter introduces relevant machine learning terms. It starts with purity and efficiency,
which will be used repeatedly in later chapters. Step-by-step, it will then introduce the reader
to the XGBoost algorithm.
Classification is the task in which one needs to assign a data instance to a group based on
its properties. In this thesis, the data instance is a V 0 candidate, which needs to be identified
either as a primary photon conversion or as any other V 0 candidate, the so-called “background”.
To be precise, a classifier f gives a response Y ∈ {0,1, . . . ,C − 1}N to an input X , where C
is the number of classes and N is the number of signal instances. Here, one performs binary
classification (C = 2) by discriminating direct photons against the background. The input has
the dimensionN×D, where D is the number of features. The features of the given Monte-Carlo
simulated datasets comprise the energy loss, the transverse momentum, and other measurement
data from the ALICE detectors. The classifier assigns a class to each input:

f(X) = Y (2.1)

There is always a modeling error and the prediction Y is not always the same as the reality Ŷ .
Because the classification task is binary, one can call Y = 0 “negative” (signal is not a primary
photon) and Y = 1 “positive” (signal is a primary photon). The confusion matrix is therefore
simple:

Ground
truth

Prediction

p n total

p∗
True
Positive

False
Negative P∗

n∗
False
Positive

True
Negative N∗

total P N

Table 2.1: Confusion matrix for a binary classifier.

7
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In the following, some abbreviations will be used:

• TP for True Positive

• TN for True Negative

• FP for False Positive

• FN for False Negative

The error rate is defined as

error =
FP+ FN

TP + FP+ TN + FN
, (2.2)

which is just the proportion of falsely classified instances among all classifications.
If one instead divides the sum of correctly classified instances by the number of all instances,
the result is the accuracy:

accuracy =
TP + TN

TP + TN + FP+ FN
= 1− error. (2.3)

Two important evaluation parameters for this thesis are the purity and the signal efficiency.
The purity is the proportion of correctly classified direct photons divided by the number of
instances classified as direct photons:

purity =
TP

TP + FP
(2.4)

It is also known as precision or the Positive Predictive Value (PPV).
A commonly used terminology is the signal efficiency, which describes how many direct photons
the classifier has identified among all the direct photons in the data set:

efficiency =
TP

TP + FN
. (2.5)

The signal efficiency is also known as recall, sensitivity, hit rate or True Positive Rate (TPR).
In particle physics, it is common to use the terms purity and signal efficiency, while in the area
of Machine Learning the terms precision and recall are more common.
One can group classifiers into discriminative and generative models. Discriminative models
learn the probability of the class y given the feature input x: p̂ (y|x).
The nearest neighbor classifier and decision trees belong to the discriminative models.
Generative models make use of Bayes formula:

p (Y |X) =
p (X|Y ) · p (Y )

p (X)
(2.6)

Where p (Y |X) is the posterior, p (X|Y ) is the likelihood, p (Y ) is the prior and p (X) is the
evidence or feature density.
These models learn the likelihood, the prior, and the feature density. The naive Bayes classifier
is a generative model.
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2.1 Decision Trees

Decision trees are widely used base learners for ensembles. For instance, the random forest or
XGBoost can use decision trees as base learners. The decision tree can approximate discrete
functions. The resulting tree structure is flow-chart-like and splits at each of its internal nodes.
Each split is a decision. A branch of the tree denotes the classification rules, and each leaf of
the decision tree represents a class. A decision tree can be more transparent concerning the
decision process. In contrast, the decision of black-box models, such as neural networks, is
usually not comprehensible.

2.2 Boosting

Boosting is an ensemble method. It is the combination of sequentially created weak learners
such as decision trees. The idea is to yield a precise model by combining many weak classifiers,
where the term “weak” refers to poor prediction accuracy. The algorithm starts with a classifier,
which trains on the training set. In the subsequent iterations, the algorithm calculates the
prediction errors. It also computes the new instance weights emphasizing the falsely classified
instances. A new classifier then trains on the weighted training set to learn the complicated
cases and joins the ensemble. Tree boosting uses decision trees as base classifiers and is a
popular and successful machine learning method [9]. In this thesis, the XGBoost algorithm
uses tree boosting. But by creating such an ensemble, the decision rules of boosted decision
trees become less comprehensible. Thus, boosting algorithms, such as boosted decision trees,
gradient boosting, and XGBoost, are black-box algorithms.

2.3 Gradient Boosting

But in contrast to other tree boosting algorithms, the gradient boosting algorithm trains new
trees on the pseudo-residual hence the name gradient boosting. In a nutshell, the term gradient
in the name comes from the pseudo-residual, which is the negative gradient of the loss function.
Given a training set {(xi,yi)}ni=1, a differentiable loss function L (y,F (x)), and the number of
desired trees T , the algorithm starts with a constant model, which minimizes the loss function.

F (x) = argmin
c

N
∑

i=1

L (yi,c) (2.7)

Next, it builds up trees sequentially with each new tree correcting the old model until the model
reaches the desired number of trees. In each boosting step t = 1...T , the algorithm computes
the pseudo-residual for each data instance i, which, roughly speaking, is the difference between
prediction and truth.

rit = −∂L (yi,Ft−1(x)))

∂Ft−1(x)
, i = 1,...,N (2.8)

The pseudo-residual is the negative derivative of the loss function. It is called pseudo-residual
because of its similarity with the residual. In case the loss function is the mean squared error,
the pseudo-residual is equal to the residual. In a simple form, where y∗ is the ground truth,
and F (x) is the prediction of the model, the mean squared error is

1

2
(y∗ − F (x))2. (2.9)

The pseudo-residual is y∗ − F (x), which is also the residual. Because generally, the negative
derivative of a loss function is not the residual, it is called pseudo-residual. After the compu-
tation of pseudo-residuals, a new tree Rt(x) learns the pseudo-residuals. The updated model is
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the sum of the old model and the pseudo-residual tree multiplied with a coefficient.

Ft(x) = Ft−1(x) + γtRt(x) (2.10)

Hereafter is the exact algorithm, which was described above:
Algorithm: [see 10]

1. Start with a constant model (which minimizes the loss function)

F (x) = argmin
c

n
∑

i=1

L (yi,c) (2.11)

Here, c is the predicted value for all instances.

2. Build up trees sequentially with each new tree correcting the old model until desired
number of trees is reached.
For t=1 to T :

(a) Compute pseudo-residuals for each instance:

rit = −
[

∂L (yi,F (xi))

∂F (xi)

]

F (x)=Ft−1(x)

, i = 1,...,N (2.12)

This is the gradient, which gives the name.
It is called pseudo-residual, because of it is similarity to the residual. If one sets the
mean squared error as the loss function, the pseudo-residual is also the residual:

mse-loss =
1

2
(y∗ − F (x))2 (2.13)

(simplified)
∂L

∂F
= y∗ − F (x) (2.14)

(residual)

(b) Now, a tree, let’s call it Rm(x), will learn the pseudo-residuals.

(c) The Lagrangian multiplier γ will be computed by minimizing the loss of the updated
model:

γm = argmin
γ

n
∑

i=1

L (yi,Fm−1(xi) + γRm(xi)) (2.15)

(d) The updated model is:

Fm(x) = Fm−1(x) + γmRm(x) (2.16)

2.4 Extreme Gradient Boosting

The open-source library XGBoost is the acronym for eXtreme Gradient Boosting. This
machine-learning algorithm was initially released in March 2014 by Tianqi Chen and Car-
los Guestrin and quickly gained popularity due to its success on Kaggle, a platform for machine
learning competitions and education [11].
In 2015, for instance, 17 out of 29 winning solutions used XGBoost. One of the categories won
with XGBoost concerned event classification in high energy physics. That is mentioned in the
paper “XGBoost: A Scalable Tree Boosting System”, which also shows that this algorithm is
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independent of the input scale. Therefore the input does not have to be standardized [12].
What makes XGBoost “extreme” is that it enables L1 and L2 regularization to prevent over-
fitting. Moreover, it implements parallel processing on multiple threads to make training and
prediction faster. The tree-pruning capability enables a non-greedy training of the trees. The
downside of the advantages is the vast number of tunable hyperparameters. That means hyper-
parameter search is more complicated. Although XGBoost is a black-box algorithm, it provides
a table of feature importance. Thus, it enables the user to understand the decision rules better.
Section 3.3 describes the different metrics to measure feature importance.
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Chapter 3

Using XGBoost for photon classification

This chapter starts with a motivation for the usage of the XGBoost algorithm. Then, the
reader learns about the Monte-Carlo simulated dataset of V 0-candidates. As described in the
previous chapter, the data is separated into a training and validation subset. The hyperpa-
rameter optimization uses a subset of the training data to optimize the training. After the
hyperparameter optimization, the XGBoost models are trained with optimized and default
hyperparameters. Later, the random forest model is trained with the same training dataset.
All models are first evaluated at the same purity as the cut-based model. Then the machine
learning models also predict at high purities like mentioned before. These evaluations happen
on the validation dataset, such that the results are not prone to overfitting.

The cut-based approach is the currently used method to distinguish photons from background.
That means that the decisions rely on manually found feature thresholds. The code in the
appendix (A) describes the decision process clearly. As it shows, the prediction relies on three
conditions. First, there is a restriction on the kinetic range. Then the mother particle has to
fulfill various requirements. At last, the daughter particles have to meet diverse prerequisites.
A detailed description of the decision rule can be found in chapter 5 of the Ph.D. thesis Mea-
surement of neutral mesons and direct photons in Pb-Pb collisions at

√
sNN = 2.76 TeV with

the ALICE experiment at the LHC [2]. Because there is a great variety of software libraries
and algorithms available, the question arises if there are alternatives to make this process
faster, better and easier. The idea to use boosted decision trees and XGBoost is not new to the
LHC. For instance, with the ROOT toolkit TMVA, various studies at CMS and ATLAS used
boosted decision trees [13]. But as mentioned in section 2.4, the XGBoost algorithm is also
well established in physics. The main argument is that with XGBoost non-trivial relationships
among the features can be learned. Therefore, XGBoost became interesting for this thesis.
The adjustment to different collision systems is more efficient because feature thresholds do
not have to be found by hand. That means creating data models could be easier, faster, and
better. Because it also does not depend on distance metrics, it is not cursed by dimension-
ality. That means that one can create useful data models with a relatively small amount of data.

Models for which the similarity relies on distance metrics would need an unfeasible amount of
data with each new dimension. The nearest neighbor classification relies on distance metrics.
One would need enough training data in the neighborhood of the new data point to classify
it, which is not always possible. It is particularly complicated with high-dimensional data.
In contrast to that, XGBoost, and generally speaking, tree boosting methods, start with a
constant model. That means there is only one neighborhood. By boosting, the neighborhoods
form and shrink to the “real regions” [14]. Although there are many advantages, one should
keep the disadvantages in mind. It is trivial that the model can only be as good as the training
data. The given datasets are Monte-Carlo simulations and might not represent the true data

13
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perfectly.

3.1 The Monte-Carlo simulated dataset

The dataset from the experiments does not contain the true identity of particles. Therefore, it is
beneficial to use the Monte-Carlo simulation because it gives information on a particle’s identity.
In this thesis, two collision systems were relevant. The datasets contain simulations of proton-
proton and the lead-lead collisions. As mentioned before, the proton-proton collisions serve as
a reference. Lead-lead collisions are interesting because they reach high energy densities over
a large volume such that the effects of the QGP are more apparent. However, the simulation
does not include the QGP. The Monte-Carlo simulation starts with a so-called event generation,
which creates the simulated lead or proton. That includes their mutual interaction as well as the
momentum distribution. Here, the Heavy Ion Jet Interaction Generator (HIJING) was used to
simulate lead-lead collisions. The event generator PYTHIA was used to produce simulations of
proton-proton collisions. The second step is the detector response, which includes the particle
interaction with the detector material and the corresponding detector response. The resulting
impact on the particle and its trajectory is also a part of the simulation. In this thesis, the
GEANT (Geometry And Tracking) simulates the detector response [2]. The simulated dataset
contains labels for each V 0-candidate, which the next section will describe.

3.1.1 V 0-identification and V 0-candidates

Each instance in a dataset is a V 0 candidate proposed by the V 0-finder, which analyses V-
shaped trajectories. Their attributes are the different detector responses, such as the energy
loss or the goodness of tracking-fit. V 0 candidates include V 0 particles and random particles,
which happen to have a V-shaped trajectory. V 0 particles get their name by the distinct
V-shaped track their daughter particles leave.
The figures 3.1a and 3.1b show the different kinds of V 0-candidates for photon conversion.
The figures also show the number of data instances per V 0-candidate for each dataset of the
two collision systems. As already described in the beginning, the V 0-candidates comprise the
photon conversions and the background. Photons can be identified by the pair production,
which leaves the distinct V-track. The other candidates are background data, which include
particle decays, secondary photon conversions, and random combinatorial candidates. There
were preprocessing steps, which already rejected some background. The following section will
describe these V 0-candidates. As can be seen in the figures, the first bar represents the abun-
dance of primary photons, which are the focus of the classification in this thesis. These have to
be distinguished from other candidates. In this thesis, primary photons are defined as photons,
which originate from the primary vertex. Thus, it comprises photons from π0 and η decays near
the primary vertex. The neutral pion (π0) most probably decays into two photons (∼ 98.8%)
but occasionally decays into an electron, a positron, and a photon (∼ 1.2%) [15]. The latter is
known as a Dalitz decay.

