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A B S T R A C T

Precise measurements of neutral D meson mixing is a powerful probe for physics
beyond the Standard Model, as quantum loops governing charm mixing transi-
tions are sensitive to potential new heavy degrees of freedom and additional
sources of CP violation. In this thesis, semileptonic decays of the form D∗+ →
D0(→ K+µ−ν)π+ are for the first time explored at LHCb to measure charm mix-
ing, using a sample of proton-proton collisions recorded in 2012 corresponding to
an integrated luminisity of 2 fb−1. The flavour of the D0 meson at the moment
of prodution and decay is determined by the charges of the pion and the muon,
respectively. In the scope of this work a full event selection and fitting procedure
is developed and validated, as well as the investigation of different correction
algorithms for the undetected neutrino in the final states. A sensitivity study is
performed with pseudo-experiments mimicking the observed data distributions,
showing that with the available sample a statistical precision of 0.01% on the de-
termination of the mixing rate RM = (x2 + y2)/2 can be achieved.

Z U S A M M E N FA S S U N G

Präzise Messungen der Mischung von neutralen D Mesonen ist ein wichtiger Test
auf Physik jenseits des Standard Modells, da die involvierten Quantenschleifen
sensitiv für neue schwere Freiheitsgrade und zusätzlichen Quellen von CP Ver-
letzung sind. In dieser Thesis werden zum ersten mal semileptonische Zerfälle
der Form D∗+ → D0(→ K+µ−ν)π+ im Rahmen einer Charm Mischungsanalyse
am LHCb Experiment untersucht. Dabei wird ein Datensatz von Proton-Proton
Kollisionen aus dem Jahr 2012 verwendet, welcher einer integrierten Luminosität
von 2 fb−1 entspricht. Die Quarkzusammensetzung der D0 Mesonen zur Zeit der
Produktion und des Zerfalls wird durch die Ladungen des Pions und des Myons
bestimmt. Im Rahmen dieser Arbeit wird eine komplette Ereignisselektion und
eine Methode zur statistischen Trennung von Singal- und Untergrundereignis-
sen entwickelt und validiert. Außerdem werden verschiedene Algorithmen zur
Rekonstruktion des nicht detektierbaren Neutrinos im Endzustands untersucht.
Mit Hilfe von Pseudoexperimenten, welche die beobachteten Datenverteilungen
imitieren, wird in einer Sensitivitätsstudie gezeigt, dass mit dem verfügbaren
Datansatz eine statisitische Präzision von 0.01% auf die Bestimmung der Mis-
chungsrate RM = (x2 + y2)/2 erreicht werden kann.
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I N T R O D U C T I O N

It has been 40 years already since the current theory describing the properties of
the known elementary particles and their mutual interactions has been developed.
Called the Standard Model (SM) of particle physics, this theory has withstood
all experimental probes with increasing accuracy over the past years. The latest ex-
perimental confirmation of the theory happened recently with the discovery of the
Higgs boson, being the scalar field responsible of the electroweak-symmetry break-
ing. Nevertheless, it is clear that the theory is incomplete as there are phenomena,
such as dark matter, dark energy or the observed matter-antimatter asymmetry in
the Universe, which can not be explained and therefore drive the development of
new experiments to search for physics beyond the SM.

At the European Organization for Nuclear Research (CERN), the Large Hadron Col-
lider (LHC), being the highest energy proton-proton collider ever built, provides
the opportunity to search for physics beyond the SM by direct production of new
heavy particles. In addition, a much higher energy scale can be probed by the
investigation of processes involving quantum loops where the existence of new
particles may contribute to the observable amplitudes even if the available energy
is not sufficient for direct production. One of the four main experiments at the
LHC, the LHCb experiment, is dedicated to these indirect searches through the
study of c- and b-hadrons decays.

A powerful indirect probe for non-SM particles contributing to loops involving
mesons with charm or beauty is the phenomenon of periodical matter-antimatter
transitions, called oscillation or mixing. The process tests the structure of neutral
flavour changing interactions, which happen only at higher order in the SM, but
also allows to search for new sources of CP violation. CP violation describes the
different behavior of matter and antimatter, which is believed to be a key ingre-
dient to explain the observed matter-antimatter asymmetry in the Universe. The
amount of CP violation predicted by the SM is not however sufficient to explain
the observations, therefore alternative physic models providing additional sources
of CP violation need to be probed.

Over the past years most of the experimental activity focused on indirect searches
with kaon and beauty decays. Now LHCb has the potential to perform also in-
dept investigations of the charm sector. Only two years ago, LHCb reported the
first observation of charm mixing from a single measurement, using the hadronic
two-body decay D0 → K+π−. This thesis represents the first attempt to study
charm mixing using semileptonic charm decays. Contrary to hadronic two-body
final states, where the same final state is accessible through mixing and highly
suppressed direct decays, semileptonic final states, such as D0 → K+µ−ν, can
unambiguously indicate charm-anticharm transitions as the direct decay is in this
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2 INTRODUCTION

case not possible. This allows to measure directly the mixing rate using a sim-
pler time-integrated analysis. However, semileptonic final states at LHCb are only
partially reconstructible due to the undetected neutrino and therefore suffer from
large background contamination. This introduces non-trivial experimental chal-
lenges, which are dealt with for the first time in this thesis.

The thesis is organized as follows. Chapter 1 presents the general formalism
and theoretical motivation for the study charm mixing, with special focus on the
semileptonic decays, as well as a summary of the current experimental status.
Chapter 2 gives a short description of the experimental apparatus. The topology
and experimental features of semileptonic charm decays at LHCb are introduced
in Chapter 3. Several algorithms which can be used to account/correct for the
missing neutrino are discussed in Chapter 4. Chapter 5 describes the data sample
and the specific selection requirement used to isolate the signal and suppress the
relevant backgrounds. Chapter 6 explains the analysis procedure developed to
statistically separate the semileptonic signal from remaining backgrounds. A first
attempt to fit the data is also there presented, before the final conclusions and
prospects are drawn.



1
C H A R M M I X I N G W I T H S E M I L E P T O N I C D E C AY S

This chapter introduces the theoretical background and the motivation for the study of
charm mixing with semileptonic decays. It first discusses the general formalism describing
neutral meson mixing and then focuses the attention on the charm system, explaining why
it is a sensible probe for physics beyond the Standard Model. An overview of how charm
mixing is experimentally measured and a summary of the available results is also given at
the end, with particular interest in the semileptonic decays here studied.

1.1 neutral meson-antimeson mixing

Mesons are subatomic particles consisting of a quark-antiquark state, bound to-
gether by strong interactions. Mesons made of quark and antiquarks of different
flavour are usually referred to as flavoured mesons and can be identified by an
associated quantum number. Flavoured mesons composed by pairs of the first-
generation quarks, i.e. the up (u), the down (d) and the corresponding antiquarks
(u, d), are called light mesons; flavoured mesons containing a strange (s), a charm
(c), a bottom (b) quark or the corresponding antiquarks (s, c and b) are called
respectively kaons (or K), D and B mesons.

Contrarily to the neutral pion, which is composed by a linear combination of
u u and d d pairs, flavoured mesons with neutral electric charge appear in two
different charge-conjugated1 states with distinct quantum numbers, hereafter de-
noted as P0 and P0 respectively. As originally postulated by Gell-Mann and Pais
in 1955 [1], this allows for flavour-changing P0 → P0 and P0 → P0 transitions
occurring before the decay. In particular, for times t much larger than the typical
strong interaction scale, the time evolution of the neutral meson-antimeson system
is described by the following effective Schrödinger equation:

i
∂

∂t


|P0(t)〉
|P0(t)〉


 =

[
M −

i

2
Γ

]
|P0(t)〉
|P0(t)〉


 , (1)

where M and Γ are 2× 2 Hermitian matrices,

M =


M11 M12

M∗12 M22


 and Γ =


Γ11 Γ12

Γ∗12 Γ22


 ,

1 Charge conjugation (C) inverts the sign of all charges, thus transforming a particle into its antiparti-
cle.
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4 charm mixing with semileptonic decays

associated with transitions via off-shell (dispersive) and on-shell (absorptive) inter-
mediate states, respectively. The diagonal elements of the two matrices are as-
sociated with the flavour-conserving time-development P0 → P0 and P0 → P0

and must satisfy M11 =M22 and Γ11 = Γ22 to be consistent with CPT invariance2.
The off-diagonal elements are instead associated with flavour-changing transitions
P0 → P0 and P0 → P0. The eigenstates resulting from Equation 1, |P1〉 and |P2〉,
can be expressed as linear combinations of the flavour eigenstates

|P1,2〉 = p
∣∣P0
〉
± q

∣∣P0
〉

,

where p and q are complex parameters satisfying the relations |p2|+ |q2| = 1 and
q/p = ±

√
2M∗12 − iΓ

∗
12)/

√
(2M12 − iΓ12). The real and imaginary part of the cor-

responding eigenvalues,

ω1,2 = (M11 −
i

2
Γ11) ±

q

p
(M12 −

i

2
Γ12) ≡ m1,2 −

i

2
Γ1,2,

identify the masses, m1,2, and the decay widths, Γ1,2, of the two eigenstates, re-
spectively. Since the flavour-changing transitions occur only if the two eigenstates
have different masses or widths, flavour mixing is usually characterized by the
following two dimensionless parameters:

x =
m1 −m2

Γ
, y =

Γ1 − Γ2
2Γ

, (2)

with the average decay width defined as Γ = (Γ1 + Γ2)/2. The probability for an
initially (at t = 0) produced P0 meson to oscillate or not into P0 are then given
respectively by

∣∣〈P0(t)
∣∣P0(0)

〉∣∣2 ∝ e−Γt[cosh(yΓt) + cos(xΓt)],

∣∣〈P0(t)
∣∣P0(0)

〉∣∣2 ∝
∣∣∣∣
q

p

∣∣∣∣
2

e−Γt[cosh(yΓt) − cos(xΓt)].

In the presence of flavour mixing, the typical exponential decay is then modified
with an oscillating term governed by the mass difference x and modulated by the
hyperbolic cosine term with argument proportional to the decay-width difference
y.

The CP symmetry is violated in the mixing process if the probability for the
transition P0 → P0 is different than that of P0 → P0. This is only possible if |q/p| 6=
1. CP violation can also happen in the interference between a decay following

2 The CPT operator is the product of the three symmetry transformations C (charge conjugation), P
(parity) and T (time reversal) interchanging particles with antiparticles, changing sign to the spatial
coordinates (x→ −x) and reversing the time direction (t→ −t), respectively. While any of the three
individual symmetries may be violated, the CPT symmetry must be conserved in any local field
theory with Lorentz invariance [2].
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M12 and Γ12 determine the mass and width splittings ∆M and ∆Γ, respectively:

∆M ≡ M1 − M2 = 2Re

[
q

p
(M12 − i

2
Γ12)

]
(15)

∆Γ ≡ Γ1 − Γ2 = −4Im

[
q

p
(M12 − i

2
Γ12)

]
, (16)

and therefore the characteristics of D0-D0 mixing. We show the unmixed and mixed

intensities as a function of the dimensionless variable, Γt, for initially pure states of

K0, D0, B0 and Bs, in Figs. 3(a–d), respectively. Of the four lowest-lying neutral

pseudoscalar meson systems, the D0-D0 system shows the smallest mixing, as noted

earlier. In the K0 system, both |x| and |y| are both of order 1; in the D0 system,

|x| and |y| are both of order 1%; in the B0 and Bs systems, |x| # |y|.
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Fig. 3. The unmixed (blue) and mixed (red) intensities for an initially pure (a) K0; (b) D0; (c)
B0; (d) Bs state. The vertical scale in (b) is logarithmic, the others linear. The values of the mixing
parameters as defined in Eqs. 1 and 2 are obtained using data from Ref. 19, assuming ||q/p| = 1.

From Eq. 9 (Eq. 10), the amplitude that a D0 (D0) produced at t = 0 will

develop into a linear combination of D0 and D0 and decay into f (f̄) at time t is:

〈f |H|D0(t)〉 = Afg+(t) + Āf
q

p
g−(t), (17)

〈f̄ |H|D0(t)〉 = Āf̄g+(t) + Af̄

p

q
g−(t), (18)

Figure 1: The (red) mixed and (blue) unmixed intensities as a function of normalized decay
time Γt, for initially pure (a) K0, (b) D0, (c) B0 and (d) B0s mesons. The plot is
taken from Ref. [3] and assumes |q/p| = 1.

mixing and a decay without mixing to the same final state. In that case, the phase
arg(q/p) 6= 0.3

Each neutral meson-antimeson system has its own set of mixing parameters
(Equation 2), thus flavour oscillations result in different behaviours depending on
the system considered, as shown in Figure 1. Neutral kaons have both very dif-
ferent masses and widths, with |x|, |y| ∼ O(1), and were the system where flavour
mixing was firstly observed in 1956 [4]. Oscillations in the B0-B0 are instead dom-
inated by the large mass difference, with |x| ∼ O(1) and |y| ∼ 0.5%, and were
observed in 1987 [5]. The B0s-B0s mixing, where |x| ∼ 20 and |y| ∼ 5%, exhibits the
fastest oscillation frequency and required experiments with very accurate decay-
time resolution and was observed in 2006 [6]. The year after, several measurements
showed first evidence for D0-D0 oscillations [7, 8, 9]. These, with |x|, |y| . 0.5%, oc-
cur with the smallest rate and require huge data samples to be observed. Indeed,
only in 2012 the LHCb collaboration published the first observation of neutral
charm mixing from a single measurement [10].

1.2 charm mixing in the standard model and beyond

Neutral meson-antimeson oscillations are interesting processes as they are sensi-
tive to potential not-yet-observed heavy particles which propagate in the under-

3 Setting the weak phase of the ratio of decay amplitudes Af/Āf to final state f to zero.
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c

u

u

c

d, s,b d, s,b

W+

W−

c

u

u

c

π0

π0

Figure 2: Two Feynman diagrams describing processes contributing to neutral charm mix-
ing. Left: example for a short-range box diagram, where all possible down-type
quarks can run in the loop. Right: transition between the D0 and the D0 states
via long-range intermediate-meson states (here neutral pions).

lying flavour changing amplitudes. The observation of mixing in the K0 and B0

systems implied the existence respectively of the charm and top quarks before
these particles were actually discovered. Similarly, by comparing observed meson
mixing with predictions of the Standard Model (SM), modern experimental stud-
ies have been able to constrain new physics models. Thanks to many years of
experimental investigations dedicated to the K0, B0 and B0s oscillations, it is to-
day clear that the initial hopes for large new physics contributions affecting these
processes have come to naught, as the SM successfully describes all the available
experimental results. While these investigations have and will continue to play
a central role in our quest to understand flavour physics, in-depth examinations
of the D mesons sector have only recently started reaching the needed level of
precision to be sensitive to possible NP contributions.

