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Zusammenfassung:

In der vorliegenden Arbeit wird zum ersten Mal das Verzweigungsverhältnis des Zerfalls

Λ0
b→ D0pµ−νµX relativ zum Referenzkanal Λ0

b→ Λ+
c µ
−νµ gemessen. Die ausgewerteten

Daten wurden in den Jahren 2011 und 2012 in Proton-Proton Kollisionen bei einer Schw-

erpunktsenergie von 7 TeV beziehungsweise 8 TeV am LHCb Experiment gesammelt. Dies

entspricht einer integrierten Luminosität von 3 fb−1. Mit Hilfe eines zweidimensionalen Fits

an die invariante D0pMasse und an logχ2
IP, einem Maÿ für die Qualität des D0pµ− Vertex,

werden etwa 23000 Λ0
b→ D0pµ−νµ Signalereignisse rekonstruiert und extrahiert. Ein Fit

an die korrigierte Λ0
b Masse ergibt für den Referenzkanal Λ0

b→ Λ+
c µ
−νµ etwa 1,5 Millionen

Ereignisse. Unter Berücksichtigung der Rekonstruktions- und Selektionse�zienzen erhält

man damit ein relatives Verzweigungsverhältnis R von

R :=
B(Λ0

b→ D0pµ−νµX)
B(Λ0

b→ Λ+
c µ−νµ)

= 0.0180± 0.0013 (stat)± 0.0014 (syst).

Die Mehrheit der Λ0
b→ D0pµ−νµX Zerfälle verläuft dabei nichtresonant, es werden aber

auch Zerfälle über die Resonanzen Λc(2880)+ und Λc(2940)+ gemessen. Bei Betrachtung

der invarianten D0p Masse wird weiterhin eine unerwartete Häufung von Ereignissen um

etwa 2840 MeV beobachtet. Es werden einige mögliche Ursachen hierfür untersucht, den-

noch kann keine endgültige Erklärung für diese Häufung präsentiert werden. Derzeit gibt

es keine experimentellen oder theoretischen Vergleichswerte für R, die hier genannt werden
können.

Abstract:

This thesis presents the �rst branching ratio measurement of the semileptonic decay Λ0
b→

D0pµ−νµX with respect to the reference channel Λ0
b→ Λ+

c µ
−νµ. The analysed data was

collected in proton-proton collisions at a centre-of-mass energy of 7 TeV respectively 8 TeV
by the LHCb experiment in 2011 and 2012 and corresponds to an integrated luminosity of

3 fb−1. About 23000 Λ0
b→ D0pµ−νµ signal events are reconstructed and extracted from a

two-dimensional �t to the invariant D0p mass and logχ2
IP, a measure for the quality of the

D0pµ− vertex, distribution. With a �t to the corrected Λ0
b mass, about 1.5 million Λ0

b→
Λ+
c µ
−νµ events are found. After consideration of reconstruction and selection e�ciencies,

the relative branching ratio R is determined as

R :=
B(Λ0

b→ D0pµ−νµX)
B(Λ0

b→ Λ+
c µ−νµ)

= 0.0180± 0.0013 (stat)± 0.0014 (syst).

The majority of the Λ0
b → D0pµ−νµX decay width is non-resonant, but there are also

contributions from intermediate Λc(2880)+ and Λc(2940)+ resonances measured. Further-

more, there is an anomalous enhancement seen in the invariant D0p mass spectrum. Its

origin is not completely �gured out in this thesis, but several cross-checks are presented.

No theoretical predictions or experimental results on R exist so far for a comparison of the

obtained result.
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Chapter 1

Introduction

Developed about 40 years ago, the Standard Model of Particle Physics very success-
fully describes the properties of the known elementary particles and their interac-
tions among each other [1�3]. It includes the electromagnetic, the strong and the
weak interaction. Until today it has been probed with tremendous precision. With
the exception of the neutrino masses, no results contradicting its predictions have
been found so far. With the discovery of the Higgs boson in 2012 [4, 5], con�rming
the theory of electroweak symmetry breaking, the success of the Standard Model
reached its climax.

Nonetheless, there are still open questions, which the Standard Model does not
answer: Where does the asymmetry between matter and antimatter come from1?
What is the origin of dark matter and of dark energy, making up about 95% of our
universe in total [6]? How can gravitation be formulated as a quantum �eld theory
and be combined with the Standard Model interaction to a more general theory of
forces?