π0 → 2γ (∼ 98.8%)

π0 → e+ + e− + γ (∼ 1.2%)
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(a) proton-proton dataset.

(b) lead-lead dataset.

Figure 3.1: Abundance of V 0-candidates.
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The neutral η-meson usually decays into three pions or two photons. The pions can be charged
or neutral.

η → 2γ (∼ 39%)

η → 3π0 (∼ 33%)

η → π+ + π− + π0 (∼ 23%)

η → π+ + π− + γ (∼ 4%)

Photons from QGP would also count as primary photons, but the simulation does not include
the QGP. Primary photons are the target of the classification task in this thesis.
As figure 3.1a shows, the proportion of primary photons in the proton-proton dataset is rather
high, as it comprises 90.5% of the V 0-candidates. The secondary photons are the largest con-
tribution to the background with 5.1%. With a proportion of 1.1%, the electron-electron and
pion-electron combinations contribution is not insignificant. In the lead-lead dataset, the pri-
mary photon proportion is lower (3.8%). There is significantly more background. Here, the
pion-pion combinations account for 55.2% of the total V 0-candidates. The pion-electron combi-
nations amount to 15.4%. Unspecified combinations account for 13.8%. These are unspecified
pairs, which also happen to have a V-shaped trajectory. Secondary photons usually emerge
from the collision cascade further away from the primary vertex.
The hadronic kind is a V 0-decay into hadronic daughter particles. It is, for instance, the decay
of massive, unstable subatomic particles like the Λ0. The Λ0 decays into a nucleon and a pion.
In this process, the decay into a proton and a π− is most probable. The oppositely charged
daughter particles travel in a V-shaped trajectory.

Λ0 → p+ π− (∼ 64%)

Λ0 → n+ π0 (∼ 36%)

The Dalitz decay is the decay of mesons into two leptons and a photon, like the neutral pion
decay or the eta decay, as is shown above. The two oppositely charged leptons will create a
V-shaped trajectory. The combinatorics mentioned in the figure are random charged particles,
which created a V-shaped trajectory by chance. There are many different charged particle
combinations for this case. Electron-electron, pion-pion, pion-proton, pion-electron, kaon-kaon,
direct electrons, electron-proton, and electron-kaon are combinations, where each pair repre-
sents an own type of V 0-candidate. The dotted trajectory in figure 3.2 could be a trajectory
of these combinations. Figure 3.2 illustrates the decay of a V 0 particle. The illustration also
shows the pointing angle Θ, which is a feature of the dataset.

Figure 3.2: Decay of a V 0 particle [16].



3.1. THE MONTE-CARLO SIMULATED DATASET 17

3.1.2 Features

ptPositron Transversal momentum of a positron.
thetaPositron θ is used to calculate the pseudo-rapidity of the positron candidate.

It is shown in figure 1.3.
dEdxPositronTPC The energy loss of the positron measured at the TPC.
tofPositron Time of flight measured for a positron.
nSigmaTOFPositron The deviation from the electron band in units of the standard

deviation. Particle identification with the help of the particle
velocity β vs momentum p plot of the TOF.

fracClsTPCPositron Fraction of clusters in the TPC that measured positrons.
clsITSPositron Number of clusters triggered by positrons in the ITS.
dEdxPositronITS Energy loss dE/dx of the positron measured with the ITS.
clsTPCPositron Number of clusters triggered by positrons in the TPC.
nSigmaITSPositron The deviation from the electron band in units of the standard

deviation. Particle identification with the help of the energy loss
dE/dx vs momentum p plot of the ITS.

ptElectron Transversal momentum of an electron.
thetaElectron θ is used to calculate the pseudo-rapidity of the electron candidate.
dEdxElectronTPC Energy loss dE/dx of the electron measured with the TPC.
nSigmaTPCElectron The deviation from the electron band in units of the standard

deviation. Particle identification with the help of the energy loss
dE/dx vs momentum p plot of the TPC.

tofElectron Time of flight of an electron.
nSigmaTOFElectron The deviation from the electron band in units of the standard

deviation. Particle identification with the help of the particle
velocity β vs momentum p plot of the TOF.

fracClsTPCElectron Fraction of clusters in the TPC that measured electrons.
clsITSElectron Number of clusters triggered by electrons in the ITS.
dEdxElectronITS Energy loss dE/dx of the electron measured with the ITS.
clsTPCElectron Number of clusters triggered by electrons in the TPC.
nSigmaITSElectron The deviation from the electron band in units of the standard

deviation. Particle identification with the help of the energy loss
dE/dx vs momentum p plot of the ITS.

photonQt The momentum transfer in transverse direction.
photonAlpha Longitudinal momentum asymmetry between the secondary tracks

(in case of photon conversion: positron and electron): p
+

L
−p

−

L

p
+

L
+p

−

L

photonPsiPair The angle between the plane spanned by the decay products and
the plane orthogonal to the magnetic field. (See figure 3.3)

photonCosPoint cos(Θp). Where Θp is the angle between two vectors: 1. The vector
from the primary vertex to the position of the photon conversion.
2. The momentum vector of the photon at the time of decay.

photonInvMass The invariant mass of the photon candidate.
photonX, photonY, photonZ Cartesian coordinates.
photonPhi The angle in the spherical coordinate.
photonR The distance from the primary vertex at which the photon converts

into an electron and a positron. The distance in the cylindrical
coordinates.
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pt Transverse momentum.
theta The inclination as shown in figure 1.3
chi2ndf The chi-squared test of the tracking.
kind The identity of the V 0-candidate.

Table 3.1: The table lists all the features of the datasets and describes each attribute name.

Figure 3.3: Ψpair shown for a photon conversion into electron and positron [17].

3.2 Hyperparameter search and Training

This section documents the hyperparameter search and the training. Both processes happen
on the training dataset. The decision was taken that the models should be independent of
the transverse momentum pT . The idea is that a classifier should perform well independent
of the transverse momentum. For instance, the model should not exploit the fact that there
are only a few photons at high transverse momentum and reject all candidates with high
momentum. Instead, it should perform well constantly across the whole transverse momentum
range. During training and validation, this feature is therefore hidden. Early tests have shown
that the transverse momentum does not contribute much to the model performance. Thus,
the missing feature has no significant impact on the model performance, which coincides with
the observation. The term hyperparameter describes the parameters, which affect the model’s
training. Hyperparameter optimization is the process of finding the best parameters for a
model, such that the loss minimal. Table 3.2 shows the tested hyperparameters.
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Parameter explanation
max_depth The maximum depth of a tree. A higher value leads to more complex

models but increases the risk for overfitting1.
min_child_weight Minimal weight of a child. If the weight of the child is lower than this

threshold, the child will become a leaf. That means one sets the
minimal purity of a leaf.

gamma The minimum loss at which the leaf node will be split (default: 0; If the
loss is greater than 0, the algorithm creates a new partition and the leaf
becomes a node.)

subsample The fraction of random instances from the dataset that is used in each
iteration. It has the value 1 by default. So, the model is trained with all
instances by default. But a lower number could prevent overfitting.

colsample_bytree The fraction of random features used in each training iteration.
reg_alpha/reg_lambda L1 and L2 regularization. The technique that uses L1 regularization is

also known as Lasso (Least Absolute Shrinkage and Selection Operator)
Regression and adds the product of a scalar α and the absolute value of
the weight of the features to the loss function, which one has to
minimize. The L2 regularization technique is known as the ridge
regression, which adds the product of a scalar λ and the squared feature
weights to the loss function.

Table 3.2: Hyperparametersearch on the proton-proton dataset.

Attached to this thesis, one can find the corresponding code in the appendix A and A. The
model will output probabilities. The output is 0 if the model is sure that the instance is not a
photon. As one would expect, with a higher predicted probability, the model is more confident
that the candidate is a primary photon. If the model is sure that the V 0-candidate is a photon,
then the output would be 1. The learning objective is binary:logistic for the hyperparameter
optimization and the training. Thus, the binary classification uses logistic regression. The loss
function for this learning objective is shown in equation 3.1.

L = − 1

N
· (−y log (y∗) + (y − 1) log (1− y∗)) (3.1)

There are different algorithms for the search of hyperparameters. Scikit-learn has a method
for hyperparameter optimization and cross-validation called GridSearchCV. This method im-
plements the grid search algorithm to search for the optimal hyperparameters from a given
parameter set. It also uses cross-validation to check the generalization performance of the
model. Models will be trained with every combination of the given hyperparameters. In each
training iteration, the k-fold cross-validation algorithm splits the training set into k equally
large subsets. Then, the model is trained on k − 1 subsets and completes an evaluation on the
remaining subset. This method gives more precise measurements of the model’s performance
because it is less prone to statistical variation of the dataset. It decreases the risk that the
model is just lucky with the validation set and undeservedly gets a great prediction score. Dif-
ferent evaluation metrics are available to measure the performance of the classifiers. One of the
evaluation metrics is the so-called accuracy. The problem is that it strongly depends on the
data set. Therefore, there are different evaluation metrics, such as the AUCPR, the AUCROC
and the average precision score. The Area Under the Curve for the Precision-Recall curve
or the Receiver-Operating-Characteristic gives us a good summary of the model performance
and is more reliable than the accuracy. An ideal model would reach 100% purity independent
of the recall. It would then have an AUCPR and an average precision score of 1. Note that
purity is also known as precision. Moreover, the signal efficiency is also known as recall. The
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average precision score results from the following formula:

avg.prec. =
∑

i

(

signal efficiencyi − signal efficiencyi−1

)

· purityi (3.2)

In other words, the average precision score is the weighted sum of the purity reached with
every prediction probability threshold. The weights are the difference between the recall of
that threshold and the previous threshold. The average precision score is equivalent to the
AUCPR for infinitesimally small recall steps. The purity-efficiency curve is interesting because
it is desirable to maintain a high purity over the whole signal efficiency range. The ROC
curve plots the signal efficiency against the background efficiency (false positive rate). For both
curves, an AUC value close to 1 means that the classifier is good. The AUC makes comparing
models easier. The number of trees in a model determines the complexity of a model. One
can set it manually before training or let the early stopping function do the work. If the latter
receives an integer n, it stops the training if the model does not improve for n rounds. The
improvement depends on the evaluation metric. All computations were done on a laptop with an
4th generation Intel i7 processor and 24GB RAM. The hyperparameter search consumed 54.71
hours to test all 4860 hyperparameter combinations for the proton-proton model. Another 51.38
hours passed for the check of 4860 hyperparameters of the lead-lead model. One can choose
between L1 and L2 regularization. Comparisons at the early stage of this project indicated that
the L1 regularization fits the proton-proton model better. Analogously, the L2 regularization
matches the lead-lead model better. The two tables below show the tested hyperparameters
and the resulting optimal parameters.

Parameter tested Parameters optimal parameter
max_depth 2, 3, 4, 5 4
min_child_weight 1, 3, 5 5
gamma 0.1, 1, 10 10
subsample 0.8, 0.9, 1 1
colsample_bytree 0.5, 0.6, 0.7 0.5
reg_alpha 0.1, 1, 10 0.1

Table 3.3: Hyperparameter search for the model of the proton-proton collision system.

Different optimal parameters are found for the model of the lead-lead collision system:

Parameter tested Parameters optimal parameter
max_depth 2, 3, 4, 5 3
min_child_weight 1, 3, 5 3
gamma 0.1, 1, 10 10
subsample 0.8, 0.9, 1 0.9
colsample_bytree 0.5, 0.6, 0.7 0.6
reg_lambda 0.1, 1, 10 1

Table 3.4: Hyperparameter search for the model of the lead-lead collision system.