To better quantify this statement and motivate why studying of charm mixing
provides a unique, not-yet-exploited probe for physics beyond the SM, it is use-
ful to explain briefly how charm flavour-changing neutral currents are generated
in the SM framework. Flavour-changing processes in the SM are only possible
through weak interactions mediated by an electrically charged W± boson (charged
currents). These transitions are of the form q → W+q ′ (q ′ → W−q), where q and
q ′ are respectively an up- (u, c, t) and a down-type (d, s,b) quark, and happen
with probabilities proportional to the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element Vqq ′ (V∗qq ′) [11, 12]. As these processes change the flavour by only one
unit, flavour-changing neutral currents such asD0 → D0, where the charm flavour
is changed by two units, have to involve processes of higher order. Figure 2 shows
two examples of SM processes contributing to the charm mixing amplitude. The
first is a short-distance contributions made by a box diagrams, where a simultane-
ous exchange of two weak bosons allows for the transition between a charm and
and an anticharm quark. In the box diagrams, all possible down-type quarks can
participate. This is contrary to neutral kaon or B0(s) meson systems, where only
the up-type quarks enter, and therefore provides a unique opportunity to study ef-
fects of physics beyond the SM in the down-type quark sector. The second possible
form of flavour-changing neutral currents in the SM, also shown in Figure 2, are
transitions via intermediate states accessible to both the D0 and the D0 mesons,
referred to as long-distance contributions.
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The SM predicts the contributions of the box diagrams to be very small. This is
due to the small CKM coupling to the b quark, which is proportional to the factor
|VubV

∗
cb|
2/|VusV

∗
cs|
2 ∼ O(10−6), and the destructively interfering contributions of

the light d and s quarks, historically known as the Glashow-Illiopoulos-Maiani
(GIM) mechanism [13]. In total, the prediction for the short-distance SM contribu-
tions are O(10−5) for x and O(10−7) for y [14]. For this reason, the dominant con-
tributions to charm mixing are expected to come from long-distance intermediate-
meson states, which cannot be calculated perturbatively and thus are hard to es-
timate. Different approaches for the SM contributions yield estimations differing
very much (e.g. |x|, |y| 6 10−3 in Ref. [15, 16, 17] or |y| ≈ 10−2, |x| ∈ (−1.0,−0.1)×y
in Ref. [18, 19]). Estimations for contributions of models extending the SM also dif-
fer by orders of magnitude, but can enhance the mixing rate significantly [20].
However, the large theoretical uncertainties for the SM contributions make it hard
to judge, if measured values of x and y are hints of physics beyond the SM or not.

In the charm system, to a very good approximation, only two families of quarks
contribute to mixing and decay [21]. The CKM mechanism, however, needs at
least three families to generate CP violation [22]. For that reason, SM estimations
of CP violation in the charm system are tiny and the measurement CP-violating
asymmetries can be a powerful probe to test models beyond the SM, providing
additional sources of CP violation.
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Figure 3: Two dimensional confidence-level regions for the charm mixing parameters (left)
x − y and (right) |p/q| − arg(q/p), corresponding to 1 − 5 Gaussian standard
deviations (σ) [23]. The no-mixing [no-CP-violation] hypothesis correspond to
the (0, 0) [(0, 1)] point.

To date, the combination of all available experimental measurements, as per-
formed by the Heavy Flavour Averaging Group [23], yield mixing parameters,

x =
(
0.41+0.14

−0.15

)
% and y =

(
0.63+0.07

−0.08

)
%,
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and CP-violating parameters,

|q/p| = 0.93+0.09
−0.08 and arg(q/p) =

(
−8.7+8.7

−9.1

)◦
,

compatible with the SM expectations and with conservation of CP symmetry (Fig-
ure 3). These results do not yet close the possibility to observe new-physics effects
in the neutral D meson sector. Hence, additional and more precise measurements
are needed.

1.3 experimental aspects of charm mixing measurements

The cross section for c c production in proton-proton interactions is huge, σ(cc̄) ≈
1.4mb at a center-of-mass energy of

√
s = 7 TeV [24]4. Therefore the LHCb exper-

iment at the CERN’s Large Hadron Collider, that thanks to its dedicated design
to study heavy-flavoured mesons collected so far the world’s largest sample of
charm decays, is the ideal place to search for new physics through measurements
of mixing and CP violation in charm decays.

To determine whether a decay of a neutral charm meson followed a flavour os-
cillation or not, it is necessary to determine (tag) the flavour of the neutral D at
production time and compare it to that at the moment of its decay. Contrarily to
the case of the other neutral meson systems, where flavour tagging requires ded-
icated experimental setups or complicated analyses procedures, it is possible to
determine the production flavour of a neutral D meson by simply restricting the
analysis to those produced in the decay of a D∗(2010)± meson, hereafter indicated
simply as D∗±. This meson decays, with approximately 68% branching ratio [25],
through strong (flavour-conserving) interactions asD∗+ → D0π+ orD∗− → D0π−.
Hence, the charge of the charged pion unambiguously indicates the flavour of the
neutral D meson at production time.5 The small mass difference between the D∗+

and its decay products, Q = mD∗+ −mD0 −mπ+ ≈ 5.8 MeV [25], limits the avail-
able kinetic energy of the daughter particles. For this reason the charged pion from
the D∗± decay is usually referred as soft pion. The low Q-value is also experimen-
tally useful as it allows smaller mass resolutions, helping to drastically reduce the
amount of combinatorial background. As better described in Chapter 3, requiring
the presence of the parent D∗± is essential for reconstructing decays, such as those
studied in this thesis, where the D0 final state is partially reconstructed.

The flavour at decay time can only be inferred by analysing the decay products.
For final states that are not CP self-conjugated, it is conventional to define right-
sign (RS) and wrong-sign (WS) decays by comparing the charge of a special probe

4 Measured in the phase space available at LHCb
5 Another possibility would be to look atDmesons coming from the semileptonic decays of b hadrons,

where the charge of the lepton tags the D production flavour. This method was firstly used in LHCb,
where is particularly useful as it leads to very small mistag rates [26].
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particle in a multi-particle final state with the charge of the soft pion.6 As charm
mesons decay mostly through Cabibbo-favoured c → W+s transition, the probe
particle is usually identified with a charged kaon. Decay chains where the kaon
and the soft pion have opposite charge,7

D∗+ → D0(→ K−X+)π+, (3)

are called RS, while those where the kaon and the soft pion have same charge,

D∗+ → D0(→ K+X−)π+, (4)

are called WS. The latter can also proceed through a D0 → D0 transition followed
by the Cabibbo-favoured decay D0 → K+X− and is sensitive to mixing. If the
nature of the other final-state particles, indicated generically in Equation 3 and 4

as X±, is purely hadronic, the WS process can also occur through a direct doubly-
Cabbibo-supressed c → W+(→ us̄)d transition.8 In this case, the mixing can be
distinguished from the doubly-Cabibbo-suppressed contribution by studying the
time-dependent WS rate. For an initially tagged D0 mesons, this reads as

N+
WS(t) ∝

∣∣∣∣
q

p

∣∣∣∣
2 ∣∣∣∣g+(t)

p

q
A(D0 → K+X−) +A(D0 → K+X−)g−(t)

∣∣∣∣
2

, (5)

where A indicates the direct decay amplitudes and the time-dependent coefficients
are

g±(t) =
1

2

(
e−iω1 t ± e−iω2 t

)
.

It is experimentally convenient to normalize the time-dependent WS rate to that
of the RS decays,

N+
RS(t) ∝ |A(D0 → K+X−)|2e−Γt,

so that many systematic uncertainties cancel:

R+(t) =
NWS(t)

NRS(t)
=

1

e−Γt

∣∣∣∣
q

p

∣∣∣∣
2 ∣∣∣∣g+(t)

pA(D0 → K+X−)

qA(D0 → K+X−)
+ g−(t)

∣∣∣∣
2

. (6)

The analogous expression for initially tagged D0 mesons, R−(t), can be obtained
by replacing q/p with p/q and A(D0 → K+X−)/A(D0 → K+X−) with A(D0 →
K−X+)/A(D0 → K−X+).

6 For CP-self-conjugated final states different analysis strategies are used. For an overview see for
example Ref. [25].

7 Charge-conjugated decays are from now implied unless stated otherwise.
8 Similarly, for these decays the RS final state can be reached by D0 → D0 followed by the doubly-

Cabibbo-suppressed decay D0 → K−X+. Because of the small charm mixing rate, this process is
however completely negligible when compared to the direct Cabibbo-favored decays and is therefore
ignored.
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1.3.1 Charm mixing with semileptonic decays

Contrarily to hadronic decays, where there is also a doubly-Cabibbo-suppressed
amplitude contributing to the WS process, semileptonic final states, such as K+`−ν̄,
can only be reached through mixing. In this case, the number of WS events per
decay time of Equation 6 takes the following simplified form

R+(t) =
1

e−Γt

∣∣∣∣
q

p

∣∣∣∣
2

|g−(t)|
2 ≈

∣∣∣∣
q

p

∣∣∣∣
2
x2 + y2

4
(Γ t)2, (7)

where the right-hand side of the equation has been expanded to second order
for |x| |y|� 1/(Γt). As a consequence, for semileptonic decays no time-dependent
analysis is needed and the mixing rate RM ≡ (x2 + y2)/2 can be accessed directly
with a time-integrated measurement. The time-integrated WS-to-RS ratio R+int is
the time integral of Equation 7, including the time-dependent selection and recon-
struction efficiency ε(t):

R+int =

∫
N+

WS(t)dt∫
N+

RS(t
′)dt ′

=

∫
e−Γt

∣∣∣qp
∣∣∣
2
x2+y2

4 (Γt)2ε(t)dt∫
e−Γt

′
ε(t ′)dt ′

=

∫
R+(t)D(t)dt

=

∣∣∣∣
q

p

∣∣∣∣
2
RM
2
Γ2
∫
t2D(t)dt

=

∣∣∣∣
q

p

∣∣∣∣
2
RM
2
Γ2 〈t2〉 (8)

where 〈t2〉 by definition represents the average value of t2 computed over the
observed normalized distribution of decay times,

D(t) =
e−Γtε(t)∫
e−Γt

′
ε(t ′)dt ′

.

The time-dependent efficiency ε(t) and therfore also D(t) are subject to the exper-
imental environment. As the measured value of 〈t2〉 is depending on D(t), the
observed time-integrated WS-to-RS ratios may be different from experiment to ex-
periment. In experiments where the reconstruction efficiency does not depend on
decay time, as it is the case at the B-factories, the observed distribution coincides
with the simple exponential decay, D(t) = Γe−Γ t. It follows that Γ2〈t2〉 = 2 and
thus Rint = RM (assuming |q/p| = 1). On the contrary, as better detailed in Chap-
ter 5, the data used in this analysis were collected with an online event selection
(trigger) that imposes requirements on the displacement of the D0 meson decay
point from the production point, thus rejecting candidates with short decay times.
This results in larger values of 〈t2〉, thus providing better experimental sensitivities
to the mixing rate RM.
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Figure 4: Experimental status on the measurement of RM from semileptonic D0 de-
cays [23].

Measuring the WS-to-RS time-integrated ratio separately for initially tagged D0

and D0 events gives sensitivity to CP violation in mixing. The experimentally
convenient observable is in this case the semileptonic asymmetry:

ASL =
R+int − R

−
int

R+int + R
−
int

=
|q/p|2 − |p/q|2

|q/p|2 + |p/q|2
. (9)

In the presence of CP violation in the mixing |q/p| 6= 1 and ASL 6= 0.
Although the semileptonic decay channel looks very attractive because of its

theoretical simplicity, it also implies difficult experimental challenges. Notably,
the presence of the undetectable neutrino in the final state does not allow for a
complete reconstruction of the decay chain. This, particularly at hadron-collider
experiments, greatly reduces the ability to isolate the rare WS decays from other
D0 decays, where final state particles are misreconstructed or not detected, and
from irreducible combinatorial backgrounds. These challenges require sophisti-
cated analysis strategies, as it will be better described in the rest of this thesis,
which represents the first approach to measure RM using semileptonic decays at
the LHCb experiment.

Currently available experimental results are summarised in Figure 4. Measure-
ments have been performed by different experiment: E791 [27], CLEO [28], BaBar [29,
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30] and Belle [31]. The world average is dominated by the Belle result with a preci-
sion of ≈ 0.03% and is compatible with RM = 0, further confirming that measuring
charm mixing with semileptonic decays requires huge data samples and challeng-
ing analysis strategies.



2
E X P E R I M E N TA L A P PA R AT U S

This chapter gives a brief description of the Large Hadron Collider and the LHCb detector,
focusing on the subsystems most important for the study of semileptonic charm decays
such as the tracking, the particle identification and the trigger systems.

2.1 the large hadron collider

The Large Hadron Collider (LHC) [32] is a circular hadron collider located at the Eu-
ropean Organization for Nuclear Research (CERN) close to Geneva, Switzerland.
It represents the final stage of a more complex accelerators system, entirely repre-
sented in Figure 5, which provides beams to different typologies of experiments. In
its main operational mode the LHC receives bunches of 450 GeV protons from the
Super Proton Synchrotron (SPS) and further accelerates them in two storage rings,
working in opposite directions. At four positions along the LHC 27 km length the
two beams cross each other, producing collisions at a frequency of 40MHz. These
interaction points are surrounded by particle detectors, which record the products
of the collision selecting interesting events in a fraction of a second.

The LHC operated with proton-proton collisions at an energy of 3.5 TeV per
beam in 2010 and 2011 and at 4 TeV in 2012. Beyond this main operation mode,
the LHC also collided protons with lead ions for two months in 2013 and used
lead-lead collisions for about one month each in 2010 and 2011. The LHC is cur-
rently in a shutdown period for major upgrades to increase proton beam energy
to 6.5 TeV, and further approaching its goal center-of-mass energy of

√
s = 14 TeV,

with restarting planned for early 2015.