The Large Hadron Collider (LHC) of the European Organization for Nuclear Re-
search (CERN) at Geneva, Switzerland is �the world's largest and most powerful
particle accelerator" [7] dedicated to tackle those questions. One of the four big
experiments located at the LHC is the LHCb-experiment. It is built to probe the
Standard Model to a high precision and to �nd indirect evidence for physics be-
yond the Standard Model, often referred to as �New Physics (NP)", by the study
of hadron decays containing a b- or c-quark. These hadrons provide an excellent
laboratory for the measurement of observables sensitive to New Physics like CP-
violation and many more. It allows furthermore to do spectroscopical analyses with
bound heavy quark states leading to a better understanding of Quantum Chromo-
dynamics (QCD), the theory of the strong interaction responsible for the bindings
of quarks to hadrons. Unfortunately, QCD cannot be treated perturbatively in the
energy regime of hadrons. Thus, theoretical predictions of such b-/c-hadron decays
are always forced to make use of approximations, for instance of the Heavy Quark
E�ective Theory (HQET) [8]. The quark model of such theories predicts plenty of
b-/c-hadron resonances [9]. Consequently, the more resonances and particles includ-

1Admittedly, with the CP-violation the Standard Model provides a framework for matter-
antimatter asymmetry, though it is not su�cient to explain the observed asymmetry in the
universe.
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Chapter 1 Introduction

ing their properties are measured, the better these e�ective theories can be adjusted
and the better gets the knowledge of the strong interaction. While the B factories
and hadron colliders made a great progress in studying b mesons, the knowledge of
b baryons is rather poor.
This thesis aims to measure the branching fraction of the semileptonic decay

Λ0
b→ D0pµ−νµX in the form of a relative branching fraction ratio

R :=
B(Λ0

b→ D0pµ−νµX)

B(Λ0
b→ Λ+

c µ
−νµ)

for the �rst time. The D0p subsystem allows a spectroscopical analysis of Λ+
c res-

onances, here brie�y denoted as Λ∗+c via the intermediate reaction Λ0
b→ Λ∗+c µ−νµ,

Λ∗+c → D0p. Furthermore, this decay is a hardly understood background in semilep-
tonic searches for New Physics like the CP-violating asymmetry adsl [10] or the mea-
surement of the CKM matrix element |Vub| in the decay Λ0

b→ pµ−νµ [11]. Hence,
with the measurement of B (Λ0

b → D0pµ−νµX) it is possible to reduce the uncer-
tainties of those measurements.
This thesis is structured as follows. Chapter 2 introduces the Standard Model of

Particle Physics as well as some searches for physics beyond the Standard Model.
The last part of this chapter explains experimental techniques and methods used
in this analysis. In Chapter 3, the LHCb-experiment, where the decays have been
recorded, is described. Afterwards a short overview of the analysis strategy follows
in Chapter 4. With Chapter 5, the actual analysis starts with the description of
the event reconstruction and selection. It is followed by the determination of the
signal yields through �ts for the Λ0

b→ D0pµ−νµX channel2 in Chapter 6 and for the
Λ0
b→ Λ+

c µ
−νµ channel in Chapter 7. The required reconstruction and selection e�-

ciencies are determined in Chapter 8. Subsequently, Chapter 9 contains a discussion
of di�erent backgrounds focusing on the Λ0

b→ D0pµ−νµX signal channel. The sys-
tematic uncertainties are studied in Chapter 10. Since an anomalous enhancement
appears in the D0p mass spectrum in the signal �t, several cross-checks on the origin
of this enhancement are presented in Chapter 11. In Chapter 12, all intermediate
results are summarised and the relative branching ratio R is calculated. Eventually,
this thesis ends in Chapter 13 with the conclusion.

2In this thesis, the channel Λ0
b → D0pµ−νµX will be also called signal channel and the Λ0

b →
Λ+
c µ

−νµ channel normalisation or reference channel. The corresponding �ts are sometimes
labeled as signal �t respectively normalisation �t.