After the hyperparameters search, proton-proton and lead-lead models were trained using the
XGBoost algorithm. As a reference, one lead-lead model trained with default hyperparameters.
The appendix A shows how the early stopped proton-proton model was trained. The proton-
proton training set contains 11.465.463 V 0-candidates. With this dataset, the simple model
trained 46 minutes until it reached 200 members. For further reference, this model receives
the name pp2021cc. The complex model trained until the AUC value did not increase for 50
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rounds and is called pp2021. It took about 113 minutes to train the model to a size of 519
ensemble members. Analogously, the other two models were trained in the lead-lead collision
system with 910.158 data instances. Because the dataset is a lot smaller, the training is also
faster. The first model pb2021cc was trained 2 minutes and 21 seconds until it reached 200
members. Similarly, the training of the second model pb2021 took 3 minutes and 33 seconds
until the AUC did not increase for 50 iterations. The early stopping stopped the training when
the model reached 300 members. Analogously, the reference lead-lead model was trained until
the AUC value did not increase for 50 rounds. In contrast to the other models, this one used
default hyperparameters. With its 292 members, it almost has the same size compared to the
early stopped optimized model pb2021. The training took 3 minutes and 46 seconds.

3.3 Feature importance

After the training, the user can examine the feature importance for each model. There are
different metrics to measure the feature importance. The XGBoost library provides the metrics
gain, weight, coverage, total_gain and total_cover. The subsequent plots will only use the first
two metrics.

Weight importance
The XGBoost ensemble consists of many decision trees. Each tree is a series of decisions. It
starts with a decision based on a feature value. At this point, it splits into two other nodes.
Each node is a decision, which depends on a feature. The weight describes the abundance of
a feature in the ensemble. If a feature has high weight importance, the model often uses it
to predict the identity of V 0-candidates. Put in another way, the weight of a feature is the
proportion of the feature occurrence in the model.
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Figure 3.4: Weight feature importance of the proton-proton model pp2021.

Figure 3.4 shows the weight feature importance of the proton-proton model. As it seems, most
of the time, the model uses the photon parameter photonR, which is the distance from the
primary vertex at which the pair production occurs. Another important feature concerning
the weight is the χ2-test of the V 0 fit. That makes sense because combinatorial background
candidates only happen to have a V-shaped trajectory. It is unlikely that they reproduce
the exact V-shaped path of the V 0 daughter particles because they do not originate from the
same mother particle. Other features regarding the mother particle are also important. Those
features are, for instance, the invariant mass photonInvMass and the cosine of the pointing
angle photonCosPoint. Because the photon has an invariant mass of zero, it should be easy to
distinguish it from particles with mass. The figure also indicates that the TOF-related features
of electrons and positrons occur less often in the ensemble.



3.3. FEATURE IMPORTANCE 23

0 50 100 150 200 250
Feature importance: weight

nSigmaTOFPositron
tofElectron

nSigmaTOFElectron
tofPositron

clsITSPositron
clsITSElectron
thetaPositron

clsTPCElectron
photonPhi

theta
nSigmaITSElectron

photonAlpha
photonZ

nSigmaITSPositron
thetaElectron
clsTPCPositron

photonX
fracClsTPCPositron
fracClsTPCElectron

dEdxElectronITS
photonY

ptPositron
dEdxPositronITS

ptElectron
nSigmaTPCpiPositron
nSigmaTPCpiElectron

dEdxElectronTPC
nSigmaTPCePositron
nSigmaTPCeElectron

chi2ndf
dEdxPositronTPC

photonQt
photonPsiPair

photonInvMass
photonCosPoint

photonR

Feature importance: weight of model: pb2021

Figure 3.5: Weight feature importance of the lead-lead model pb2021.

In contrast to the proton-proton model, the lead-lead model does not use the χ2-test feature as
often. But similar to the proton-proton model, the lead-lead model still mostly uses photonR,
the distance of the photon conversion from the primary vertex. Also, the photon features
have high weight importance like before. Again, the time-of-flight features have low weight
importance.

Gain importance
The gain importance is the contribution of a feature to the performance of a model. For
instance, if the accuracy of a model increases significantly after the use of a specific feature, it
has high gain importance. However, a feature can have high gain importance even if it has low
weight importance. That is the case for a rare but informative detector response.
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Figure 3.6: Gain feature importance of the proton-proton model pp2021.

Figure 3.6 depicts the gain feature importance of the proton-proton model. The importance
ranking is different from the ranking in the weight importance plot. Here, the χ2-test feature
has a higher importance to the proton-proton model. That is reasonable because the χ2 value
describes how good a candidate fits as a V 0 particle. Combinatorial candidates, which do not
have the same mother particle and thus, are randomly identified as a V 0 candidate, will have a
worse χ2 value. Moreover, some features related to the mother particle became less important.
Only the features photonCosPoint and photonQt stayed important. Note that photonCosPoint
is the cosine of the pointing angle of the mother particle. Therefore, it would make sense that
it is an important feature. One would expect that the conversion photon has a pointing angle
close to zero and thus a cosine close to one. Combinatorial candidates do not originate from the
same mother particle. It is unlikely that their pointing angle is zero. Remember that photonQt
is the momentum transfer in the transverse direction. The transverse momentum transfer of
a conversion photon should be nearly zero. The randomly combined particles will not have a
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meaningful value for the transverse momentum transfer. Unlike the previous weight importance,
the gain importance gives the number of clusters triggered by positrons and electrons in the
ITS clsITSPositron and clsITSElectron higher importance. These two features do not occur
that often but contribute more to the performance of the proton-proton model. The distance
to the primary vertex photonR has high weight importance but low gain importance for the
proton-proton model. A way to interpret this is that it has a low relevance regarding the
prediction, which means that one could leave out this feature without a substantial loss in
model performance. Similar to the weight importance plot, the gain importance plot also
shows the low importance of the time-of-flight features.
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Figure 3.7: Gain feature importance of the lead-lead model.

Surprisingly, the χ2-test feature contributes far less to the performance of the lead-lead model
than the cosine of the pointing angle photonCosPoint. The deviation to the electron band in
the energy loss plot of the TPC nSigmaTPCePosition and the invariant mass of the mother
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particle photonInvMass also contribute a lot to the performance of the lead-lead model. The
usage of the positron deviation in the TPC energy loss plot is reasonable because it can help to
distinguish electrons and positrons from pions. Figure 3.8 shows an example for the energy loss
plot of the TPC. It makes sense that an data instance, which is further away from the electron
band, could more likely be another particle, such as a pion.

Figure 3.8: TPC: Energy loss vs. momentum [18].

The previous section already introduced the feature importances and the different rankings for
each model. A few features share a large proportion of importance. Thus, the next part will
examine the distribution of primary photons and background regarding each feature. Each
plot uses the same 500000 data instances of the corresponding collision system.
Figure 3.9 shows the three most important features for the proton-proton model for each
metric. More precisely, it shows histograms, where one can see the photon and background
distribution regarding a feature. The histogram is normalized, such that the sum of all bars is
equal to 100%. Analogously, figure 3.9 contains the histograms for the lead-lead model. Other
feature histograms can be found in the attachment A.
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Figure 3.9: Important features for the proton-proton model pp2021.
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Figure 3.10: Material budget of ALICE as a function of the distance from the beam line [19].

As mentioned before, the radial distance from the primary vertex photonR has high weight
importance for the proton-proton model. The histogram shows a distribution one would expect.
One can observe peaks at certain distances. That is because the material budget at these
positions is high. In contrast to the photons, the background is also measured at other distances.
The distribution of the background is less dependent on the material budget. The model could
learn that the background distribution does not drop between the photon distribution peaks.
Figure 3.10 shows the cumulative material budget as a function of the distance from the primary
vertex. At around 80cm, there is a sudden increase in material budget. After that, no additional
peaks can be seen in the histogram in figure 3.9. The reason is that the gaseous volume of
the TPC starts there. Moreover, there is a cut at 180cm such that there are no V 0-decay or
conversion signals after that point. However, the decay or conversion products still can reach
the TRD and the TOF. But if one takes a look at the figures regarding the TOF responses
in the appendix A, one observes that more than 80% of the data is contained in a peak at
around 20000 ps. That peak might represent the uninformative signals. The figures A.19
and A.27 show the useful signals in a restricted interval. These informative TOF signals only
have a low abundance. Thus, the TOF features have such low importance. Nonetheless, it is
not apparent why the model frequently checks the distance from the primary vertex photonR.
The distributions are not distinct enough to make a simple cut for classification. But this is
expected because this feature has a low gain feature importance. On the other hand, the gain
feature importance gives the fit goodness χ2 high value. One can see that the photons occur at
values close to zero, while the background distribution is more smeared out. In the subsequent
gain plot, the background also happens to have a pointing angle of 180 degrees. That makes
sense if the V 0-finder mistakes particles, which travel towards each other as a V 0-pair. That
could be the case for combinatorial candidates. Therefore it is simple to identify a part of
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the background with this histogram. As one would expect, the invariant mass of the mother
particle helps with the prediction. It should be zero for photons. As can be seen in that
histogram, the distributions slightly overlap such that the informative value is lower. Putting
both together that the photon has an invariant mass of zero and the overlapping distributions,
it makes sense that this feature is more important regarding the weight. One could perform
a cut slightly below 0.1 GeV/c. The relative momentum transfer photonQt is the third most
important feature regarding the gain, which is not surprising. Because the momentum must be
conserved and the photon has no mass, the momentum transfer is zero. Other combinatorial
candidates are random combinations and lead to random meaningless momentum transfers.
Decays of heavier particles, such as the decay of the neutral kaon K0

s into pions, have a greater
momentum transfer.
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Figure 3.11: Important features for the lead-lead model pb2021.

In contrast to the proton-proton collision system, the lead-lead collision system shows a better
separable photonR (distance from the primary vertex) histogram. Here, the background steadily
decreases with the distance from the primary vertex. It has no peaks at the high material-budget
positions. Meanwhile, the primary photons still convert at these high material-budget positions.
It seems that a cut at around 50cm is possible. Although it appears informative, there were
other features with higher gain importance. Thus, it was only most important regarding the
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weight. It is reasonable that this feature occurs regularly in the ensemble. The χ2 histogram
shows that the background is smeared out even more than before. One could easily split photons
from the background by cutting at around a value of 4. It makes sense that it is one of the
most important features concerning the gain. When compared to the proton-proton collision
system, the amount of background at cos (Θp) ≈ −1 increased. It still makes it simple to
discard more than 20% of the combinatorial candidates. That might be the reason why it is
important regarding both metrics. Converted photons result in an electron and a positron. In
the energy loss plot of the TPC, it is possible to distinguish electrons and positrons from other
particles like pions. The figure shows that most of the positrons of the primary photons are
within the 3σ range. By performing a cut at about 2.5σ, a lot of background can be separated.
It is reasonable that it has high gain importance to the lead-lead model. In the histogram of
the invariant mass, the distribution of photons and background can easily be separated. As
one would expect, the photons have a value close to zero. By cutting at around 0.025 GeV/c,
one can discard a large amount of background.
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3.4 Evaluation of XGBoost models

As mentioned before, the models are trained without the transverse momentum pT feature.
The idea is that the models should perform well across the whole transverse momentum range.
In the subsequent sections, the transverse momentum range will be divided into eight intervals,
such that the model performance is visible across the momentum interval. The size of these
subsets decreases with higher momentum, which is shown in figure 3.12a for the proton-proton
dataset and figure 3.12b for the lead-lead dataset.

(a) proton-proton dataset.

(b) lead-lead dataset.

Figure 3.12: Transverse momentum histograms.
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3.4.1 Comparison with cut-based model

This section pursues the comparison of the XGBoost and the cut-based model. The focus lies
on the signal efficiency of the models as a function of transverse momentum. For this purpose,
the classification threshold is adjusted such that the purity of the XGBoost models is equal
to that of the cut-based model. Based on that, an evaluation method computes the signal
efficiency within different transverse momentum pT intervals. Both the method to adjust the
purity and the evaluation method are in the attachment A. The pT range starts at 0 GeV/c
and ends at 4 GeV/c and is split into 8 intervals.

