
Department of Physics and Astronomy

University of Heidelberg

Diploma thesis

in Physics

submitted by

Robert Weidel

born in Lörrach

2011

Development of a

Knowledge-based Processor Controller

for High Speed Track Trigger Applications

This diploma thesis has been carried out by Robert Weidel

at the

Physikalisches Institut Heidelberg

under the supervision of

Prof. Dr. André Schöning

Development of a Knowledge-based Processor Controller for High

Speed Track Trigger Applications :

The Large Hadron Collider (LHC), at which protons of Ep = 7 TeV (nominal) are
collided at a frequency of 40 MHz, is planned to be upgraded in the year 2020 to
increase the luminosity by a factor 5. Recording of events in the ATLAS detector
is limited to about 200 Hz and a multi-level trigger system is used to reduce the
event rate. One option to keep the L1 trigger rate at the present level of about
75 kHz is to integrate a Fast Track Trigger, which could be implemented using
fast lookups based on Knowledge-based Processors (KBP).
In this thesis the functionality and performance of KBPs is investigated and a
controller is developed for usage in a Fast Track Trigger. To study the hardware
performance an evaluation kit equipped with a NL9000 chip is used. The latency
and the result rate of the chip is measured and found to be compatible with the
speci�cations of the upgraded ATLAS experiment. In context of this work it is
shown that a realisation of a Fast Track Trigger is possible by using the NL9000.
The functional behaviour of the NL9000 chip is described by a Verilog model.
This model is veri�ed and demonstrated to be reliable.

Entwicklung eines Controllers für Knowledge-based Processors als An-

wendung in einem High Speed Track Trigger :

Der Large Hadron Collider (LHC), in welchem Protonen mit Ep = 7 TeV
(nominell) in einer Frequenz von 40 MHz kollidieren, wird voraussichtlich im Jahr
2020 aufgerüstet, um die Luminosität um Faktor 5 zu erhöhen. Da das Speichern
der Ereignisse mit maximal 200 Hz geschehen kann, wird ein mehrstu�ger Trigger
verwendet um die Ereignisrate zu verringern. Eine Möglichkeit um die Triggerrate
auf dem bestehenden Niveau zu halten ist es, einen Fast Track Trigger auf dem
ersten Triggerlevel zu integrieren, welcher schnelle Lookups von Knowledge-based
Processors (KBP) benutzt.
In dieser Arbeit werden die Funktionen und die Leistungsfähigkeit eines KBPs
in Hinblick auf die Nutzung in einem Fast Track Trigger untersucht. Um die
Leistungsfähigkeit der Hardware zu analysieren, wurde eine Testumgebung mit
einem NL9000 Chip genutzt. Die Kompatibilität mit dem aufgerüsteten ATLAS
Experiment wurde anhand von Messungen der Latenz und der Ergebnisrate des
Chips festgestellt. Im Rahmen dieser Arbeit wird gezeigt, dass es möglich ist, ein
Fast Track Trigger mit Hilfe von NL9000 Chips zu realisieren.
Die Funktionsweise des NL9000 Chips wird durch ein Verilog-Simulationsmodell
beschrieben. Die Zuverlässigkeit dieses Modells wurde durch Tests veri�ziert.

Contents

1 Introduction 7

2 Collider Experiments in CERN 9

2.1 Large Hadron Collider . 9
2.2 The ATLAS detector . 11
2.3 LHC upgrade . 17
2.4 ATLAS upgrade . 18

3 ATLAS Trigger System and Data Reduction 21

3.1 Current trigger system . 21
3.1.1 The L1 trigger . 21
3.1.2 The L2 Trigger . 23
3.1.3 The Event Filter . 23

3.2 Plans for trigger systems for HL - LHC 24
3.3 Implementation of L1 Track Trigger with CAM chips 24

4 Knowledge-based Processors of Netlogic 29

4.1 Introduction to Content Addressable Memory 29
4.2 Netlogic Chip Families . 30
4.3 NL9000 . 31

4.3.1 Basic Structure . 31
4.3.2 Setup and Functions . 35
4.3.3 Performance and Uncertainties 40

5 Simulation of the NL9000 Processor 41

5.1 Simulation Tools . 41
5.2 Encrypted Verilog Model . 41
5.3 Setup and Test Runs . 41
5.4 Results . 44

6 Desription of Test Hardware Components 49

6.1 Field Programmable Gate Array . 49
6.2 Development Platform HTG-100GIG 51

6.2.1 Components and Architecture 51

7 Software for the Controller and the Interface 53

7.1 Software Tools . 53

5

7.2 Software Modules for the Development Platform 53
7.2.1 Initial Startup of the Xilinx Virtex 5 and the NL9000 55
7.2.2 Final Program for the Xilinx Virtex-5 57

7.3 ISim Simulation . 65
7.4 Functions of the Labview Program 65

8 Test Runs and Results 69

8.1 Test Con�guration Files . 69
8.2 Measurement of the Power Consumption 69
8.3 Latency measurement . 70
8.4 Results . 71

9 Conclusion 77

I Appendix 81

A Lists 83

A.1 List of Figures . 83
A.2 List of Tables . 84

B Bibliography 87

C Programs 89

C.1 VHDL program codes for the FPGA 89
C.2 VHDL program codes for the ModelSim simulation 93
C.3 LabView program codes . 95

6

1 Introduction

One of the main goals of modern physics is to obtain a deeper understanding of the
structure of matter. The currently most successful model to describe elementary
particles and their interactions is the Standard Model. It includes spin 1/2 particles
called Fermions consisting of 6 Leptons and 6 Quarks divided in 3 families. For each
particle exists an corresponding anti particle. Fermions carry fractional electric
charges, which are multiples of 1/3. The Quarks have an additional property called
color. Color is, in comparison to electromagnetism, the charge of the strong force
but with three aspects instead of one. The Weak Interaction couples to left-handed
particles or right-handed anti particles. Furthermore, there are 12 gauge bosons
with spin 1 including the photon, for the electromagnetic exchange, the W± and
Z0 for the weak decay and the 8 gluons for the strong force. A scalar boson called
Higgs particle is also predicted by the Standard Model but not yet experimentally
con�rmed.

The Higgs particle is necessary within the Standard Model to explain why parti-
cles are massive. Searches for the Higgs particle have been performed at LEP and
Tevatron and were recently started at LHC. Since the cross section for the produc-
tion of events with the Higgs particle is supposed to be very low and the background
is higher by several orders of magnitude, there are a large amount of events required
to detect a signi�cant signature for a discovery.

One of the most promising approaches to detect new fundamental particles is the
LHC accelerator at CERN. It allows to search for new physics in a wide range of
energy with high statistics by colliding protons. In addition to the search for the
Higgs boson, the LHC is able to discover other particles proposed in a variety of
models.

Although the standard model predicts the current research results very well, the
possible existence of a fourth generation cannot explicitly be excluded. There are
models which predict at least another family of fermions beyond the standard model.
The most promising way of detecting a new generation is analysing the cross section
of decay topologies, which are sensitive to new heavy particles. In order to examine
possible new physics phenomena with high sensitivity, proton-proton collisions are
studied at high centre of mass energies (nominal 14 TeV) and high luminosities
L = 1034cm−2s−1 at the experiments ATLAS and CMS.

The LHC was also built to address fundamental questions of todays physics. One
of these questions is concerning the mass distribution of the universe. Known matter
contributes to only about 4 % of the observed objects in the universe. The rest is
referred to as dark matter and dark energy, whose existence were discovered by
cosmological and astrophysical observations. Measuring potential candidates for

7

dark matter, e.g. the lightest supersymmetric particles, would �ll a huge gap in
cosmological models. Supersymmetry could also be extended to a Grand Uni�cation
theory, which uni�es leptons and quarks and the electroweak and strong interaction.
The asymmetry of matter and anti matter in our universe is also not understood and
is therefore investigated by the LHCb experiment, where CP violation in B-decays is
studied. By studying collisions at very high energy densities, it is possible to simulate
conditions similar to short time after the 'big bang', also providing information about
the theoretically predicted quark-gluon-plasma. For this purpose, the LHC is also
used to produce lead ion collisions, which are analysed by the dedicated ALICE
detector.
To use the potential of the LHC more e�ciently, an upgrade is planned in the year

2020. By this, the luminosity of the LHC will be increased by an order of magnitude
providing higher statistics for detection of new physics. This will also challenge the
detectors, since more events need to be traced in the same time interval. In the
ATLAS experiment the inner detector will be replaced by a new one with more
readout channels and higher granularity. To process data with higher rates, it will
be also necessary to improve the trigger system of ATLAS. One option is to include
a Fast Track Trigger at the �rst trigger level to keep the rates at L2 low enough.
The aim of this diploma thesis is to investigate a Knowledge-based Processor

(KBP) of Netlogic [1] in regard to the possible usage in a Fast Track Trigger. In the
course of the thesis two tools were available: The encrypted Verilog simulation model
of the used KBP and the Development Platform HTG-100GIG. The main task was
to design a controller for the KBP to test the chip in a hardware application. Since
there was also a simulation model available the tests were applied using both tools
and the results were compared.
In the next chapter the LHC and the ATLAS detector will be described. The

trigger system and the L1 track trigger, which is the main focus of this thesis, are
discussed in chapter 3. The technology used in the KBPs and the chip family itself
will be topic of chapter 4. Then, the simulation (chapter 5) and the hardware setup
(chapter 6) will be described followed by an overview of the developed controller
(chapter 7). In chapter 8 the results of the hardware application will be presented
and compared to the simulation.

8

2 Collider Experiments in CERN

In this chapter the Large Hadron Collider (LHC) and its accelerator chain will be
described. The ATLAS detector will be discussed in more detail and the future
plans to upgrade the LHC and the ATLAS detector will be introduced.

2.1 Large Hadron Collider

The Large Hadron Colllider is a particle accelerator and collider operating with two
beams with counter wise rotating proton or lead bunches based on the synchrotron
principle [2]. It is located at CERN (Conseil Européen pour la Recherche Nucléaire)
close to Geneva in Switzerland. CERN is the world's largest research center with
20 Member States and about 3400 employees plus 8000 visiting scientist. Its main
purpose is to gain information about the fundamental constituents of matter.
The LHC, which replaced the Large Electron-Positron Collider (LEP) in the

26.7 km long tunnel system at CERN, collides protons or lead ions at four colli-
sion points. At each of these four points a detector is located to reconstruct the
tracks and energy deposition of particles generated by the collisions. The design
centre of mass energy when protons are used is 14 TeV. This would not be possible
with electrons because of radiation losses. Although protons accelerated in LHC are
at 99, 9999991 % of the speed of light, the radiation losses are not the most dominant
limitation of the maximum energy. Instead of that, the design energy of protons is
limited by the strength of the dipole magnets (8.33 T) to bend the protons. There
are 1232 of these magnets arranged at the storage ring in addition to 392 quadrupole
magnets, which are necessary to focus the particle beams. Both sorts of magnets
are superconducting devices cooled to 1.9 K.
For accelerating particles to 7 TeV, there are multiple pre-accelerators necessary,

as displayed in Figure 2.1. The �rst step is the linear accelerator Linac2 to get the
protons to an energy of 50 MeV. Afterwards, they are injected into the Proton-
Booster Synchrotron (PSB) to increase the energy to 1.4 GeV, followed by the Pro-
ton Synchrotron (PS) with an output energy of 26 GeV. Then, the protons are
injected into the Super Proton Synchrotron (SPS) to get them �nally to the injec-
tion energy of 450 GeV needed to bring them to their maximum energy in the LHC
storage ring within 20 minutes.
In order to achieve a luminosity of 1034 cm−2s−1 the particles have to be focused

in bundles of up to 115 billion protons each. LHC can be �lled with a maximum
of 2800 of these packages at the same time, giving the accelerator a total collision
frequency of 40 MHz. The bundles themselves are compacted to a diameter of 16 µm
and a length of 8 cm, to get a precise collision point inside the detectors and stable

9

Figure 2.1: The LHC Accelerator and Detector Complex and its preaccelerators to
illustrate the acceleration steps of proton or lead ion bunches. The proton
and lead ion bunches start with di�erent linear accelerators and di�erent
�rst synchrotron accelerators. Both of them are injected into the PS
afterwards, following the accelerator chain to the SPS and �nally to the
LHC.(Image from [3])

10

beams for several hours.

To detect and measure the produced particles of the collisions there are 4 detectors
with di�erent functionality at the LHC. LHCb is an asymmetric detector built in
only one direction close to the beam pipe with the primary usage for B-physics.
These measurements can help to explain fundamental questions like the Matter
- Antimatter asymmetry in the universe. ALICE is especially designed to study
the lead ion collisions and has therefore a special con�guration. ATLAS and CMS
are 4π multi purpose detectors built to handle high luminosities. These types of
detectors are used to maximize the sensitivity to �nd any signs of new physics in
the experiment. One of the advantages of building two similar detectors is that
discoveries in one of the two can easily be checked in the second. In the following
chapter the ATLAS experiment will be described in detail.

2.2 The ATLAS detector

The ATLAS detector, which is an acronym for 'A Toroidal LHC ApparatuS', is
located at one of the four collision points of the LHC [4]. It is a cylindric detector
with a length of 44 m and a diameter of 25 m as shown in Figure 2.2. The detector
can be cut down to 4 important devices: the inner detector, the calorimeters, the
muon chambers and the magnetic system.

Figure 2.2: Overview of the ATLAS experiment and its detector components. In
the center is the inner detector surrounded by the electromagnetic and
hadronic calorimeters. The outer parts is occupied by the magnet systems
and muon chambers.(Image from [5])

11

The Inner Detector

Figure 2.3: The pro�le of the inner detector. In the center is the the inner detector
barrel with pixels, SCT and TRT layers arranged in cylinders around
the beam axis. At the end-caps the pixel and SCT detectors are aligned
radially on discs surrounded by also radially straightened TRT detec-
tors.(Image from [5])

The inner detector (shown in �gure 2.3) is used to reconstruct tracks, primary
and secondary vertices, momentum and charges and is therefore in a 2 T B-�eld. It
consists of three devices located in the barrel (see �gure 2.4) and the end-caps: the
semiconductor pixel detector, the semiconductor microstrip (SCT) detector and the
Transition Radiation Tracker (TRT). As shown in �gure 2.5 the innermost part is
the pixel detector and covers |η| < 2.51. It has the smallest granularity to produce
an excellent resolution of the primary vertex of the particles created by the collisions.
Because there are about 1000 particles to be expected with a frequency of 40 MHz,
the pixel detector is designed as three cylinders around the beam axis and in 2 x
3 discs in the end-cap in very small-sized dimensions of 50 µm x 400 µm in (R -
φ) x z direction. Overall, this results in 80.4 million readout channels for the pixel
detectors.
The SCT consists of 4 pairs of detector layers in the barrel region of |η| < 2.5

gaining 8 hits per particle crossing it. The orientation of the strips are tilted by
40 mrad, one of them being in parallel with the beam axis. Furthermore, they are
used in 2 x 9 discs radially aligned to the beam in the end-caps. The dimension of
each strip is 80 µm in R - φ and 6.4 cm in z direction producing a total of 6.3 million
readout channels.

1In the coordinate system of the ATLAS detector the collision point it de�ned as origin. The
pseudorapidity η is de�ned as η = −ln tan(θ/2) with θ being the polar angle from the beam
axis. The azimuthal angle φ is de�ned as the angle around the beam axis

12

Figure 2.4: Illustration of the interior composition of the inner detector barrel in-
cluding the radii of the Pixel, silicon microstrip (SCT) and Transition
Radiation Tracker (TRT) layers. (Image from [5])

The outermost part of the inner detector is the TRT consisting of 4 mm diameter
straw tubes. In the barrel region they are 144 mm long, cover |η| < 2.0 and due to
being in parallel to the beam axis, they do not produce z information. There are
also straw tubes in the end-caps, arranged radially in wheels with a length of 37 cm.
Altogether, the TRT has about 351 thousand readout channels resulting in about
36 hits per track leading to a good R - φ resolution after reconstruction.