2.2 the lhcb experiment

The Large Hadron Collider beauty (LHCb) detector [34] is the only experiment at the
LHC having as primary goal the search for physics beyond the SM through the
study of heavy flavoured mesons containing a b or a c quark. It is mainly build
to operate during pp collisions, but it has also been proficiently used to study
proton-lead collisions [35].

LHCb (see Figure 6) is a single-arm spectrometer with forward angular coverage
from approximately 10 to 300 (250) mrad in the bending (non-bending) plane. The
bending plane is defined by the magnetic field provided by a large dipole magnet
that deflects trajetories of charged particles. The special geometry is justified by the
fact that at the LHC energies both bb̄ and cc̄ pairs are predominately produced

13
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Figure 5: A schematic view of the CERN’s accelerator complex and the location of the
main experiments [33].
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1.3 М агнит

Магнит позволяет получить большой интеграл поля 4Тм на относительно
небольшой длине. Поле направлено вертикально и достигает в максимуме

5

Figure 6: Schematic vertical cross section through the LHCb detector, showing the various
subsystems [34].
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Figure 7: Simulated angular distribution of bb̄ pair production in pp collisions at center-
of-mass energy of 8 TeV, corresponding to the conditions of the 2012 data-taking
period. The LHCb angular acceptance is coloured in red [36].

Figure 8: Delivered and recorded luminosity by the LHCb detector as a function of time,
separately for 2010, 2011 and 2012 data-taking periods [36].

in the forward direction, as shown in Figure 7. Heavy flavoured mesons flying in
this direction are highly boosted and travel measurable distances in detector be-
fore they decay. Several subsystems allow for high-resolution track reconstruction,
measurement of engery and momentum as well as particle identification.

To efficiently operate at the LHC energies and rates, the instantaneous lumi-
nosity provided by the accelerator is reduced at the LHCb intersection point by
slightly separating the two colliding proton beams. This procedure allows to keep
a constant instantaneous luminosity profile during data taking and maintain sta-
ble detector performances. Figure 8 shows the delivered luminosity, as well as
that recorded by LHCb, as function of time. The detector operated with high effi-
ciency during the whole data-taking period and recorded in total approximately
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Figure 9: The LHCb dipole magnet (left) and the magnetic field along the z-axis (right)
[34].

40 pb−1, 1 fb−1 and 2 fb−1 of integrated luminosity during 2010, 2011 and 2012,
respectively.

Before giving a more detailed description of the subdetectors that are relevant
for the analysis presented here, it is useful to introduce the coordinate system
adopted at LHCb (see also Figure 6). This is a right-handed Cartesian system with
z-axis along the beam and y-axis pointing vertically upwards.1 From this also a
spherical coordinate system is deduced with azimuthal and polar angle indicated
by φ and θ, respectively, where the polar angle also defines the pseudorapidity as
η = − ln tan(θ/2).

2.2.1 The tracking system

Tracking means measuring the trajectories of charged particles (tracks) and, in
the presence of a magnetic field, their charge and momentum. In LHCb this is
achieved with a system of subdetectors comprising a large non-super-
conducting dipole magnet [37]. The magnet, as shown in Figure 9, provides a
magnetic field oriented mainly in y-direction corresponding to bending power of
4 Tm for a track of 10 m length in z-direction. To mitigate detector-induced left-
right asymmetries the magnet polarity is regularly switched and a roughly equal
amount of data is recorded with each polarity.

Figure 9 shows a schematic view of the LHCb dipole and magnetic field along
the z-axis.

Two subdetectors are placed upstream of the dipole magnet: the VErtex LOcator
(VELO) and the Tracker Turicensis (TT). The VELO [38] is the detector situated clos-
est to the interaction point, as it is dedicated to the precise reconstruction of the
position where heavy-flavoured hadrons decay. Because of their typical lifetimes
of ∼ 1 ps and their heavy boost, b- and c-hadrons travel distances of the order of

1 As a result, the x-axis points away from the centre of the beam ring



2.2 the lhcb experiment 17

Figure 10: The upper part shows a schematic view of the arrangement of the 21 velo sta-
tions as well as the 2 pileup veto stations in the x-z plane at y=0. The lower part
shows one of the stations in the x-y plane. The two semicircle shaped parts can
can be moved apart when the beam is unstable [34].

1 cm before decaying. The resulting decay products form then secondary vertices
that are well displaced from the vertex of the primary pp interaction. The VELO
allows to precisely measure the position of these vertices and determines the de-
cay time with a resolution for a fully reconstructed decay of approximately 45 fs.
The detector consists of 21 stations arranged in a row, as shown in Figure 10. Each
stations is divided into two semicircle shaped modules. On each module two dif-
ferent types of silicon-strip sensors are mounted. One of them is measuring radial
distances (R-sensors), the other is used to determine azimuthal angles (φ-sensors).
Information of the third dimension is inferred from the position of the sensors
along the z-axis. Four additional R-sensors, placed behind the interaction point
in negative z-direction, form the pileup veto station which is used for triggering
purposes. The VELO is designed to measure particles in the range 1.6 < |η| < 4.9
and |z| < 10.6 cm, as for particles in this region at least three modules are hit. In
order to separate the vacuum inside the VELO from the ultra-high vacuum of the
LHC, the modules are covered by a thin-walled aluminum box. The two-halves
design allows to move the detector away from the beam when this is unstable and
threatens the sensitive electronics. It is possible to measure the minimum distance
of a track to a primary vertex with a spatial resolution of (15+ 29/pT )µm. Here,
pT denotes the component of the momentum in GeV/c, which is transverse to the
beam axis.

The TT [34], situated approximately at z = 2.5m, is a silicon microstrip detector
consisting of two pairs of single-sided detector layers for a total size of 150 cm in
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Figure 11: Left: Schematic view of the TT and IT silicon strip detectors in purple and the
OT straw-tube detector in cyan. Right: View inside an OT module, showing the
arangement of the straw-tubes inside [34].

width and 130 cm in height. In each pair one layer is tilted by a relative rotation of
±5◦ to allow for a three dimensiomal track measurement with a spatial resolution
of 50µm. The main purpose of the detector is to allow the reconstruction of both
low-momentum particles, that are bent by the magnetic field out of the acceptance
of the downstream tracking stations, and long-lived particles, such as K0S mesons
and Λ0 baryons, that mostly decay after the VELO.

The tracking system is completed by three main tracking stations (T1-T3) located
downstream of the magnet. Each tracking station comprises two subsystems and
consists of four layers arranged in the tilted configuration like the TT. The first
subsystem is called Inner Tracker (IT) [39] as it covers the 120 cm wide and 40 cm
high region closest to the beam pipe, where the largest particle-flux is expected.
It consists of high-resolution silicon-microstrip sensors which provide a spatial
resolution of 50µm. The second subsystem is called Outer Tracker (OT) [40]. It is
made of drift tubes with an inner diameter of 4.9mm, filled with a mixture of Ar,
CO2 and O2. The spatial resolution of 200µm is not as good as for the IT, but on
the other hand a large area of approximately 6× 5m2 is covered. Each of the four
layers of one station consists of two layers of drift tubes, as shown in the right part
of Figure 11. The momentum resolution provided by the tracking system is 0.4%
at low momentum and 0.6% at 100 GeV/c.

2.2.2 The particle identification system

Particle identification (PID) is an essential tool for many flavour-physics analyses.
For example, as explained in Section 1.3, the flavour of the neutral D mesons at
decay time is tagged by the charge of a kaon in the final state. It is therefore
necessary to identify the type of the particles in the final state with high reliability.
In LHCb several subdetectors are devoted to PID: two ring-imaging Cherenkov
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Figure 12: Left: schematic view of the RICH1 detector, showing how the combination of a
spherical and a plane mirror reflects the emitted Cherenkov light to the photo-
detectors. Right: the Cherenkov angle as function of the particle momentum for
different radiators and particle species [34].

detectors [41] (RICH1 and RICH2) are used for charged hadrons, a calorimeter
system identifies electrons and photons, the muon system takes care of muons.

The technique to identify hadrons is based on the Cherenkov effect. If a charged
particle travels through a medium faster than the speed of light in that medium,
electromagnetic radiation is emitted in the form of a cone around the particle
trajectory. The cone opening angle, θC, depends on the speed of the particle v and
on the refractive index of the medium n as cos θC = c/(nv), so that its knowledge,
together with the particle momentum measured by the tracking system, can be
used to infer the mass of the particle. The RICH detectors consist then in suitable
radiator material and in a system of mirrors and photo-detectors which guide
and collect the emitted Cherenkov radiation, as shown in Figure 12. Two detectors
are employed to cover a larger momentum range, by using different radiators.
RICH1 uses aerogel and is designed to identify particles in the momentum range
1 − 60 GeV/c, while RICH2 with gaseous CF4 covers the range 50 − 150 GeV/c.
Figure 12 also shows the obtained separation power between different particle
species over the full momentum range.

Calorimetry refers to the measurement of a particle’s energy. The LHCb calorime-
ter system [42] consists of an electromagnetic (ECAL) followed by an hadronic
calorimeter (HCAL). In the ECAL, layers of 2mm thick lead and 4mm thick scin-
tillating material are installed alternately to drive the shower production and de-
tect the rising secondary particles. The energy resolution of the ECAL is σE/E =

10%/
√
E⊕ 1%, where E is in GeV and ⊕ indicates the quadratic sum. In front of

the ECAL a scintillating pad detector (SPD) provides separation between photons
and electrons, as only the latter release a signal in the SPD. Separated by a layer of
lead, but still in front of the ECAL, the preshower detector measures the amount
of energy deposited in the lead, which is different for electrons and charged pi-
ons. The ECAL is followed by the HCAL, used to measure the energy of hadrons.
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Figure 13: A schematic view of the muon system in the y− z plane [43].

It consist of alternating layers of iron absorbers and scintillating tiles and has a
resolution of σE/E = 80%/

√
E⊕ 10%.

Muons produced inside LHCb act as minimum ionizing particles, that means
they penetrate through all the inner detector subsystems, including the calorime-
ters. That is why the outermost part of the detector is specialized to detect muons.
As visible in Figure 13, the LHCb muon system [43] comprises one station before
(M1) and four stations after (M2-M5) the calorimeter system. The M2-M5 stations
are separated by 80 cm thick iron plates to further ensure that only muons can
reach the last station of the system. The stations are mainly made of multi-wire
proportional chambers that allow for a fast readout. This allows the muon system
to play an important role in the trigger.

2.2.3 The trigger system

The LHC is designed to bring two proton bunches to collision every 25ns, trans-
lating to an operating frequency of 40MHz. This frequency has to be reduced
drastically to shrink the amount of data to a recordable level. LHCb uses a two-
stage trigger system [44] to quickly process the event and decide if it is worth
storing it. The trigger flow is graphically summarized in Figure 14.

The first stage (called level zero, L0) is hardware based and reduces the 40 MHz
bunch-crossing rate down to approximately 1 MHz. The limited time available
does not allow for a sophisticated event reconstruction based on the full informa-
tion provided by the detector. The decision is then taken based on the following
simple signatures:

• activity in the pileup veto stations of the VELO;



2.2 the lhcb experiment 21

Figure 14: Summary of the LHCb trigger system, reducing the operating frequency of 40

MHz down to 5 kHz in 3 steps [36].

• large enough transverse energy depositions in the calorimeter system;

• track segments in the muon system with sufficiently large transverse mo-
mentum.

Momentum and transverse energy thresholds vary across the different data-taking
periods and are better documented in Ref. [44].

The L0 trigger is followed by a software based high-level trigger, further di-
vided in two consecutive steps (HLT1 and HLT2). In HLT1, the events passing
L0-selection are enhanced by information of the tracking system. A first and very
fast fitting procedure of the tracks is performed and allows to impose certain track
quality requirements and select for events with displaced secondary vertices. The
output rate of HTL1 is approximately 50 kHz. In HLT2 the rate is sufficiently low
to perform a full event reconstruction making use of all the LHCb subsystems.
Still the trigger has to meet strict timing requirements, so the reconstruction is
very similar to but also somehow simplified with respect to the offline algorithm
to be less CPU consuming. The total HLT2 output rate, corresponding to the rate
of events stored, is 5 kHz. These 5 kHz have to be divided between different lines
dedicated for various physical analysis: 2 kHz are taken by inclusive lines that se-
lect the typical topology of b-hadrons final states; another 2 kHz are reserved for
inclusive and exclusive charm decays; and the rest is taken by dimuon or single-
muon final states. Inclusive lines are triggering on more generic event classes, as
for a example the presence of a D∗±. Contrarily, exclusive trigger lines allow to se-
lect for very particular final states. Exclusive lines are needed in the charm sector
because of the very high cc̄ production rate at LHCb, far exceeding the bb̄ rate.

More details about the trigger used to collect the sample analised in this thesis
are given in Section 5.1.
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S E M I L E P T O N I C C H A R M D E C AY S AT L H Cb

This chapter defines the variables used in the analysis to reconstruct and select semileptonic
charm decays at LHCb. It also introduces the various sources of background contamination
which can mimic the topology of the signal decay, preparing the discussion on the sample
selection carried out in the next chapter.

3.1 decay topology and experimental observables

Figure 15 shows the topology of the D ∗+ → D 0 (→ K∓µ± ν )π+ decay chain.
The D ∗+ meson is produced in the primary pp interaction vertex, where it in-
stantaneously decays through strong interactions into a D 0 meson and a charged
pion. The charged pion interacts with the LHCb tracking detectors producing a
track with typical momentum of 5 G eV/ c . The D 0 meson has a lifetime τD0 of
approximately 0 . 4 1 p s and a typical momentum of 5 0 G eV/ c , hence it flies be-
fore decaying. The tracks resulting from its charged decay products intersect each
other in a decay vertex, that is a few cm displaced from the primary vertex. This
feature is common to all weakly-decaying particles and is widely used to identify
decays of heavy-flavoured mesons. In addition to the flight distance, the impact
parameter (IP) of the track, i.e. the minimum distance between the track and the
primary vertex, can also help to judge whether a particle was produced in the pri-
mary interaction or not. As an example, the pion from the D ∗+ decay will have
small IP, whereas the charged kaon and the muon are more likely to have large IP
values.