Proton-proton collision system
The proton-proton collision system serves as a reference for the lead-lead collision system. First,
the thresholds are adjusted such that the purity of the XGBoost and the cut-based model are
equal.
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Figure 3.13: Adjusting the purity of the XGBoost models to the purity of the cut-based model
in each transverse momentum bin. (proton-proton collision system)

Figure 3.13 shows that the purity of both XGBoost models is equal to that of the cut-based
model in each transverse momentum bin. The red data points show the purity of the data
subset in each bin. According to equation 2.4, that is the number of correctly classified primary
photons divided by the number of predicted primary photons, which is the sum of correctly
and falsely classified photons. One can observe that it is maximal between 0.5 and 2 GeV/c.
It decreases with higher transverse momentum, but overall, the purity of the dataset is already
high and constantly above 80%. Therefore, it is easier for the classifier to perform well, as they
could classify every input as a photon and still reach a high purity. The cut-based model has
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a lower purity at lower transverse momentum (≈ 92.5%) but slowly rises to a purity of about
97%.
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Figure 3.14: The signal efficiency of the models evaluated in each transverse momentum bin
after the equalized purity. (proton-proton collision system)

From the equation 2.5, it is known that the signal efficiency is the number of correctly classified
primary photons divided by the number of real primary photons. As can be seen in figure 3.14,
all models achieve signal efficiencies above 90%. With higher transverse momentum pT , the
signal efficiency decreases. But while the cut-based model loses around 6%, the XGBoost models
only lose a maximum of 2% signal efficiency. Compared to the cut-based model, the signal
efficiency of the XGBoost models is higher in all pT intervals. At low transverse momentum,
the difference is about 4%, and at higher momentum, the difference rises to 9%. Both XGBoost
models performed similarly well, but the smaller ensemble pp2021cc always had a slightly lower
signal efficiency. With higher transverse momentum, the difference even increased. In other
words, the XGBoost models enable us to extract more primary photons from the dataset than
the cut-based model while still offering the same purity.
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Figure 3.15: Purity-efficiency curves. (proton-proton collision system)

Figure 3.15 shows the purity-efficiency curve. Looking at the purity-efficiency curve in this
figure, one can see the achieved purity of the classifiers at different signal efficiency values.
The evaluation uses the whole validation dataset. It is easier to compare the models by their
average precision score than by their efficiency at different purity values. Both XGBoost
models perform well and have an average precision score of around 0.98. The blue dot in the
figure represents the efficiency and purity that the cut-based model reached with the evalu-
ation dataset. It confirms the previous observations that the XGBoost models can reach a
higher signal efficiency than the cut-based model at the same purity. The difference between
the XGBoost model with only 200 trees pp2021cc and the early stopped model with 519
trees pp2021 is marginal. If rounded to the third decimal place, the average precision score
would be the same. The difference is therefore negligible, and the models perform similarly well.

Lead-lead collision system
In figure 3.16, one can see that the purity of the lead-lead collision system dataset is lower
compared to the purity of the proton-proton dataset. It is below 10% and even decreases
with higher transverse momentum. The model could classify all candidates as background and
thereby have a correct prediction above 90% of the time. But this would not fulfill the goal to
identify photons among V 0-candidates. As one would also expect, the cut-based model cannot
reach the same high purity as in the proton-proton dataset anymore. Between a transverse
momentum of 0.75 GeV/c and 3.25 GeV/c, the cut-based model still reaches a purity between
70− 80%. Because the subsets in each bin are also smaller than in the proton-proton dataset,
it was harder to find a threshold such that the XGBoost models reach the same purity. A cut
is performed on the prediction probability. Thus, if many candidates have the same probability
of being a primary photon, the probability threshold cannot divide the instances. That makes
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it impossible to achieve the same purity as the cut-based model.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Transverse momentum pT [GeV/c]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pu
rit
y

Purity vs pT - Comparison of cut-based model and XGBoost models

pb2021 - 300 trees
pb2021cc - 200 trees
Cut based model
Purity of dataset in pt-bins

Figure 3.16: Adjusting the purity of the XGBoost models to the purity of the cut-based model
in each transverse momentum bin. (lead-lead collision system)

Figure 3.17 shows that the XGBoost models perform very well and reach a signal efficiency
very close to 1 most of the time, whereas the cut-based model only achieves a signal efficiency
between 91−95%. The XGBoost model’s performance does not deviate much over the range of
transverse momentum and instead holds up a constant efficiency of 99−100%. At a transverse
momentum between 0.5 and 1.5 GeV/c the XGBoost models perform slightly worse.
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Figure 3.17: The signal efficiency of the models evaluated in each transverse momentum bin
after the equalized purity. (lead-lead collision system)

Similar to the purity-efficiency curve of the proton-proton dataset models, the PR curve in
figure 3.18 shows that both XGBoost models perform better than the cut-based model. With
an average precision of around 96%, both models have a high average precision score, although
they are lower than the score of the proton-proton dataset models. Again, the difference is only
marginal. But this time, the early stopped model pb2021 has a higher score than the 200 trees
model pb2021cc, even when rounded to the third decimal place.
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Figure 3.18: Purity-efficiency curves. (lead-lead collision system)

These figures showed that the XGBoost models performed better than the cut-based model.
Especially with increasing transverse momentum, the efficiency of the cut-based model dropped
in both collision systems, while the XGBoost models held up a high signal efficiency. Moreover,
the difference between the two XGBoost models was only marginal compared to the difference
in the cut-based model.
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3.4.2 Performance of XGBoost models at high purities

In practice, one would like to have very pure photon datasets. Therefore, this section docu-
ments the performance of the XGBoost models at high purity.

Proton-proton collision system
First, the thresholds are adjusted such that the classifiers achieve purities of 94%, 96%, and
98% in the proton-proton dataset.
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Figure 3.19: Adjusting the purity of the XGBoost models to the goal purities in each transverse
momentum bin. (proton-proton collision system)

Figure 3.19 shows how well the adjustment was. There are no significant deviations from the
goal purity.
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Figure 3.20: Signal efficiency of the XGBoost models at 94, 96 and 98% purity. (proton-proton
collision system)

As shown in figure 3.20, the signal efficiency starts low and rises with higher transverse mo-
mentum. With a purity of 94% and 96%, the signal efficiencies are already very close to 100%
after the first pT -bin. At a purity of 98%, the models reach a signal efficiency above 90% after
the second transverse momentum bin or above 1.5 GeV/c. It is a trade-off between purity
and efficiency. But with a high purity like 96%, it is already possible to constantly reach high
efficiency in the proton-proton collision system. The signal efficiency is always above 85% when
the purity is set to 96%. The early stopped model pp2021 also tends to reach higher signal
efficiencies than the 200 member ensemble pp2021cc. While the signal efficiency difference
between the two models is rather small at a purity of 94 and 96%, the signal efficiency of the
pp2021 model is visibly higher than that of the pp2021cc model at 98% purity. So, it seems to
be a good choice to use a well-trained and optimized model for photon classification for very
high purity.

Lead-lead collision system
Because the primary photons are less abundant in the lead-lead collision system, it is harder
to maintain a constant high purity.
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Figure 3.21: Adjusting the purity of the XGBoost models to the goal purities in each transverse
momentum bin. (lead-lead collision system)

The purities deviate from the goal purities, especially at high pT , which can be seen in figure
3.21. But this could also be caused by the small dataset. The statistical deviations have
a bigger impact when the data subset happens to be small, which tends to occur at high
transverse momentum. Here, the goal purities cover a broader range such that at least one
model can perform constantly well. The threshold are adjusted such that the XGBoost models
reach a purity of 92%, 95%, and 98%.
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Figure 3.22: Signal efficiency of the XGBoost models at 92, 95 and 98% purity. (lead-lead
collision system)

The lead-lead models do not reach signal efficiencies as high as the efficiencies of the proton-
proton models. At a purity of 98%, the early stopped model pb2021 started with an efficiency of
about 20%. It seems that the model with 200 members pb2021cc could not find any photons such
that its signal efficiency is about 0%. Independent from the purity, the signal efficiency of both
models slowly rises with higher transverse momentum. Only when the transverse momentum
reaches a value of around 1.25 GeV/c, the XGBoost models achieve a signal efficiency above
60%. The performance drops significantly at approximately 2.75 GeV/c for both models at all
observed purities. Until that point, the early stopped model constantly had higher efficiency.
However, the 200 member model was better than the early stopped model at this point. If the
purity of pb2021cc would be lower than that of pb2021, it could make sense, but it was not. A
possible explanation could be that it is just a statistical deviation and not a systematic error
of the models. That would require the evaluation of more data. The lead-lead models at 95%
purity start at around 20% signal efficiency and already reach a signal efficiency above 80%
after the first pT -bin around 0.75 GeV/c. At a lower purity of 92%, the models can keep up an
efficiency above 85%. The early stopped model pb2021 tends to perform better than the 200
member model pb2021cc, especially at the high purity of 98%.
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3.4.3 Comparison with default lead-lead model

This section compares the optimized XGBoost models to the default lead-lead model. That
model was trained with default hyperparameters. Furthermore, the comparison also comprises
the cut-based model. Subsequently the optimized model will be known as pb2021 and the
default model known as pb2021_default.
Figure A.5 in the appendix presents the signal efficiency, which the models achieved in each
transverse momentum bin after the purity was adjusted to the purity of the cut-based model.
The difference in this plot is marginal. The default model even reaches a higher signal efficiency
than the optimized at 1.25 GeV/c. There is no significant difference with the hyperparameter
search. Thus, it is sufficient to use the default hyperparameters for the training.
At the high purity of 98% the early stopped and optimized model pb2021 performs better at
lower transverse momentum below 1.5 GeV/c. At a transverse momentum between 2 and 3
GeV/c, the default model performed better than the optimized model as the efficiency of the
optimized model dropped significantly in this region. The default model did not lose efficiency
inside this interval. The reason for that could be that the default model is slightly less prone
to overfitting and therefore generalizes better. It was not “optimized” such that its AUC score
is maximal.
Figure A.7 in the appendix shows the attempt to adjust the purity of the models in each
transverse momentum bin to the goal purity. The default model is slightly lower in the critical
region between 2 and 3 GeV/c.
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Figure 3.23: Purity-efficiency curves. (lead-lead collision system)

The default model seems to perform marginally better than the optimized models. But the
PR-curve in figure 3.23 also shows this result. The optimized model has a slightly higher
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average precision score than the default model. But in comparison to the cut-based model, the
difference between the XGBoost models is negligible.

3.4.4 Comparison with random forest

Another less complex ensemble learning method is the random forest. In contrast to boosted
decision forests, this algorithm trains trees in parallel. Trees are not created sequentially and
such that the correlation is minimal. That is done by bagging and feature subsampling. Bag-
ging is to use random subsets of the training set for each tree. Feature subsampling describes
the process of using only a subsample of the features for a node split of a tree [20].

Proton-proton collision system
A random forest with 300 trees was trained without hyperparameter optimization on the proton-
proton dataset. The training took 37 minutes and 48 seconds.
Figure A.8 in the appendix shows the adjustment of the purity of the random forest and
XGBoost model to the purity of the cut-based model. There were no significant deviations.
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Figure 3.24: The signal efficiency of the models evaluated in each transverse momentum bin
after the equalized purity. (proton-proton collision system)

The difference between the random forest and the XGBoost model pp2021 is almost not no-
ticeable. It also achieved a signal efficiency between 98 and 100%. The performance of the
random forest and the XGBoost model is noticeably better than the cut-based model. It is
interesting to note that both models did not lose more than 2% efficiency with higher pT , while
the cut-based model lost more than 6%.
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Figure 3.25: Purity-efficiency curves. (proton-proton collision system)

But when considering the purity-efficiency curve in figure 3.25, it is comprehensible. The
proton-proton model pp2021 reaches higher purities throughout the range of the signal effi-
ciency. The XGBoost model has a significantly higher average precision score than the random
forest model.

Lead-lead collision system
Similar to before, a random forest model was trained on the lead-lead dataset until it reached
300 members. The training was shorter with this dataset than with the larger proton-proton
dataset and took 6 minutes and 30 seconds.
Figure A.9 in the appendix shows the adjustment of the purity to the cut-based model. The
purity deviation of the models is noticeable at high transverse momentum, which could be lead
to the small data subset size in the high transverse momentum bins.
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Figure 3.26: The signal efficiency of the models evaluated in each transverse momentum bin
after the equalized purity. (lead-lead collision system)

As can be seen in figure A.9, both the random forest and the XGBoost model outperform
the cut-based model by 5 to 9%. Except from the first two pT -bins, the random forest model
performed as well as the XGBoost model at nearly 100% efficiency. In the first two bins, the
optimized XGBoost model outperforms the default random forest model.



3.4. EVALUATION OF XGBOOST MODELS 47

0.0 0.2 0.4 0.6 0.8 1.0
Recall/Signal efficiency

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr
ec
isi
on
/P
ur
ity

Precision-Recall curve

pb2021     avg.prec. =0.9638
Random forest     avg.prec. =0.9581
Cut-based eval whole data

Figure 3.27: Precison Recall Curve.

The purity-efficiency curve in figure 3.27 shows that the difference in average precision score
is a lot smaller than in the proton-proton collision system. But overall, the XGBoost model is
significantly better.
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3.4.5 Performance of the random forest model at high purities

Proton-proton collision system
Similar to section 3.4.2, the models will be compared at the purities 94, 96 and 98% (see figure
A.10 in the appendix) in the proton-proton collision system. There were no sigificant deviations.
Again, one begins with determining the probability threshold for the models in each transverse
momentum bin to fit the goal purity.
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Figure 3.28: Signal efficiency of the XGBoost models at 94, 96 and 98% purity. (proton-proton
collision system)

The signal efficiency at high purities is shown in figure 3.28. As one can see, the XGBoost
model performs significantly better than the random forest model at high purities in the proton-
proton collision system. Both models perform pretty well at 94 and 96% purity after the first
pT -bin, where they can keep up a signal efficiency very close to 100%. At 98% purity, the
XGBoost model starts at about 35% efficiency, while the random forest model only achieves an
efficiency slightly above 20%. Across the transverse momentum range between 0 and 4 GeV/c,
the optimized XGBoost model achieves higher efficiency than the default random forest model.
But after the second pT bin around 1 GeV/c, both models can achieve an efficiency of around
90%. Both models are a good choice if only purity of 96% is required because the signal
efficiency never drops below 80% signal efficiency.