Calorimeters

The calorimeters, displayed in �gure 2.6, cover overall |η| < 4.9 with di�erent tech-
niques. Since it is very important to absorb most of the particles before reaching
the muon system and gaining information about their deposited energy, the elec-
tromagnetic calorimeters thickness is more than 22 radiation lengths. The hadronic
calorimeter is about 10 interaction length. There are di�erent calorimeters devices
next to the inner detector barrel and in the end-caps of the detector. While the
calorimeters next to the barrel give a good resolution to measure electrons and
photons, the other calorimeters provide coarser information. The electromagnetic
calorimeter at the barrel consists of two parts separated at z = 0 with a small gap.
It covers |η| < 1.475 while the two end-cap parts cover 1.375 < |η| < 3.2. The
electromagnetic calorimeters are lead-LAr detectors with accordion-shaped kapton
electrodes and lead absorber plates.

13

Figure 2.5: Schematic picture of the setup of the inner detector of ATLAS. All barrel
and end-caps devices are outlined with radial and longitudinal position.
(Image by [4])

Figure 2.6: Pro�le of the ATLAS calorimeter system consisting of electromagnetic
and hadronic barrel and extended barrel calorimeters. Furthermore it
shows the electromagnetic (EMEC) and hadronic (HEC) end-cap and
forward (FCAL) calorimeter. (Image from [5])

14

The hadronic calorimeter is divided into four parts. The Tile barrel covering
|η| < 1.0, the Tile extended barrel 0.8 < |η| < 1.7 and the end-caps and forward
calorimeter with a maximum range up to |η| = 3.2. The Tile barrels are sampling
calorimeters with layers of lead absorbers and scintillating active materials. In the
end caps the absorber material are copper plates and LAr technology is used as active
material. The forward calorimeter has three parts, with the �rst one consisting of
copper absorber material for electromagnetic measurements and the other two of
tungsten for mostly hadronic interactions. LAr is used in all three parts as active
material in the FCal.

Muon Chambers

Figure 2.7: Pro�le of the ATLAS detector focusing the muon system and magnets.
In the barrel region RPCs are used for triggering, while in the end-caps
TGCs are integrated for this purpose. In both regions regions MDTs
provide information about particles momentum using �elds of the the
barrel or end-cap toroidal magnets. (Image from [5])

Since muons are not absorbed by the previous detector layers, they can be mea-
sured with high precision in the outer parts of the detector (see �gure 2.7). Therefore,
there are large magnetic �elds provided by the magnet system to bend the particles.
Over a range of |η| < 1.4 it is set up by the barrel toroidal magnet, while in the
region 1.6 < |η| < 2.7 smaller end-cap magnets are used. In the transition region the
�eld is considered to be a combination of barrel and end-cap �elds. The de�ected
muons are detected in muon chambers arranged in cylindric layers around the beam

15

axis in the barrel region and in discs at the end-cap. Both systems consist of three
layers. The muon system in its huge dimension is mainly responsible for the size of
the ATLAS detector.

To achieve good resolutions for the precision momentum measurements there are
detectors with wire drift tube technology (Monitored Drift Tube and Cathode-Strip
Chambers) used in the muon system. While these two detector types provide ex-
cellent position and time information, they are not very fast. Despite of precision
measurements the Muon Chambers are also used for triggering. For this purpose
there are also Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC)
installed, which deliver their signals with a timing precision of 25 ns.

Magnet System

Figure 2.8: The ATLAS toroidal magnet system in its construction phase. (Image
from [5])

The ATLAS detector consists of four superconducting magnets, three toroidal and
one solenoidal systems. The solenoidal magnets are designed to provide a homoge-
neous magnet �eld of 2 T for the inner detector, while the barrel toroidal (�gure
2.8) and the two end-cap toroidal magnets produce a �eld of 1 T and 0.5 T for the
muon system. The magnetic �elds are aligned to de�ect the particles in the inner
detector in φ and at the muon system in η direction. The �eld of the overlap region
between the 3 toroidal magnets is very complicated but hall probes distributed all
over the detector measure the �eld components to get precise information about the
magnetic �elds.

16

2.3 LHC upgrade

Figure 2.9: Number of events for Z' for LHC and HL-LHC with Standard Model
couplings (Image from [4])

The LHC is considered to �nd answers to several open questions in di�erent �elds
of physics or to provide some hints for further investigations. In order to exploit
fully the potential of the LHC and to increase the mass reach and precision to detect
new physics processes, several upgrades of the LHC are planned. It is planned to
integrate a new linear accelerator at the beginning of the accelerator chain in about
2014. In about 2020, there will be a bigger shut down to upgrade the LHC.
Basically, there are two possibilities for an LHC upgrade: Either increasing the

maximum energy or the luminosity. Doubling the design energy would give the
chance to investigate new energy regions and �nd new physics which could not
be detected at lower energy. But the cost of a project like this would be in the
region of the LHC itself [6]. Since low statistics and huge background e�ects are an
other limitation for detection of new physics it is possible to improve the particle
accelerator by increasing the luminosity, which would be much more cost e�cient.
Figure 2.9, for example, demonstrates the expected event rate of a hypothetical Z'
boson with Standard Model couplings for nominal LHC luminosity and for high
luminosity LHC (HL-LHC) with integrated luminosities of 300 fb−1 and 3000 fb−1.
Assuming that at least 10 events are needed to discover the signal in the data, the
discovery limit would be raised from about 5.3 TeV to 6.5 TeV.
To achieve the planned luminosity of 5 · 1034 cm−2s−1, the injector chain and the

interaction regions have to be improved. After the Linac2 will be already replaced

17

by Linac4 earlier, it is necessary to increase the performance of PSB and PS. The
upgrades of PSB and PS are still in the planning phase but increasing their injection
energy is under discussion. An enhancement of the injection energy from 23 GeV
to 50 GeV allows higher bunch intensities up to 3.6 · 1011 protons per bunch when
keeping the interaction rate of 40 MHz. A higher injection energy also leads to less
injection losses, shorter injection and acceleration times and reduced �lling times
[6].
Furthermore, it is important to change the setup at the interaction points when

changing the bunch intensities or shapes. This will basically result in replacing the
quadrupole magnets by stronger devices at the interaction regions to retain stable
beams after the upgrade.
Another point is the re�ll time, which needs to be improved. With ATLAS and

CMS active, there will be about 1014 protons lost due to collisions per hour, draining
the beam consisting of 5 · 1014 protons very fast. The aim is therefore to reduce the
turnaround time from 10 to 5 hours to reduce the dead times.
Another improvement is 'luminosity leveling'. In this approach the beam param-

eters are dynamically adjusted in order to run at a constant luminosity during a �ll.
This would decrease the peak power deposition in the interaction region and reduce
the peak pile-up in the detectors [7].

2.4 ATLAS upgrade

The detector system was built to survive the high radiation environment at the
LHC. Nevertheless some parts of the ATLAS detector will be damaged due to the
radiation, so it will be necessary to maintain and exchange some parts due to defects
in regular time intervals.
A major ATLAS upgrade will take place when the LHC is upgraded to HL-

LHC as discussed before. Some parts of the ATLAS detector are not designed to
operate at higher luminosities and will be replaced by components which are more
adequate for the new setup. To demonstrate the di�erence of requirements of the
detector due to higher luminosity, Figure 2.10 shows how the same event is seen
when additional proton proton collisions take place at the same bunch crossing,
describing luminosities of 1033 cm−2s−1 and 1035 cm−2s−1.
One consequence of the higher amount of tracks in the detector is a rise in occu-

pancy. This can cause problems by resulting in false track reconstruction especially
at lower radii. An obvious step is to replace the inner detector [9]. Giving the
new design a higher granularity would solve most of the problems, but causes other
problems by adding more material, extra heat dissipation and more readout channels
leading to higher computation times in the detector. Especially the extra material
should be added very carefully since it could cause more secondary interactions,
which would complicate the reconstruction of the event. Another problem occurs
at the jet reconstruction due to higher pile-up. In the cone of a detected jet most
probably some other particles will be found coming from di�erent events. These

18

Figure 2.10: Illustration of the ATLAS detector occupancy while running at di�erent
luminosities resulting in 5 pile-up events (left) and 400 pile-up events
(right). (Image from [8])

e�ects could be subtracted, but it would downgrade the energy resolution of the
single jet event and cause generally extra noise. Because of these issues it is very
important to keep the detector performance at the same level even if going to higher
luminosities.
To achieve this aim, there are several upgrade geometries for the inner detector of

ATLAS investigated [10]. One of the currently used designs for simulation is shown
in Figure 2.11. Additional to the end-caps, there are 4 layers of pixel detectors at the
barrel planned at a distance of 3.7 cm, 7.5 cm, 15.6 cm and 19.5 cm from the beam
line with a pixel size of 50 µm x 150 µm. The semiconductor strip detectors will be
replaced by double layer short strip and long strip detectors. The three short strip
double layers are at 38 cm, 50 cm and 62 cm distance from the beam pipe with a
size of 75.6 µm x 2.438 cm. The two long strip double layers can be found at 74 cm
and 100 cm distance from the beam pipe with a size of 75.6 µm x 9.754 cm. There
is no additional Transition Radiation Tracker intended like in the current ATLAS
inner detector.
The calorimeters and muon chambers will basically stay the same and just get

maintained while the LHC is shut down. At the moment, there are no changes
planned for the magnetic �elds. In contrast, the development of the trigger system,
as described in the following chapter, will be a big challenge in the ATLAS upgrade.

19

Figure 2.11: Pro�le of the inner detector of ATLAS with upgraded geometry after
the LHC high luminosity upgrade.(Image from [10])

20

3 ATLAS Trigger System and Data

Reduction

In this chapter, the current trigger system consisting of L1, L2 and event �lter is
described. The plans for upgrading the trigger system for HL-LHC are discussed
followed by a description of the L1 Track Trigger realized with Content Addressable
Memory chips. The chips themselves will be discussed in detail in the next chapter.

3.1 Current trigger system

The LHC has a design collision frequency of 40 MHz, meaning that there are 25 ns
between two collisions of proton bunches. Since there are multiple proton-proton
collision per bunch crossing the interaction rate is approximately 1 GHz [4]. Because
of the large number of read-out channels, it is not possible to record data with a
frequency higher than 200 Hz resulting in a required rejection factor of 5 · 106. This
reduction is performed by the trigger with the aim of selecting a high fraction of
events relevant for further analysis. The other events are dismissed and cannot be
restored. The event data are stored in a bu�er while the decision is made. This
decision has to be made fast due to physically limited storage capacity and the high
experiment frequency. To meet these constraints a special trigger system has been
designed for the ATLAS experiment.
The ATLAS trigger system is operating in a hierarchical method. The data

recorded by the detector systems are required to pass the L1 trigger, the L2 trigger
and the event �lter before being stored at the CERN computer centre. Multiple
trigger chains exist searching the data for di�erent signatures. These chains are
treated individually by the three trigger systems. An overview of the trigger process
is given by Figure 3.1.

3.1.1 The L1 trigger

The �rst step is the L1 trigger, which is illustrated in Figure 3.2. The aim of the
L1 trigger is to reduce the event rate from 40 MHz to 75 kHz [4]. For this purpose,
coarsened information from the muon system and the calorimeters is used. Since it
is impossible to make a decision within 25 ns, the data is stored in a bu�er. This
bu�er is physically limited and cannot store the data longer than 2.5 µs. About 1 µs
is allocated by signal transition through cables in the detector complex. Another
0.5 µs is reserved for contingency, leaving 1 µs for decision making by the L1 trigger
hardware. Considering that there are signals with a width of several bunch-crossings

21

Figure 3.1: Diagram to give an overview of the ATLAS trigger and data acquisition
system. The L1 trigger is using the information from muon and calorime-
ter system to reduce the event rate to 75 kHz. The L2 trigger reduces
the event rate further down to about 1 kHz, leaving the event �lter to
scale the event rate down to about 100 Hz for data storage.(Image from
[11])

coming from the calorimeter and other signals from the muon detector being delayed
due to the huge dimension of ATLAS, the timing is very tight. To reach the de-
cision in the given time constraint nonetheless, it is necessary to use custom-made
electronics for this purpose.

The fast devices of the Resistive Plate Chambers (RPC) and Thin-Gap Chambers
(TGC) are used to select events based on signals coming from the muon chambers.
The L1 trigger is able to extract events with hit patterns of tracks, pointing to the
interaction region, in the muon chambers with six di�erent energy thresholds. Fur-
thermore, data from the calorimeters are used to include information about energy
deposition in the trigger decision. In this case the L1 trigger is detecting events
with total high transverse energy ET , high ET from electrons or photons, high miss-
ing transverse energy Emiss

T , jets and τ lepton decays into hadrons. Also for the
calorimeters di�erent trigger thresholds are available. The �nal decision is made by
the central trigger processor (CTP). All trigger information from the detector is sent
to the CTP, which can in addition to using the decision from the sub-systems also
trigger on combined signals for example by combining several muon and calorimeter
signals.

If an event passes the L1 trigger, the data acquisition system (DAQ) will send
the data stored in the bu�er to the L2 trigger together with the coordinates of the
detector region, where the signature is found. This extra information is used in the

22

Figure 3.2: Block diagram of the ATLAS L1 trigger to demonstrate its operation
method. The Muon detectors and calorimeters are used as input for the
decision making, investigating the data for high pT muons, high ET , high
Emiss

T , jets and τ decays. If the event passes the �lter, the data will be
forwarded to the DAQ, the L2 trigger and the detector front-ends.

L2 trigger to de�ne Regions-of-Interest (ROI) and compute the next �lter step there
with full detector granularity.

3.1.2 The L2 Trigger

The L2 trigger operates on a part of the detector, the Region-of-Interest (ROI),
de�ned by the L1 trigger [4]. The information, where the L1 trigger requirements
have been ful�lled are sent to the ROI builder. This step is also implemented by
special designed hardware to minimize the time needed by the building step. The
L2 trigger itself uses commercial processing technology. The idea is to search in
the ROIs for physical signatures, such as prede�ned shower-shapes, match tracks to
calorimeter clusters or use higher thresholds and better granularity. The detector
information, on which the decision is computed, can be improved step-wise to reduce
the event rate to less than 3.5 kHz. The events passing the L2 trigger are sent to
the event builder and event �lter for the �nal trigger step.

3.1.3 The Event Filter

If an event passes the L2 �lter, the event builder will start to collect the data
assigned to the investigated event from the detector components [4]. The event
builder is designed to work on multiple events in parallel to avoid timing con�icts.

23

The event data is sent to the event �lter to scale down the event rate another order
of magnitude, to less than 200 Hz. The event �lter is running on a processing farm
and operates similar to the L2 trigger but using more detailed detector information
and more sophisticated algorithms, closer to the software used for o�ine analysis.
The events passing this last �lter step are forwarded to the CERN computer centre
to store the data for further o�ine analysis.

3.2 Plans for trigger systems for HL - LHC

When the luminosity is increased by an order of magnitude due to the upgrade of
LHC to HL-LHC, the trigger system has to be reconsidered because of the extra
data rate. Since the inner detector will probably have to improve resolution to keep
the occupancy below 2 %, there will be more readout channels per event and more
events per time. One possibility to handle the extra pressure on the trigger system
is to improve the L1 trigger to keep the rates at L2 low enough. There are two
schemes to integrate an inner detector tracking device in the L1 trigger system [12].
One possibility is to use track trigger information only within the ROIs based on
the L1 Calorimeter and Muon decision. This would result in longer delays, which
would be necessary to be compensated with larger bu�ers. The second possibility is
a Standalone Fast Track Trigger, which would use the information of the whole inner
detector and could be combined with the muon and calorimeter system afterwards.
For example, two approaches for Standalone Track Triggers are currently investi-

gated in Heidelberg. One approach is the 'on-detector �ltering', which examines the
reduction rates achieved by applying a cut on o�sets or cluster sizes of tracks within
the SCT [13, 14]. Another approach will be discussed in this work using Content
Addressable Memory (CAM) chips to compare hit patterns of tracks in the inner
detector to prestored reference patterns.