The neutrino does not interact within LHCb and remains undetected. As a con-
sequence, the kinematical properties of the D0 decay, such as momentum, decay
time and invariant mass, are only partially accessible. Chapter 4 describes different
techniques that can be used to overcome this limitation and estimate the momen-
tum carried by the neutrino. Meanwhile, it is worth to define those quantities that
can be directly reconstructed:

• the visible D0 mass, i.e. the invariant mass of the Kµ pair

m(Kµ) =

√[
E(K) + E(µ)

]2
−
[
~p(K) + ~p(µ)

]2,

where E2(K,µ) = m2K,µ + p2(K,µ) with mK and mµ being the known kaon
and muon masses [25], respectively;

23
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Figure 15: Schematic view in the y-z plane of the D∗+ → D0(→ K−µ+ν)π+ decay chain
topology. The relative scale is arbitrary and not realistic

• the corrected D0 mass

mcorr(D
0) =

√
m(Kµ)2 + p2⊥(Kµ) + p⊥(Kµ),

where the component of the Kµ pair momentum perpendicular to the flight
direction, ~p⊥(Kµ), is used to partially account for the missing neutrino (see
also Chapter 4);

• the mass of the D0π+ pair

m(D0π) =
√
E2(Kµπ) − p2(Kµπ),

where

E(Kµπ) =
√
m2
D0

+ p2(Kµ) +
√
m2π+ + p2(π),

~p(Kµπ) = ~p(Kµ) + ~p(π),

~p(Kµ) = ~p(Kµ) + ~p(π),

and mD0 being the known D0 mass [25]. This variable presents the same
feature as the more customary difference between the visible D∗+ and D0

masses, ∆m = m(Kµπ) −m(Kµ), that the contribution of the momentum
of the undetected neutrino cancels to a large extent. This means that the
m(D0π) distribution of signal decays will have a peaking structure approxi-
mately at the known value of theD∗+ mass,mD∗+ [25], providing a powerful
discrimination with respect to the background. In addition, contrary to ∆m,
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the m(D0π) variable has the advantage of being independent of the mass
hypotheses of the D0 daughters.

Although the D0 is not fully reconstructed, due to its large boost, the direction
of the D0 momentum is supposed to be fairly aligned with the reconstructed
flight distance. That is the reason, why the angle between the reconstructed D0

momentum and flight distance has to be small, if all the particles in the decay
chain are combined correctly. The cosine of this angle is defined as direction angle
(DIRA) and expected to be close to one for signal events. Another variable used in
this analysis to decide whether two particles arise from the same mother particle
or not is the minimal three dimensional distance measured between two tracks,
called DOCA (distance of closest apprach).

Final state particles are identified at LHCb [45] using two different sets of observ-
ables: log-likelihood differences (DLL) and neural network probabilities (ProbNN).
For each charged particle, likelihood functions for several mass hypotheses are
constructed using information mainly from the RICH detectors and the tracking
stations. To test a certain mass hypothesis, say muon, for a particle candidate, the
difference between the logarithms of the likelihoods under such hypothesis and
under the pion hypothesis, DLLµ−π, is computed. This difference allows to sepa-
rate muons from pions, as its value will be on average larger (smaller) than zero if
the candidate is really a muon (pion). To better profit from all particle identifica-
tion capabilities of the LHCb detector, a multivariate analysis based on an artificial
neural network is used to combine in a single probability, for each mass hypothesis,
the information coming from the tracking, RICH, muon and calorimeter systems.
While DLLs can separate one particle specie from another, these ProbNN variables
can be used to isolate the specified specie independently from other hypothesis.
In addition, to standard particle hypothesis, the neural network based algorithms
also allows to calculate the probability that a certain track is a ghost, i.e. a random
association of hits accidentally combined to form a track and not caused by the
passage of a real particle in the detector.

3.2 expected background sources

To isolate the very rare mixing signal, it is important to understand which back-
grounds can possibly mimic the typical signature of a WS semileptonic charm
decay. Here is a list of different categories for the relevant background contribu-
tions.

other semileptonic charm decays – Besides the D0 → K−µ+ν decay in-
vestigated in this thesis, other semileptonic decay modes of the D0 are pos-
sible. These can be decays with an associated electron being misidentified
as a muon, a pion misidentified as a muon or other decays with same
final-state particles and additional missing hadrons. An example would be
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D0 → K∗−(892)µ+ν, with branching ratio B ∼ 1.9%, where the intermedi-
ate K∗(892) state further decays to K−π0 and the neutral pion is not recon-
structed. These decays would not bias the WS-to-RS ratio, but will have a
different decay-time distribution.

hadronic two-body decays – Hadronic two-body decays of D0 mesons can
mimic a semileptonic decay when one or both final state particles are misiden-
tified. In particular, decays to CP-conjugated final states, such asD0 → K+K−

or D0 → π+π−, with B of ∼ 4× 10−3 and ∼ 1× 10−3 respectively, can con-
tribute to both RS and WS decays through a double misidentification of the
final state hadrons. Cabibbo-favoured D0 → K−π+ (B ∼ 4× 10−2) decays
can enter the RS sample if the pion is misidentified as a muon, and the WS
sample if both the kaon is misidentified as a muon and the pion is misiden-
tified as a kaon. Contamination from mixed D0 → D0 → K+π− or doubly-
Cabibbo-suppressed D0 → K+π− decays (B ∼ 10−5) can be neglected for
RS decays, but may be present in WS decays if the pion is misidentified
as a muon. In addition to particle identification selection, the background
from these decays can be easily isolated using kinematics, as explained in
Section 5.2.2, since the final state is, in this case, fully reconstructed.

hadronic multi-body decays – HadronicD0 decays to multi-body final states
are, as the signal, partially reconstructed and therefore provide a very dan-
gerous source of peaking background. They have in general large branch-
ing fractions and may be kinematically very similar to the semileptonic sig-
nal. However, hadronic decays can mimic the signal candidates only if at
least one of the decay products is misidentified. Table 1 lists possible con-
tributions to the RS and WS samples, explaining which misidentification
should happen. As an example, a large contribution may be expected from
D0 → K+π−π0 decays, where the pion is misidentified as a muon and the
neutral pion remains undetected.

random pions – In proton-proton collisions, lots of charged pions are produced
in every interaction as they are the lightest existing mesons. If a charged
pion not coming from the signal process is accidentally associated to a D0

candidate, the decay of a chargedD∗ can be mimicked. This irreducible back-
ground is expected to provide the largest contribution to the WS sample, but
it can be easily separated from the signal as it features a different m(D0π)

distribution as explained in Chapter 6.

pure combinatorics – Pure combinatorial background arises when the D∗+

candidate is made of three randomly associated tracks. Again, this back-
ground will feature different kinematical properties that allow to statistically
separate it from the signal.



3.2 expected background sources 27

Channel Branching ratio [%] Contribution to RS Contribution to WS

D→ K−π+π0 13.9± 0.5 π+ → µ+ π+ → K+,K− → µ−

D→ K−2π+π− 8.1+0.21
−0.19 π+ → µ+ π+ → K+,K− → µ−

D→ K−2π+π−π0 4.2± 0.4 π+ → µ+ π+ → K+,K− → µ−

D→ π−π+π0 1.43± 0.06 π− → K−,π+ → µ+ π+ → K+,π− → µ−

D→ π−π+2π0 1.0± 0.09 π− → K−,π+ → µ+ π+ → K+,π− → µ−

D→ K+K−π0 0.329± 0.014 K+ → µ+ K− → µ−

D→ K+π−π0 (DCS) 0.0304 ± 0.0017 K+ → µ+,π− → K− π− → µ−

D→ K+π−π0 (through mixing) 0.073 ± 0.005 K+ → µ+,π− → K− π− → µ−

D→ K+π+2π− (DCS) 0.0262 ± 0.0021 K+ → µ+,π− → K− π− → µ−

D→ K+π+2π− (through mixing) <0.04(CL = 90%) K+ → µ+,π− → K− π− → µ−

D→ K+2K−π+ 0.0221± 0.0031 various K− → µ−

Table 1: D0 decays to hadronic multi-body final states and how they can possibly con-
tribute to RS and WS samples through misidentification of final state particles.
Reported branching ratios are from Ref. [25].

secondary D decays – If the D∗+ is not produced in the primary pp inter-
action, but as decay product of a b-hadron decay, the decay length is not
correctly computed. These secondary D∗+ decays are therefore a background
to the promptly-produced semileptonic signal in that they result in a biased
decay-time distribution. They, however, do not change the observed WS-to-
RS ratio.





4
R E C O N S T R U C T I O N O F T H E M I S S I N G N E U T R I N O

This chapter presents prospects and problems of different reconstruction algorithms for a
missing particle in decays with partially reconstructed final states. Although these tech-
niques may be simply adapted to any kind of missing particle in different experimental
environments, the main focus is on D0 → K−µ+ν decays at LHCb, where the neutrino
remains undectected.

4.1 partially reconstructed decays at lhcb

Neutrinos hardly interact within LHCb and are not directly detectable. This con-
siderably complicates the study of semileptonic decays, as it is not possible to
determine the total momentum, and therefore the mass, of the D0 candidate, thus
limiting the capabilities to separate the signal from backgrounds. Although the
mass variable m(D0π) is defined such that the neutrino’s missing momentum
contribution cancels to a large extent, accounting for the neutrino would provide
an improved mass resolution and a better signal-to-background discrimination.
In addition, an unbiased and precise knowledge of the D0 decay time, usually
derived dividing the D0 flight distance F by its velocity,

t =
F ·mD0
p(D0)

, (10)

is desirable to enhance the sensitivity to mixing, as the WS-to-RS ratio grows
quadratically with time (see Equation 7).

Experiments at e+e− machines benefit from the precise knowledge of the col-
lision energy to conveniently derive the momentum of a missing particle in the
final state using momentum conservation. At hadron colliders, however, the mo-
mentum of the interacting partons remains unknown and other techniques have
to be developed. In this chapter, four different methods to correct for the missing
neutrino are presented:

• an average correction based on simulation, referred to as k-factor method;

• an empirical estimation derived by the E653 collaboration, refered to as E653

estimation;

• an analytical derivation of the neutrino momentum called neutrino closure
method;

• an alternative analytical derivation called cone closure method.

29
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The different methods are then compared quantitatively using a simulated sample
of D∗+ → D0(→ K−µ+ν)π+ decays in terms of the difference between the
momentum estimated by the correction method, pcor, and true momentum of
the D0 candidate, ptrue. The bias and resolution obtained with each correction
method are estimated by the mean and root mean square (r.m.s.) values of the
resulting pcor − ptrue distributions.

4.1.1 k-factor method

The k-factor method is a well established technique to correct for the momentum
of a missing particle on a statistical basis using Monte Carlo simulated data. The k
factor is defined as the ratio between the momentum of the reconstructed daughter
particles of a decay and the true momentum of the mother particle. In the present
analysis this reads:

k =
p(Kµ)

ptrue
, (11)

where p(Kµ) is the magnitude of the momentum of the combined kaon-muon
system, referred to as visible D0 momentum.

The visible momentum is correlated with the reconstructed invariant mass of
the system m(Kµ). The larger the fraction of total momentum carried by the neu-
trino, the smaller the values of m(Kµ) and p(Kµ) and hence the smaller the k
factor. Figure 16 shows the two dimensional distribution of the k factor and the
visible mass. Overlaid, a profile plot, showing the average value 〈k〉 in bins of
the Kµ mass, is fit with a simple second-order polynomial. The resulting fit func-
tion, 〈k〉 [m(Kµ)], can be used in data as an average event-by-event correction to
determine the magnitude of the D0 momentum:

pcor(D
0) =

p(Kµ)

〈k〉 [m(Kµ)]
. (12)

The spatial orientation of the momentum vector is then assumed to be aligned
with the reconstructed D0 flight direction F̂. Since the D∗+ decays instantaneously,
this is inferred from the measured positions of the primary pp interaction vertex,
~vPV, and the D0 decay vertex, ~vD0 , as F̂ = (~vD0 −~vPV)/|~vD0 −~vPV|.

Figure 16 shows that the k-factor method reproduces the true D0 momentum
with a small bias of −0.3GeV/c and a resolution of 14GeV/c. The main disadvan-
tage of this method is that, being based on simulation, it relies on an accurate
description of the decay under study. For semileptonic decays this may lead to
unwanted systematic uncertainties, as the form factors used to describe the decay
amplitude are not always well known. Additionally, the accuracy of the k-factor
correction may be limited by the size of the available simulated sample, which
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Figure 16: Left: (black points) two-dimensional distribution of the k factor and the visible
mass m(Kµ); (blue points) profile of the distribution, showing the average k-
factor value in bins of m(Kµ); (red curve) fit result to second-order polynomial.
Right: distribution of the relative difference between k-factor-corrected and true
D0 momenta.

when studying charm decays it is generally much smaller then the corresponding
data sample.

4.1.2 E653 estimation

The E653 collaboration derived the following empirical formula to estimate the cor-
rected momentum, neglecting the component of the neutrino momentum parallel
to the reconstructed D0 flight distance [46]:

pcor(D
0) =

mD0 E(Kµ)√
p2⊥(Kµ) +m

2(Kµ)
, (13)

where E(Kµ) is the energy of the kaon-muon system and p⊥(Kµ) is the component
of ~p(Kµ) perpendicular to the reconstructed D0 flight direction F̂. Due to momen-
tum conservation, the magnitude of this component is equal to the perpendicular
component of the neutrino momentum and therefore helps to partially account
for the missing momentum. However, the component of the neutrino momentum
parallel to the flight distance remains unknown.

The momentum resolution obtained by this empirical formula, as shown in Fig-
ure 17, is comparable in both size and shape to that of the k-factor method. A bias
of 2GeV/c and a resolution of 15GeV/c is observed. The advantage of this method
with respect to the k-factor is that the correction does not rely on simulation.
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Figure 17: Distribution of torethe difference between the E653-corrected and the true D0

momenta.