Lead-lead collision system
In the lead-lead collision system, the models will be compared at 92, 95, and 98% purity (see
figure) in the proton-proton collision system.
Because of the low abundance of primary photons in the lead-lead dataset, the goal purities
deviated in some pT -bins, especially at high pT .
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Figure 3.29: Signal efficiency of the XGBoost models at 92, 95 and 98% purity. (lead-lead
collision system)

Figure 3.29 shows that the XGBoost tends to perform significantly better, especially at high
purity. At a purity of 98%, the XGBoost model starts at around 20% signal efficiency. After
a transverse momentum of approximately 1 GeV/c, the efficiency rises and stays above 60%.
At a transverse momentum of 2.75 GeV/c, the XGBoost model has a large drop regarding
efficiency. That is no surprise because the same validation dataset is used. At this point, the
random forest outperforms the XGBoost model. But all in all, the optimized XGBoost and the
default random forest model perform similarly well. Both perform significantly better than the
cut-based model.
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Chapter 4

Conclusion and discussion

In this thesis, different machine learning models were trained with two algorithms using Monte-
Carlo simulations and compared to a cut-based model. By the use of Monte-Carlo simulations
of lead-lead and proton-proton collisions in ALICE, it is possible to determine whether a data
instance is a photon or not. Thus, one can compare the algorithms in terms of the efficiency
and purity of predicted photons. Due to the high proportion of background in the lead-lead
dataset, it is more challenging for the classifier to identify photons with high purity and effi-
ciency. Therefore, the comparisons in the proton-proton collision system will not be mentioned
hereafter. Among the different algorithms, the main focus is on the XGBoost algorithm. Some
XGBoost models were trained with optimized hyperparameters to demonstrate the potential
improvement. The XGBoost model without optimized hyperparameters achieved an average
precision score of 0.9627, while the much simpler built random forest model achieved a score
of 0.9581. The hyperparameter search improved the XGBoost model such that the average
precision score increased to a value of 0.9638. It is, in any case, evident that even the simple
random forest model achieves better results than the cut-based model. The precision-recall
curves in the lead-lead collision system (see figures 3.23 and 3.27) indicate that machine learn-
ing models reach at least a 30% higher purity at the same signal efficiency. The efficiency of
the trained models is not only higher but also more constant. In contrast, the cut-based model
tends to lose efficiency with higher transverse momentum. Compared to the not optimized
random forest model, the optimized XGBoost performed slightly better. But the difference
between the machine learning models is negligible, while the difference between these machine
learning models and the cut-based model is more significant. Meanwhile, the hyperparameter
search only made a difference at the fourth decimal place. Possibly, the list of hyperparameters
to be tested did not contain any good hyperparameters. Although the difference seems very
small, one should keep in mind that it gets harder to increase the average precision score the
closer one gets to an average precision score of 1. For instance, outliers are especially hard to
identify. The difference among machine learning models might be more significant than the
numbers indicate. In a nutshell, even with default hyperparameters or a simple algorithm such
as the random forest, it is possible to train simple models with significantly better performance
than the cut-based models. Statistical deviations of the targeted purity were very prominent
in the lead-lead dataset, especially where the photon abundance was low. More precisely, the
small size of the lead-lead dataset and the low quantity of data at high transverse momen-
tum leads to the deviations. With larger datasets, one could train better models and counter
these deviations. Another limiting factor is the quality of the Monte-Carlo simulation. Tiny
high-dimensional feature deviations of the Monte-Carlo simulations from the experimental data
could lead to a more significant bias in the decision process. Therefore, it could be interesting
to evaluate these machine learning models on experimental datasets and compare the results
with each other. It would also be interesting to see the difference between these results and
those from simulation data.
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Appendix A

Appendix

Python-code of the cut-based model

This code originates from Prof. Dr. Reygers [21].

def isInKinematicRange(row):

#
# cuts on electron/positron properties
#

# cuts and pseudo-rapidity range
isElectronAndPostronInEtaRange = np.absolute(-np.log(np.tan(row.thetaElectron/2))

→֒ ) < 0.9 \
and np.absolute(-np.log(np.tan(row.thetaPositron/2))) < 0.9

#
# cuts on pair properties
#
isPhotonInEtaRange = np.absolute(-np.log(np.tan(row.theta/2))) < 0.9

return isElectronAndPostronInEtaRange and isPhotonInEtaRange

def isPhotonCutBased(row):

# Cuts in photon conversion analysis
# https://github.com/alisw/AliPhysics/blob/master/PWGGA/GammaConvBase/

→֒ AliConversionCuts.cxx

# check whether the photon is measurable
isInKinRange = isInKinematicRange(row)

#
# cuts on V0 track properties
#

# pt cuts
isAbovePtThreshold = row.ptPositron > 0.05 and row.ptElectron > 0.05

53
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# fraction TPC clusters
isOkFracClsTPC = row.fracClsTPCElectron > 0.6 and row.fracClsTPCPositron > 0.6

# dEdx is in electron band
isInElectronRange = row.nSigmaTPCeElectron > -3 and row.nSigmaTPCeElectron < 5 \

and row.nSigmaTPCePositron > -3 and row.nSigmaTPCePositron < 5

# dEdx not in pion band
isNotInPionRangeElectron = True;
if row.ptElectron > 0.4 and row.ptElectron < 2:

isNotInPionRangeElectron = row.nSigmaTPCpiElectron > 3.
if row.ptElectron >= 2:

isNotInPionRangeElectron = row.nSigmaTPCpiElectron > 1.

isNotInPionRangePositron = True;
if (row.ptPositron > 0.4 and row.ptPositron < 2.):

isNotInPionRangePositron = row.nSigmaTPCpiPositron > 3.
if (row.ptPositron >= 2.):

isNotInPionRangePositron = row.nSigmaTPCpiPositron > 1.

# edited: "and" to "or"
isNotInPionRange = isNotInPionRangeElectron or isNotInPionRangePositron

# check TOF if available
isOkTofElectron = True
if row.nSigmaTOFElectron >= -19.:

isOkTofElectron = np.absolute(row.nSigmaTOFElectron) < 5

isOkTofPositron = True
if row.nSigmaTOFPositron >= -19.:

isOkTofPositron = np.absolute(row.nSigmaTOFPositron) < 5

isOkTof = isOkTofElectron and isOkTofPositron

# combination of cuts on electron and positron properties
isOkElectronPositronCuts = isAbovePtThreshold and isOkFracClsTPC and

→֒ isInElectronRange and isNotInPionRange and isOkTof

#
# cuts on pair properties
#

# convers radius cut
isOkRcut = row.photonR > 5 # cm

# pointing angle
isOkPointingAngle = row.photonCosPoint > 0.85

# 2D Psi pair / chi^2 cut
PsiPairCut = 0.1
Chi2Cut = 30
isOkPsiPairVsChi2 = np.absolute(row.photonPsiPair) < PsiPairCut * (1. - row.

→֒ chi2ndf/Chi2Cut)
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# photon qt cut (Armenteros-Podolanski)
isOkPhotonQt = (row.photonQt/0.05)**2 + (row.photonAlpha/0.95)**2 < 1.

# combination of cuts on pair properties
isOkPairCuts = isOkPointingAngle and isOkPsiPairVsChi2 and isOkPhotonQt

isPhoton = isInKinRange and isOkElectronPositronCuts and isOkPairCuts

return isPhoton

XGBoost codes

Self-written class and functions.

# Necessary libraries-----------------------------------
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import xgboost as xgb
from xgboost import XGBClassifier
from sklearn import metrics
from sklearn.metrics import mean_squared_error as mse
import json
import pickle as pi
import time

# Own XGBoost model class--------------------------------

class SvenModel:
"""
Memory efficient model
"""
def __init__(

self,
modelname="new_model",
load=False,
loaddir="models/",
nthread = 8,
):
if load:

mfile = loaddir+modelname+".model"
pfile = loaddir+modelname+".txt"
self.model = xgb.Booster({’nthread’:nthread})
self.model.load_model(mfile)
try:

f = open(pfile)
self.model.feature_names = (f.readline()).split(",")
self.name = f.readline()
f.close()

except:
print("please set trained feature-indices with self.set_features()

→֒ functions")
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else:
self.model = None
self.params = param

self.name = modelname

def set_features(
self,
drop_features=["pt"],
all_features=[

’ptPositron’,
’thetaPositron’,
’dEdxPositronTPC’,
’tofPositron’,
’nSigmaTOFPositron’,
’fracClsTPCPositron’,
’clsITSPositron’,
’dEdxPositronITS’,
’clsTPCPositron’,
’nSigmaITSPositron’,
’ptElectron’,
’thetaElectron’,
’dEdxElectronTPC’,
’nSigmaTPCeElectron’,
’nSigmaTPCePositron’,
’tofElectron’,
’nSigmaTOFElectron’,
’fracClsTPCElectron’,
’clsITSElectron’,
’dEdxElectronITS’,
’clsTPCElectron’,
’nSigmaITSElectron’,
’nSigmaTPCpiPositron’,
’nSigmaTPCpiElectron’,
’photonQt’,
’photonAlpha’,
’photonPsiPair’,
’photonCosPoint’,
’photonInvMass’,
’photonX’,
’photonY’,
’photonZ’,
’photonPhi’,
’photonR’,
’pt’,
’theta’,
’chi2ndf’

]
):

try:
for i in drop_features:

all_features.remove(i)
except:

pass
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self.model.feature_names = all_features

def save(self,savedir="models/",name=None):
if name is None:

mfile = savedir+self.name+".model"
pfile = savedir+self.name+".txt"

else:
mfile = savedir+name+".model"
pfile = savedir+self.name+".txt"

#save model
self.model.save_model(mfile)
#save parameters
f = open(pfile,"w+")
f.write(",".join(self.model.feature_names))
f.close()

def predict(self,features,thresholds=0.5):
pred_score = self.model.predict(features)
try: #different predictions with many different thresholds

pred = np.array([(pred_score>=t).astype(int) for t in thresholds])
except: #only one threshold

pred = np.array(pred_score>=thresholds).astype(int)
return pred

def predict_proba(self,val_dataframe):
return self.model.predict(

xgb.DMatrix(
val_dataframe,#.iloc[:,:-1],
#label=val_dataframe["kind"],
feature_names=list(val_dataframe.columns)#[:-1]

)
)

def get_params(self):
return self.model.get_params()

def plot_feature_importance(self,importancetype,save=False,figure_size=(12,5)):
if importancetype not in ["weight","gain","cover","total_gain"]:

print("Importance type not valid!\nPlease use one of...\n")
print(["weight","gain","cover","total_gain"])
raise

fscore = self.model.get_score(importance_type=importancetype)
values = np.fromiter(fscore.values(),dtype=float)
sort = np.argsort(values)
keys = np.array(list(fscore.keys()))

fig = plt.figure(figsize=figure_size)
fig.tight_layout()
y_pos = np.arange(len(fscore))
plt.barh(y_pos, values[sort], align=’center’)
plt.yticks(y_pos, keys[sort])
plt.xlabel(str(’Feature importance: ’+importancetype) )
plt.title(str(’Feature importance: ’+importancetype+’ of model: ’+self.name))
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if save:
plt.savefig(

str("fimp_"+importancetype+"_"+self.name+".pdf"),
dpi=200,
format="pdf",
bbox_inches=’tight’)

plt.savefig(
str("fimp_"+importancetype+"_"+self.name+".eps"),
dpi=200,
format="eps",
bbox_inches=’tight’)

plt.show()

# functions--------------------------------------

def load_partdata(csvfile,steps,part,use_features=[None],drop_features=["Unnamed: 0"
→֒ ],numpy=False,binary=True,dmatrix=False):
#count row number
with open(csvfile) as fp:

for (nrows, _) in enumerate(fp, 1):
pass

del fp
if numpy:

#load part of dataset and drop unwanted features
if use_features[0] is None:

df = (pd.read_csv(csvfile)\
.iloc[\

int(part*(nrows/steps)):int((part+1)*(nrows/steps))]
).drop(columns=drop_features).to_numpy()

else:
df = (pd.read_csv(csvfile)[use_features]\

.iloc[\
int(part*(nrows/steps)):int((part+1)*(nrows/steps))]