3.3 Implementation of L1 Track Trigger with CAM

chips

As discussed in Section 3.1 the time constraints are very tight for the L1 trigger.
There is only 1 µs available for decision making. When designing a matching scheme
the easiest approach would be to build all possible combinations of detector signals
and store a single bit to validate or decline the signature. The '1's and '0's returned
by the silicon detectors could be used as address in a big RAM containing the
validation bits. The problem of this approach is that the address size is scaling with
2n, where n is the number of bits involved [12]. In this method every physically
meaningless combination of bits is considered, which makes the total amount of
patterns too high to be implemented in RAM memories.
To meet the timing constraints and to reduce the amount of data, ternary Content

Addressable Memory (CAM) chips can be used. This hardware is designed for fast

24

Table 3.1: Number of templates and fake rates for pmin
T = 10 GeV and a pile-up of

100, 200 and 400. Standard detector setup is 4 pixel layers at radii of 5,
11, 16, 21 cm and 5 short strip layers at radii of 38, 50, 62, 74, 100 cm if
not otherwise stated in the entries. (Table from [12])

look-ups providing besides '0's and '1's also a don't care bit 'X'. This extra bit can
be used to reduce the number of patterns by 2m, where m is the number of don't
care bits in the pattern. Additional to that the number of patterns can be reduced
further by coarsening the detector granularity. In the SCT for example up to 32
strips in φ could be interconnected reducing the total pattern number by a factor of
about 1

322
= 1

1024
[12].

Another problem of the pattern matching approach is the risk to reconstruct
tracks incorrectly due to several low energy particles producing a hit pattern, which
could be interpreted as a pattern of a high energy particle. This is referred to as
fake tracks. To cope with this background the total number of templates and fake
tracks for di�erent detector geometries have been investigated as a function of pile-
up summarised in Table 3.1. Best results are achieved by 5 short layers with the
last layers distance reduced to 86 cm and 3 short strip double layers with spacing
reduced to 6 cm instead of 12 cm since the total number of templates are not above
100 billion and fake tracks below 10.

In one design option a commercial CAM chip from Netlogic (see Chapter 4.2)
can be used to store more than 50000 templates with 640 bit each [15]. Assuming
the detector granularity has been reduced by combining adjacent strips to lower the
number of templates by a factor of 1000, there will be 100 million templates to be
stored in the chips if the design of 3 short doublets with 5/6 coincidence is used.
The tracking system can be divided into 2000 geometrical regions with a CAM chip
in each sector to provide the L1 track trigger information [16]. Since the output
of the CAM chip is the highest matching address more than one trigger threshold
could be realized.

To achieve lowest fake rates possible in this scheme full detector granularity is
necessary. Therefore, a re�nement step consisting of two big RAMs and multiple

25

Figure 3.3: Hardware implementation of a fast track trigger with coarsened detector
granularity followed by a re�nement step using bu�ers and RAM memo-
ries. (Image from [12])

bu�ers could be realised after the �rst matching step like demonstrated in Figure
3.3. After the hit pattern is coarsened in a �rst step and matched to an entry with
address N in a CAM chip, the address output can be used to get the encoded coarse
hit position stored in a Tag RAM. With this information the precise hit pattern
in the interesting regions could be read-out from the bu�ers to perform the �nal
look-up with full detector granularity. For this purpose the base matching address
coming from the CAM can be combined with the precise hit patterns to an address
to get access to the �nal valid bit written in a Validator RAM. This process could
be repeated multiple times to reduce the address space with the cost of additional
decison time delays. Since CAM chips are specialised in these applications the �rst
step could be realized within 200 ns leaving some tolerance for further operations
before the �nal decision has to be made.

Another option for a Fast Track Trigger with KBPs is to use the full granularity of
the detector in �rst processing level (lookup). A detector design with 3 double layers
can be used, where front-end �ltering on the double layers reduces the number of hits
in the proposed design by a factor of about 50 [13]. By this, the fake rate is lowered
to a controllable level. 3 · 109 templates are necessary to cover the 3/3 coincidence.
Therefore, the detector should be divided into at least 10000 geometrical regions

26

with 3 · 105 templates each. The number of KBPs needed to store the templates is
dependent on the width of the database entries in the chip. Con�guring the KBP
to 80 bit entries would allow to store about 5 · 105 entries in one chip. Thus, a Fast
Track Trigger could be realised with 10000 KBPs to provide the trigger decision
in full granularity. A more detailed description of CAM chips can be found in the
following chapter.

27

4 Knowledge-based Processors of

Netlogic

In this chapter the Content Addressable Memory (CAM) chips will be introduced.
Netlogic is producing memories of this technology naming them Knowledge-based
Processors (KBP) [1]. An overview of available chips is given afterwards. For this
work a NL9000 chip is used, which will be presented in more detail in the following
sections, in particular with regard to the basic structure, the functionality and the
performance.

4.1 Introduction to Content Addressable Memory

Content Addressable Memory (CAM) is a memory chip designed to perform look-
up operations at the fastest possible way. Figure 4.1 shows the basic functionality
of these chips. A search key is applied at the input. The search data register is
connected via search lines to a database, where it is compared to each entry in
parallel. The output of the CAM is the encoded highest matching address. A
ternary CAM has also a don't care bit 'X' in addition to the bits '0' and '1'. This
third bit is helpfull to reduce the necessary amount of entries since it allows to mask
bits in the stored words. This means both '0' and '1' will cause a match if the
searched bit is assigned to 'X'.
In order to compare the database in parallel the compare logic needs to be inte-

grated in the basic memory cells consuming about double silicon space and extra
power per cell. Considering modern semiconductor technology is aiming for smallest

Figure 4.1: Basic components of a CAM chip. The database is searched for the key
applied to the input. On the output the highest matching address is
assigned. (Image from [17])

29

Figure 4.2: Routing system using a CAM and a RAM chip. The address is applied
to the searchlines of the CAM and the highest matching result used to
get the output port stored in the RAM memory. (Image from [17])

cell sizes and low power consumption to implement big memories on small scales,
CAMs are only useful for high specialized applications. For example, they are used
in Hough transformation, Hu�man coding/decoding, Lempel�Ziv compression and
image coding [17]. The main commercial usage are fast look-ups in routers. For data
transfer in network processes, the data are parted into packages and transferred in-
dividually. Each package holds the destination address besides a part of the data.
Thus, routers have to decide for each package to which port it need to be forwarded
with lowest possible delays. For this purpose the address is applied to the searchlines
of a CAM as shown in Figure 4.2. The search pattern matches two patterns of the
database in this case, resulting in '01' on the output since it is the highest address.
The match result is sent to a RAM to get the searched port of the router. Similarly
the Fast Track Trigger needs the same hardware feature to perform fastest possible
maths. This makes the CAM technology, which is already optimized for commercial
implementations, an promising candidate for track triggers.

4.2 Netlogic Chip Families

This section is supposed to give a short overview of commercial CAM from Net-
logic. Netlogic is market leader in producing specialized silicon chips for a variety
of network application. For this work especially the newest generations of their
knowledge-based processors (KBP) are interesting since they are basically oper-
ating as the CAM described in the section before. In addition to normal CAM
functionality the KBP chips of Netlogic have some extra features. Table 4.1 and 4.2
are summarising the performance benchmarks of the NL6000, NL7000 and NL9000
chip family. The KBPs of Netlogic can be used in two modes of operation: Standard
Speed and High Speed. A detailed description can be found in Section 4.3.2 for the
NL9000. For each family only one chip with highest memory size is displayed. The
latency of all three families, describing the time delay between search key insertion
and result available at the output, can be below 200 ns depending on the mode of
operation. Another important parameter is the result rate since it has to be above
the 40 MHz collision frequency of the LHC. This constraint can also be kept by all

30

Family Latency Frequency
Standard Speed High Speed Standard Speed High Speed

NL6000 71 ns 54 ns 266 MHz 500 MHz
NL7000 71 ns 54 ns 266 MHz 500 MHz
NL9000 156 ns 259 ns 300 MHz (400/200) MHz1

Table 4.1: Latency and frequency of Netlogic Knowledge-based Processors while op-
erating at Standard Speed or High Speed.

Family Result Rate Memory Size
Standard Speed High Speed

NL6000 33 MHz 62.5 MHz 256k x 72 bit 32k x 576 bit
NL7000 33 MHz 62.5 MHz 512k x 72 bit 64k x 576 bit
NL9000 75 MHz 100 MHz 512k x 80 bit 64k x 640 bit

Table 4.2: Result Rate of Netlogic Knowledge-based Processors while operating at
Standard Speed or High Speed. The memory size is displayed in two
possible con�gurations for the largest chip available in each family.

three families.

In this work the NL9000 chip was investigated because it represents the newest
generation of KBPs of Netlogic and has the biggest memory size. Additional to that
it has more features, being introduced in the following sections.

4.3 NL9000

The NL9000 is a Knowledge-based Processor (KBP) from Netlogic developed for
high speed look-up operations on databases. It is able to perform searches in parallel
and has four result outputs [15]. There are error detection methods implemented on
the database and at the interface. It is commercially used for network applications,
for example routers and switches. The communication has to be performed by an
ASIC or FPGA, which will be discussed in detail in chapter 6.

4.3.1 Basic Structure

The basic structure of the NL9000 will be discussed in the following section. Fig-
ure 4.3 gives a short overview of its construction including the interface, database,
registers, Context Bu�er and the Key Processing Unit (KPU) of the chip.

1The interface operates with a frequency of 400 MHz and the core with a frequency of 200 MHz

31

Context
Buffer

Control
Register

Key
Processing

Unit

Database
Records

Input Output

Figure 4.3: This image illustrates the basic structure of the NL9000. The most impor-
tant components are the interfaces, the Control Registers, the Database,
the Context Bu�er and the Key Processing Unit. A compare operation
always starts by writing into the Context Bu�er. From there the search
keys are committed to the Key Processing Unit and �nally compared to
the database entries.

Interface

For communication with other devices the interface of the NL9000 has 6 input buses
and 4 output buses displayed in Table 4.3. To send data to the chip the signals have
to be synchronous to the Data Clock (DCLK). The Data Valid (DV) pins have to be
pulled high when a new operation is to be started. The type of operation is de�ned
by the Instruction Bus (DIBUS) while the data is applied to the 80 pins of the Data
Bus (DBUS). To optimize the performance during compare operations the search
key bu�er has an address bus, the Data Context Address (DCTX). Error detection
is provided on all input buses by 2 extra parity bits, which have to be applied on
the Data Bus Parity (DPR) each cycle. The results on the output buses are sent
synchronous to the Result Bus Clock (RCLK), which is provided by the chip, and
are �agged by the Result Bus Valid (RV) bits. The result data can be found on
the Result Bus (RBUS), which are like the input buses secured by 2 parity bits on
the Result Bus Parity (RPR). Up to four matching results can be returned by the
RBUS in response to one compare operation. Therefore, the 48 bit of the RBUS are
split up into two sections of 24 bit. Each section can provide a match �ag and the
address of an database entry.

Database

As shown in Figure 4.4 the database is arranged in 80 bit entries. On each address
there are two entries to implement a ternary data structure, one Vality Bit (VBIT)
and two parity bits for each entry. Two possibilities for ternary data structure are
supported by the chip: the X - Y format and the Data - Mask format. In the Data -

32

Name Type Amount
Data Clock (DCLK) Input 6
Data Valid (DV) Input 3
Data Bus (DBUS) Input 80
Instruction Bus (DIBUS) Input 5
Data Context Address (DCTX) Input 5
Data Bus Parity (DPR) Input 2

Result Bus Clock (RCLK) Output 4
Result Bus Valid (RV) Output 2
Result Bus (RBUS) Output 48
Result Bus Parity (RPR) Output 2

Table 4.3: In- and Outputs on the interface of the NL9000.

Figure 4.4: This block diagram is demonstrating the database block organisation of
the NL9000. On each address there are two records to implement the
ternary data structure. The entries are protected with two parity bits
and can be activated by a valid bit (VBIT). Each bit can be individually
masked by the block mask registers.

33

Mask format the data will be written into the bits of the �rst entry and participate
in the compare operations if there is a '0' in the corresponding mask bit. If there is
a '1' assigned in the mask bit the data bit will be ignored in the compare operation.
In the encoded X-Y system the bit combination of '01' corresponds to an unmasked
bit entry of '0' and '10' to an entry of '1'. '00' is corresponding to a don't care bit
causing a match independent on the input bit and '11' is always a mismatch.
The entries are arranged in blocks with a 12 bit address space and �ve block

mask registers to de�ne a mask for all data entries in the block. The blocks are
con�gurable into several organisations by grouping 2, 4 or 8 of the 80 bit entries to
get a block setup of 4k x 80 bit, 2k x 160 bit, 1k x 320 bit or 512 x 640 bit. Four
blocks are put together to a super block. Overall a NL9000 chip with 512k entries
is organised into 60 blocks and 16 super blocks. To write data in all entries of a
512k x 80 bit device with a clock frequency of 300 MHz, it takes about 1.71 ms.

Device Register

Since the NL9000 is designed to be �exibly used in multiple applications some reg-
isters are necessary to store the con�guration setup. The registers consist of 80 bit,
which can be read by the user. For most entries the user has write permissions to
change the con�guration for his application. In this work only a short description of
the most important registers will be given. For example, the Con�guration Register
de�nes if the chip is a single device or part of a cascaded chain. Furthermore error
detection can be enabled for the input and the database. The form of the error
scans and how to proceed with problematic entries can be de�ned for the database.
In addition to that, the power mode can be appointed.
For the error detection additional registers exist for identifying where the errors

occurred and which constraint failed. Other setup registers are designed to con�gure
compare operations and the range matching function, which will be discussed Section
4.3.2.

Context Bu�er

When the con�guration of the NL9000 is completed, compare operations can be
started. Since the width of the Input Data Bus is 80 bits but compare operations on
640 bit entries are foreseen, the search key needs to be stored temporarily. Because of
that, the Context Bu�er, consisting of 512 entries with 160 bits each, is implemented
in the chip. For 640 bit usage search keys can be written into the bu�er in multiple
steps with the last step starting the compare operation.

Key Processing Unit

In the Key Processing Unit the master key in the Context Bu�er can be used to
create up to four search keys. For this reason the corresponding registers have to
be con�gured and selected in the compare operation command. There are 40 bit

34

sections selectable from the master key to be added to each of the four search keys.
The keys can be applied to an unequal selection of super blocks and will be computed
in parallel. To get more than one result each block can be directed to one of the
four output slots returning the highest match address of the compare operation.

Error Flags and Codes

To signal the user that a problem occurred during a valid operation, there are three
�ags available on separate output pins. The Parity Error Output �ag (PEO_L) in-
dicates a parity error on the interface, the General Interrupt Output �ag (GIO_L)
indicates an error detection on the Context Bu�er or database and the Phase Error
Output (PHSEO_L) will be assigned to indicate a phase error. When error �ags
were asserted, the Result Bus will provide an error code to specify the error. Addi-
tional information can be found in the error status register with precise information
about the occurrence.

Power Consumption

Information about the power consumption of the core of the NL9000 cannot be
found in its manual and have to be measured (chapter 8). The power consumption
of the output drivers are dependent on the time the pins are pulled high. Assuming
the output pins are all used without idle cycles and randomly pulled to di�erent
values, the power consumption is about 2 W [15].
In the NL9000 a feature is implemented called Low Power Mode. By using lower

granularity in the Database Mask the active power consumption can be signi�cantly
reduced [15]. The results of the measurement of this feature can be found in chap-
ter 8.