4.1.3 Neutrino closure method

In addition to require the D0 momentum to be aligned with the reconstructed
flight direction F̂, the neutrino closure method requires that the three-body mass
m(Kµν) has to coincide with the known D0 mass. To explain how this constraint
is used, it is convenient to express the momentum vectors in terms of their com-
ponents parallel and perpendicular to F̂:

p‖ = ~p · F̂, p⊥ =
∣∣~p− ~p‖

∣∣ =
∣∣~p−

(
p‖ · F̂

)∣∣ .

From momentum conservation it follows that

p⊥(Kµ) = −p⊥(ν) and p(D0) = p‖(Kµ) + p‖(ν).

Now using also energy conservation, E(D0) = E(Kµ) +E(ν), and imposing the D0

mass constraint such that m2
D0

= E2(D0) − p2(D0), it is possible to derive p‖(ν)
from a quadratic equation of the form

α p2‖(ν) +β p‖(ν) + γ = 0, (14)

where the coefficients are defined by

α = 4
[
p2⊥(Kµ) +m

2(Kµ)
]
,

β = 4 p‖(Kµ)
[
2 p2⊥(Kµ) −m

2
D0 +m

2(Kµ)
]
,

γ = 4 p2⊥(Kµ)
[
p2‖(Kµ) +m

2
D0

]
−
[
m2D0 −m

2(Kµ)
]2.
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Figure 18: Distribution of the relative difference between the corrected and the true D0

momenta resulting from the neutrino closure method with p‖(ν) solution cor-
responding to m(D0π) closer to (green) mD∗ and (red) to threshold.

The neutrino’s momentum parallel to theD0 flight direction can then be calculated
up to a two-fold ambiguity as

p‖(ν) =
−β±

√
β2 − 4αγ

2α
. (15)

Resolution effects however lead, in approximately 40% of the cases for the decay
under study, to negative values of β2 − 4αγ, making Equation 14 unsolvable.

For D∗+ → D0(→ K−µ+ν)π+ decays, the two-fold ambiguity of Equation 15

can be resolved thanks to the presence of the parent D∗+ meson. For these de-
cays, the right solution for p‖(ν) is indeed more likely to be that resulting in a
neutrino-corrected m(D0π) mass closer to the known D∗+ mass. From simulation,
we see that only in 16.6% of the cases this does not happen because of resolution
effects. As discussed in Section 4.2, this approach however induces a bias in the
neutrino-corrected m(D0π) mass distribution of background events and is there-
fore discarded. To avoid this problem, one can select the p‖(ν) solution resulting
in neutrino-corrected m(D0π) closer to the kinematical threshold of mD0 +mπ+ .
In simulation we see indeed that, because of the low Q value of the D∗+ → D0π+

decay, this procedure allows to identify the right solution in approximately 75% of
the cases with just a limited loss in momentum resolution with respect to choosing
the solution closer to mD∗+ (see Figure 18).

The neutrino closure method allows to reconstruct the D0 momentum with much
better resolution (12.6GeV/c) then the k-factor or E653 estimations, but does not
provide any correction in the ∼ 40% of the cases where β2 − 4αγ < 0.
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Figure 19: Left: schematic view of the D∗+ → D0(→ K−µ+ν)π+ decay in the kµ rest
frame; the magnitude of theD0 momentum is fixed, while its spatial orientation
is restircted to be on a cone around the pion momentum. Right: distribution of
the relative difference between the corrected and true D0 momenta resulting
from the cone closure method.

4.1.4 Cone closure method

The cone closure method [47] makes use of the same constraints of the neutrino
closure method and, in addition, also requires the invariant mass of the D0 π+

system to be equivalent to the known mass of the D∗. To derive the corrected D0

momentum with this method, it is convenient to boost the decay in the rest frame
of the Kµ system, so that

~p(Kµ) = 0, ~p(D0) = ~p(ν) and E(D0) = m(Kµ) + p(D0).

Using the D0 mass constraint allows, in this reference frame, to determine the
magnitude of the D0 momentum:

m2D0 = E
2(D0) − p2(D0) = m2(Kµ) + 2 m(Kµ) p(D0)

=⇒ p(D0) =
m2
D0

−m2(Kµ)

2 m(Kmu)
. (16)

Additionally, using the D∗+ mass constraint restricts the D0 momentum vector to
lie on a cone with respect to the momentum of the pion (see Figure 19 for a visual
representation), whose opening angle θ is determined as

m2D∗+ =
[
E(D0) + E(π)

]2
−
[
~p(D0) + ~p(π)

]2

= m2D0 +m
2
π+ + 2 E(D0) E(π) − 2 p(D0) p(π) cos θ

=⇒ cos θ =
2E(D0)E(π) − (m2D∗+ −m2

D0
−m2π+)

2p(D0)p(π)
. (17)
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The full D0 momentum vector is then determined when choosing the value of
the azimuthal angle φ (see Figure 19) that results in the best alignment between
~p(D0) and the flight direction F̂ in the laboratory frame. This is done numerically
by scanning the angle φ between 0 and 360◦ in steps of one degree.

Also in this case, because of finite experimental resolution, in ∼ 5% of the cases
the method cannot be applied as Equation 17 results in | cos(θ)| > 1. When applica-
ble, the cone closure shows the best momentum resolution among tested methods
(10GeV/c). In addition, it is worth mentioning that this approach, because of the
D∗+ mass constraint, cannot be used to determine the neutrino-corrected m(D0π)

distribution.

4.2 effect on the m(D0π) distribution

The expected signal of the WS sample is tiny. Hence, any improvement in m(D0π)

resolution resulting from the neutrino reconstruction technique is precious. How-
ever, it is absolutely important to understand what is the effect of the employed
correction on the background to avoid the creation of artificial structures in the
m(D0π) distributions of the background that resembles the signal peak. The ef-
fect of the various neutrino reconstruction algorithms described in this chapter is
then tested also on the sample of artificially created random-pion combinations,
described in more details in Section 6.2, that reliably reproduces the kinematical
features of the random-pion background.

Figure 20 shows the neutrino-corrected D0π+ mass distribution separately for
simulated signal decays and random-pion background for the algorithms dis-
cussed. The effect on the signal is what expected as better mass resolutions are
achieved by the algorithms providing better momentum resolutions. For the back-
ground, instead, most methods do not result in dangerous changes on the mass
distribution. The only exception being the neutrino closure method with solution
of p‖(ν) yielding the mass closest to mD∗+ , where an artificial peak is created. On
the other hand, taking the solution resulting in a lower neutrino-corrected mass
also changes the mass shape (moving more events towards the threshold) but
does not create artificial peaks which prevent any discrimination between signal
and background candidates.

4.3 decay time resolution

The correctedD0 momentum is used to calculate the correctedD0 decay time with
Equation 10. Figure 21 shows the decay timer resolution defined as treco − ttrue
in units of the known D0 lifetime [25] integrated over the full decay-time range.
Resolution and bias of the reconstructedD0 decay time of the presented correction
algorithms itself are depending on the corrected decay. Figure 22 shows the two
dimensional scatter plot of the difference treco− ttrue versus the corrrected decay
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Figure 20: Neutrino-corrected m(D0π) distributions for (left) simulated signal decays and
(right) random-pion combinations as resulting from the different algorithms
discussed in this chapter.
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Figure 21: Decay time resolution tcor − ttrue in units ot the D0 lifetime as resulting from
the different neutrino reconstruction algorithms discussed in this chapter.

time with the profile plot overlaid, showing the mean and r.m.s. for treco− ttrue in
slices of the corrected decay time. The red lines indicate mean and r.m.s. integrated
over the whole decay-time range. All reconstruction algorithms show inreasing
bias and resolution at higher reconstructed lifetimes.

4.4 summary and final reconstruction strategy

Being able to reconstruct the missing neutrino momentum allows to determine
the D0 decay time and helps to reduce the background thanks to an improved
m(D0π) resolution. The performances of the neutrino-reconstruction methods just
described are compared in Table 2. Each method has advantages and disadvan-
tages. Clearly, the cone closure technique, using all possible constraints from the
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Figure 22: Time dependence of the reconstruction methods explained in the text. The red
lines indicate the decay time bias and the resolution achievied by the algorithms
integrated over the full decay time range.

decay topology/kinematics, allows for the best resolution and will therefore be
used in the analysis to reconstruct the decay time. However, this method cannot
be employed to correct the D0π+ mass. The mass will then be corrected using
the neutrino closure method, taking the p‖(ν) solution resulting in m(D0π) closer
to threshold. Unless otherwise specified, all distributions showing m(D0π) will
be corrected from now on. In all cases where the above two methods cannot be
applied because of resolution effect, i.e. when | cos θ| > 1 for the cone closure and
when β2 − 4αγ < 0 for the neutrino closure, the E653 estimation is instead used.
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5
D ATA S A M P L E S E L E C T I O N

This chapter describes the reconstruction and selection of D∗+ → D0(→ K±µ∓ν)π+

decays at both online and offline level. The selection aims at isolating signal candidates
from expected backgrounds, mainly random pions, for which a multivariate analysis has
been developed.

5.1 online reconstruction and selection

Events used in this analysis are triggered by signatures consistent with the D∗+ →
D0(→ K±µ∓ν)π+ decay.

At L0 the signature could be either an hadronic energy deposition with a trans-
verse component of at least 3.5GeV left by the charged kaon, or track segments in
the muon stations compatible with a muon with pT & 1.5GeV/c.1 In addition, at
L0, also events triggered independently of the candidateD∗+ → D0(→ K±µ∓ν)π+

decay are considered. It is possible that for example decay products of the charmed
hardon formed by the other charm of the cc pair produced by the pp interaction
triggered the event.

In HLT1, where tracking information becomes available, the kaon or the muon
is required to have large momentum, p & 3GeV/c and pT & 1.6GeV/c, and to be
incompatible with being produced in the primary vertex, IP> 0.1mm and χ2(IP) >
16. The χ2(IP) is defined as the difference between the χ2 obtained when fitting
the primary vertex with and without the considered particle, and is a measure
of consistency with the hypothesis that the particle originates from the primary
vertex. Events triggered at L0 by the muon can also be selected at HLT1 if a track
with pT & 1GeV/c is matched to hits in the muon stations, where the reduced pT
threshold is possible due to a lower rate.

In HLT2, a full event reconstruction is performed and the trigger decision aims
at selecting the specific final state of interest. For semileptonic neutral charm de-
cays, two trigger lines are available. The first employs an exclusive selection of
the D0 → K±µ∓ν decay, solely based on the presence of two displaced oppo-
sitely charged tracks fulfilling basic momentum and quality requirements. The
two tracks have to form a good-quality decay vertex with flight distance F > 4mm
and ~F · ẑ > 0mm to ensure that the D0 candidate is flying in forward direction.
As the D0 candidate is only partially reconstructed, only very loose requirements
are imposed on the visible and corrected D0 masses: m(Kµ) < 2500MeV/c2 and

1 The thresholds changed during data taking period. Here, only the values from the second half of
2012 are mentioned.
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1400MeV/c2 < mcor < 2700MeV/c2 . A variant of this trigger allows to recon-
struct also candidates where the D0 daughters have the same charge. The second
HLT2 trigger line is designed to select D∗+ → D0π+ decays where the soft pion
has momentum larger 3GeV/c and pT > 300MeV/c and the D0 decays inclusively
in any final state with at least two charged tracks having χ2(IP) > 36. The soft pion
is also required to come from the primary vertex with χ2(IP) < 9. This selection
criterion suppresses randomly associated pions and secondary D∗+ decays. Com-
pared to the exclusive line, here no cut on the corrected mass is applied to account
for the missing neutrino, but the candidates are selected only by ∆m < 285MeV/c2

to inclusively detect D0 decays to multi-body final states. This trigger was imple-
mented in 2012 and therefore does not contribute to the sample collected during
2011.

5.2 offline reconstruction and selection

At LHCb, the event reconstruction from the collected data is done centrally and
only events passing a pre-selection (called in jargon stripping) are processed in
this analysis. The stripping reconstructs the candidates of interest by applying or
tightening, with offline-reconstructed quantities, the same selection requirements
used in the trigger. In addition, as particle-identification information is not avail-
able in the trigger, requirements on the kaon, muon and pion identification are
now implemented. The stripping-selection criteria are based on previous studies
of semileptonic charm decays at LHCb [48] and are summarized, together with
the other requirements used in this analysis, in Table 3.

The resulting sample can be seen in Figure 23. Figure 23a shows them(D0π) dis-
tribution for RS candidates. The peaking structure close to the kinematic threshold,
with maximum at the nominal D∗ mass value, is mostly due to RS D0 → K−µ+ν

signal candidates, but also includes D∗+ → D0π+ candidates where the D0 de-
cays to a different final state. In the corresponding distribution for WS candidates,
shown in Figure 23b, no clear peaking structure can be distinguished from the
much broader distribution due to random-pions background. The spectra of the
visible D0 mass for RS and WS candidates can be seen in Figure 23c and Fig-
ure 23d, respectively. The narrow peak close to the known D0 mass value is due
fully reconstructedD0 → K−π+ decays, where the charged pion is misidentified as
a muon. For partially reconstructed candidates from semileptonic D0 decays, the
visible mass is depending on the fraction of momentum carried by the neutrino,
thus resulting in a very broad distribution peaking at lower mass values. The fact
that RS and WS samples have very similar m(Kµ) distributions indicates that the
composition of latter is dominated by background consisting of real semileptonic
D0 decays accidentally associated to uncorrelated soft pions.

Figure 24 compares the m(D0π) distribution of the RS sample, normalized to
the same area, for different trigger categories for the data set collected during
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Figure 23: Spectra in m(D0π) and m(Kµ) after the stripping selection for RS and WS can-
didates. The narrow peak in m(Kµ) close to the D0 mass is due to misidentified
two body decays (see Section 5.2.2).

2012. Figure 24a compares events triggered by signal candidates at L0 and those
triggered independently of the signal. The two samples consists of approximately
34× 106 and 14× 106 events, respectively, and have similar signal purities. The
overlap between the two samples is 10× 106. Figure 24b compares instead can-
didates selected by the inclusive and the exclusive HLT2 triggers. The inclusive
sample consists of approximately 32× 106 events, all collected during 2012. The
exclusive trigger collected instead approximately 13× 106 events, 36% of which
during 2011. The exclusively triggered sample, as clearly visible in the plot, pro-
vides a larger background contamination and adds only a limited amount of sig-
nal (when the overlap between the samples is considered). For these reasons, and
to simplify the treatment of the data, the analysis is limited only to candidates
selected by the inclusive HLT2 trigger during 2012.