).to_numpy()
#conversion of labels
if binary:

df[df[:,-1]!=0,-1]=1
df[:,-1] = 1-df[:,-1]

else:
#load part of dataset and drop unwanted features
if use_features[0] is None:

df = (pd.read_csv(csvfile)\
.iloc[\

int(part*(nrows/steps)):int((part+1)*(nrows/steps))]
).drop(columns=drop_features)

else:
df = (pd.read_csv(csvfile)[use_features]\

.iloc[\
int(part*(nrows/steps)):int((part+1)*(nrows/steps))]

)
#conversion of labels
if binary:

df.loc[df["kind"]!=0, "kind"]=1
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df["kind"] = 1 - df["kind"]
if dmatrix:

df = xgb.DMatrix(df.iloc[:,:-1],label=df.iloc[:,-1],feature_names=list(df.
→֒ columns)[:-1])

return df

#
# Calculation functions
#
def calc_beff(predictions,labels):

"""
calculate background efficiency
"""
_, _, TN, _ = confusion_matrix(predictions,labels)

beff = 1-TN/(len(labels)-np.sum(labels)) #background efficiency FPR

return beff

def calc_purity(predictions, truth):
"""
Uses confusion_matrix
Returns PPV
"""
TP, FP, TN, FN = confusion_matrix(predictions,truth)
if len(predictions.shape) == 2:

#different predictions with different thresholds
tmp = np.sum((TP,FP),axis=0)
TP[tmp==0.]=1.
tmp[tmp==0.]=1.

else:
tmp = TP+FP
if tmp == 0.:

TP = 1.
tmp = 1.

pur = np.divide(TP,tmp)
if type(pur) == np.ndarray:

if len(pur) == 1:
pur = pur[0]

return pur

def check_kinrange(dataframe):
"""
returns bool array
"""
feature_names = list(dataframe.columns)
features = dataframe.to_numpy()
#maybe dangerous
dataframe=None
del dataframe
idx_TE = np.argwhere(np.array(feature_names)=="thetaElectron")[:,0]
idx_TP = np.argwhere(np.array(feature_names)=="thetaPositron")[:,0]
idx_T = np.argwhere(np.array(feature_names)=="theta")[:,0]
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ep_eta_range = np.logical_and(
np.absolute(-np.log(np.tan(features[:,idx_TE]/2))) < 0.9,
np.absolute(-np.log(np.tan(features[:,idx_TP]/2))) < 0.9)

photon_eta = np.absolute(-np.log(np.tan(features[:,idx_T]/2))) < 0.9
return np.logical_and(

ep_eta_range,
photon_eta

)

def confusion_matrix(predictions, truth):
"""
this one only for binary
0 is false, no photon
1 is true, photon

Input: prediction(s) and ground truth (as np.array)
Output: True positive, false positive, true negative, false negative as numbers

→֒ (1 threshold) or arrays (many thresholds)
"""
TP, FP, TN, FN = [],[],[],[]
if len(predictions.shape) == 2:

for i in range(int(predictions.shape[0])):
#print(i/len(threshold),"%")
TP_ = np.sum(np.logical_and((predictions[i]==truth),(predictions[i]==1)))
FP_ = np.sum(np.logical_and((predictions[i]!=truth),(predictions[i]==1)))
TN_ = np.sum(np.logical_and((predictions[i]==truth),(predictions[i]==0)))
FN_ = np.sum(np.logical_and((predictions[i]!=truth),(predictions[i]==0)))
TP.append(TP_)
FP.append(FP_)
TN.append(TN_)
FN.append(FN_)

TP = np.array(TP)
FP = np.array(FP)
TN = np.array(TN)
FN = np.array(FN)

else:
TP = np.sum(np.logical_and((predictions==truth),(predictions==1)))
FP = np.sum(np.logical_and((predictions!=truth),(predictions==1)))
TN = np.sum(np.logical_and((predictions==truth),(predictions==0)))
FN = np.sum(np.logical_and((predictions!=truth),(predictions==0)))

return TP, FP, TN, FN

#
# Comparison functions (cut-based vs xgboost)
#
def cut_purity_efficiency(tmp_df):

val_dataframe = tmp_df.copy()
val_dataframe[’isPhotonCutBased’] = val_dataframe.apply(isPhotonCutBased, axis =

→֒ 1)
# photon purity without cuts
n_photon_cand_no_cuts = len(val_dataframe)
n_photons_no_cuts = np.sum(val_dataframe["kind"] == 1)
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purity_no_cuts = n_photons_no_cuts / n_photon_cand_no_cuts
# efficiency and purity after cuts
n_photon_cand = len(val_dataframe[val_dataframe["isPhotonCutBased"] == True]) #

→֒ number photon candiates
n_photons = len(val_dataframe[(val_dataframe["isPhotonCutBased"] == True) & (

→֒ val_dataframe["kind"] == 1)])
non_photons = len(val_dataframe[(val_dataframe["isPhotonCutBased"] == False) & (

→֒ val_dataframe["kind"] == 0)])
purity = n_photons / n_photon_cand
eff = n_photons / n_photons_no_cuts

non_photons_no_cuts = len(val_dataframe)-n_photons_no_cuts
beff = 1-non_photons/ non_photons_no_cuts
TPR = n_photons/(n_photons+len(val_dataframe[(val_dataframe["isPhotonCutBased"]

→֒ == False) & (val_dataframe["kind"] == 1)]))
val_dataframe = None
del val_dataframe
return purity_no_cuts, purity, eff, beff, TPR

def cut_by_pt(orig_df,pt_steps=8,pt_lim=(0,4)):
df = orig_df.copy()
df[’isInKinematicRange’] = df.apply(isInKinematicRange, axis = 1)
df[’isPhotonCutBased’] = df.apply(isPhotonCutBased, axis = 1)
#pt wise seperation
df_pt_photon_cand_no_cuts = df[df["isInKinematicRange"] == True]["pt"]
df_pt_photon_no_cuts = df[(df["isInKinematicRange"] == True) & (df["kind"] == 1)

→֒ ]["pt"]
df_pt_photon_cand = df[df["isPhotonCutBased"] == True]["pt"]
df_pt_photons_after_cuts = df[(df["isPhotonCutBased"] == True) & (df["kind"] ==

→֒ 1)]["pt"]
#pt wise bin counting
h_pt_photon_cand_no_cuts, edges_photon_cand_no_cuts = np.histogram(

→֒ df_pt_photon_cand_no_cuts, bins=pt_steps, range=pt_lim)
h_pt_photon_no_cuts, edges_true_photon_no_cuts = np.histogram(

→֒ df_pt_photon_no_cuts, bins=pt_steps, range=pt_lim)
h_pt_photon_cand, edges_photon_cand = np.histogram(df_pt_photon_cand, bins=

→֒ pt_steps, range=pt_lim)
h_pt_photons_after_cuts, edges_true_photons = np.histogram(

→֒ df_pt_photons_after_cuts, bins=pt_steps, range=pt_lim)
with np.errstate(divide=’ignore’, invalid=’ignore’):

purity_no_cuts_vs_pt = h_pt_photon_no_cuts / h_pt_photon_cand_no_cuts
purity_vs_pt = h_pt_photons_after_cuts / h_pt_photon_cand
eff_vs_pt = h_pt_photons_after_cuts / h_pt_photon_no_cuts

return purity_vs_pt, eff_vs_pt, purity_no_cuts_vs_pt, edges_photon_cand

def evaluate_model(predprobs,labels):
start = time.time()
pur, eff, beff, _, _ = xgb_purity_efficiency(

predictions = np.array([(predprobs>=thresholds).astype(int)])[0],
labels = labels

)
end = time.time()
print("Runtime cut-based evaluation: ",str(end-start)," s")
print("Purity:\t\t",str(pur),"\nSignal efficiency\t",str(eff),"\nBackground
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→֒ efficiency\t",str(beff))

def find_pthreshold_beff(goal_beff,predprobs,labels,accuracy=5,max_iter=50,start_with
→֒ =0.5):
"""
Finds the right threshold to create similar background efficiencies
Returns the probability threshold
"""
tmp_th = start_with
old_beff = 8888
tmp_beff = calc_beff(

predictions = np.array((predprobs>=tmp_th).astype(int)),
labels = label

)
countdown=max_iter
while round(tmp_beff,int(accuracy)) != round(goal_beff,int(accuracy)):

print("Iteration ",str(max_iter-countdown),"\nBackround efficiency: ",str(
→֒ tmp_beff),\
"\nGoal: ",str(goal_beff),"Current threshold: ",str(tmp_th))

if countdown < 1:
break

if (tmp_beff-goal_beff) > 0:
tmp_th += 1./(2.**(max_iter-countdown+1))

else:
tmp_th -= 1./(2.**(max_iter-countdown+1))

old_beff = tmp_beff
tmp_beff = calc_beff(

predictions = np.array((predprobs>=tmp_th).astype(int)),
labels = labels

)
countdown-=1

return tmp_th

def xgb_purity_efficiency(predictions, labels):
"""
calculate purity and efficiency using predictions and labels
"""
#isInKinRange = check_kinrange(features)[:,0]
n_photons_no_cuts = np.sum(labels)
TP, FP, TN, FN = confusion_matrix(predictions,labels)
pur = TP/(TP+FP) #real photons in predicited photons aka. precision
eff = TP/n_photons_no_cuts #signal efficiency aka. recall/TPR
beff = 1-TN/(len(labels)-n_photons_no_cuts) #background efficiency FPR
#print("Background efficiency check:\n",beff)
#print(FP/(len(labels)-n_photons_no_cuts) )
return pur, eff, beff, TP/(TP+FN), n_photons_no_cuts

def calc_pt_ints(val_dataframe,pt_lim=(0,4),pt_steps=8):
pt_ints = [(pt_lim[0]+i*pt_lim[1]/pt_steps,pt_lim[0]+(i+1)*pt_lim[1]/pt_steps)

→֒ for i in range(pt_steps)]
#find indices of instances where pt value lies in the given pt range
indx_by_pt = np.array(

[(np.argwhere(
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np.logical_and((pt_ints[i][0] <= val_dataframe["pt"].values ),
(val_dataframe["pt"].values <= pt_ints[i][1]))

)[:,0]).astype(int) for i in range(len(pt_ints))]
)
return pt_ints, indx_by_pt

def match_purity(goal_pur,predprobs,labels,accuracy=3,max_iter=100,start_with=0.5,
→֒ print_messages=True):
"""
Finds the right threshold to create similar purities
Returns the probability threshold
"""
tmp_th = start_with
old_pur = 8888
tmp_pur = calc_purity(

predictions = np.array((predprobs>=tmp_th).astype(int)),
truth = labels

)
countdown=max_iter
while round(tmp_pur,int(accuracy)) != round(goal_pur,int(accuracy)):

if print_messages:
print("Iteration ",str(max_iter-countdown),"\nPurity: ",str(tmp_pur),\

"\nGoal: ",str(goal_pur),"Current threshold: ",str(tmp_th))
if countdown < 1:

break
if (tmp_pur-goal_pur) > 0:

tmp_th -= 1./(2.**(max_iter-countdown+1))
else:

tmp_th += 1./(2.**(max_iter-countdown+1))
old_pur = tmp_pur
tmp_pur = calc_purity(

predictions = np.array((predprobs>=tmp_th).astype(int)),
truth = labels

)
countdown-=1

return tmp_th

def match_purities(predprobs,labels,indx_by_pt,purities):
thresholds = []
for i in range(len(indx_by_pt)):

print("\n\nStep ",str(i),"/",str(len(indx_by_pt)))
thresholds.append(

match_purity(
goal_pur = purities[i],
predprobs=predprobs[indx_by_pt[i]],
labels=labels[indx_by_pt[i]],
accuracy = 3,
max_iter = 200,
print_messages=True#,
#start_with = 0.3

)
)

return thresholds
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def eval_by_pt(predprobs,labels,cut_purities,pt_ints,indx_by_pt):
purs = []
effs = []
beffs = []
if cut_purities is not None:

print("Matching purities: ")
start = time.time()
thresholds = match_purities(

predprobs=predprobs,
labels=labels,
indx_by_pt=indx_by_pt,
purities=cut_purities

)
end = time.time()
print("Time passed: ",str(end-start),"s")
print("\nNow evaluate XGBoost model by pt")
start = time.time()
for i in range(len(indx_by_pt)):

pur, eff, beff, _, _ = xgb_purity_efficiency(
predictions = np.array( predprobs[indx_by_pt[i]]>=thresholds[i] ).