4.3.2 Setup and Functions

Error Protection

As mentioned in the previous section, this chip is able to protect itself from bit
errors. For the input, even parity is used with two bits, one protecting the even bits
and the other one the uneven bits of the input buses. For the even bits, for example,
this is done by sum up all bits and choosing the parity bit to get the sum even. If,
due to disturbances, an uneven amount of bits �ip, this will be detected and marked
by setting an error �ag. In analogy to that, the uneven bits of the input buses and
the bits on the output buses are protected.
A scan algorithm for the database is implemented scanning the database contin-

uously. In addition to the parity bits, which are written into the database in each
write cycle, there is the possibility to activate an error correction algorithm. The
algorithm uses idle cycles of the NL9000 to scan the database for errors, occurred
during operation. Two options for error correction can be applied: 1 bit detect and

35

Categories of errors allocated by the NL9000

Data Valid Extraneous Error
Device Address Mismatch Error
Cascade Result Input Valid Irregular Error
Data Valid Irregular Error
Illegal Instruction Error
Sahasra Engine Features Parity Error
Context Bu�er Parity Error
Cascade Input Parity Error
Data Input Parity Error
Database Soft Error FIFO Full
Database Parity Error

Table 4.4: Categories of errors allocated by the NL9000.

1 bit correct or 2 bit detect and 1 bit correct. To provide the error correction, the
algorithm uses the 8 most signi�cant bits of the database entries, which cannot be
used for data storage anymore if the option is activated. If the scan �nds an error
in the database, the GIO_L �ag will be set, the entry will be corrected or invali-
dated and the information about where the error occurred will be stored in the error
FIFO2. This information can be read back from the FIFO.
In Table 4.4 other error sources the chip is able to recognise, are listed. If one of

them occurs, an error �ag will be set and the more precise information about the
error source will be saved in a register.

Range Matching

The X - Y format of the database (Section 4.3.2) allows a reduction of needed
entries to store similar data by means of don't care bits. A further reduction for
some application can be achieved by the Range Matching function of the NL9000. It
is designed to scale down the storage space of entries describing a range of numbers.
For this function it is necessary to allocate 16 bit per 320 bit sequences. For 640 bit
entries this would result in a loss of 32 bits, which might be useful for encoding IPs
or Ports but less useful in a pattern match application.

Standard Speed and High Speed Mode

Aside from the operation frequency there are two modes of operation selectable:
High Speed Interface Mode and Standard Speed Interface Mode. On the one side
table 4.2. states that both modes of operation are able to handle the collision
frequency of LHC. The result latency, on the other side, is lower when the Standard
Speed is used. This is caused by the fact that the core frequency of the NL9000

2FIFO is the short cut for a memory chip with First In First Out policy.

36

Instruction Description
idle Idle cycle causing no reaction of the

chip
NOP (No Operation) No operation used during initialisation
Register Write and
Database Write

Performs a write operation to register
or database entry

Register Read and
Database Read X

Performs a read operation to register or
database encoded 'X' value

Database Read Y Performs a read operation to database
encoded 'Y' value

Context Bu�er Write Writes data to Context Bu�er
Context Bu�er Write
and Compare 1

Writes data to Context Bu�er and
starts a compare operation of up to 320
bit wide

Context Bu�er Write
and Compare 2

Writes data to Context Bu�er and
starts a compare operation of up to 640
bit wide

Table 4.5: Instruction Set of the NL9000.

is lower when operating in High Speed mode. Since the Standard Speed Mode �ts
best to the requirements of a Fast Track Trigger the further applications will be
discussed mainly for Standard Speed Mode.

Instruction Set

In Table 4.5 the Instruction Set of the NL9000 is listed. There are overall 8 valid
instructions to write and read the database, con�gure the chip and perform com-
pare operations. Since the Context Bu�er Write and the Context Bu�er Write and
Compare2 instruction are the most important instructions for this work, they will
be discussed in more detail.

Figure 4.5 shows the Context Bu�er Write timing diagram. The NL9000 is de-
signed to get input data with a double data rate, meaning that data are taken on
the rising and the falling edge of the Data Clock (DCLK). It is necessary to start
the operation on the rising edge of the DCLK by applying a '1' to the Data Valid
(DV) pins and the corresponding signals on the rest of the input buses. The data
has to be stable when the DCLK toggles from '0' to '1', otherwise an error �ag will
be set. To de�ne the storage space where the search key is to be placed, the address
is applied to the DCTX bus. On the DBUS the bit pattern is committed in two
80-bit-slices. The operation is completed within one clock cycle and since the chip
is pipelined, the input buses can be used for other operations. After having passed
the result latency, the Result Valid pins are pulled high on the rising edge of the
Result Clock (RCLK). On the Result Bus 48 bits of '0' are applied. This instruction

37

Figure 4.5: Timing diagram of the Context Bu�er Write instruction. When the Data
Clock (DCLK) is on the rising edge the bits of the buses need to be stable.
The beginning of the instruction is identi�ed by the Data Valid (DV) bits
and the corresponding instruction code on the Instruction Bus.

is important for the implementation of a Fast Track Trigger because a 640 bit search
key cannot be written into the bu�er within one instruction. The procedure will be
to use the Context Bu�er Write two times to write the �rst 320 bit into the bu�er
and use the Context Bu�er Write and Compare2 instruction afterwards.
The Context Bu�er Write and Compare2 instruction is shown in Figure 4.6. In

contrast to the Context Bu�er Write instruction it needs two clock cycles. On the
�rst cycle the signals are basically analog to Figure 4.3, but in the second cycle
another 160 bit are transmitted to the Context Bu�er. After the result latency has
passed, the RV bits are set to '1' and the results are available on the RBUS.
To con�gure the chip and write the database the Register Write and Database

Write instruction has to be used. For the compare operation, multiple modes of
operation are available, which have to be set up before:

• The database can be organized in 80, 160, 320 and 640 bit sequences. Search
keys need the same width as the data to be applied to the corresponding block.
The organisation of both can be adjusted in their con�guration registers.

• The master search key, which is committed to the Key Processing Unit with the
compare operation, can be used to construct up to 4 search keys to perform
parallel searches. A search key has to be assigned to each activated super
block.

38

• On the output up to four results are returned. The default setup will link all
blocks to result port 0 and, if the search matches to one or more entries, it will
return the highest matching address. Each blocks can be allocated to a result
port individually, providing the option to divide the database into four parts
with a unique output of each part. The mapping of blocks to output ports is
independent of the search key mapping.

• For each block a Block Mask has to be selected, which allows to compare only
to a selected part of the entries or disable problematic regions.

Device Initialisation

Before the normal operations on the NL9000 can be started, the device needs an
initialisation sequence. Two initialisation sequences exist for the chip: the System-
On reset is necessary at the start up and resets everything to default values, while
the Core Logic Reset only resets the control registers. Both resets need a stable
clock and applied reset signals to the pins followed by a sequence of consecutive
operations on the Data Bus. The System-On reset takes about 5 ms, the Core Logic
Reset about 2.5 ms.

Figure 4.6: Timing diagram of the Context Bu�er Write and Compare2 instruction.
When the Data Clock (DCLK) is on the rising edge the bits of the buses
need to be stable. The beginning of the instruction is identi�ed by the
Data Valid (DV) bits and the corresponding instruction code on the In-
struction Bus.

39

4.3.3 Performance and Uncertainties

The frequency, memory size, result rate and latency of the NL9000 is shown in Table
4.1 and Table 4.2. To explain these values in more detail, it is important to know
that the device is operating in a double data rate. This means that valid data can
be applied on the rising and the falling edge of the clock. Together with the DCLK
maximum frequency, 640 bit usage and the width of the DBUS (80 bit) this de�nes
the decision rate of 75 MHz for Standard Speed and 100 MHz for High Speed Mode.
Highest reachable decision rate would be possible by using only 80 or 160 bit search
keys with four parallel compares resulting in 1200 million decisions per second.
The latency is basically given in clock cycles the operation needs to get through

the pipelined electronics. The number of clock cycles is dependent on the memory
size of the NL9000 chip. For a device with 1024k records of 40 bit the latency is
43 ± 4 for Standard Speed and 74 ± 4 for High Speed. In this thesis a chip with
512k records is used with a latency of 31±2 for Standard Speed and 56±2 for High
Speed Mode. Depending on the frequency this translates in a minimum latency of
143 ns ± 13 ns for Standard Speed and 246 ns ± 13 ns for High Speed Mode of the
chip with 1024k entries. The chip with 512k records has a latency of 103 ns± 6.6 ns
for Standard Speed and 186 ns± 6.6 ns for High Speed Mode.

40

5 Simulation of the NL9000 Processor

This chapter describes the simulation of the behaviour of the NL9000. After giving
an overview of the simulation tools and the encrypted Verilog model, the test runs
and results will be discussed.

5.1 Simulation Tools

For simulating the behaviour of integrated circuits ModelSim of Mentor Graphics
can be used [18]. It is able to calculate the behaviour of hardware models based
on VHDL1 or Verilog2 close to reality. Since the coding of hardware programs is
commonly done in VHDL but the model of Netlogic is in Verilog, ModelSim is the
optimal choice because it can connect VHDL and Verlilog codes.
In addition to an editor and compiler for VHDL �les, ModelSim provides a graph-

ical display named Waveform to monitor the output and input signals produced in
the process. The visualisation of test results is helpful for debugging applications
during the development phase.

5.2 Encrypted Verilog Model

The encrypted Verilog model is coded by Netlogic and provided under non-disclosure
agreement. The model is designed to have the same inputs, outputs and con�gura-
tion pins like the chip in hardware. It is supposed to show realistic reactions when
signals are applied to its interface. How close the behaviour of the model gets to
reality will be discussed in Chapter 6.

5.3 Setup and Test Runs

To start a simulation of a component in VHDL, it is necessary to write a testbench
�le. In this �le the input and output slots of the component, which is to be tested,
has to be described. The functionality of the component will be generated by the
separate �le of Netlogic. Furthermore, internal signals can be de�ned to apply data
on the input ports and monitoring the output ports. These signals must be connected
to the corresponding ports of the component in the port map. After the component

1VHDL is a short cut for Very High Speed Integrated Circuit Hardware Description Language.
It is a programming language especially designed for hardware.

2A hardware description language similar to VHDL

41

Parameter Value

Clock Frequency 300 MHz
PLL Range 250 MHz to 400 MHz
Mode Select Standard Speed
Database Error Correction disabled
Parity Checks enabled
Low Power Mode disabled
RBUS con�g dual RBUS enabled 3

Single Device / Cascaded Single Device
Device ID "00"
Data Alignment to Clock Center Aligned
Input Buses Default all '0'

Table 5.1: Default Settings for the NL9000 simulation.

is de�ned, it can be instantiated multiple times and connected individually. For this
thesis, it is su�cient to instantiate it once and connect the signals to the ports to
test a single device.

Default Settings

During this work several functions of the NL9000 were tested and, therefore, multiple
�les with di�erent setups were constructed. Nevertheless some adjustments like the
system clock, the con�guration applied to the pins and the setup of control registers
can be used for all tests. The default settings are listed in Table 5.1.

Instruction Library

When the functionality of the NL9000 is tested in a VHDL simulation, a lot of
instructions have to be applied multiple times. In VHDL a library with functions
can be developed to avoid mistakes by generating repeatedly appearing code parts.
In addition to that, it is also reasonable to implement an algorithm to calculate the
parity bits automatically.
In context of the diploma thesis, a library �le 'function_package.vhd' has been

designed. It provides a function to calculate the parity bits for the input bus plus
procedures for the initialisation and all valid instructions of the NL9000. An extrac-
tion of this code can be found in the appendix (C.3).
The simulation of the NL9000 is performed by a process in VHDL. In this process

any combination of bits can be applied to the ports of the tested component. By
including the library into the VHDL code of the simulation, the initialisation and
the instructions can be executed with one command. Naturally, the simulation pro-
cess starts by initialising the chip with the function call initial. The clock period,

3if disabled, RBUS[47:24], RV_1 and RPR[1] are tri-stated

42

Test Run Description

Database con�guration Simulates setup of the control registers,
the database and the Context Bu�er of
the NL9000

80 bit compare Writes 80 bit database entries and
starts 80 bit Context Bu�er Write and
Compare1 instructions.

640 bit compare Writes 640 bit database entries and
starts 640 bit Context Bu�er Write and
Compare2 instructions.

parallel compare Writes 80 bit database entries and
starts Context Bu�er Write and Com-
pare2 instructions with four parallel
searches of 80 bit each.

Table 5.2: Overview of NL9000 test runs.

DV, DIBUS, DCTX, DBUS, DPR and the reset signals have to be committed as
arguments to the function. After that the simulated NL9000 is ready to get instruc-
tions on its input buses. The instructions can also be applied by a function call.
For example, a Register Write instruction can be generated by the function call of
'reg_write'. The arguments are the clock period, the input buses, the address of
the register and the data. Analog to that the rest of the instruction set can be used.

Overview of Test Runs

In Table 5.2 the four basic tests, which are necessary to get an overview of the
functionality of the NL9000 are listed. The con�guration test is about reading
the default settings of the chip and writing own con�gurations into the registers.
Furthermore, the Database and Context Bu�er are tested. The 80 bit compare
test needs, besides the setup of the previous test, the con�guration of the Key
Processing Unit. Entries written into the database can be searched by the Context
Bu�er Write and Compare1 instruction. The 640 bit compare test is basically analog
to the previous but using 640 bit entries and search keys. The parallel compare test
will use a di�erent con�guration of the Key Processing Unit to search the database
with four 80 bit keys in parallel. These keys will be constructed from a 320 bit
master search key.

The simulation process of the database con�guration test starts with the initial-
isation of the NL9000. After that, the control and identi�cation registers are read.
This gives the user information about the chip and its default setups. The next step
is to write the con�guration of Table 5.1 into the con�guration register. Each write
instruction will be read back to check correct operation. Then, the blocks are con-
�gured to 80 bit usage and enabled. Database Write X - Y and Read Instructions

43

are performed to test operations on the database. Finally, Context Bu�er Write
instructions are performed.
The simulation process of the 80 bit compare test also starts with initialising the

chip and con�guring the default setup of Table 5.1. Here, multiple blocks are used
and are therefore activated and set up for 80 bit usage. Furthermore, the block
mask registers, the block mask select and key construction register are con�gured
for a simple 80 bit compare. In the activated blocks of the database multiple 80
bit patterns are written matching to the search keys applied by the Context Bu�er
Write and Compare1 instruction. Some entries are inserted into the database several
times to provoke multiple matches.
The setup of the 640 bit compare test is done similar to the tests before, but the

database and search key are con�gured to be used with 640 bit width. When 640
bit patterns are supposed to be written into the database, there are 8 write instruc-
tions necessary for each of them. Since the Context Bu�er Write and Compare2
instruction writes 320 bit into the Context Bu�er there are 320 bit left, which have
to be written by two Context Bu�er Write instructions before. This results in three
instructions applied to start one compare operation.
At the parallel compare test, 320 bit search keys are used but the database is

con�gured to 80 bit usage. The parallel search register is set up to split up the 320
bit master search key into 4 equal parts of 80 bit. These four parts are used as search
keys on four parts of the database. Each of these database parts will be mapped to
an individual output port. The parallel compare register and the key construction
register have to be con�gured for this usage in addition to the previously introduced
setups.

5.4 Results

The simulation of the NL9000 will be helpful when the chip is tested in hardware
because the correct operation of signals on the input pins and the con�guration
of the device pins and control registers can be tested before. The con�guration of
the chip can therefore be excluded as error source when debugging code for the
hardware. The library developed for this simulation can be used as blueprint to
integrate the Instruction Set into the code for the hardware. Furthermore, latencies
and result rates can be extracted for di�erent setups. The performance data will be
compared to the performance of the hardware tested in Chapter 6 to judge about
the quality of the encrypted Verilog �le.
From the database con�guration test, the time necessary to initiate the NL9000

can be extracted. Figure 5.1 shows the 'Waveform' of ModelSim when the test is
completed. The green lines are signals of the input and output buses, the blue
ones are the three error �ags. The end of the initialisation process is marked after
5.202 ms.
An extraction of the 80 bit compare test is displayed in Figure 5.2. In the 'Wave-

form' the start of the compare operations and the start of results on the RBUS are

44

Figure 5.1: Waveform of ModelSim showing the initialisation process. The start and
end of the initialisation are marked with the black markers. The time
until the chip �nished the initialisation is 5.202 ms. The green signals
are the inputs and outputs of the NL9000.

marked. The time delay is 96.645 ns, which is within the lower limit of the 512k
NL9000 device. The read instruction on the database and mask registers returns
'X' values before something is written into it. 'X' stands for 'forcing unknown' in
std_logic signals meaning that the database is uninitialised. The response of the
read instruction on the database mask register can be seen in Figure 5.2 in the lower
left. It is not initialised by default and returns 'X', which is marked in red. The
result rate is illustrated in Figure 5.3. The beginning of each response of a compare
operation is tagged by a black marker. The time between two responses is 3.332 ns
corresponding to a frequency of 300 MHz.