Specific selections to suppress the relevant background described in Section 3.2
have been developed for this analysis, as described in the following.
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5.2.1 Suppression of random-pion background

To reduce the amount of purely combinatorial candidates and of those where a
soft pion has been associated accidentally to a correctly reconstructed D0, a mul-
tivariate analysis is performed to combine information of several discriminating
variables into a single observable. The available information provided by each vari-
able, and by the correlations between the different variables, is this way used most
efficiently allowing for a better signal-to-background discriminating power.

Several methods have been tested from those available in the Toolkit for Multi-
variate Analysis (TMVA) [49]. Among those, the boosted decision tree (BDT) [50] pro-
vides the best performances and is therefore chosen for the analysis. More details
on how a BDT works are provided in Appendix A.

The BDT is trained directly on approximately 10% of the RS data sample, where
signal and random-pion background are disentangled using the sPlot technique [51].
The sPlot is a statistical tool that allows to separate signal and background con-
tributions in various control variables from the knowledge of the distributions of
a discriminating variable, in this case the m(D0π). A weight is calculated on an
event-by-event basis, so that the weighted distributions in the control variables
reproduce on average the corresponding true signal and background components.
The signal and background (i = sig, bkg) weights are calculated as [51]

sPi
(
m) =

Vi,sig Psig(m) + Vi,bkg Pbkg(m)

Nsig Psig(m) +Nbkg Pbkg(m)
, (18)

whereNsig (Nbkg) is the total number of signal (background) candidates, Psig (Pbkg)
is the m(D0π) probability distribution function (PDF) for signal (background) and
Vij are the elements of the covariance matrix relating Nsig and Nbkg. These param-
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tion 18.

eters are all estimated from a minimum χ2 fit to the m(D0π) distribution of the
RS sample used in the training. Figure 25 shows the result of the fit, whose details
can be found in Chapter 6.

Input variables for the BDT are chosen to maximize the statistical separation
between signal and background, and to avoid correlations between the BDT output
and the mass variables m(D0π) and m(Kµ), later used to extract the signal yield
(see Chapter 6). The chosen set of input variables is shown in Figure 26 and listed
below:

• Log ProbNNghost(π), logarithm of the probability for the soft pion to be a
ghost track (δ = 1.2%);

•
√

DOCA(Kµ,π), square root of the distance of closest approach between the
Kµ pair and soft pion flight directions (δ = 0.5%);

•
√

DOCA(K,µ), square root of the distance of closest approach between the
kaon and muon flight directions (δ = 1.2%);

• D0 flight distance (δ = 0.6%);

• D0 transverse momentum (δ = 5.2%);

• D0 pseudorapidity (δ = 0.4%);
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BDT training.
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•
∏

ProbNN(π) = ProbNNπ(π)
[
1 − ProbNNµ(π)

] [
1 − ProbNNK(π)

]
(δ =

6.0%).

Here, the quantity δ indicates the statistical separation provided by each variable,
defined as

δ =
1

2

∫
(Psig(y) −Pbkg(y))

2

Psig(y) +Pbkg(y)
dy

with the signal (Psig(y)) and background (Pbkg(y)) PDF for variable y [49]. For
some variables, simple transformations such as the square root or the logarithm
of the original variable provide better signal-to-background separation and are
therefore used.
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Figure 28: Application of the BDT. Preselection refers to stripping and trigger selection.

Figure 27 shows the obtained BDT response separately for the training sample
and for an independent testing sample. Large differences in the BDT response for
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training the testing sample arise if the BDT is trained on statistical fluctuations;
here, the distributions look very similar and no indication for training on fluctu-
ations is visible. The achieved signal-to-background separation is δ = 13.6%. An
optimal BDT selection requirement of BDT > −0.09 is chosen, corresponding to
the maximum for the figure of merit2 [52]

S =
Nsig

1.5+
√
Nbkg

.

Figure 28 shows the m(D0π) distribution of the RS sample before and after the
BDT selection. The number of RS signal candidates decreases by approximately
12% from ≈ 18.6× 106 to ≈ 16.4× 106, while the background is reduced by 35%
from ≈ 6.8 · 106 to 4.4× 106, improving the signal-to-background ratio from 2.7 to
3.6.
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Figure 29: Testing the effect of BDT cut on m(D0π) with candidates, where D0 daughters
and the soft pion have all the same charge. Left: m(D0π) distribution applying
different BDT cuts. Richt: two dimensional plane of mass and BDT response.

The effect of the BDT selection on the m(D0π) distribution is checked using
candidates where the D0 daughters and the soft pion have all the same charge. As
this selection is only available for events collected by the exclusive trigger, the BDT
was retrained on such sample before performing the check. Figure 29 shows the
comparison between the D0 π+ mass distibutions obtained with and without the
BDT selection requirement, as well as the two-dimensional distribution ofm(D0π)

versus BDT. The plots confirm that the BDT response is independent of m(D0π)

and therefore no artificially peaking structures, which may fake the signal, are
created by the BDT selection.

2 The form of this f.o.m is: S =
Nsig

a/2+
√
Nbkg

, with a being the significance aimed to optimize for, chosen

to be a = 3 in this case.
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5.2.2 Suppression of misidentified decays

The muon track is required to match a segment of hits in the muon stations
by the IsMuon algorithm [53], while both the kaon and the soft pion are not.
Tight requirements on the muon identification variables, ProbNNµ(µ) > 0.6, are
then added to further suppress hadronic D0 decays where one of the final state
hadron is misidentified as a muon. Misidentified kaons are reduced by requiring
ProbNNK(K) > 0.6. These requirements, however, do not completely suppress the
background from misidentified hadronic decays.

As an example, Figure 30a and Figure 30b show the distribution of m(K+π−)

and m(π+K−), i.e. the invariant mass computed when assigning the pion hypothe-
sis to the muon and both assigning pion mass to the kaon and kaon mass hypoth-
esis to the muon, respectively, for the WS sample with fit projection overlaid. In
Figure 30a, a peak from D0 → K+π− decays, where the pion was misidentified as
a muon, is clearly visible. Figure 30b shows the peak from doubly misidentified
D0 → K−π+ decays. Figure 30c and Figure 30d show the number of candidates
in the peaks as a function of the ProbNNµ(µ) and ProbNNK(K) cut value, in com-
parison with the corresponding number of expected WS signal candidates. The
latter is estimated by scaling the RS signal yiel by the mixing rate x2 + y2 ≈ 10−4.
The plots make evident that misidentified backgrounds from hadronic D0 decays
to multi-body final states, such as D0 → K+π−π0, can be certainly reduced im-
posing tighter particle identification requirements but never to a negligible level.
They are therefore accounted for when measuring the signal yield, as described
in Chapter 6. On the contrary, two-body hadronic decays are vetoed by excluding
candidates with the relevant two-body mass within 24MeV/c2 (corresponding to
approximately 3σ in mass resolution) of mD0 .

5.2.3 Multiple candidates removal

More than one RS or WS D∗+ candidate can be reconstructed in the same event.
Usually, this happens because the same D0 candidate can be easily associated
to different soft pions produced in the primary vertex. Multiple candidates are
removed from the selected sample, by randomly choosing only one candidate per
event, to avoid any potential bias they may create on the result. This removes
approximately 3.0% of both RS and WS candidates from the sample.

In addition, it is possible to form both a RS and a WS D∗+ candidate by associat-
ing soft pions of opposite charge to the same D0 candidate. Since it is much more
probable for such D0 candidates to be real RS than real WS D∗+ decays, they are
identified and removed from the WS sample. This procedure removes ∼ 9.5% of
the WS random-pion background, with negligible loss in the expected signal.
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Figure 30: Study of singly and doubly misidentified D0 two body decays.

5.2.4 Optimal decay-time selection

As already explained in Chapter 1, a biased decay-time selection helps to increase
the sensitivity to mixing because the WS-to-RS ratio increase quadratically with
decay time (see Equation 7). Moreover, a selection cut on the D0 decay time can
also help to reduce the random-pion background because, consisting mainly of
unmixedD0 candidates associated to uncorrelated pions, this background features
a different decay-time distribution with respect to the WS signal.
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Figure 31: Optimizing the decay time cut.

Figure 31a shows the expected decay-time distribution of the mixed (WS) and
unmixed (RS) signals, normalized to the same area, as derived from simulation
studies. Scaling the distributions to the expected number of WS signal and random-
pion background events allows to compute the significance as a function of the
minimum decay-time cut, as shown in Figure 31b. The optimal value, correspond-
ing to the maximum of the curve, is t > 2.3τD0 . At this point, the average of the
squared decay time

〈
t2
〉

as introduced in Section 1.3.1 is estimated by using the
sample of simulated signal candidates to be

〈
t2
〉
∼ 11.11 τ2

D0
after the decay time

cut.
In addition, candidates with decay times in excess of 20 τD0 are removed from

the sample, as they are expected to be dominated by badly reconstructed events
rather than by signal.

The final set of selection criteria are listed in Table 3. Figure 32 shows the
m(D0π) and m(Kµ) distributions for RS and WS candidates after the different
steps of the selection.
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Candidate Variable HLT2 selection Stripping Offline selection Unit

Muon pT > 800 MeV/c
χ2track > 2.25
χ2(IP) > 36

DLLµ−π > 0

IsMuon true

ProbNNµ > 0.6
ProbNNghost > 0

Kaon pT > 600 MeV/c
χ2track > 2.25
χ2(IP) > 36

DLLK−π > 0

IsMuon false

ProbNNk > 0.6
ProbNNghost > 0

D0 DIRA > 0.99
χ2FD > 100

m(Kµ) < 2500 < mD0 MeV/c2

χ2vertex/ndf < 10 < 9

p > 20000 MeV/c
pT > 2800 MeV/c
DOCA(Kµ) < 0.07 mm
mcor [1400, 2700] MeV/c2

tcor/τD0 [2.3, 20]
|m(KK) −mD0| > 24 MeV/c2

|m(Kπ) −mD0| > 24 MeV/c2

|m(πK) −mD0| > 24 MeV/c2

F > 4 mm
FZ > 0 mm
FXY < 4 mm

Pion p > 3000 MeV/c
pT > 300 MeV/c
χ2(IP) < 9

DLLµ−π < 1

IsMuon false

ProbNNghost > 0

D∗ pT > 3750 MeV/c
DOCA(D0πs) < 100 < 0.4 mm
∆m [0, 285] < 200 MeV/c2

m(D0π) < 2050 MeV/c2

m(Kµπ) > 300 MeV/c2

χ2vertex/ndf < 9

Table 3: List of all selection criteria used in the analysis, separately for HLT2 trigger, pre-
selection (stripping) and final offline selection. If not explicitly mentioned, the trig-
ger cuts have been adopted also in the stripping.
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6
F I T O F S A M P L E C O M P O S I T I O N

This chapters describes the strategy developped to extract the signal yields on a statistical
basis. First, the general strategy is explained and then applied to the RS sample. Second, a
preliminary fit to the WS sample is shown.

6.1 general strategy

Although the selection of Chapter 5 is designed to minimize the background con-
tamination in the sample, the remaining events are a mixture of unknown compo-
sition and the amount of signal events has to be identified statistically. No single
variable is found to be sufficient to separate the signal candidates from all dif-
ferent kinds of backgrounds discussed in Section 3.2 at once. However, the two
dimensional space spanned by the invariant masses m(D0π) and m(Kµ) shows
promising separation to isolate the signal as explained in the following.

Figure 33 schematically shows the expected shapes for signal, misidentified and
multi-body D0 decays, random pions and purely combinatorial background. Ran-
dom pions and combinatorial background can easily be identified in m(D0π), be-
cause they feature a different non-peaking shape compared to signal and misiden-
tified multi-body decays. Having both similar peaking distributions in m(D0π),
misidentified multi-body decays and signal candidates can instead be separated
in m(Kµ), where they are expected to have different shapes as the amount of
missing momentum does depend on the number and species of particles not re-
constructed. Combining the information ofm(D0π) andm(Kµ) in a bidimensional
fit would allow to disentangle the individual components. While this is the prefer-
able approach in terms of statistical precision, it would require to know the two-
dimensional distribution of each component, as correlations between m(D0π) and
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m(Kµ) do not allow to factorize the joint PDFs. This makes the bidimensional
fit difficult and subject to unwanted systematic uncertainties, as for some of the
background component, such as the purely combinatorial background, the two-
dimensional distributions are not known and cannot be simply extracted from
simulation or control samples. Also, to reliably extract the two-dimensional distri-
bution of the physics backgrounds from the simulation does requires huge sam-
ples of simulated events, which, as discussed later, are not always available.

To overcome these limitations, in this analysis a different fitting strategy is em-
ployed. This consists of fitting the sample in two successive steps. First, the data
sample is divided in bins of m(Kµ). In each bin, a one-dimensional fit to m(D0π)

is performed to get the number of peaking events. This number includes signal
and misidentified multi-body D0 decays, while non-peaking random pions and
combinatorial background are statistically subtracted. Plotting these yields in the
bins of the visible mass reveals the m(Kµ) projection for signal and multi-body de-
cays only. Next, signal decays are separated from background due to misidentified
multi-body decays by a one-dimensional fit to the obtained m(Kµ) distribution.
With this procedure, the number of fit components which needs to be described is
drastically reduced and correlations are implicitly accounted for.

Details of the fit in m(D0π) are presented in Section 6.2, where the peaking
signal-like part is described by a phenomenological analytical function and the
non-peaking component is modeled by an artificially created random-pion sample
derived from data. Section 6.3 describes instead the subsequent fit inm(Kµ), where
the mass shapes are extracted from simulated events. Therefore, a huge sample of
inclusive D∗ decays has been generated which is briefly described in Section 6.3
and in more detail in Appendix B.

6.2 a model to fit m(D0π)

As just explained, the purpose of the m(D0π) fit is to isolate the peaking compo-
nent, including signal and misidentified multibody decays, from the non-peaking
component, which is mainly composed by random associations of real D0 can-
didates and uncorrelated soft pions from the primary vertex. For this a reliable
model for the random pions is required. The idea is to mimic fake D∗ candidates
by associating D0 candidates from one event to soft pions from another event and
extract the m(D0π) shape from them.