2



Chapter 2

Theory and motivation

2.1 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) is a relativistic and renormalisable
quantum �eld theory, that combines the electroweak theory developed by Glashow,
Salam and Weinberg [1�3] with quantum chromodynamics (QCD), the theory of the
strong interaction. It combines the current knowledge of fundamental particles and
their interactions at microscopic level with the exception of gravitation.
The electroweak theory itself is a combination of the electromagnetic and the

weak interaction. Every fundamental particle can interact via the weak force.
For instance, the weak force is responsible for the β-decay of neutrons. Atoms
or molecules are bound by the electromagnetic interaction taking place between
electrically charged particles. If particles also carry a so-called colour charge, they
can interact via the strong interaction, which binds e.g. protons and neutrons in a
nucleus.
In the Standard Model, matter arises as half-integer spin particles from quantum

�elds. These particles are called Fermions and can be furthermore split up in
Quarks and Leptons. There exist 6 so-called ��avours" of quarks: up (u), down
(c), charm (c), strange (s), top (t) and bottom1 (b). According to their mass and
other physical properties, they can be grouped into three generations:(

u
d

)
,

(
c
s

)
,

(
t
b

)
.

Quarks in the top row are referred to as up-type quark. They carry an electrical
charge of +2

3
e, whereas down-type quarks carry a charge of −1

3
e. Thus, they

can participate in the electromagnetic interaction. In addtion, quarks carry colour
charge allowing them to interact via the strong interaction.
Leptons do not carry colour charge as opposed to quarks. There exist three

�avours of leptons, namely the electron (e−), the muon (µ−) and the tauon (τ−)
with an electric charge of −e and their neutral counterparts, the neutrinos νe, νµ,
ντ . Similarly to quarks, the leptons can be grouped into three generations(

e−

νe

)
,

(
µ−

νµ

)
,

(
τ−

ντ

)
.

1The bottom quark is sometimes also called beauty.
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Chapter 2 Theory and motivation

As the neutrinos do neither carry electrical nor colour charge, they only interact
weakly. Due to that fact it is not possible to detect neutrinos at hadron colliders
like the LHC. For each fermion, there exists a corresponding antifermion with the
same mass, but opposite quantum numbers.
In the Standard Model, the interactions among the particles are described by

the mediation of spin-1 gauge bosons. For the electromagnetic interaction, this is
the electric neutral photon γ. It couples to electrically charged particles. Since
the photon is massless, the range of the electromagnetic interaction is in�nite. The
weak interaction is mediated by three massive gauge bosons: the electrically charged
W+ and W− as well as the neutral Z boson. The W± bosons only couple to left-
handed fermions (or right-handed antifermions), whereas the Z couples to both,
left- and right-handed fermions, but with di�erent strength. Due to their large mass
of mW± ≈ 80 GeV and mZ ≈ 91 GeV the weak interaction is only short-ranged.
The strong interaction is carried by 8 massless gluons. They couple to particles
carrying a colour charge and carry colour itself. Thus, gluon-gluon couplings are
also possible, leading to a QCD coupling strength αs, which strongly depends on
the momentum transfer in an interaction. For low energies, αs increases dramati-
cally which means that coloured particles cannot be isolated. This phenomenon is
called Confinement. At high energies, αs is very small resulting in the Asymp-
totic Freedom, i.e. the quarks are thus quasi-free at short distances. Due to
the con�nement, strongly interacting composite particles alias Hadrons, must al-
ways be colour-neutral. They exist either as quark-antiquark systems and are called
Mesons or as composite of three quarks named Baryons. Recent LHCb measure-
ments report the observation of candidates for bound states consisting of even 4
quarks (2 quark, 2 antiquarks) [12] and also 5 quarks (4 quarks, 1 antiquark) [13],
called Tetraquarks or Pentaquarks respectively.
Contradicting to the properties of the particles mentioned above, the invariance

of local gauge transformation requires that the particles of the Standard Model are
massless. This problem is solved by the Higgs mechanism, which introduces a
doublet of complex scalar (spin 0) �elds. The potential of these �elds spontaneously
breaks the electroweak symmetry and leads to massive bosons and fermions due to
interaction with the Higgs �eld. The Higgs mechanism furthermore predicts a mas-
sive spin-0 particle, the Higgs Boson. As lastly unobserved particle, its discovery
in July 2012 by ATLAS [4] and CMS [5] was a big success for the experimental com-
munity as well as for the theory of the Standard Model itself. Figure 2.1 summarises
the fermions and bosons of the Standard Model and lists their main properties [14�
16].