Figure 5.4 and Figure 5.5 are showing the result latency and the result rate of
the 640 bit compare test. The result latency is constant as expected while the result
rate is dependent on the number of clock cycles needed to apply the search key to
the NL9000. Since there are four clock cycles necessary instead of one in this case,
the result rate dropped to 75 MHz.

If the silicon technology improves further in the next years, the width of the
input buses can be large enough to compute more than one region of the detector.
Therefore, the parallel compare test demonstrates that it is possible to divide the
search pattern into four patterns of 80 bit. Each of these patterns could represent a
region of the detector on which the track triggering is performed. The result latency
would stay constant in this scenario but the result rate would improve to 600 MHz.

45

Figure 5.2: Timing simulation of the 80 bit compare. The markers are at the begin-
ning of the compare operation and at the beginning of the response. The
response time is 96.645 ns.

Figure 5.3: Timing simulation of the 80 bit compare. The beginning of each response
to a compare operation is marked. The time delay between two results
is 3.332 ns.

46

Figure 5.4: Timing simulation of the 640 bit compare. The markers are at the be-
ginning of the compare operation and at the beginning of the response.
The response time is 96.595 ns.

Figure 5.5: Timing simulation of the 640 bit compare. The beginning of each re-
sponse to a compare operation is marked. The time delay between two
results is 13.328 ns.

47

By this, one chip would compute the track triggering of four regions on the detector
to reduce the amount of chips also by a factor of 4. Theoretically, another factor of
2 could be gained by using only one clock cycle instead of two to apply the search
key into the chip. This would presume the input buses being large enough to apply
data of four detector regions into the chip within one clock cycle.

48

6 Desription of Test Hardware

Components

This chapter details the hardware necessary to implement a L1 track trigger with
a NL9000. Since the chip needs special signals on its input pins, further hardware
devices are needed to communicate with the chip. For this purpose a FPGA1 or an
ASIC2 can be used.

To perform tests with the NL9000 the Development Platform HTG-100GIG [19]
has been used. There is a FPGA of Xilinx on this platform, which needs to be
programmed to perform the tests with the NL9000. The software and tools for that
are topic of the next chapter.

6.1 Field Programmable Gate Array

A Field Programmable Gate Array (FPGA) is a commercially fabricated chip allow-
ing �exible implementation of logic operations. The chip provides I/O blocks with
pins supporting various I/O standards [20]. The core of the chip consists of pro-
grammable logic cells, programmable routing systems and clock resources. Figure
6.1 shows an internal FPGA design used to implement re-programmable hardware.
The logic blocks are connected to wires routing the signals through the chip. These
wires can be connected to other wires or logic blocks allowing the user to implement
complex logical operations in the chip.

Figure 6.2 illustrates the inner structure of a logic cell. Basically, logic cells consist
of look up tables (LUT), �ip �ops (FF) and multiplexers (MUX). Control signals
direct the input signals to the components with the intended functionality. From
there, they are applied to the outputs of the block and routed, if necessary, to the
next block. In a Xilinx Virtex 5, for example, a SLICEM logic block consists of 4
LUTs with 6 inputs each, routing resources and 4 FF.

In addition to that, there are separate clocking wires and special resources to edit
clocks within the FPGA. Another feature of FPGAs are block RAM components
integrated into the core. They can be used to store data in memory resources or to
build components like FIFOs or CAMs in the FPGA. The memory space of these
embedded resources are limited by the size and number of components in the FPGA

1Field Programmable Gate Array: A silicon chip with integrated circuits, which are individually
programmable

2Application-Speci�c Integrated Circuit : A silicon chip specially designed for an speci�c appli-
cation

49

1.1. Introduction to FPGA Architectures 197

Fig. 1.1 An island-style FPGA [23].

the wire segments around a logic block to its inputs and outputs,

also through programmable switches. Notice that the structures of the

switch blocks are all identical. The figure illustrates the different switch-

ing and connecting situations in the switch blocks (the structures of

all the connection blocks are identical as well). In [23] routing archi-

tectures are defined by the parameters of channel width (W), switch

block flexibility (Fs – the number of wires to which each incoming wire

can connect in a switch block), connection block flexibility (Fc – the

number of wires in each channel to which a logic block input or out-

put pin can connect), and segmented wire lengths (the number of logic

blocks a wire segment spans). Modern FPGAs also provide embedded

IP cores, such as memories, DSP blocks, and processors, to facilitate

the implementation of SoC designs.

Commercial FPGA chips contain a large amount of dedicated inter-

connects with different fixed lengths. These interconnects are usu-

ally point-to-point and uni-directional connections for performance

improvement. For example, Altera’s Stratix II chip [10] has vertical or

horizontal interconnects across 4, 16 or 24 logic blocks. There are ded-

icated carry chain and register chain interconnects within and between

Figure 6.1: Core of a FPGA consisting of logic blocks and routing system.(Image
from [21])

1.1. Introduction to FPGA Architectures 199

K
LUT

FF

Routing wire
segments

I Inputs
to logic
block

Local buffers &
routing muxes

BLE

 N
BLEs

Routing wire
segments

N
+
I

SRAM

SRAM

Programmable
switch

Fig. 1.3 A logic block and its peripheries.

LUT1 and a register. Figure 1.3 shows part of a logic block with a

block size N (the logic block contains N BLEs). The logic block has I

inputs and N outputs. These inputs and outputs are fully connected

to the inputs of each LUT through multiplexers. The figure also shows

some details of the peripheral circuitry in the routing channels.

In addition to logic and routing architectures, clock distribution

networks is another important aspect of FPGA chips. An H-tree based

FPGA clock network is shown in Fig. 1.4 [131]. A tile is a logic block.

Each clock tree buffer in the H-tree has two branches. There is a

local clock buffer for each flip-flop in a tile. Both clock tree buffers

in the H-tree and local clock buffers in the tiles are considered to

be clock network resources. Chip area, tile size, and channel width

determine the depth of the clock tree and the lengths of the tree

branches.

1We focus on the LUT-based FPGA architecture in which the BLE consists of one k-input
lookup table (k-LUT) and one flip-flop. The output of the k-LUT can be either registered
or un-registered. We want to point out that commercial FPGAs may use slightly different
logic architectures. For example, Altera’s Stratix II FPGA [10] uses an adaptive logic
module which contains a group of LUTs and a pair of flip-flops.

Figure 6.2: Basic structure of a logic cell in a FPGA.(Image from [20])

50

and cannot compete with specialised hardware. Nevertheless, a FPGA is the optimal
module to develop a controller for the NL9000.

6.2 Development Platform HTG-100GIG

The HTG-100GIG [19] is a development platform produced by HiTech Global to
alleviate the draft of high speed subsystems. It provides functional blocks to design
user speci�c solutions for high performance applications. In addition to that the
components of the board like for example the Knowledge-based Processor of Netlogic
can be accessed easily by using one of the implemented interfaces.

6.2.1 Components and Architecture

An overview of the components integrated into the development board is given in
Table 6.1. The main component on this board is the Virtex 5 FPGA of Xilinx [22],
which allows to develop prototypes for a wide range of applications. Due to the
�exible usage of the logic cells in the FPGA, these applications can be tested and
debugged safely. Table 6.2 shows the list of the integrated circuits of the Virtex 5.
The aim of this work is to build up a track trigger system by using the features of

Figure 6.3: Picture of the front side of the Development Platform HTG-100GIG [19].

51

the FPGA combined with the Knowledge-based Processor of Netlogic. The function
of the FPGA is to control the signals on the pins of the NL9000, while the NL9000 is
considered to provide the search results. The pins of these two devices are therefore
connected directly on the board. Furthermore, memory devices and several inter-
faces are provided by the development platform. For this thesis, the USB to UART
Bridge was used since it is the simplest way to establish the communication between
the computer and the FPGA.

Number Component

1 Xilinx XC5VTX240T-2FF1759 FPGA
1 Knowledge-based Processor - NL9000
3 Netlogic 10GIG PHY (NLP10142)
4 FCI Airmax Header and Receptacle Connectors (Interlaken interface)
2 FCI Airmax Receptacle Connectors (Extender Module interface)
2 DDR-II SO-DIMM
1 SystemACE (Con�guration)
1 USB 2.0 Host/Device
1 USB To UART Bridge
1 FMC (FPGA Mezzanine Connector)

Table 6.1: List of components on the Development Platform HTG-100GIG.

Feature Number

Slices 37440
Logic Cells 239616
CLB Flip-Flops 149760
Maximum Distributed RAM (Kbits) 2400
Block RAM/FIFO w/ECC (36Kbits each) 324
Total Block RAM (Kbits) 11664
Digital Clock Managers (DCM) 12
Phase Locked Loop (PLL)/PMCD 6
Maximum Single-Ended Pins 680
Maximum Di�erential I/O Pairs 340
DSP48E Slices 96
PCI Express Endpoint Blocks 1
10/100/1000 Ethernet MAC Blocks 4
RocketIOTM GTX High-Speed Transceivers 48
Con�guration Memory (Mbits) 65.8

Table 6.2: List of features of the Virtex 5 TX240T FPGA of Xilinx.

52

7 Software for the Controller and the

Interface

The challenge of this work is to send search patterns for the NL9000 at high frequency
with the correct timing. The NL9000 is controlled by the Virtex 5 FPGA of Xilinx,
which can operate up to 500 MHz maximum speed. This FPGA can be programmed
to provide the instructions to the NL9000 like simulated in chapter 5. Furthermore,
it is necessary to communicate with the FPGA to control its operation and read back
the results. In context of this thesis, software for this purpose has been developed
and will be introduced in the following sections.

7.1 Software Tools

In this work the software tool Xilinx ISE has been used. The program includes an
editor, can compile VHDL code and implements its functionality into a FPGA [23].
In addition to that, it can perform timing analysis to help the user to �nd critical
timing paths. The routed program in the FPGA can be displayed by the integrated
FPGA editor to show the paths and used components in the chip. In addition to
that, the integrated simulation tool ISim in Xilinx ISE can simulate programs in
di�erent stages of development.
Labview has been used for coding an user interface for the computer [24]. This is

a development environment from National Instruments using a graphical program-
ming language. It is made to create special user interfaces for data acquisition and
instrument control.

7.2 Software Modules for the Development

Platform

For the implementation of a test application, simulating the behaviour of a Fast
Track Trigger in hardware, the components of the development board are used as
shown in Figure 7.1. The user can control the behaviour of the components by an
user interface on a connected computer. The information transmission from PC
to FPGA is realised with USB communication. The USB port is connected to a
USB to UART Bridge on the board to simplify the signals received by the FPGA.
The FPGA communicates directly with the Knowledge-based Processor (KBP) of
Netlogic. A program is installed on the FPGA, which can apply signals to the
NL9000 and read back the responses �exibly.

53

PC

KBP

USB to
UART Bridge

Development Platform

UART Controller

NL9000 Controller

FPGA

Figure 7.1: Block Diagram showing the hardware devices of the test application. It
can be controlled by the computer of the user. The interface between
board and PC is the USB to UART Bridge. The function of the FPGA
is to apply signals with correct timing to the NL9000 of Netlogic (KBP).

54

7.2.1 Initial Startup of the Xilinx Virtex 5 and the NL9000

For the initial startup several modules are necessary to be programmed in the FPGA.
In this section the elementary modules are described to get �rst responses from the
NL9000.

Description of the UART Controller

The �rst issue, during successful implementation of a controller into the Virtex
5, is to establish the communication between computer and FPGA. The USB to
UART Bridge on the development platform provides UART signals to the FPGA
like demonstrated in Figure 7.2. It is a serial signal beginning with a low start bit
followed by 8 bits of data. The signal is pulled low for a '0' and pulled high for a
'1' when sending data. Between each bit a speci�c time passes, which is referred to
as bit time. The end of the data transmission is marked by a high stop bit. If more
data is available on the Bridge the next 8 bits can be sent after applying another
start bit.
The signals, transferred by the USB to UART Bridge need to be interpreted by

the FPGA. For this purpose an UART controller has been developed (Appendix).
It is a small state machine consisting of �ve states: 'idle', 'start', 'receive', 'stop'
and 'send'. The state machine remains in the 'idle' state until it recognizes the
start bit by observing the input signal to change to 'low'. The state transits to
'start' and waits by using a counter until half of the bit time passed. Then the
state changes to 'receive'. In this state the 8 bits transmitted by the bridge will be
written into a 'std_logic_vector' after waiting for one bit time each. The state then
transits into 'stop' signalising to the NL9000 Controller that there are data available

Start Bit

1 0 1 0 0 1 0 1

Stop Bit

Figure 7.2: Data format of the USB to UART Bridge. The UART signal is a serial
communication format starting with a low start bit followed by 8 bits of
data. It ends with a high stop bit.

55

and to the Bridge to wait until the data were transmitted to the Controller. This
works unproblematically because the NL9000 controller is faster by several orders
of magnitude than the USB to UART Bridge meaning that the NL9000 Controller
waits always for new UART data when the state machine is in the state 'stop'. Next,
the state is changed into 'send' and the UART controller waits until the NL9000
Controller sends a signal to con�rm the receipt of the data. The state will be
changed back to 'idle' until it recognises a new start bit. A similar state machine is
implemented to send data received from the NL9000 Controller to the Bridge.

Initialisation Design of the NL9000

After the implementation of the UART Controller the communication between PC
and FPGA is established. Data can be sent from Virtex 5 to the computer and
vice versa. Furthermore, a method to exchange data with the NL9000 is necessary.
Before any instruction can be sent to the KBP, it has to be initialised. The initiali-
sation process needs, after setting the reset signals, a stable DCLK in combination
with a set of instructions on the input buses of the NL9000. The clock has to be
generated in the FPGA and applied to the output pins corresponding to the DCLK
bus of the NL9000. In the default setup of the development platform there is one
clock routed to the FPGA with a frequency of 200 MHz and one to the NL9000
with 225 MHz as shown in Figure 7.3. Since it would be technically problematic to
convert the 200 MHz clock into a 225 MHz clock matching to the core frequency of
the NL9000, the RCLK has to be used to generate the DCLK.

The NL9000 delivers the 225 MHz RCLK after the reset signals are applied. It
is routed to a clock input pin of the Virtex 5 for read-in. Due to construction
constraints it is routed into a Digital Clock Manager (DCM) before the jitter can
be removed by using an internal Phase Locked Loop (PLL). The instructions have
to be applied to the output pins of the Virtex 5 on the rising and the falling edge
of the DCLK. Since the timing is very tight it is necessary to store the bit sequence
physically close to the output pins. This can be done by two FIFOs, one storing
the bits for the rising and one for the falling edge of the clock. The FIFOs can be
read out with the internal 225 MHz clock applying its content to the output pins.
To have the data stable when the DCLK toggles the phase of the internal clock has
to be shifted before being applied to the pins of the DCLK. Therefore, a DCM close
to the output pins can be used. This setup is illustrated in Figure 7.4.

The �rst test for the development platform needs a NL9000 controller consisting
of the elements described in Figure 7.4 and a state machine. This state machine
should be connected to the UART controller and will basically wait for a command
of the user to start the initialisation process. As described before it will apply the
reset signals, route the clocks and send the required instructions. After it received
a response from the NL9000, it can send a reply byte-wise to the UART controller,
which will forward it to the USB port of the PC. By using this method the basic
functionality of the involved components can be validated.

To use full functionality of the NL9000 a more complex NL9000 controller has to
be used, which is described in the next passage.

56

7.2.2 Final Program for the Xilinx Virtex-5

In this section the �nal version of the program for the FPGA is described. It is
supposed to give an overview of the structure of the NL9000 Controller and its
implemented features.