A naive association is not sufficient, as it is only possible to sample from already
selected candidates and the kinematics of the final state particles are this way not
correctly reproduced. An example, is shown in Figure 34, where the transverse
momentum distribution of the soft pion from a sideband of the naively mixed
random-pion sample is compared to the same sideband of the WS data1. Since the
mass shape may depend on the kinematical features of the sample, the association

1 It has been checked that RS and WS sideband do not show significant differences.
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Figure 34: Transverse momentum and η distibution of the final state particles at the differ-
ent steps of the procedure.

procedure is tuned to create a background sample consistent with the kinematics
of the data sideband defined bym(D0π) > 2035MeV/c2. In particular, the artificial
association of D0 and soft pions is done in the following steps:

1. a soft pions from one event is combined to a D0 candidates from another
event;

2. all selection cuts on the kinematics of the formed D∗ candidate, e.g. ∆m <

200MeV/c2, are applied;

3. the combinations surviving the cuts are sampled according to the pT (πs)
distribution observed in the sideband of the WS data (with a keep-or-reject
method).

The D0π combinations obtained with this procedure shows increased agreement
with the WS data sideband not only in pT (π) but also in the distributions of kaon
and muon momenta, as shown in Figure 34. However, residual discrepancies re-
main in the pseudorapidity distributions. These are adjusted by assigning a weight
to each event. The weight is calculated from the ratio of the normalized η(π) distri-
butions observed in the WS and random-pion samples. Again, the procedure also
corrects for the deviations observed in η(K) and η(µ) as shown in Figure 34.

Figure 35a shows the m(D0π) distibution of the mixed-events associations at
the different steps of the procedure. While correctly reproducing all kinematical
variables is important to ensure a reliable model for the m(D0π) distribution of
the random pions, it is worth noticing that the effect of the pT sampling and the η-
reweighting on the mass shape is marginal (especially the latter). Figure 35b shows
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the m(D0π) distribution of the mixed-events associations for different m(Kµ) bins.
The changes in shapes are mainly caused by the stripping selection requirement
on ∆m, which introduces correlations between m(D0π) and m(Kµ).

In total, the random-pion sample consists of approximately 150× 106 candidates
and therefore the available statistic is much higher than the data sample. These
events are used to build histograms that are used in the m(D0π) fit as templates
for the random-pion background PDF:

Pnon−peaking(m) =
1

NR

R(m),

where R(m) returns the value of the histogram filled with random pions and NR

is an appropriate normalization factor.
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The events peaking in m(D0π) are instead described by an empirical analytic
function, with sufficient degrees of freedom to account for the broad peaking struc-
ture, the long tail and the sharp turn-on observed in simulated decays. The mass
shapes for a simulated sample of misidentified multi-body D0 decays and for the
D0 → Kµν signal, in different m(Kµ) bins, are shown in Figure 36. For signal can-
didates, the m(D0π) mass shape is only subject to small changes within different
m(Kµ) bins. Comparing misidentified multi-body decays, however, the shape in
m(D0π) is varying a lot, because the composition of the different multi-body com-
ponents is depending on the considered m(Kµ) bin. Generally, the shape for the
misidentified multi-body decays is broader compared to signal. The PDF used to
account for all these effects is the following:

Ppeaking(m|~µ,~σ, ~a,~b, ~f) = f1G1(m|µ1,σ1)

+ (1− f1)f2G2(m|µ2,σ2)

+ (1− f1)(1− f2)f3G3(m|µ3,σ3)

+ (1− f1)(1− f2)(1− f3)f4T1(m|a1,b1)

+ (1− f1)(1− f2)(1− f3)(1− f4)T2(m|a2,b2),

where Gi are three Gaussian distributions describing the bulk and the high-mass
tail of the peaking structure,

Gi(m|µi,σi) =
1

NGi

e
−

(m−µi)
2

2σ2
i ,

and Ti are used to model the sharp turn-on close to threshold,

Ti(m|ai,bi) =
1

NTi

(m−mmin)
ai · e−bi(m−mmin).

The factors NGi and NTi normalize the corresponding functions to unitary area
and the fractions fi ∈ [0, 1] determine the relative contribution of the individual
functions. The kinematic threshold at mmin = mD0 +mπ+ ≈ 2004.41MeV/c2 is
fixed in the fit.

The final fitting function is then the sum of the peaking part, including signal
and misidentified multi-body decays, and the non-peaking part including random
pions and pure combinatorial background:

Ftotal(m|~θ) = NpeakingPpeaking(m|~θ) +Nnon−peakingPnon−peaking(m)

Here, ~θ includes all the free parameters used to describe the signal shape. Since all
the components are properly normalized, the coefficients Npeaking and Nnon−peaking

correspond to the yields of candidates peaking and not peaking inm(D0π), respec-
tively. A plot of Ppeaking and Pnon−peaking is shown in Figure 37.
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Figure 37: PFDs used in the fit to m(D0π).

6.3 a model to fit m(Kµ)

As mentioned in Section 3.2, a large contamination from multi-body decays can
enter both the RS and the WS samples by misidentification of one or more fi-
nal state particles. The shape in m(Kµ) depends on the actual composition and
therefore can only be studied with simulation. A sample of simulated inclusive
D∗+ → D0π+ decays has been produced, where all possible decays of the D0 are
generated according to the known branching ratios [25].

A reliable model is only possible if not only the generation but also the full detec-
tor response is correctly simulated to account for resolution effects and misidenti-
fication probabilities. Generally, this is very CPU intensive and requires time (typ-
ically one minute per event). To accelerate the generation step, a private Monte
Carlo production chain is set up, where the Particle Gun generator is used.
Contrary to the standard production chain, where Pythia [54] simulates the full
proton-proton interaction, Particle Gun generates just the decay of interest al-
lowing to simulate one event in approximately three seconds. Details on this
alternative Monte Carlo production are described in Appendix B. A total of ap-
proximately 7 × 108 decays have been generated, of which only approximately
73× 103 (18× 103) RS candidates survive the stripping (offline) selection. Of these
approximately 63 × 103 (17 × 103) are D0 → K−µ+ν signal, while the remain-
ing are misidentified background from multi-body D0 decays. As mixed and un-
mixed D0 mesons feature the same kinematical properties, the signal mass shape
for candidates reconstructed as RS and WS is the same. The situation is differ-
ent for misidentified multi-body decays. Here, the relative composition in the RS
and WS samples can differ as the relevant contributions enter the sample with
branching ratios different misidentification probabilities. For example, consider
the suppressed D0 → K+π−π0 decay (B ≈ 3× 10−4), which contributes to the
WS sample when the pion is misidentified as a muon. It will instead contribute to
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Figure 38: Visible mass for signal candidates and misidentified multi-body decays taken
from a sample of inclusive D0 decays.

the RS sample only if both the kaon and the pion are misidentified. The opposite
happens for the favoured D0 → K−π+π0 decay (B ≈ 14× 10−2). Therefore, while
the suppressed decay will be negligible for the RS but not for the WS signal, the
favoured one will contribute to both with different relative contamination. As a
result, the m(Kµ) shape for the misidentified multi-body background is expected
to be different for between RS and WS candidates. The number simulated misiden-
tified WS candidates surviving the full selection is only 13 and thus unusable for
the determination of the corresponding m(Kµ) shape. For this reason, while the
analysis procedure is fully completed on the RS sample, no attempt is performed
to fit the Kµ-mass distribution of the WS data. Nevertheless, a preliminary esti-
mation of the expected sensitivity on the mixing ratio is provided in Section 6.5.1,
using pseudo-experiments that mimic the observed data distributions.

Figure 38 shows the m(Kµ) distributions for the simulated events reconstructed
as RS candidates, which are used as PDF templates in the fit. The distributions are
well separated and expected to be identifiable by a fit. The corresponding distri-
bution for multi-body decays reconstructed as WS candidates remains unknown
due to low Monte Carlo statistics.

The total fitting function is therefore the sum of two components,

Ptotal(m) = NsigPsig(m) +NbkgPbkg(m),

where the signal and background components,

Psig(m) =
1

NS

S(m)

and

Pbkg(m) =
1

NM

M(m),
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Figure 39: Fit to m(D0π) to the integrated RS sample.

correspond to the appropriately normalized histograms for signal and multi-body
decays background, respectively. In this definition, the parameters Nsig and Nbkg

directly correspond to signal yield and background from misidentified multi-body
decays , respectively.

6.4 results of the fit to the right-sign sample

The fit model described in Section 6.2 is now used to determine the signal yield
of the RS sample. Figure 39 shows the fit in m(D0π) to the RS sample, integrated
over the full m(Kµ) range. The yields of peaking events obtained by this fit is:

NRSpeaking = (4.944± 0.006)× 106.

This number includes both signal and misidentified multi-body decays. The ana-
lytical function defined in Section 6.3 and the model for the random combinations
are sufficiently describing the shape of the observed peaking and non-peaking
components in m(D0π).

Following the procedure described in Section 6.3, the data are divided in 41 bins
of m(Kµ), with variable bin widths to ensure reasonable amount of candidates in
each bin. The same binning is used to divide the random-pion sample which
is used as background template for the m(D0π) fits. In the individual fits, all
parameters of the signal PDF explained in Section 6.2 are left free to float. The
m(D0π) signal shape is expected to vary as a function of m(Kµ), as it depends on
the relative composition of semileptonic and multi-body decays. Low-m(Kµ) bins
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Figure 40

are expected to be dominated by peaking background, whereas at higher masses
the semileptonic signal contribution is enhanced (see Figure 38).

The projections of the m(D0π) fits for each m(Kµ) bin can be found in Ap-
pendix C. The corresponding yields for peaking and non-peaking components
are shown in Figure 40, together with their statistical uncertainties. The extracted
m(Kµ) shapes for the peaking and non-peaking components in m(D0π) are very
similar and both resemble the Monte Carlo signal shape of Figure 38. This again
confirms that most of the subtracted non-peaking component is due to real semilep-
tonic D0 decays with randomly attached pions and also that most of the peaking
component is made of signal.

To determine the RS signal yield, the histogram shown in Figure 40a is fitted as
explained in Section 6.3. Figure 41 shows the resulting projection, from which
a fraction of (10.55 ± 0.09)% of background from misidentified multi-body de-
cays is extracted. The fit quality is satisfactory and the number of D∗+ → D0(→
K−µ+ν)π+ decays estimated is

NRSsig = (4.44± 0.05)× 106.

A larger sample of simulated inclusive D∗+ decays can certainly allow a more
refined fitting model and improved precision.

6.5 preliminary fit to the wrong-sign sample

To measure the ratio of WS and RS events, the same procedure has to be applied
to the WS sample. Figure 42 shows the fit projection to m(D0π) for the WS data,
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Figure 41: Fit to m(Kµ) to RS yields peaking in m(D0π).

integrated over the full m(Kµ) range. The total amount of peaking events, again
including signal and misidentified multi-body decays, is

NWSpeaking = (2.03± 0.04)× 105.

The same binning as defined for the RS fit is used to divide the WS sample
in subsamples according to the visible D0 mass. As the statistic is significantly
lower compared to the RS sample, the number of free parameters for the signal
component in the individual m(D0π) fits is reduced. A double-Gaussian function
is sufficient in the first 23 bins, while a single-Gaussian distribution is used for the
rest.

Figure 43 shows the yields of the peaking and the non-peaking components ob-
tained by the individual fits in the corresponding m(Kµ) bins. The projections of
the fits for each m(Kµ) bin are in Appendix C. Also in this case (see Figure 44),
the distribution of the non-peaking component looks consistent to what observed
in the RS and signal Monte Carlo samples, confirming again that the dominant
non-peaking background is due to random pions. The m(Kµ) distribution for the
candidates peaking in m(D0π), however, differs completely from both the signal
and the multi-body decays shapes shown in Figure 38. As explained in Section 6.3,
the composition, and therefore the mass distribution, of multi-body decays re-
constructed as RS candidates is expected to differ from that of the decays recon-
structed as WS candidates. A measurement of the WS signal yield requires the
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Figure 42: Fit to m(D0π) to the integrated WS sample.

knowledge of this distribution and is at this stage not performed due to lack of
Monte Carlo statistics.

6.5.1 Expected sensitivity to the mixing ratio

To estimate the expected sensitivity to the mixing ratio RM = (x2 + y2)/2, pseudo-
experiments that mimic the observed data distributions are performed.

Using the RS signal yield measured in Section 6.4, the world average values
of the mixing parameters [23] and the value of Γ2

〈
t2
〉
= 11.11 determined from

simulation, it is possible to calculate the expected number of mixed WS signal
events with Equation 8 to be

NWSexp sig = NRSsig
RM
2
Γ2
〈
t2
〉
≈ 697. (19)

These correspond to ∼ 0.3% of the measured yield of WS candidates peaking in
m(D0π). Assuming therefore that the measured m(Kµ) distribution of Figure 40a
is esentially composed of only background, it is possible to generate pseudo-
experiments acoording to the observed features of the WS data where a known
and fluctuated mixing signal is injected. These pseudo-experiments can then be
used to estimate the expected precision on RM provided by the analysis proce-
dure developed here. While performing the m(Kµ) fit, the mass template for the
multibody background of the WS sample is assumed to be known with a pre-
cision corresponding to the statistic of the available data. Therfore the statistic
uncertainty due to limited Monte Carlo is taken into account.
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Figure 44

Figure 45a shows an example for generated m(Kµ) distributions for signal and
misidentified mulit-body decays in a pseudo-experiment. In Figure 45b, the cor-
responding fit to the combined distribution is shown. The extracted mixing ra-
tio is RM = (0.0025± 0.0107)% and therfore still compatible with zero. To better
estimate the statisitical precision, 104 independent pseudo-experiments are per-
formed, where the distribution of the resulting uncertainties on RM are shown in
Figure 46. The estimated statistical precision on the mixing ratio is 0.01%, which
corresponds to a factor of two improvement with respect to the current world’s
best determination of RM = (0.013± 0.022)% using semileptonic final states [31].
The estimation does not include systematic uncertainties due to the mass shapes
extracted from simulations, such as form factors used to describe the decay ampli-
tutes which are not always well known. These systematic uncertainties have to be
evaluated carfully when sufficient Monte Carlo statistic is available.
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S U M M A RY A N D O U T L O O K

This thesis presents a study of D0 → K±µ∓ν decays for a possible measurement
of the charm mixing rate at LHCb. Charm mixing describes periodical meson-
antimeson transitions in the time evolution of a neutral D decays. It is a powerful
indirect probe for non-SM particles contributing to quantum loops and allows to
search for new sources of CP violation. The semileptonic decay channel opens the
chance to measure the mixing rate directly through a time-integrated analysis. By
selecting D0 mesons arising from strong-interaction decays of D∗+ → D0π+, the
flavour of the D0 meson at production time can be determined by the charge of
the accompanying pion. With semileptonic final states, the flavour of the D0 at the
time of decay is unambiguously determined by the charge of the muon and allows
to decide if flavour changing transitions occurred or not. The work of this thesis
represents the first attempt to measure charm mixing in this channel at LHCb. The
entire analysis strategy is developed from the start.