→֒ astype(int),
labels = labels[indx_by_pt[i]]

)
purs.append(pur)
effs.append(eff)
beffs.append(beff)

end = time.time()
print("Time passed: ",str(end-start),"s")

else:
print("\nEvaluate XGBoost model by pt")
start = time.time()
preds=np.array(predprobs>=0.5).astype(int)
for i in range(len(indx_by_pt)):

pur, eff, beff, _, _ = xgb_purity_efficiency(
predictions = preds[indx_by_pt[i]],
labels = labels[indx_by_pt[i]]

)
purs.append(pur)
effs.append(eff)
beffs.append(beff)

end = time.time()
print("Time passed: ",str(end-start),"s")

return purs, effs, beffs

#
# Plot functions------------------------------------
#
def plot_abundance(csvfile,figure_size=(12,6),save=False):

kind_names = [
"primary photons", #kind 0 photon
"unspecified combinatorics", #kind 1
"some mother, hadronic", #kind 2
"pi0 Dalitz", #kind 3
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"eta Dalitz", #kind 4
"secondary photons", #kind 5 photon
"x", #kind 6
"x", #kind 7
"x", #kind 8
"other", #kind 9
"electron combinatorial", #kind 10
"pion combinatorial", #kind 11
"pion proton combinatorics", #kind 12
"pion electron combinatorics", #kind 13
"kaon kaon combinatorics", #kind 14
"direct electron combinatorial", #kind 15
"electron protons combinatorics", #kind 16
"electron kaon combinatorics", #kind 17
"pion, kaon" #kind 18

]
labels = pd.read_csv(csvfile).iloc[:,-1]
plt.figure(figsize=figure_size)
plt.subplot(211)
counts, bins, patches = plt.hist(labels,18,color="#cc6900",edgecolor="black",

→֒ linewidth=1)
bin_centers = np.arange(19) + 0.5
for count, x, kind in zip(counts, bin_centers, kind_names):

# Label the raw counts
plt.annotate(kind, xy=(x, 0), xycoords=(’data’, ’axes fraction’),

xytext=(0, -40), textcoords=’offset points’, va=’top’, ha=’center’,
→֒ rotation=270)

# Label the percentages
percent = ’%0.1f%%’ % (100. * float(count) / counts.sum())
plt.annotate(percent, xy=(x, 0), xycoords=(’data’, ’axes fraction’),

xytext=(0, -25), textcoords=’offset points’, va=’top’, ha=’center’)
plt.yscale("log")
plt.xticks(np.arange(19))
plt.ylabel("counts")
plt.title("Abundance of each photon kind")

plt.subplot(212)
plt.axis("Off")
if save:

plt.savefig("Abundances.pdf",dpi=200,format="pdf")
plt.show()

XGBoost usage

Code snippets to show the usage.

# Necessary libraries-----------------------------------
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import xgboost as xgb
from xgboost import XGBClassifier
from sklearn import metrics
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from sklearn.metrics import mean_squared_error as mse
import json
import pickle as pi
import time

# Own XGBoost model class--------------------------------

class SvenModel:
"""
Memory efficient model
"""
def __init__(

self,
modelname="new_model",
load=False,
loaddir="models/",
nthread = 8,
):
if load:

mfile = loaddir+modelname+".model"
pfile = loaddir+modelname+".txt"
self.model = xgb.Booster({’nthread’:nthread})
self.model.load_model(mfile)
try:

f = open(pfile)
self.model.feature_names = (f.readline()).split(",")
self.name = f.readline()
f.close()

except:
print("please set trained feature-indices with self.set_features()

→֒ functions")
else:

self.model = None
self.params = param

self.name = modelname

def set_features(
self,
drop_features=["pt"],
all_features=[

’ptPositron’,
’thetaPositron’,
’dEdxPositronTPC’,
’tofPositron’,
’nSigmaTOFPositron’,
’fracClsTPCPositron’,
’clsITSPositron’,
’dEdxPositronITS’,
’clsTPCPositron’,
’nSigmaITSPositron’,
’ptElectron’,
’thetaElectron’,
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’dEdxElectronTPC’,
’nSigmaTPCeElectron’,
’nSigmaTPCePositron’,
’tofElectron’,
’nSigmaTOFElectron’,
’fracClsTPCElectron’,
’clsITSElectron’,
’dEdxElectronITS’,
’clsTPCElectron’,
’nSigmaITSElectron’,
’nSigmaTPCpiPositron’,
’nSigmaTPCpiElectron’,
’photonQt’,
’photonAlpha’,
’photonPsiPair’,
’photonCosPoint’,
’photonInvMass’,
’photonX’,
’photonY’,
’photonZ’,
’photonPhi’,
’photonR’,
’pt’,
’theta’,
’chi2ndf’

]
):

try:
for i in drop_features:

all_features.remove(i)
except:

pass
self.model.feature_names = all_features

def save(self,savedir="models/",name=None):
if name is None:

mfile = savedir+self.name+".model"
pfile = savedir+self.name+".txt"

else:
mfile = savedir+name+".model"
pfile = savedir+self.name+".txt"

#save model
self.model.save_model(mfile)
#save parameters
f = open(pfile,"w+")
f.write(",".join(self.model.feature_names))
f.close()

def predict(self,features,thresholds=0.5):
pred_score = self.model.predict(features)
try: #different predictions with many different thresholds

pred = np.array([(pred_score>=t).astype(int) for t in thresholds])
except: #only one threshold
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pred = np.array(pred_score>=thresholds).astype(int)
return pred

def predict_proba(self,val_dataframe):
return self.model.predict(

xgb.DMatrix(
val_dataframe,#.iloc[:,:-1],
#label=val_dataframe["kind"],
feature_names=list(val_dataframe.columns)#[:-1]

)
)

def get_params(self):
return self.model.get_params()

def plot_feature_importance(self,importancetype,save=False,figure_size=(12,5)):
if importancetype not in ["weight","gain","cover","total_gain"]:

print("Importance type not valid!\nPlease use one of...\n")
print(["weight","gain","cover","total_gain"])
raise

fscore = self.model.get_score(importance_type=importancetype)
values = np.fromiter(fscore.values(),dtype=float)
sort = np.argsort(values)
keys = np.array(list(fscore.keys()))

fig = plt.figure(figsize=figure_size)
fig.tight_layout()
y_pos = np.arange(len(fscore))
plt.barh(y_pos, values[sort], align=’center’)
plt.yticks(y_pos, keys[sort])
plt.xlabel(str(’Feature importance: ’+importancetype) )
plt.title(str(’Feature importance: ’+importancetype+’ of model: ’+self.name))
if save:

plt.savefig(
str("fimp_"+importancetype+"_"+self.name+".pdf"),
dpi=200,
format="pdf",
bbox_inches=’tight’)

plt.savefig(
str("fimp_"+importancetype+"_"+self.name+".eps"),
dpi=200,
format="eps",
bbox_inches=’tight’)

plt.show()

# functions--------------------------------------

def load_partdata(csvfile,steps,part,use_features=[None],drop_features=["Unnamed: 0"
→֒ ],numpy=False,binary=True,dmatrix=False):
#count row number
with open(csvfile) as fp:

for (nrows, _) in enumerate(fp, 1):
pass
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del fp
if numpy:

#load part of dataset and drop unwanted features
if use_features[0] is None:

df = (pd.read_csv(csvfile)\
.iloc[\

int(part*(nrows/steps)):int((part+1)*(nrows/steps))]
).drop(columns=drop_features).to_numpy()

else:
df = (pd.read_csv(csvfile)[use_features]\

.iloc[\
int(part*(nrows/steps)):int((part+1)*(nrows/steps))]

).to_numpy()
#conversion of labels
if binary:

df[df[:,-1]!=0,-1]=1
df[:,-1] = 1-df[:,-1]

else:
#load part of dataset and drop unwanted features
if use_features[0] is None:

df = (pd.read_csv(csvfile)\
.iloc[\

int(part*(nrows/steps)):int((part+1)*(nrows/steps))]
).drop(columns=drop_features)

else:
df = (pd.read_csv(csvfile)[use_features]\

.iloc[\
int(part*(nrows/steps)):int((part+1)*(nrows/steps))]

)
#conversion of labels
if binary:

df.loc[df["kind"]!=0, "kind"]=1
df["kind"] = 1 - df["kind"]

if dmatrix:
df = xgb.DMatrix(df.iloc[:,:-1],label=df.iloc[:,-1],feature_names=list(df.

→֒ columns)[:-1])
return df

#
# Calculation functions
#
def calc_beff(predictions,labels):

"""
calculate background efficiency
"""
_, _, TN, _ = confusion_matrix(predictions,labels)

beff = 1-TN/(len(labels)-np.sum(labels)) #background efficiency FPR

return beff

def calc_purity(predictions, truth):
"""
Uses confusion_matrix
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Returns PPV
"""
TP, FP, TN, FN = confusion_matrix(predictions,truth)
if len(predictions.shape) == 2:

#different predictions with different thresholds
tmp = np.sum((TP,FP),axis=0)
TP[tmp==0.]=1.
tmp[tmp==0.]=1.

else:
tmp = TP+FP
if tmp == 0.:

TP = 1.
tmp = 1.

pur = np.divide(TP,tmp)
if type(pur) == np.ndarray:

if len(pur) == 1:
pur = pur[0]

return pur

def check_kinrange(dataframe):
"""
returns bool array
"""
feature_names = list(dataframe.columns)
features = dataframe.to_numpy()
#maybe dangerous
dataframe=None
del dataframe
idx_TE = np.argwhere(np.array(feature_names)=="thetaElectron")[:,0]
idx_TP = np.argwhere(np.array(feature_names)=="thetaPositron")[:,0]
idx_T = np.argwhere(np.array(feature_names)=="theta")[:,0]
ep_eta_range = np.logical_and(

np.absolute(-np.log(np.tan(features[:,idx_TE]/2))) < 0.9,
np.absolute(-np.log(np.tan(features[:,idx_TP]/2))) < 0.9)

photon_eta = np.absolute(-np.log(np.tan(features[:,idx_T]/2))) < 0.9
return np.logical_and(

ep_eta_range,
photon_eta

)

def confusion_matrix(predictions, truth):
"""
this one only for binary
0 is false, no photon
1 is true, photon

Input: prediction(s) and ground truth (as np.array)
Output: True positive, false positive, true negative, false negative as numbers

→֒ (1 threshold) or arrays (many thresholds)
"""
TP, FP, TN, FN = [],[],[],[]
if len(predictions.shape) == 2:

for i in range(int(predictions.shape[0])):
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#print(i/len(threshold),"%")
TP_ = np.sum(np.logical_and((predictions[i]==truth),(predictions[i]==1)))
FP_ = np.sum(np.logical_and((predictions[i]!=truth),(predictions[i]==1)))
TN_ = np.sum(np.logical_and((predictions[i]==truth),(predictions[i]==0)))
FN_ = np.sum(np.logical_and((predictions[i]!=truth),(predictions[i]==0)))
TP.append(TP_)
FP.append(FP_)
TN.append(TN_)
FN.append(FN_)

TP = np.array(TP)
FP = np.array(FP)
TN = np.array(TN)
FN = np.array(FN)

else:
TP = np.sum(np.logical_and((predictions==truth),(predictions==1)))
FP = np.sum(np.logical_and((predictions!=truth),(predictions==1)))
TN = np.sum(np.logical_and((predictions==truth),(predictions==0)))
FN = np.sum(np.logical_and((predictions!=truth),(predictions==0)))

return TP, FP, TN, FN

#
# Comparison functions (cut-based vs xgboost)
#
def cut_purity_efficiency(tmp_df):

val_dataframe = tmp_df.copy()
val_dataframe[’isPhotonCutBased’] = val_dataframe.apply(isPhotonCutBased, axis =

→֒ 1)
# photon purity without cuts
n_photon_cand_no_cuts = len(val_dataframe)
n_photons_no_cuts = np.sum(val_dataframe["kind"] == 1)
purity_no_cuts = n_photons_no_cuts / n_photon_cand_no_cuts
# efficiency and purity after cuts
n_photon_cand = len(val_dataframe[val_dataframe["isPhotonCutBased"] == True]) #

→֒ number photon candiates
n_photons = len(val_dataframe[(val_dataframe["isPhotonCutBased"] == True) & (

→֒ val_dataframe["kind"] == 1)])
non_photons = len(val_dataframe[(val_dataframe["isPhotonCutBased"] == False) & (

→֒ val_dataframe["kind"] == 0)])
purity = n_photons / n_photon_cand
eff = n_photons / n_photons_no_cuts

non_photons_no_cuts = len(val_dataframe)-n_photons_no_cuts
beff = 1-non_photons/ non_photons_no_cuts
TPR = n_photons/(n_photons+len(val_dataframe[(val_dataframe["isPhotonCutBased"]

→֒ == False) & (val_dataframe["kind"] == 1)]))
val_dataframe = None
del val_dataframe
return purity_no_cuts, purity, eff, beff, TPR

def cut_by_pt(orig_df,pt_steps=8,pt_lim=(0,4)):
df = orig_df.copy()
df[’isInKinematicRange’] = df.apply(isInKinematicRange, axis = 1)
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df[’isPhotonCutBased’] = df.apply(isPhotonCutBased, axis = 1)
#pt wise seperation
df_pt_photon_cand_no_cuts = df[df["isInKinematicRange"] == True]["pt"]
df_pt_photon_no_cuts = df[(df["isInKinematicRange"] == True) & (df["kind"] == 1)