Data Paths

The software design for the FPGA has to be created with the aim of running pattern
matchs in real time. Since the NL9000 clock is running with a frequency of 225 MHz
on default settings and can be increased to up to 300 MHz, the timing of the signals
on the pins connected to the NL9000 has to be considered carefully. Therefore, the
bit sequences describing instructions on the NL9000 have to be built before and
stored close to the I/O banks of the Virtex 5. In this work two FIFOs have been
used for the output signals and another two for the input buses. The FIFOs are
connected to double data rate �ip �ops, one FIFO providing the data for the rising
edge and the other one for the falling edge of the clock. The FIFOs have to be
designed large enough to store data for multiple instructions. Otherwise it would
force idle cycles if it was necessary to wait for data coming from parts further away
from the I/O banks. In the design developed in course of this diploma thesis the

FPGA NL9000

225 MHz Clk200 MHz Clk

RCLK

DCLK

Reset

Figure 7.3: Overview of the Clocks necessary to run the application. The 200 MHz
clock for the FPGA and the 225 MHz clock for the NL9000 are imple-
mented on the development platform. The RCLK from the NL9000 will
be available after the reset signals are applied. To start operations on
the NL9000 a stable DCLK has to be delivered matching to the 225 MHz
core frequency.

57

FPGA

RCLKDCM

PLL

DCM

FIFO OUT

DCLK

DBUS
(200 MHz)

(225 MHz)

(225 MHz)

Figure 7.4: Implementation of a stable DCLK by using the RCLK. The clock has to
be routed to a DCM on the input pin before the jitter can be removed
by the PLL. This internal clock can be used to read out the data stored
in a FIFO but the phase has to be shifted in a DCM afterwards to have
stable data when the DCLK toggles.

width of the output FIFOs has been chosen to 128 bit and the depth to 2048. The
FIFOs of the Xilinx design library allow depths of up to 16384 if bigger FIFOs are
needed. Furthermore, the FIFOs provide three �ags: full, over�ow and empty. The
input FIFOs are similar to the output FIFOs but using a width of 64 bit �tting best
to the input data.

An overview of the data paths is given in Figure 7.5. For easier utilization a
Labview user interface has been designed, which will be described more detailed in
Section 7.3. The USB to UART Bridge converts the USB data to an UART signal
and sends it to the FPGA. The UART Controller implemented in the FPGA can
read this data format and forward it byte-wise to the state machine of the NL9000
controller. This state machine communicates with the input and output FIFOs and
starts the test runs. The FIFOs are connected to the I/O banks where the signals
will be applied to the buses of the NL9000.

Communication Protocol

The state machine of the NL9000 Controller has a variety of tasks and can be
controlled by the user by utilising the protocol introduced in Figure 7.6.

58

LabView
User

Interface

VHDL FPGA Programm

Config file

USB

USB

UART

UART

UART
Controller

State Machine

FIFO
OUT 1

FIFO
OUT 2

FIFO
IN 1

FIFO
IN 2

1 Byte

1 Byte

128 bit
64 bit

Output Pins

DBUSDV DCTX

Input Pins

RV RBUS RPR

KBP
Signals

USB to UART
Bridge

Figure 7.5: Block Diagram showing the communication paths of the NL9000 test ap-
plication. The data are transferred from the user interface to the develop-
ment platform using the USB port of the PC. On the platform the USB
to UART Bridge converts the USB signal into a UART signal and send
it to the FPGA. In the FPGA an UART Controller can interpret these
signals and forward them byte-wise to the state machine of the NL9000
Controller. The state machine can communicate with the NL9000 using
FIFOs, which are routed to the I/O banks used as connection to the
NL9000 buses.

CMD1 CMD2 SIZE ADDRESS + DATA
Table 7.1 Table 7.2 3 - 45

Figure 7.6: Protocol used to send commands to the NL9000 Controller. The CMD1,
CMD2 and SIZE block of the protocol are 1 Byte each. The size of the
address and data block is de�ned by the content of the size block.

59

The �rst byte arriving at the state machine will be interpreted as a command
of Table 7.1. If the byte is '01' in hexadecimal, the state machine will write a
NL9000 instruction in the output FIFOs after it received additional data specifying
the instruction. This data have to be sent by a second block of one byte to choose
an instruction of the NL9000 (Table 7.2), one byte to describe the length of the last
block containing the instruction speci�c data. If, for example, a register with the
address '000001' shall be read, the CMD1 will have to be '01' for writing a NL9000
instruction and CMD2 '02' for Register Read. The 'Address+Data' block is three
byte ('03') long since there is only the address sent resulting in a total data sequence
of '010203000001'.

If the user wants to read the status of the FIFOs, the second command in Table
7.1 can be used. This will return 3 bytes consisting of the status �ags of the FIFOs
and the error �ags of the NL9000. Table 7.3 shows the response format. The three
error �ags of the NL9000 are low active meaning that they would be '1' if no error
occurred.

The Setup Data Recording command can be used to con�gure the number of clock
cycles the data are recorded by the input FIFOs. In default settings the FIFOs will
write 3 clock cycles when the Result Valid (RV) signal is assigned. This will be
necessary if the user wants to read records of the database or registers since the RV
signal will be set to '0' after the �rst clock cycle although data can be applied for
another two clock cycles. If the chip is used for a test run consisting of compare
instructions only, it will be su�cient to write just one clock cycle after RV is assigned.
This will reduce the memory space used in the input FIFOs without losing data.

DCLK Timing

As described in Figure 7.4 a DCM is necessary to ensure correct timing between
data and DCLK on the output pins. This DCM can be con�gured by using the Shift
DCLK command. After the NL9000 Controller received the command code it will
wait for another byte which de�nes the shift direction: '00' will cause a shift left
and '01' a shift right, and a third byte with a hexadecimal number. The shift will
be applied by multiplying the received number with 1.406 degrees. In this work the
default value of the phase shift is 48 (67.488 Degrees).

Organisation of the VHDL program

The �les of the VHDL program are summarised in Table 7.4. The �rst six �les are
designs from the Xilinx library. They describe the functionality of the FIFOs and
the clocking resources. The next six �les contain the VHDL code of the program. In
'top.vhd' the top component is described. It de�nes the input and output signals of
the FPGA and connects the sub-modules of the VHDL program. The last two �les
are used for the behavioral simulation of the Controller, which will be described in
the next section.

60

Command Code 1 Operation Description

01 Write NL9000 Instruction Operation to write a NL9000 in-
struction into the output FIFOs.
The instruction will be speci�ed
with the next byte (Table 7.2).

02 Read Status Returns the FIFO status �ags
and the three error �ags of the
NL9000. (Table 7.3)

03 Start NL9000 Test Starts the read-out of the output
FIFOs. The content will be ap-
plied to the input buses of the
NL9000.

04 Start Initialisation Executing the Initialisation pro-
cess of the NL9000.

05 Read input FIFO Reads the records of the input
FIFOs and sending them to the
user.

06 Reset FIFOs Resets the input and output FI-
FOs.

07 Setup Data Recording For compare operations only one
clock cycle of the NL9000 re-
sponse must be recorded. Read-
ing the database or registers will
return responses of three clock cy-
cles.

08 Shift DCLK The DCLK will be shifted by
x · 1.406 degrees. x is de�ned by
the next bytes.

09 Latency Readout If an instruction is sent to the
NL9000, a counter will be started
and stopped when the response of
the NL9000 is available.

Table 7.1: List of commands for the CMD1 block. The Write NL9000 Instruction

will enable a second command block (see Table 7.2). Otherwise the state
machine will directly execute the Operation and wait for the beginning of
the next command code.

61

Command Code 2 NL9000 Instruction Address+Data Block

01 Register Write 3 bytes address
10 bytes data

02 Register Read 3 bytes address
03 Database Write XY 3 bytes address

10 bytes data X
10 bytes data Y

04 Database Read X 3 bytes address
05 Database Read Y 3 bytes address
06 Context Bu�er Write 2 bytes address

20 bytes data
07 Context Bu�er Write

and Compare1
2 bytes address

20 bytes data
1 byte compare setup

08 Context Bu�er Write
and Compare2

2× 2 bytes address

2× 20 bytes data
1 byte compare setup

Table 7.2: List of commands for the CMD2 block. After sending the Command Code
the state machine waits for the 'Address+Data' block. When all bytes are
received the state machine writes the instruction in the output FIFO and
waits for the next command.

62

Byte Bit Content

1

7 full FIFO_OUT1
6 empty FIFO_OUT1
5 over�ow FIFO_OUT1
4 '0'
3 full FIFO_OUT2
2 empty FIFO_OUT2
1 over�ow FIFO_OUT2
0 '0'

2

7 full FIFO_IN1
6 empty FIFO_IN1
5 over�ow FIFO_IN1
4 '0'
3 full FIFO_IN2
2 empty FIFO_IN2
1 over�ow FIFO_IN2
0 '0'

3

7 PEO_L
6 GIO_L
5 PHSEO_L
4:0 '00000'

Table 7.3: Response data of the NL9000 Controller to the Read Status command

63

Name Description

dclk_dcm.xaw The Digital Clock Manager (DCM) is a design element from
the Xilinx library. This DCM is used to modify clocks received
on the clock input pins. It has the RCLK of the NL9000 on
its input and forwards it as internal clock (nl9k_clk_intern).

dclk_dcm2.xaw DCM used to shift the clock phase before it is applied to the
output pins of the DCLK.

dclk_pll.xaw The Phase Locked Loop (PLL) is a design element from the
Xilinx library. It is used to reduce the jitter of the clock signal
coming from the NL9000.

dcm_150MHZ.xaw DCM to create a 150 MHz clock for internal procedures from
a 200 MHz clock coming from a Oscillator on the platform.

�fo_in.xise The FIFO is a design element from the Xilinx library. It
is used to store responses coming from the NL9000 and is
con�gurable in width and depth.

�fo_out.xise This FIFO is used to store instructions for the NL9000. It is
also con�gurable in width and depth and will be read out to
the output pins when the test run is started.

func_lib.vhd Library with a function to calculate the parity bits for the
input buses of the NL9000.

state_machine.vhd Internal State Machine controlling the NL9000.
testboard.vhd VHDL-File managing the data paths and connects the State

Machine to the FIFOs and I/O - Blocks.
uart_controller.vhd Controller converting UART signals into 'std_logic_vector'

of 1 Byte size and and vice versa.
top_ucf.ucf User Constraint File (UCF) connecting signals of the VHDL

code to the correct pins of the FPGA.
top.vhd Top Entity of the VHDL program connecting the modules of

the VHDL code.

top_tb.vhd Testbench �le to simulate the behaviour of the program on
the Xilinx Virtex 5.

sim_func.vhd Library of the simulation to simplify the data input.

Table 7.4: List of Files for the VHDL program of the Xilinx Virtex 5. In the upper
section components from the Xilinx library are used. These components
are already implemented clock devices in the FPGA or FIFOs, which
can be adapted to speci�c usage. The second section includes VHDL
�les with di�erent functions describing the Controller implemented on the
FPGA. The last section shows �les to simulate the behaviour of the VHDL
program.

64

7.3 ISim Simulation

During the development process of a program designed to run on a FPGA it will be
necessary to simulate the behaviour of the program if problems occur. Usually the
FPGA will give no feedback about why it is not operating in the intended way if
there is an error in the VHDL code. Therefore, it is useful to simulate the behaviour
of the program to be able to look into internal signals and memories, which are not
accessible in modern chip designs. A simulation tool, ISim, is integrated in Xilinx
ISE. This tool has been used for the simulations of the FPGA program.

To create the simulation environment as simple as possible the library 'sim_func'
was developed. The purpose of this library is to apply a function generating the
input UART signal for the controller. The arguments of the function are the number
of bytes to send, the data in hexadecimal, the UART bit rate and the UART signal
where the data shall be applied. By using this function in the testbench the user
can send test samples to the simulated FPGA program and observe the internal
components and responses on the output graphically in the ISim Waveform. The
simulation can also be used to simulate the behaviour of the controller when the
NL9000 applies data on the result buses.

7.4 Functions of the Labview Program

As discussed before, a test run on the NL9000 needs a lot of instructions to con�gure
the chip and write the database. In contrast to the simulation described in chapter
5, the situation gets even more complicated since the instructions cannot be applied
directly to NL9000 and involves the the communication with the Xilinx Virtex 5,
which has another instruction set and the USB connection. Applying the data to
the USB port manually is not a convenient solution for bigger tests.

Therefore, a graphical user interface has been designed in LabView, shown in
Figure 7.7. In the top of the picture is a drop down box to de�ne the port of
the PC to send the data from. Next to it is a stop button to release the port
after �nishing the usage. The other buttons are used to start di�erent operations
on the NL9000 Controller. The gray �elds can display the response coming from
the NL9000 Controller. At the top left, there is a �eld to de�ne the con�guration
�le used. A con�guration �le is structured in di�erent sections with keys for each
entry. A picture of a con�guration �le is shown in Figure 7.8. An entry of this
con�guration �le can be read out by de�ning for example section 'CB Write' and
key 'CBAddress0'. This will return '0002'.

The user interface uses this principle by reading out the 'NumberEntries' position
at the section of the operation the program is working on. With this information
the program knows how much entries are in the section and can read them out
systematically. The data will be then merged with prede�ned instruction formats
for the Controller and sent to the USB port. Another challenge is to handle the
di�erent data formats. The con�guration �le is written in ASCII code, while the

65

Figure 7.7: User interface designed to simplify the communication with the NL9000
Controller. At the top left is a �eld to de�ne the path of the Con�g
File. Next to it is a drop down box to specify the port used to send
the USB data. The buttons can be used to send instructions to the
NL9000 Controller. The gray �elds are displaying results coming from
the development platform after the initialisation process was performed.

USB to UART Bridge expects hexadecimal data. Labview has no function to convert
these data formats into each other directly. Due to that some extra loops have to
be added to convert the data into the correct format. An extraction of the LabView
code can be found in the appendix.

66

Figure 7.8: Extraction of a sample con�g �le for the LabView user interface. The �le
is structured in sections with keys for each entry. In these �les, entries
can be read out by choosing a section and key.

67

8 Test Runs and Results

In this chapter the test runs performed on the Development Platform HTG-100GIG
are discussed. The NL9000 was con�gured with di�erent setups, which could be
useful to implement a fast track trigger. In this context the performance was mea-
sured and the functionality examined. The tests for the hardware are orientated on
the tests already presented in chapter 5 to have the ability to compare the results
and judge about the quality of the simulation model.

8.1 Test Con�guration Files

For running tests on the development platform the de�ning information has to be
written into con�guration �les. For each NL9000 instruction there is one section in
the �le. Depending on the instruction, address and data have to be written into
the �le. For example, read instructions need only an address while Database Write
instructions need address, data X and data Y values.
The structure of the tests is analog to the tests of chapter 5, which are described

in Table 5.2. The database con�guration test examines the default setup of the
chip and tests the basic operation of the database and registers of the chip. For
the 80 bit compare and 640 bit compare the database and Key Processing Unit are
con�gured and multiple compare operations are sent to measure the latency and
result rate. The parallel compare test con�gures the width of the database to 80 bits
and performs four searches in parallel.
In addition to the tests of chapter 5, a test is performed on the hardware con�rming

its reliability. For this test 1000 Database Write instructions have been generated by
a random number generator of Labview and have been written into a con�guration
�le. These instructions are applied to the NL9000 repeatedly to con�rm stable and
reliable functionality in long-term applications.

8.2 Measurement of the Power Consumption

For the measurement of the power consumption of the NL9000 two modi�cations
were necessary. The �rst modi�cation had to be made to measure the current and
voltage the KBP is consuming. For this reason an external power supply had to be
integrated into the circuits of the development platform. The second modi�cation
had to be made on the software design of the NL9000 Controller because it has no
feature to send compare instructions repeatedly to the NL9000. This feature was
added by writing a compare instruction into the last entry of the output FIFOs

69

instead of an idle instruction by default. This way the Controller will always send
a compare instruction to the NL9000 if no other instruction is sent by the user.
This Controller design is used to measure the power consumption of the NL9000 if
used permanently, while the normal Controller can be used to measure the power
consumption during idle times.