In LHCb the presence of the neutrino does not allow to fully reconstruct the
semileptonic final state, introducing much larger background contamination than
with fully reconstructed charm decays. The thesis presents therefore a detailed
study of several algorithms that may be used to correct for the undetected neu-
trino and determine the D0 momentum. This study shows that substantial im-
provements in momentum resolution can be achieved, which also result in im-
proved mass as well as decay-time resolutions, hence providing an important han-
dle to suppress backgrounds. Expected sources of backgrounds are studied and
an specific selection requirements are developed to isolate the semileptonic signal.
These include a multivariate analysis technique based on a boosted decision tree,
an optimized lower decay-time threshold, particle-identification requirements and
multiple candidate removal.

An original method to statistically separate the signal from all background com-
ponents surviving the final selection is developed. The two-dimensional space
m(D0π)×m(Kµ) is found to show sufficient separation between the distinct com-
ponents. First, fits to the m(D0π) distribution in bins of m(Kµ) are performed to
remove background from fake D∗+ candidates. The m(D0π) shape of this non-
peaking background is modeled by an artificially created sample, where soft pion
candidates from one event are randomly associated toD0 candidates from another.
In this work, an new association procedure is developed to ensure a reliable back-
ground sample consistent with the observed kinematics of the data sideband. The
m(Kµ) distribution of the resulting yields of candidates peaking in m(D0π) are fit,
using templates derived from simulation, to disentangle the semileptonic signal
from misidentified D0 decays to multi-body final states. For these purpose, large
simulated samples of inclusive D∗+ decays are needed to account for all possible
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sources of contamination. The thesis includes therefore the development of a new
Monte Carlo production chain, which allows to reduce by a factor 20 the CPU-time
required to simulate an event. This part of the work, partially based on already
existing tools, is in the process to be adopted as official Monte Carlo production
within the LHCb collaboration. The analysis procedure is fully tested on the data
corresponding to 2 fb−1 of integrated luminosity, with unmixed D0 → K−µ+ν

decays, and yields satisfactory results. No attempt is performed to fit the mixing
signal, as further studies are needed to better understand the background faking
theD0 → K+µ−ν decay. These require simulated samples of larger statistics which
will become available when the new simulation chain will be adopted as official
production chain.

A sensitivity study has been performed with pseudo-experiments that mimic
the features of the real data. The study shows that with the available data a statis-
tical precision of 0.01% on the determination of the mixing rate RM = (x2 + y2)/2

can be achieved. Comparing to the current world’s most precise measurement of
charm mixing in semileptonic decays from Belle [31], (0.013± 0.022)%, this would
be an improvement by a factor of two. In this sensitivity study, systematic un-
certainties related to mass shapes taken from simulations are not considered and
need to be evaluated.

While this first and very preliminary study already shows that a competitive
measurement of charm mixing with semileptonic D0 decays is possible at LHCb,
it is clear that many aspects of the analysis can be further improved in the near
future. Moreover, larger data samples will become available during the upcom-
ing Run II, where more efficient trigger and offline selections are foreseen to be
used. During this period, LHCb is expected to collect more than 5 fb−1 of inte-
grated luminosity and will therefore be in an excellent position to contribute to
our understanding of mixing and CP violation with semileptonic charm decays.



A
B O O S T E D D E C I S I O N T R E E S

This chapter explains the general principle of boosted decision trees, focusing on the config-
uration chosen in this analysis.

a.1 the idea of multivariate analyses

A boosted decision tree is an example for a multivariate analysis. Multivariate
techniques combine information of several discriminating variables into one sin-
gle response variable, called a multivariate classifier. The signal-to-background dis-
criminating information is this way fully exploited as all correlations between the
discriminating variables are used to separate signal and background events. In
the analysis described in this thesis, the boosted dicision tree (BDT) method [50]
available in the Toolkit for Multivariate Analysis (TMVA) [49] is used. The following
explains how the BDT work and how it has been configured.

a.2 boosted decision trees

A BDT is based on binary decision trees. Starting from the original sample, called
the root node, the best cut on one of the discriminating variables is defined that
divides the sample in two branches, as shown in Figure 47. The criterion used
in this analysis to determine the best cut value is that minimizing the Gini In-
dex [49], which is defined by p(1− p), where p is the signal purity. This procedure
is repeated subsequently for all other discriminating variables. At each step a new
node of the tree is formed. The same variable can be used at several different nodes.
The number of cuts per variable tested at a node is set to 20, which is the standard
setting that represents a compromise between computing time and step size. The
last sample at the end of a branch is called leaf. Depending of the composition
of a leaf, it is labeled as signal-like or background-like. This classification is done
according to the purity of the individual samples. The procedure of splitting is re-
peated until a convergence criterion is fulfilled. For this analysis, the convergence
is reached when a node containing 2.5% of the total training sample is created.

Compared to a selection which is based on rectangular cuts, not only one hy-
percube in the multidimensional space spanned by the selection variables is acces-
sible, but several signal- and background-like hypercubes at the end of the tree.
This makes the decision tree a powerful tool, which is unfortunately very sensitive
to statistical fluctuations of the training sample. Slightly different compositions in
the root node can, indeed, cause large differences in the structure of the tree. For
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Figure 47: The principle of a binary decision tree [49].

this reason, not only one tree is derived from the training sample, but a so-called
forest consisting of various trees. In the forest, every tree is subsequently subject
to a boosting algorithm. After having derived a tree, the events that has been mis-
classified within a signal- or background-like leaf are assigned a weight. Several
boosting algorithms are available, but in this analysis the AdaBoost algorithm [55]
is used.

a.2.1 The AdaBoost algorithm

In the AdaBoost algorithm, the boosting is done in the following way. Let N be the
total number of events in a training sample, xi the set of discriminating variables
for the ith event, m the index of the tree within a forest and wmi the weight of
an event in tree m. The function Tm(xi) returns (+1) (−1) if event i ended up in
a signal-like (background-like) node for the tree m. If event i was really a signal
(background) event the variable yi is set to +1 (−1). To boost only misclassified
events, the weight for the event i in the tree m+ 1 is defined as

wm+1
i = wmi e

αm I(yi 6=Tm(xi)),

where

αm = β ln
1− errm
errm

with errm =

∑N
i=1wiI(yi 6= Tm(xi))∑N

i=1wi
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and

I(yi 6= Tm(xi)) =

{
1 if yi 6= Tm(xi)

0 if yi = Tm(xi)
.

The final weight for an event i is then calculated as the weighted sum over all the
individual trees:

T(xi) =

Ntrees∑
m=1

αmTm(xi).

In this analysis, the boosting factor β is set to 0.5 and the number of trees is
decided to be 850 to be robust against statistical fluctuations in the training sample.





B
M O N T E C A R L O S I M U L AT I O N U S I N G PA RT I C L E G U N

This is chapter presents in more details the Particle Gun generator and the Monte Carlo
simulation chain used in this analysis. A comparison with the standard Monte Carlo
production, based on the Pythia generator is also provided.

b.1 monte carlo simulation at lhcb

At LHCb, the production of Monte Carlo simulations is processed in five subse-
quent steps using different software packages based on the Gaudi framwork [56]:

gauss – The Gauss package [57] is used for generation of the signal process
and the simulation part, where the the passage of the particles through the
detector is simulated with Geant4 [58].

boole– Boole [59] is simulating the detector response due to the interaction of
the generated and secondary particles with the detector components.

moore– The simulation of the LHCb trigger is done by Moore [60], which em-
ulates the hardware trigger and executes the same algorithm used for real
data in the software stage.

brunel– The offline reconstruction (tracking, particle identifications, etc.) is done
by Brunel [61] in exactly same way as for real data.

davinci– DaVinci [62] is used to reconstruct and select signal topologies of a
desired process by combining the particle candidates created by Brunel.
The stripping selection is part of the DaVinci step.

In the generation phase of Gauss, the standard production tool used at LHCb
is Pythia [54], where the proton-proton collision is simulated including the hard
process and hadronization. The decay of the produced particles is governed by
the particle decay simulation package EvtGen [63]. This produces large multi-
plicities of particles, whose passage through the detector has to be simulated by
Geant4. The simulation process becomes therefore very CPU and time consum-
ing. To speed up the production of the large Monte Carlo samples of simulated
inclusive D∗+ → D0π+ decays required for this analysis, a simpler generation
of only the particle of interest has been used in place of Pythia. This alternative
generator is called Particle Gun and is described in the following.
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Figure 48: Two dimensional pt,pz distribution taken from alrady generated Pythia D∗

decays and projections.

b.2 the production chain using particle gun

The idea of Particle Gun is not to simulate the full proton-proton interaction, but
to only send a single signal particle into the detector. The advantage is to benefit
from time saving during the generation itself and mainly in the simulation part
due to a very low track multiplicity.

As no proton-proton collision is simulated, the starting momentum of the signal
particle has to be given as input. One possibility is to sample from an multidi-
mensional histogram provided externally by the user. In this analysis, solely D∗

decays are generated. A sample of already existing Pythia generated D∗ decays
is used to fill a two-dimensional histogram with the transverse momentum and
the z-component of the momentum of the D∗ candidates. The histogram shown
in Figure 48 is used during the generation process to randomly sample pT and
pz and assigning the components px, py, pz to the D∗ candidate, assuming a flat
distribution in φ. To be more efficient, only (pT ,pz) configurations leading to a D∗

within the LHCb detector acceptance are allowed as shown by the visible kinemat-
ical borders of Figure 48. The D∗ is forced to decay into a D0π+ pair by EvtGen,
followed by all possible D0 decays according to their known branching ratios [25].

For simplicity only one D∗+ candidate is generated per event. Its generated po-
sition in the detector will then coincide with the primary vertex. To simulate a
realistic distribution, the primary vertex position is extracted event-by-event fol-
lowing the same parameterization of the luminous region used by Pythia. Fig-
ure 49 shows the three-dimensional distribution of the primary vertex position, as
well as the corresponding projections along the three axes.

Following the generation, the digitalisation by Boole can be processed with
standard configurations. Since, in the work here presented, we are not interested
in determining precise trigger efficiencies, which may depend on the full event
and not only on the signal-candidate particles, the Moore step is skipped and the
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Figure 49: Three dimensional PV position (VPVx,VPVy,VPVz) taken from alrady generated
Pythia D∗ decays and projections in each dimension.
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Figure 50: Projections of the LHCb PV resolution taken from minimum bias MC samples.

trigger selection is emulated later on offline-reconstructed quantities. During the
Brunel reconstruction, the low track multiplicity does not allow to fit the primary
vertex position. At this stage, a new tool has been implemented to smear the po-
sition of the generated primary vertex with realistic resolutions. The smearing is
done according to an externally provided three-dimensional histogram, filled with
the (x,y, z) resolutions extracted from a high-statistics simulated sample of mini-
mum bias events. The projections of the three dimensional histogram are shown
in Figure 50, where the resolution in each dimension i = x,y, z is defined as
σPVi = VrecoPVi − VtruePVi , where VrecoPVi and VtruePVi are the reconstructed and gener-
ated position of the primary vertex, respectively. Finally, in the DaVinci step, the
stripping selection explained in Chapter 5 is performed together with the emula-
tion of the trigger.

b.3 comparison pythia and particle gun

The Particle Gun production chain was tested by comparing a sample of 5 ×
106 simulated D∗+ → D0(K−µ+ν)π+ candidates to an existing sample of equal
amount produced with the standard Monte Carlo production based on Pythia.
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Figure 51: Comparison of visible D0 mass and ∆m for Monte Carlo samples generated
using Pythia (black) and Particle Gun (red).

Figure 51 and Figure 52 show the comparison ofm(Kµ), ∆m, reconstructed primary-
vertex position, transverse momenta and impact parameter of the reconstructed
candidates. No significant differences are observed in the distribution, confirming
that the Particle Gun simulation chain is effective in reproducing the same kine-
matical features as that resulting from the standard simulation chain. Differences
between Particle Gun and Pythia are instead visible when comparing the χ2(IP)
and the particle-identification variables (see Figure 53). This is somewhat expected
as these variables are correlated with the track multiplicity of the event. For the
scope of this thesis, where a mass model for background studies is needed, the
agreement obtained is however sufficient and these differences can be ignored.
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Figure 52: Comparison of reconstructed PV position, transverse momentum of the final
state particles and impact parameter for reconstructed candidates generated by
Pythia (black) and Particle Gun (red). All distributions are in good agree-
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Figure 53: Impact parameter significance and PID variable for reconstructed candidates
generated by Pythia (black) and Particle Gun (red), where expected devia-
tions are visible.



C
F I T S I N B I N S O F m (Kµ )

In this chapter, the fits in m (D 0 π ) for all bin in m (Kµ ) are shown. See Chapter 6 for
details.

c.1 right sign sample
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Figure 54: Fits in bins of m(Kµ) RS sample (part 1 of 4)
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Figure 55: Fits in bins of m(Kµ) RS sample (part 2 of 4)
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Figure 56: Fits in bins of m(Kµ) RS sample (part 3 of 4)
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Figure 57: Fits in bins of m(Kµ) RS sample (part 4 of 4)
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Figure 58: Fits in bins of m(Kµ) WS sample (part 1 of 4)
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Figure 59: Fits in bins of m(Kµ) WS sample (part 2 of 4)
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Figure 60: Fits in bins of m(Kµ) WS sample (part 3 of 4)
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Figure 61: Fits in bins of m(Kµ) WS sample (part 4 of 4)
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