2.2 The interest in Λ0
b→ D0pµ−νµX

There are several reasons why the study of the decay Λ0
b → D0pµ−νµX, which is

analysed in this thesis, is interesting. On the one hand, the D0p subsytem allows
spectroscopical studies to learn more about QCD. On the other hand, the decay is

4



2.2 The interest in Λ0
b→ D0pµ−νµX

Figure 2.1: Summary of all fundamental fermions and bosons of the Standard Model
of particle physics with their most important properties. Figure slightly
modi�ed and taken from [17].

a source of background in studies sensitive to physics beyond the Standard Model
and thus limits their precision. The following sections ought to brie�y introduce the
areas and studies, where a better understanding of Λ0

b→ D0pµ−νµX is needed.

The Λ0
b is a baryon with the quark content udb and a mass of (5619.5± 0.4) MeV

[18]. Among all b baryons it is the lightest one. Hence, it can only decay weakly as
the strong and the electromagnetic interactions forbid quark transitions into other
�avours. This results in a characteristic, relatively long lifetime of (1.451±0.013) ps
[18], which is helpful for the detection and reconstruction as will be explained later.
The b quark decays into a c by the emission of a W− boson. Subsequently, the W−

boson decays into a muon µ− and a neutrino νµ. With a uu pair from the vacuum
or an emitted gluon, it is then possible to form a proton p (quark content: uud) and
a D0 meson (cu) in the �nal state. Figure 2.2 shows a possible Feynman graph for
the decay Λ0

b→ D0pµ−νµ. The mass of the D
0 meson is (1864.84 ± 0.07) MeV and

of the proton2 938.27 MeV [18]. Thus, a particle decaying into a D0p must have a
mass above the D0p mass threshold of about 2803 MeV.

2The uncertainty on the proton is negligible compared to the other particles in this analysis.
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Figure 2.2: Feynman diagram for the decay Λ0
b→ D0pµ−νµ.

2.2.1 Baryonic spectroscopy

There are plenty of combinatoric possibilities to combine three quarks to a baryon.
The constituent quark model predicts seven ground-state baryons with a total an-
gular momentum J and parity P of JP = 1

2

+
, containing a heavy b quark and two

light (u, d or s) quarks: The Λ0
b singlet, the Σb triplet, the Ξb doublet and the Ω−b

[19]. Except for the Σ0
b , all these states have been observed. However, the current

knowledge of their fundamental properties like masses, widths and quantum num-
bers is poor as well as only few decay channels have been measured. Thus, there is
a big interest in the study of b baryons.

With the transition from a b to a c quark by the emission of a W− boson, the
Λ0
b can decay into a Λ+

c baryon. The quark content of the Λ+
c is udc and thus

a representative of a rich spectrum of charmed baryons. Figure 2.3 shows all
known charmed baryons with their quantum number JP and their observed decays.
Again, this spectrum is not complete. A lot of expected charmed baryons are not
established and also quantum numbers etc. of established charmed baryons have
not been measured so far. In 2006, BaBar reported the observation of the charmed
baryon decays Λc(2880)+ → D0p and Λc(2940)+ → D0p [20]. Thus, the decay
Λ0
b→ D0pµ−νµX, studied in this thesis o�ers the possibility to study Λ+

c resonances
above the D0p mass threshold of 2803 MeV by investigating the D0p subsystem.

The charmed baryon spectrum in Figure 2.3 resembles the emission spectrum of
a hydrogen atom. While the electromagnetic force is responsible for the splitting
of the hydrogen's energy levels, the spectroscopy of baryons allows a better under-
standing of QCD, the theory of the strong interaction. Thus, QCD should be able
to describe the dynamics of the baryons and predict their masses. However, due to
the rising coupling strength αs at short distances, QCD cannot be treated pertur-
batively in the context of baryons. There is no universal approach that solves QCD,
but there exist several QCD solutions under speci�c conditions. Examples for such
approaches are Lattice QCD [21] or e�ective theories like the Heavy Quark E�ective
Theory (HQET) [8]. The latter one has proven to be useful by the description of b

6
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Figure 2.3: Summary of all known and established charmed baryons with quantum
numbers JP and their observed decays. Figure taken from [18].

hadrons. The main principle is that one considers the heavy b quark as static source
of the gluon �eld surrounded by the light quarks. This theoretical simpli�cation
in describing the dynamics is analogous to consider a hydrogen atom instead of a
positronium [8].