8.3 Latency measurement

To measure the result latency of the NL9000 while operating on 225 MHz and
300 MHz, two approaches have been used. One approach is the direct measure-
ment of the time di�erence between the start and the response of the compare
operation by using an oscilloscope. Since it is not possible to get access to the input
and output pins of the NL9000 directly, pins of the FMC Connector (section 6.2.1)
can be used. In the current design the pins of the connector are unused and easily
accessible. The start of each compare instruction is marked by a high DV signal
and the response is marked by a high RV signal. This makes these two signals ideal
candidates for the latency measurement. To forward them to the pins of the FMC
Controller, extra features have been added to the NL9000 Controller. The output
FIFO is the closest point to the output pins where the DV signal can be duplicated.
To have similar routings between the FIFO the FMC pin on one hand and the FIFO
and the NL9000 pin on the other hand, an output double data rate �ip �op has
been added in front of the FMC pin. The RV signal is forwarded directly to the
corresponding FMC pin to have the minimum time delay.

Despite the e�orts made to have the routes almost identically, there are time
delays between the di�erent paths, which can be estimated by the software tools
of Xilinx. For the NL9000 design operating on 225 MHz the RV signal is delayed
by maximal 14.0 ns, for the 300 MHz design the delay is maximal 13.4 ns. The DV
signal is routed into a �ip �op leading to an uncertainty of one clock cycle.

The second approach is to start a counter when the instruction is sent and to stop
it after the response is available on the result bus. This function is implemented in
the NL9000 Controller and the result can be displayed on the user interface. The
routing of the stop signal in this method causes delays which have to be corrected
by subtracting 2 clock cycles in the 225 MHz design. In the 300 MHz design the
NL9000 Controller has to be modi�ed to keep the timing constraints on the output
pins. The most critical path is the DV signal because it is used on two output pins
and the counter. Therefore, an extra �ip �op has been added between counter and
output FIFO. This delays the start signal by one clock cycle. To correct for it, it is
necessary to subtract this time span from the measured latency.

70

8.4 Results

The �rst operation sent to the NL9000 is the initialisation process. This process
operates as described in the manual and in agreement with the simulation. The
database and the Block Mask Register have no initial value and will return random
bit sequences as long as nothing is written into it. The control registers of the
NL9000 can be accessed and con�gured as done in the simulation. The reliability
test provides a response of the tested hardware similar to Figure 7.7. Applying
several thousand Database Write instructions to the NL9000 does not violate any
timing constraints of the communication between FPGA and NL9000 nor causing
errors of the NL9000 itself.
The power consumption of the NL9000 was measured with regard to three dif-

ferent conditions. While the FPGA was programmed the power consumption had
the lowest value with 0.64 W due to missing signals on its input pins. Using the
chip mainly with idle cycles, the power consumption was measured to be 2.267 W.
When the Controller design was used to send a compare instruction to the NL9000
repeatedly, the power consumption reached the highest value of 2.360 W. The mea-
surements were performed on the chip at ambient temperature. It is to be expected
that the power consumption is dependent on temperature. The Low Power Mode
of the NL9000 had no measurable e�ect on the results.
Figure 8.1 displays the response of the development platform after performing the

80 bit test in hexadecimal values. Providing the instructions to the NL9000 with
300 MHz did not cause an error �ag and returns the correct search results in the
interval of one clock cycle. The �rst result at the NL9000 is a match in block 'A'
address '000'. The '8' is the system match �ag signaling that the search key was
found in at least one entry in the database. The next line is �lled with '0' since there
were no results available on the falling edge of the result clock. The following line
represents another match in the next compare instruction. In this case it is a match
in block '3' address '000'. After the next clock cycle has passed, the third result is
available on the RBUS, signaling a match in block '9' address '001'. Thus, the 80 bit
compare test of the hardware components is consistent with the simulation results
of chapter 5 including functionality and result rate.
Figure 8.2 is showing the response of the tested hardware of the 640 bit compare

test. Similar to the test before, the NL9000 returns the expected results of the
compare instructions. In the 640 bit compare test the Context Bu�er Write and
Compare2 instructions have to be sent in intervals of four clock cycles, leading to
results received also in intervals of four clock cycles. In Figure 8.2 only �ve half-
clock cycles can be seen between two results since the NL9000 Controller does not
record data of several clock intervals without valid data being on the RBUS. In this
case, a direct measurement of the result rate is not necessary, because the NL9000
is constructed to send results in �xed time intervals depending on the mode of
operation (see section 4.3.3).
Figure 8.3 illustrates the response of the platform to the parallel compare test.

When the RV bits are set to '11' the results of the four parallel searches are available

71

Figure 8.1: Snapshot of the user interface showing the response of the development
platform after applying the 80 bit compare test. The error �ags are con-
stant '111' meaning that no errors occurred. Valid results are allocated
when the RV bits are '11'. The RBUS shows three successful matches at
the third, �fth and seventh half-clock cycle.

Figure 8.2: Snapshot of the user interface showing the response of the development
platform after applying the 640 bit compare test. The error �ags are
constant '111' meaning that no errors occurred. Valid results are allo-
cated when the RV bits are '11'. On the RBUS three compare results are
shown. Block '3' address '000' is matching to the �rst and third compare
instruction in this case.

72

Figure 8.3: Snapshot of the user interface showing the response of the development
platform after applying the parallel compare test. The error �ags are
constant '111' meaning that no errors occurred. Valid results are available
on the RBUS when the RV bits are '11'. On the RBUS one compare
result with four parallel results is illustrated. The matches are in block
'3' address '000', block '19' address '0A1', block '15' address '034' and
block '9' address '000'.

on the RBUS. Block '3' address '000' and block '19' address '0A1' are applied to
the RBUS on the rising edge of the RCLK and block '15' address '034' and block '9'
address '000' on the falling edge of the RBUS. As discussed in chapter 5, this would
permit four searches in parallel with a frequency of up to 600 MHz if the maximum
input bus of 80 bit is su�cient for a track trigger application. In this example the
search key width of 320 bit was used leading to a result rate of 150 MHz with four
80 bit compares in parallel.
The measurement of the result latency was performed for the 225 MHz and the

300 MHz design of the NL9000 Controller by using two di�erent methods. The
results of the two implementations of the measurement are shown for two examples
in Figure 8.4 and Figure 8.5.
Figure 8.4 illustrates the method using the oscilloscope on the 225 MHz design.

Figure 8.5 shows the the response of the method using a counter in the Xilinx
Virtex 5 for the 300 MHz design. An overview of all results are summarised in
Table 8.1.
For the 225 MHz design, the time interval between start and stop signal is 139.4 ns

in the oscilloscope method. 14.0 ns have to be subtracted due to delays within the
Xilinx Virtex 5 resulting in a measured latency of 125.4 ns ± 4.4 ns. The counter
method provides a value of 31 clock cycles between start and stop signal. 2 clock
cycles have to be subtracted due to delays within the FPGA leading to a result
latency of 128.89 ns± 8.89 ns.
The oscilloscope method measures a time interval of 109.0 ns in the 300 MHz de-

sign. After correcting for the delays within the FPGA, the measurement results
in 95.6 ns ± 3.3 ns. The counter method returns the value '1E' in hexadecimal as
pictured in Figure 8.5. This translates into 29 ± 2 clock cycles after the necessary

73

correction corresponding to 96.67 ns± 6.67 ns. This can be compared to the simu-
lation result of chapter 5, where the Verilog model predicts a latency of 96.595 ns
�tting well to the results of the hardware tests.

Figure 8.4: Measurement of the result latency using the oscilloscope. The green line
represents the DV signal, the red line is the RV signal. Both signals show
re�ections of the cable connection.

74

Figure 8.5: Measurement of the result latency using a counter in the FPGA. The
counter returns the value of '1E' in hexadecimal displayed in the la-
tency display in the bottom left. In the top right the response to the
single compare instruction can be seen, which was used to perform the
measurement.

Clock Frequency Oscilloscope Counter

225 MHz 125.4 ns± 4.4 ns 128.89 ns± 8.89 ns
300 MHz 95.6 ns± 3.3 ns 96.67 ns± 6.67 ns

Table 8.1: Results of the latency measurement with clock frequencies of 225 MHz
and 300 MHz.

75

9 Conclusion

In the year 2020 a luminosity upgrade is planned for the LHC increasing its design
luminosity by an order of magnitude. The inner detector and the trigger system
have to be reconsidered because of the higher data rates. The inner detector will
be replaced by a new one with higher granularity and with more read-out channels.
To keep the L1 trigger rate below 75 kHz after the upgrade, a L1 track trigger is
considered. Because of the stringent timing constraints at the �rst level trigger
of 2.1 µs a track trigger has to be implemented using fast lookup techniques. In
this context, the functionality of Knowledge-based Processors (KBPs) have been
investigated in this work. A NL9000 chip from Netlogic is considered and studied
for a possible L1 track trigger application.
To test the functionality and performance of the NL9000 with respect to its usage

in a Fast Track Trigger, a Controller for the Development Platform HTG-100GIG
was designed in VHDL. This Controller is implemented in the FPGA on the platform
and is able to communicate with the PC by using the USB to UART Bridge. The
complete instruction set of the NL9000 is supported by the Controller and can be
used to operate tests on the chip. To run the tests under most realistic conditions
without being slowed down by the data transfer between PC and FPGA, the in-
structions can be stored in the FIFOs of the Controller. The tests are applied to the
NL9000 running at 300 MHz clock frequency. For a Fast Track Trigger application
the latency of the NL9000 is an important parameter and was therefore measured.
It was found to be of the order of 100 ns. Furthermore, a Labview user interface
was written. To de�ne the test procedures con�guration �les are used. This way the
user can describe the instructions to be applied to the NL9000 simply by writing
the test data into the con�guration �le. The user interface can interpret these �les
and provide the data in the required format to the Controller.
Tests of the investigated chip were performed in a software simulation using a

model from Netlogic and in the hardware design. Features as parallel compare oper-
ations and the con�guration of the database in di�erent widths have been examined
and found to be consistent in both approaches. The performance of the NL9000 on
the development platform �ts also to the results of the simulation qualifying the chip
for a possible usage in a Fast Track Trigger. Due to quickly evolving semiconductor
processes, the industry will probably be able to provide faster and bigger devices in
the next years. This will allow integration of a high number of hit patterns for track
trigger application and reduce the number of needed chips.

77

Acknowledgments

At the end of my diploma thesis it is time to thank all the people who have been a
great help in the last year. I want to say 'thank you' to:

�rst of all, André Schöning who made this work possible and supported me dur-
ing my time in his working-group at the 'Physikalisches Institut' in Heidelberg.

Esteban Rubio for being always there for discussion and supervision while work-
ing with either hardware or software of the used electronics.

Sebatian Schmitt, Gregor Kasieczka and Rohin Narayan for answering all my phys-
ical questions and proof-reading large parts of this thesis.

Arno John, Patricia Sauer and Moritz Kiehn for being kind and entertaining com-
panions during our time together.

last but not least, my parents, my family and friends and especially Anne Ludin
for support and encourage during all the time of my studies.

79

Part I

Appendix

81

A Lists

A.1 List of Figures

2.1 The LHC Accelerator and Detector Complex and its pre-accelerators
to illustrate the acceleration steps of proton or lead ion bunches. . . . 10

2.2 Overview of the ATLAS experiment and its detector components . . . 11
2.3 The pro�le of the inner detector . 12
2.4 Illustration of the interior composition of the inner detector barrel

including the radii of the Pixel, SCT and TRT layers. 13
2.5 Schematic picture of the setup of the inner detector of ATLAS 14
2.6 Pro�le of the ATLAS calorimeter system 14
2.7 Pro�le of the ATLAS detector focusing the muon system and magnets 15
2.8 The ATLAS toroidal magnet system in its construction phase. 16
2.9 Number of events for Z' for LHC and HL-LHC with Standard Model

couplings . 17
2.10 Illustration of the ATLAS detector occupancy while running at dif-

ferent luminosities resulting in 5 pile-up events (left) and 400 pile-up
events (right). 19

2.11 Pro�le of the inner detector of ATLAS with upgraded geometry after
the LHC high luminosity upgrade. 20

3.1 Overview of the ATLAS trigger and data acquisition system. 22
3.2 Block diagram of the ATLAS L1 trigger to demonstrate its operation

method. 23
3.3 Hardware implementation of a fast track trigger with following re�ne-

ment step. 26

4.1 Con�guration of a CAM chip . 29
4.2 Fast look-up in a router using a CAM and RAM. 30
4.3 Basic structure of the NL9000. 32
4.4 Database block organisation of the NL9000. 33
4.5 Timing diagram of the Context Bu�er Write instruction. 38
4.6 Timing diagram of the Context Bu�er Write and Compare2 instruction. 39

5.1 Timing graph of the initialisation of the NL9000. 45
5.2 Result Latency of 80 bit compares in the NL9000 simulation. 46
5.3 Result Rate of 80 bit compares in the NL9000 simulation. 46
5.4 Result Latency of 640 bit compares in the NL9000 simulation. 47
5.5 Result Rate of 640 bit compares in the NL9000 simulation. 47

83

6.1 Internal FPGA design. 50
6.2 Inner structure of a logic cell in a FPGA. 50
6.3 Picture of the front side of the Development Platform HTG-100GIG. 51

7.1 Hardware Devices of the test application. 54
7.2 UART data format. 55
7.3 Clocks routed on the development platform. 57
7.4 Clocks routed within the Virtex 5. 58
7.5 Communication paths of the design. 59
7.6 Protocol to send commands to the NL9000 Controller. 59
7.7 User Interface. 66
7.8 Sample con�g �le for the user interface. 67

8.1 Response of the 80 bit compare test. 72
8.2 Response of the 640 bit compare test. 72
8.3 Response of the parallel compare test. 73
8.4 Measurement of the result latency using the oscilloscope. 74
8.5 Measurement of the result latency using a counter in the FPGA. . . . 75

C.1 The program is part of the Labview user interface and reads out the
section of the Con�guration File, which is used to store the address
and data of all Database Write instructions. 99

C.2 The Reliability Test program generates 1000 Database Write instruc-
tion in a con�guration �le. The DataX and DataY values are gener-
ated with a random number generator. 100

A.2 List of Tables

3.1 Number of templates and fake rates for pmin
T = 10 GeV and a pile-up

of 100, 200 and 400. 25

4.1 Latency and frequency of Netlogic Knowledge-based Processors. . . . 31
4.2 Result Rate and Memory Size of Netlogic Knowledge-based Processors. 31
4.3 In- and Outputs on the interface of the NL9000. 33
4.4 Categories of errors allocated by the NL9000 36
4.5 NL9000 Instruction Set. 37

5.1 Default Settings for the NL9000 simulation. 42
5.2 Overview of NL9000 test runs. 43

6.1 List of components on the Development Platform HTG-100GIG. . . . 52
6.2 List of features of the Virtex 5 TX240T FPGA of Xilinx. 52

7.1 Command set of the CMD1 block. 61
7.2 Command set of the CMD2 block. 62

84

7.3 Response to the Read Status command. 63
7.4 Files for the VHDL program. 64

8.1 Results of the latency measurement. 75

85

B Bibliography

[1] Netlogic Microsystems, July 2011, www.netlogicmicro.com.

[2] L. Evans and P. Bryant, LHC Machine, Journal of Instrumentation, 3:S08001,
2008.

[3] CERN, 2011/05/25, http://public.web.cern.ch/.

[4] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron
Collider, Journal of Instrumentation, 3:S08003, 2008.

[5] ATLAS Collaboration, 2011/05/25, http://atlas.ch/.

[6] M.L. Mangano, The super-LHC, arXiv:0910.0030, 2009.

[7] F. Zimmermann, HL-LHC: parameter space, constraints and possible options,
Proceedings of Chamonix workshop, CERN, 2011.

[8] A. Abdesselam, June 2010, http://atlas.web.cern.ch/Atlas/
GROUPS/UPGRADES/.

[9] R.L. Bates, Upgrading the ATLAS barrel tracker for the super-LHC, Nuclear
Instruments and Methods in Physics Research A, 607, 24 - 26, 2009.