→֒ ]["pt"]
df_pt_photon_cand = df[df["isPhotonCutBased"] == True]["pt"]
df_pt_photons_after_cuts = df[(df["isPhotonCutBased"] == True) & (df["kind"] ==

→֒ 1)]["pt"]
#pt wise bin counting
h_pt_photon_cand_no_cuts, edges_photon_cand_no_cuts = np.histogram(

→֒ df_pt_photon_cand_no_cuts, bins=pt_steps, range=pt_lim)
h_pt_photon_no_cuts, edges_true_photon_no_cuts = np.histogram(

→֒ df_pt_photon_no_cuts, bins=pt_steps, range=pt_lim)
h_pt_photon_cand, edges_photon_cand = np.histogram(df_pt_photon_cand, bins=

→֒ pt_steps, range=pt_lim)
h_pt_photons_after_cuts, edges_true_photons = np.histogram(

→֒ df_pt_photons_after_cuts, bins=pt_steps, range=pt_lim)
with np.errstate(divide=’ignore’, invalid=’ignore’):

purity_no_cuts_vs_pt = h_pt_photon_no_cuts / h_pt_photon_cand_no_cuts
purity_vs_pt = h_pt_photons_after_cuts / h_pt_photon_cand
eff_vs_pt = h_pt_photons_after_cuts / h_pt_photon_no_cuts

return purity_vs_pt, eff_vs_pt, purity_no_cuts_vs_pt, edges_photon_cand

def evaluate_model(predprobs,labels):
start = time.time()
pur, eff, beff, _, _ = xgb_purity_efficiency(

predictions = np.array([(predprobs>=thresholds).astype(int)])[0],
labels = labels

)
end = time.time()
print("Runtime cut-based evaluation: ",str(end-start)," s")
print("Purity:\t\t",str(pur),"\nSignal efficiency\t",str(eff),"\nBackground

→֒ efficiency\t",str(beff))

def find_pthreshold_beff(goal_beff,predprobs,labels,accuracy=5,max_iter=50,start_with
→֒ =0.5):
"""
Finds the right threshold to create similar background efficiencies
Returns the probability threshold
"""
tmp_th = start_with
old_beff = 8888
tmp_beff = calc_beff(

predictions = np.array((predprobs>=tmp_th).astype(int)),
labels = label

)
countdown=max_iter
while round(tmp_beff,int(accuracy)) != round(goal_beff,int(accuracy)):

print("Iteration ",str(max_iter-countdown),"\nBackround efficiency: ",str(
→֒ tmp_beff),\
"\nGoal: ",str(goal_beff),"Current threshold: ",str(tmp_th))

if countdown < 1:
break

if (tmp_beff-goal_beff) > 0:
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tmp_th += 1./(2.**(max_iter-countdown+1))
else:

tmp_th -= 1./(2.**(max_iter-countdown+1))
old_beff = tmp_beff
tmp_beff = calc_beff(

predictions = np.array((predprobs>=tmp_th).astype(int)),
labels = labels

)
countdown-=1

return tmp_th

def xgb_purity_efficiency(predictions, labels):
"""
calculate purity and efficiency using predictions and labels
"""
#isInKinRange = check_kinrange(features)[:,0]
n_photons_no_cuts = np.sum(labels)
TP, FP, TN, FN = confusion_matrix(predictions,labels)
pur = TP/(TP+FP) #real photons in predicited photons aka. precision
eff = TP/n_photons_no_cuts #signal efficiency aka. recall/TPR
beff = 1-TN/(len(labels)-n_photons_no_cuts) #background efficiency FPR
#print("Background efficiency check:\n",beff)
#print(FP/(len(labels)-n_photons_no_cuts) )
return pur, eff, beff, TP/(TP+FN), n_photons_no_cuts

def calc_pt_ints(val_dataframe,pt_lim=(0,4),pt_steps=8):
pt_ints = [(pt_lim[0]+i*pt_lim[1]/pt_steps,pt_lim[0]+(i+1)*pt_lim[1]/pt_steps)

→֒ for i in range(pt_steps)]
#find indices of instances where pt value lies in the given pt range
indx_by_pt = np.array(

[(np.argwhere(
np.logical_and((pt_ints[i][0] <= val_dataframe["pt"].values ),

(val_dataframe["pt"].values <= pt_ints[i][1]))
)[:,0]).astype(int) for i in range(len(pt_ints))]

)
return pt_ints, indx_by_pt

def match_purity(goal_pur,predprobs,labels,accuracy=3,max_iter=100,start_with=0.5,
→֒ print_messages=True):
"""
Finds the right threshold to create similar purities
Returns the probability threshold
"""
tmp_th = start_with
old_pur = 8888
tmp_pur = calc_purity(

predictions = np.array((predprobs>=tmp_th).astype(int)),
truth = labels

)
countdown=max_iter
while round(tmp_pur,int(accuracy)) != round(goal_pur,int(accuracy)):

if print_messages:
print("Iteration ",str(max_iter-countdown),"\nPurity: ",str(tmp_pur),\
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"\nGoal: ",str(goal_pur),"Current threshold: ",str(tmp_th))
if countdown < 1:

break
if (tmp_pur-goal_pur) > 0:

tmp_th -= 1./(2.**(max_iter-countdown+1))
else:

tmp_th += 1./(2.**(max_iter-countdown+1))
old_pur = tmp_pur
tmp_pur = calc_purity(

predictions = np.array((predprobs>=tmp_th).astype(int)),
truth = labels

)
countdown-=1

return tmp_th

def match_purities(predprobs,labels,indx_by_pt,purities):
thresholds = []
for i in range(len(indx_by_pt)):

print("\n\nStep ",str(i),"/",str(len(indx_by_pt)))
thresholds.append(

match_purity(
goal_pur = purities[i],
predprobs=predprobs[indx_by_pt[i]],
labels=labels[indx_by_pt[i]],
accuracy = 3,
max_iter = 200,
print_messages=True#,
#start_with = 0.3

)
)

return thresholds

def eval_by_pt(predprobs,labels,cut_purities,pt_ints,indx_by_pt):
purs = []
effs = []
beffs = []
if cut_purities is not None:

print("Matching purities: ")
start = time.time()
thresholds = match_purities(

predprobs=predprobs,
labels=labels,
indx_by_pt=indx_by_pt,
purities=cut_purities

)
end = time.time()
print("Time passed: ",str(end-start),"s")
print("\nNow evaluate XGBoost model by pt")
start = time.time()
for i in range(len(indx_by_pt)):

pur, eff, beff, _, _ = xgb_purity_efficiency(
predictions = np.array( predprobs[indx_by_pt[i]]>=thresholds[i] ).

→֒ astype(int),
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labels = labels[indx_by_pt[i]]
)
purs.append(pur)
effs.append(eff)
beffs.append(beff)

end = time.time()
print("Time passed: ",str(end-start),"s")

else:
print("\nEvaluate XGBoost model by pt")
start = time.time()
preds=np.array(predprobs>=0.5).astype(int)
for i in range(len(indx_by_pt)):

pur, eff, beff, _, _ = xgb_purity_efficiency(
predictions = preds[indx_by_pt[i]],
labels = labels[indx_by_pt[i]]

)
purs.append(pur)
effs.append(eff)
beffs.append(beff)

end = time.time()
print("Time passed: ",str(end-start),"s")

return purs, effs, beffs

#
# Plot functions------------------------------------
#
def plot_abundance(csvfile,figure_size=(12,6),save=False):

kind_names = [
"primary photons", #kind 0 photon
"unspecified combinatorics", #kind 1
"some mother, hadronic", #kind 2
"pi0 Dalitz", #kind 3
"eta Dalitz", #kind 4
"secondary photons", #kind 5 photon
"x", #kind 6
"x", #kind 7
"x", #kind 8
"other", #kind 9
"electron combinatorial", #kind 10
"pion combinatorial", #kind 11
"pion proton combinatorics", #kind 12
"pion electron combinatorics", #kind 13
"kaon kaon combinatorics", #kind 14
"direct electron combinatorial", #kind 15
"electron protons combinatorics", #kind 16
"electron kaon combinatorics", #kind 17
"pion, kaon" #kind 18

]
labels = pd.read_csv(csvfile).iloc[:,-1]
plt.figure(figsize=figure_size)
plt.subplot(211)
counts, bins, patches = plt.hist(labels,18,color="#cc6900",edgecolor="black",

→֒ linewidth=1)
bin_centers = np.arange(19) + 0.5
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for count, x, kind in zip(counts, bin_centers, kind_names):
# Label the raw counts
plt.annotate(kind, xy=(x, 0), xycoords=(’data’, ’axes fraction’),

xytext=(0, -40), textcoords=’offset points’, va=’top’, ha=’center’,
→֒ rotation=270)

# Label the percentages
percent = ’%0.1f%%’ % (100. * float(count) / counts.sum())
plt.annotate(percent, xy=(x, 0), xycoords=(’data’, ’axes fraction’),

xytext=(0, -25), textcoords=’offset points’, va=’top’, ha=’center’)
plt.yscale("log")
plt.xticks(np.arange(19))
plt.ylabel("counts")
plt.title("Abundance of each photon kind")

plt.subplot(212)
plt.axis("Off")
if save:

plt.savefig("Abundances.pdf",dpi=200,format="pdf")
plt.show()

Feature importance

Because a few features share a large proportion of the importance, it stands to reason that
plotting them against each other should extend the comprehension of the models. Two- and
three-dimensional features are shown in the subsequent figures. If these features carry valu-
able information to identify photons, the plots should show distinct clusters of photons and
background. These two and three-dimensional plots only serve as rough insights because the
classification happens in the high dimensional space. Moreover, the background data points
in the plots are transparent to a certain amount. That is necessary to make the distribu-
tion of both photons and background data clearer. These plots should point out the different
distributions of photon and background data.
Figure A.1 shows four different feature combinations. Each plot was done with the same 500000
data instances of the proton-proton collision system. Although the photon and background data
overlap in the feature plots, one can notice different densities in different regions.
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Figure A.1: The three most important features of the proton-proton model pp2021 plotted in
2D.
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(a) Weight.

(b) Gain.

Figure A.2: The three most important features of the proton-proton model pp2021 plotted in
3D.
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Figure A.3: The three most important features of the lead-lead model pb2021 plotted in 2D.
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(a) Weight.

(b) Gain.

Figure A.4: The three most important features of the lead-lead model pb2021 plotted in 3D.
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XGBoost evaluation
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Signal efficiency vs pT - Comparison of cut-based model and XGBoost models
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Figure A.5: The signal efficiency of the models evaluated in each transverse momentum bin
after the equalized purity. (lead-lead collision system)
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Figure A.6: Signal efficiency of the optimized pb2021 and the default pb2021_default model
at 92, 95 and 98% purity. (lead-lead collision system)
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Figure A.7: Adjusting the purity of the XGBoost models to the goal purities in each transverse
momentum bin. (lead-lead collision system)
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Figure A.8: Adjusting the purity of the models to the purity of the cut-based model in each
transverse momentum bin. (proton-proton collision system)
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Figure A.9: Adjusting the purity of the models to the purity of the cut-based model in each
transverse momentum bin. (lead-lead collision system)
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Figure A.10: Adjusting the purity of the models to the purity of the cut-based model in each
transverse momentum bin. (proton-proton collision system)
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Figure A.11: Adjusting the purity of the models to the purity of the cut-based model in each
transverse momentum bin. (lead-lead collision system)

Feature histograms

Proton-proton dataset
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Figure A.12: Feature histograms of the proton-proton dataset.
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Figure A.13: Feature histograms of the proton-proton dataset.
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Figure A.14: Feature histograms of the proton-proton dataset.
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Figure A.15: Feature histograms of the proton-proton dataset.
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Figure A.16: Feature histograms of the proton-proton dataset.
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Figure A.17: Feature histograms of the proton-proton dataset.
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Figure A.18: Feature histograms of the proton-proton dataset.
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Figure A.19: Selected feature histograms of the proton-proton dataset restricted to particular
interval.

Lead-lead dataset
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Figure A.20: Feature histograms of the lead-lead dataset.
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Figure A.21: Feature histograms of the lead-lead dataset.
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Figure A.22: Feature histograms of the lead-lead dataset.
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Figure A.23: Feature histograms of the lead-lead dataset.
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Figure A.24: Feature histograms of the lead-lead dataset.
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Figure A.25: Feature histograms of the lead-lead dataset.
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Figure A.26: Feature histograms of the lead-lead dataset.
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Figure A.27: Selected feature histograms of the lead-lead dataset restricted to particular inter-
val.
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