2.2.2 The hunt for New Physics at LHCb

It has already been stated in the introduction, that the Standard Model does not
cover and explain all observed phenomena. For instance, gravitation is not included
in the Standard model, it does not provide a candidate for dark matter as well as
dark energy and the asymmetry between matter and antimatter in the Standard
Model is not large enough to fully explain why matter and antimatter have not fully

7



Chapter 2 Theory and motivation

Figure 2.4: One possible Feynman diagram for B/B mixing. The q denotes either a
d or an s quark. Figure taken from [22].

annihilated after the big bang. All physics that go beyond the Standard Model and
try to answer those questions are generally referred to as New Physics (NP).
In principle, there are two ways to discover New Physics: The �rst one is to

directly search for new particles, which is done by ATLAS and CMS. However, one
can only discover particles with a mass less than the available centre-of-mass energy√
s.
The LHCb way of searching for New Physics is an indirect one by the investigation

of loop processes such as the B/B mixing3 shown in Figure 2.4. The virtual particles
in the loops do not need to satisfy Einstein's energy-momentum relation and thus
can have heavier masses than the initial and �nal state particles. Regarding the B
mixing, it is dominated by the top quark with a mass of mt = 173.3 GeV in the loop
although the B mass is only mB = 5.3 GeV. Thus, it is sensitive to a particle with
a mass more than 30 times higher than the B mass and hence the necessary centre-
of-mass energy needed for its production. If there exist new heavy particles they
might also contribute to such loop processes. By a precise measurement of those,
LHCb might �nd deviations from Standard Model predictions for some variables.
Two of them, adsl and Vub will be introduced in the following.

2.2.3 Flavour physics and the measurement of |Vub|
The �avour eigenstates of the weak interaction |d′〉, |s′〉, |b′〉 are not equal to the mass
eigenstates |d〉, |s〉, |b〉. The transformation between those eigenstates is described
by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM [23]:|d′〉|s′〉

|b′〉

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ·
|d〉|s〉
|b〉

 . (2.1)

The probability that a quark with a mass eigenstate |j〉 decays into a quark with
mass eigenstate |i〉 is given by |Vij|2. As the CKM matrix is complex, there are in
principle 18 free parameters. Due to unitarity constraints and unobservable quark

3A brief introduction of meson mixing will follow in the next sections.
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phases this number reduces to 4 parameters, which can be measured. A convenient
way is to write the CKM matrix in Wolfenstein parametrisation [24]:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4).

(2.2)

With a value of λ ≈ 0.23 [18], the Wolfenstein parametrisation clearly shows the
almost diagonal structure of the CKM matrix, i.e. that quark transitions happen
mostly within a generation. The values of the CKMmatrix elements are fundamental
parameters of the Standard Model, thus their precise measurement and knowledge
is important for the search for New Physics. The unitarity of the CKM matrix
imposes∑

j

= VijV
∗
kj = δik and

∑
i

= VijV
∗
ik = δjk. (2.3)

The vanishing combinations can be represented as triangles in a complex plane.
Most commonly one uses

VudVub
∗ + VcdVcb

∗ + VtdVtb
∗ = 0. (2.4)

After division of Equation (2.4) by VcdVcd
∗, the vertices of the triangle are (0, 0), (0, 1)

and (ρ̄, η̄) with ρ̄ = ρ(1− λ2

2
+ . . .) and η̄ = η(1− λ2

2
+ . . .) as shown on the top part

of Figure 2.5.

The aim of �avour physics is to overconstrain the CKM matrix elements. Many
loop processes provide the ability to measure the absolute values of Vij or related
quantities like the angles α, β, γ of the triangle and are furthermore sensitive to New
Physics as explained above. A lot of these results can be displayed and compared
in the (ρ̄, η̄) plane as can be seen on the bottom part of Figure 2.5. A clear sign for
New Physics would be for instance, that the triangle is not closed at the vertex of
angle α. This is equivalent to the violation of unitarity of the CKM matrix [18, 25].