[10] ATLAS Upgrade Group, 2011/05/25, https://twiki.cern.ch/twiki/bin/
viewauth/Atlas/UpgradeDetectorGeometryVersions.

[11] ATLAS Collaboration, ATLAS detector and physics performance technical de-
sign report, ATLAS TDR 14, CERN/LHCC 99-14, 1999.

[12] S. Schmitt and A. Schöning, A Fast Track Trigger for ATLAS at Super-LHC,
Journal of Instrumentation, 5:C07013, 2010.

[13] A. John , Data Reduction at Module Level in a Level-1 Track Trigger for the AT-
LAS High-Luminosity Upgrade, Diploma thesis, Universität Heidelberg, 2011.

[14] S. Pirner , Intelligent Filtering Algorithms for an upgraded Inner Tracker at
ATLAS, Bachelor thesis, Universität Heidelberg, 2010.

[15] Netlogic Microsystems, NL9000 RA Knowledge-based Processors 2M, 1M, 512k,
and 128k Records, Datasheet, Revision 2.6, May 2010.

[16] D. Glodeck , Simulation eines L1-Spur-Triggers für ATLAS, Bachelor thesis,
Universität Heidelberg, 2010.

87

[17] K. Pagiamtzis and A. Sheikholeslami, Content-Addressable Memory (CAM)
Circuits and Architectures: A Tutorial and Survey, IEEE Journal of Solid-State
Circuits, 41:712 - 727, 2006.

[18] ModelSim SE, Version 6.6b, May 2010, www.modelsim.com.

[19] HiTech Global, HTG-V5-100GIG User Manual, December 2009.

[20] D. Chen, J. Cong and P. Pan, FPGA Design Automation: A Survey, Foun-
dations and Trends in Electronic Design Automation, Vol. 1, No 3, 195 - 330,
2006.

[21] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep - Submi-
cron FPGAs, Kluwer Academic Publishers, 1999.

[22] Xilinx, Virtex-5 FPGA User Guide, May 2010.

[23] Xilinx ISE Design Suite, Version 12.1, April 2010, www.xilinx.com.

[24] Labview, Version 9.0, 2009, www.labview.com.

88

C Programs

C.1 VHDL program codes for the FPGA

UART Controller

This Part of the UART Controller is described in 7.2.1. It is a small state machine
converting the UART signals in 1 byte 'STD_LOGIC_VECTOR'.

architecture Behavioral of uart_controller is

entity uart_controller is

generic(

baud : natural := 115200;

sys_freq : natural := 150 -- MHz

);

port(

CTS : out STD_LOGIC := '0';

TXD : in STD_LOGIC;

RXD : out STD_LOGIC := '1';

RTS : in STD_LOGIC;

sysclk : in STD_LOGIC;

d_valid_out : out STD_LOGIC := '0';

to_nl9k_data : out STD_LOGIC_VECTOR (7 downto 0) := (others=>'0');

uart_wait : out STD_LOGIC := '0';

nl9k_rd : in STD_LOGIC;

d_valid_in : in STD_LOGIC;

from_nl9k_data : in STD_LOGIC_VECTOR (7 downto 0)

);

end uart_controller;

signal uart_counter, uart_counter2 : natural := 0;

signal bit_counter, bit_counter2 : natural := 0;

signal data_in : STD_LOGIC_VECTOR (7 downto 0);

signal data_out : STD_LOGIC_VECTOR (7 downto 0);

type state_type is (idle, start, receive, stop, send);

signal currentState : state_type := idle;

constant bit_time : natural := (sys_freq *1000000 / baud -1);

89

begin

receive_data : process (sysclk)

begin

if rising_edge(sysclk) then

case currentState is

when idle =>

if TXD = '0' then

currentState <= start;

end if;

when start =>

if uart_counter = (bit_time /2) then

currentState <= receive;

uart_counter <= 0;

else

uart_counter <= uart_counter +1;

end if;

when receive =>

if uart_counter = bit_time and bit_counter < 8 then

data_in (bit_counter) <= TXD;

bit_counter <= bit_counter +1;

uart_counter <= 0;

elsif bit_counter > 7 then

currentState <= stop;

uart_counter <= 0;

to_nl9k_data <= data_in;

else

uart_counter <= uart_counter +1;

end if;

when stop =>

if uart_counter = bit_time then

currentState <= send;

d_valid_out <= '1';

CTS <= '1';

else

uart_counter <= uart_counter +1;

end if;

90

when send =>

if nl9k_rd = '1' then

d_valid_out <= '0';

CTS <= '0';

currentState <= idle;

uart_counter <= 0;

bit_counter <= 0;

end if;

end case;

end if;

end process;

Section of the NL9000 Controller writing an instruction into

FIFOs

This program code demonstrates the implementation of a NL9000 Instruction in
the state machine of the NL9000 Controller. When the state machine received the
commands to get into the 'cb_write_compare2' state, it waits for the necessary
data. The data will be submitted by the UART Controller byte-wise as long as
the 'rd_usb_in' signal is set to '1'. The received data are saved temporarily in the
FPGA in di�erent 'STD_LOGIC_VECTOR' to process them in a CB Write and
Compare2 Instruction and write them into the two output FIFOs.

when cb_write_compare2 =>

rd_usb_in <= '1';

if d_valid_in = '1' then

if programm_counter3 < 2 then

received_cb_address1 (((2 - programm_counter3) *8 -1)

downto ((1 - programm_counter3) *8)) <= usb_data_in;

programm_counter3 <= programm_counter3 +1;

elsif programm_counter3 < 4 then

received_cb_address2 (((4 - programm_counter3) *8 -1)

downto ((3 - programm_counter3) *8)) <= usb_data_in;

programm_counter3 <= programm_counter3 +1;

end if;

if programm_counter3 < 24 and programm_counter3 > 3 then

received_cb_data2 (((24 - programm_counter3)*8 -1)

downto ((23 - programm_counter3)*8)) <= usb_data_in;

programm_counter3 <= programm_counter3 +1;

91

elsif programm_counter3 < 44 and programm_counter3 > 23 then

received_cb_data3 (((44 - programm_counter3)*8 -1)

downto ((43 - programm_counter3)*8)) <= usb_data_in;

programm_counter3 <= programm_counter3 +1;

end if;

if programm_counter3 = 44 then

received_LTRSelect <= usb_data_in;

programm_counter3 <= programm_counter3 +1;

end if;

end if;

if programm_counter3 = 45 then

rd_usb_in <= '0';

data_fifo_out1 <= "0" & x"00000000" & "111" & "01000" &

("0" & received_cb_address1 (8 downto 5))

& received_cb_data2(159 downto 80)

& parity ("01000", "0" & received_cb_address1 (8 downto 5)

, received_cb_data2 (159 downto 80), '1', '1', '1');

wr_fifo_out1 <= '1';

data_fifo_out2 <= "0" & x"00000000" & "111" &

received_LTRSelect(4 downto 0)

& received_cb_address1 (4 downto 0)

& received_cb_data2(79 downto 0)

& parity (received_LTRSelect(4 downto 0),

received_cb_address1(4 downto 0),

received_cb_data2 (79 downto 0), '1', '1', '1');

wr_fifo_out2 <= '1';

programm_counter3 <= programm_counter3 +1;

end if;

if programm_counter3 = 46 then

rd_usb_in <= '0';

data_fifo_out1 <= "0" & x"00000000" & "000" & "00000" &

("0" & received_cb_address2 (8 downto 5))

& received_cb_data3(159 downto 80)

& parity ("00000", "0" & received_cb_address2 (8 downto 5)

92

, received_cb_data3 (159 downto 80), '0', '0', '0');

wr_fifo_out1 <= '1';

data_fifo_out2 <= "0" & x"00000000" & "000" & "00000"

& received_cb_address2 (4 downto 0)

& received_cb_data3(79 downto 0)

& parity ("00000", received_cb_address2(4 downto 0)

, received_cb_data3 (79 downto 0), '0', '0', '0');

wr_fifo_out2 <= '1';

programm_counter3 <= programm_counter3 +1;

end if;

if programm_counter3 > 46 then

rd_usb_in <= '0';

wr_fifo_out1 <= '0';

wr_fifo_out2 <= '0';

programm_counter3 <= 0;

currentState <= idle;

end if;

C.2 VHDL program codes for the ModelSim

simulation

Program to calculate the parity bits of the NL9000

This program is part of the Instruction Library of the ModelSim simulation. It was
similarly used in NL9000 Controller.
The parity bits are calculated by using two boolean values and toggle them for

each '1' found on the even/uneven bits in the input buses of the NL9000.

package body functions_pack is

function parity (constant DIBUS : in STD_LOGIC_VECTOR (4 downto 0);

constant DCTX : in STD_LOGIC_VECTOR (4 downto 0);

constant DBUS : in STD_LOGIC_VECTOR (79 downto 0);

constant DV_0 ,DV_1 ,DV_2 : in STD_LOGIC

)

return STD_LOGIC_VECTOR is

variable parity0 : boolean;

variable parity1 : boolean;

93

begin

parity0 := false;

parity1 := false;

for parity_counter0 in 0 to 2 loop

if DIBUS(parity_counter0 * 2) = '1' then

parity0 := not parity0;

end if;

end loop;

for parity_counter1 in 0 to 1 loop

if DIBUS(parity_counter1 *2 + 1) = '1' then

parity1 := not parity1;

end if;

end loop;

for parity_counter2 in 0 to 2 loop

if DCTX(parity_counter2 *2) = '1' then

parity0 := not parity0;

end if;

end loop;

for parity_counter3 in 0 to 1 loop

if DCTX(parity_counter3 *2 +1) = '1' then

parity1 := not parity1;

end if;

end loop;

for parity_counter4 in 0 to 39 loop

if DBUS(parity_counter4 *2) = '1' then

parity0 := not parity0;

end if;

end loop;

for parity_counter5 in 0 to 39 loop

if DBUS(parity_counter5 *2 +1) = '1' then

parity1 := not parity1;

end if;

end loop;

if DV_0 = '1' then

parity0 := not parity0;

94

end if;

if DV_1 = '1' then

parity1 := not parity1;

end if;

if DV_2 = '1' then

parity0 := not parity0;

end if;

if parity1 and parity0 then

return "11";

elsif parity1 and not parity0 then

return "10";

elsif (not parity1) and parity0 then

return "01";

else

return "00";

end if;

C.3 LabView program codes

Con�guration File of the 80 bit compare test

In the following section the content of the con�guration �le of a 80 bit compare test
is shown.

[Reg Read]

NumberEntries = 13

#NumberBytes including command bytes for State Machine

NumberBytes = 6

#Device Identification Reg

AddressReg0 = 000000

#Device Config Reg

AddressReg1 = 000001

#LTR Block Select Reg

AddressReg2 = 000200

#block x config reg

AddressReg3 = 000400

AddressReg4 = 00040A

AddressReg5 = 000403

AddressReg6 = 000409

#block x BMR reg

AddressReg7 = 0008A0

95

AddressReg8 = 000830

AddressReg9 = 000890

#parallel search reg

AddressReg10 = 000202

#range matching reg

AddressReg11 = 080400

#key constr reg

AddressReg12 = 000206

[Reg Write]

NumberEntries = "11"

#NumberBytes including command bytes for State Machine

#only even number of bytes allowed for this LabView programm

NumberBytes = 16

#write dev config reg (select single device)

AddressReg0 = 000001

DataReg0 = 00000000000000000092

#write block select reg activate block 3+9+A

AddressReg1 = 000200

DataReg1 = 00000000000000000608

#write block A config reg (80bit usage and activate) !!!

AddressReg2 = 00040A

DataReg2 = 00000000000000000001

#write block 3 config reg (80bit usage and activate) !!!

AddressReg3 = 000403

DataReg3 = 00000000000000000001

#write block 9 config reg (80bit usage and activate) !!!

AddressReg4 = 000409

DataReg4 = 00000000000000000001

#write block A BMR reg

AddressReg5 = 0008A0

DataReg5 = 00000000000000000000

#write block 3 BMR reg

AddressReg6 = 000830

DataReg6 = 00000000000000000000

#write block 9 BMR reg

AddressReg7 = 000890

DataReg7 = 00000000000000000000

#parallel search reg

AddressReg8 = 000202

DataReg8 = 00000000000000000000

#write range matching reg

AddressReg9 = 080400

96

DataReg9 = 00000000000000000000

#key construction reg

AddressReg10 = 000206

DataReg10 = 00000000000000000003

[Data Write]

NumberEntries = 4

#write block A data at addr 0 (80bit usage)

Address0 = 00A000

DataX0 = 00000000000000000001

DataY0 = 000FFFFFFFFFFFFFFFFE

#write block 3 data at addr 0 (80bit usage)

Address1 = 003000

DataX1 = 00000000000000A00000

DataY1 = FFFFFFFFFFFFFF5FFFFF

#write block 9 data at addr 0 (80bit usage)

Address2 = 009000

DataX2 = 00000000000000A00000

DataY2 = FFFFFFFFFFFFFF5FFFFF

#write block 9 data at addr 1 (80bit usage)

Address3 = 009001

DataX3 = 18F17D526E0280C721D9

DataY3 = 0000000000FD7F300000

[Data Read X]

NumberEntries = 1

NumberBytes = 6

AddressReg0 = 00A000

[Data Read Y]

NumberEntries = 1

NumberBytes = 6

AddressReg0 = 00A000

[Shift DCLK]

#Direction 00 shift left , 01 shift right

Direction = 01

#Number defines the degrees of DCLK to be shifted (1 : 1.406 degree)

Number = 05

[CB Write]

NumberEntries = 2

CBAddress0 = 0002

97

CBData0 = 0000000000000000000200000000000000000001

CBAddress1 = 0001

CBData1 = 00034623464436000002AAADFFFF004334632626

[Write and Compare1]

NumberEntries = 1

CBAddress0 = 0004

CBData0 = 1230000000000000000112300000000000000001

LTRSelect0 = 00

Reliability Test and User Interface Database Write function

The following two snapshots of Labview program code are supposed to demonstrate
the basic functionality of the Reliability Test and the user interface. Figure C.1 is
a part of the user interface. It is programed to read out the section 'Data Write'
of the con�guration �le and sends the data to the USB port in hexadecimal values.
The program in Figure C.2 uses a random number generator of Labview to write
1000 Database Write instructions into a con�guration �le with random data entries.

98

Figure C.1: The program is part of the Labview user interface and reads out the
section of the Con�guration File, which is used to store the address and
data of all Database Write instructions.

99

Figure C.2: The Reliability Test program generates 1000 Database Write instruction
in a con�guration �le. The DataX and DataY values are generated with
a random number generator.

100

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den (Datum) .

101

	Introduction
	Collider Experiments in CERN
	Large Hadron Collider
	The ATLAS detector
	LHC upgrade
	ATLAS upgrade

	ATLAS Trigger System and Data Reduction
	Current trigger system
	The L1 trigger
	The L2 Trigger
	The Event Filter

	Plans for trigger systems for HL - LHC
	Implementation of L1 Track Trigger with CAM chips

	Knowledge-based Processors of Netlogic
	Introduction to Content Addressable Memory
	Netlogic Chip Families
	NL9000
	Basic Structure
	Setup and Functions
	Performance and Uncertainties

	Simulation of the NL9000 Processor
	Simulation Tools
	Encrypted Verilog Model
	Setup and Test Runs
	Results

	Desription of Test Hardware Components
	Field Programmable Gate Array
	Development Platform HTG-100GIG
	Components and Architecture

	Software for the Controller and the Interface
	Software Tools
	Software Modules for the Development Platform
	Initial Startup of the Xilinx Virtex 5 and the NL9000
	Final Program for the Xilinx Virtex-5

	ISim Simulation
	Functions of the Labview Program

	Test Runs and Results
	Test Configuration Files
	Measurement of the Power Consumption
	Latency measurement
	Results

	Conclusion
	Appendix
	Lists
	List of Figures
	List of Tables

	Bibliography
	Programs
	VHDL program codes for the FPGA
	VHDL program codes for the ModelSim simulation
	LabView program codes