Currently, there is a large interest in the measurement of |Vub| since it is the
least known among the CKM matrix element and there is a deviation of about
3σ between measurements of |Vub| using either exclusive, B → π`ν`, or inclusive,
B→ Xu`ν`, semileptonic decays. Theorists try to explain this discrepancy e.g. with
the presence of a right-handed coupling of theW boson as extension to the Standard
Model [26]. A recent LHCb study has measured |Vub| for the �rst time in a baryonic
decay, namely Λ0

b→ pµ−νµ and con�rmed this incompatibility [11]. The decay Λ
0
b→

D0pµ−νµX, which is studied in this thesis, is a source of background in the latter
|Vub| measurement. The pollution of Λ0

b→ pµ−νµ with Λ
0
b→ D0pµ−νµX could only

be estimated with simulation. Thus, a better understanding of Λ0
b → D0pµ−νµX

could help to improve the determination of |Vub|.
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Chapter 2 Theory and motivation

Figure 2.5: Top: Triangle in the complex (ρ̄, η̄) plane obtained by the unitarity
constraint on the CKM matrix in equation (2.4). Bottom: Current
status of the CKM matrix with all measured variables included. Figures
taken from [18] and [27] respectively.

2.2.4 The measurement of CP violation in mixing with adsl

The symmetry transformation CP describes a combination of two symmetries: The
charge conjugation C transforms a particle into its antiparticle and the parity oper-
ation P inverts spatial coordinates. If CP was an exact symmetry, the physical laws
would be the same for matter and antimatter. Thus, the creation of our universe
requires a violation of the CP symmetry, otherwise all matter would have been anni-
hilated with antimatter4. In the Standard Model, only the weak interaction breaks
CP symmetry. Described by only one parameter, it appears as a single, complex
phase in the CKM matrix5 [23]. However, the CP violation predicted by the Stan-
dard Model is too small to explain the observed matter in the universe. Thus, the
measurement of CP violating observables may reveal New Physics contributions by
deviations from the Standard Model predictions.

4This requirement is also known as one of the three Sakharov conditions for baryogenesis [28].
5Without CP violation the unitarity triangle would have a vanishing area.
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In principle one distinguishes three di�erent kinds of CP violation [18, 25]:

1. CP violation in decay
Let M denote a charged or neutral hadron and M its CP conjugate. Their
decay amplitudes into a multi-particle �nal state f or into the CP conjugated
state f respectively are de�ned as

Af := 〈f |H|M〉, Af := 〈f |H|M〉,
Af := 〈f |H|M〉, Af := 〈f |H|M〉, (2.5)

where H denotes the Hamiltonian governing weak interactions. Then, CP
violation in decay is de�ned by∣∣∣∣∣AfAf

∣∣∣∣∣ 6= 1, (2.6)

i.e. the probability thatM decays into f is di�erent from the probability, that
M decays into f .

2. CP violation in mixing
A neutral meson, e.g. the B0 meson can oscillate into its antiparticle B0

and this B0 again back into a B0. This phenomenon is also called Neutral
Meson Mixing and a possible Feynman diagram of the B0/B0 is given in
Figure 2.4. The time evolution of the �avour eigenstates |B0〉 and |B0〉 can be
phenomenologically described by an e�ective Schroedinger equation

i
d

dt

(
|B0〉
|B0〉

)
=

(
M − i

2
Γ

)(
|B0〉
|B0〉

)
, (2.7)

where M is the mass matrix and Γ the decay matrix. Both, M and Γ are
Hermitian but not H = M − i

2
Γ due to the possible decay of the mesons.

Due to the mixing, it is obvious that H is not diagonal. After diagonalisation,
the mass eigenstates |BH〉 and |BL〉 can be written in terms of the �avour
eigenstates as

|BH〉 = p|B0〉 − q|B0〉 (2.8)

|BL〉 = p|B0〉+ q|B0〉, with |p|2 + |q|2 = 1, (2.9)

where the index H (heavy) denotes the mass state with the larger mass com-
pared to the lighter one, indexed with L (light). The coe�cients p and q can
be related to the mass and decay matrix elements Mij respectively Γij, but
a thorough discussion of the phenomenology of mixing is beyond the scope
of this thesis. CP violation in mixing means that the probability that a B0

oscillates into a B0 is di�erent from the probability that a B0 oscillates into a
B0 or formally∣∣∣∣qp

∣∣∣∣ 6= 1. (2.10)
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Chapter 2 Theory and motivation

3. CP violation in interference
If there exist �nal states f , that can be reached from a hadron M as well as
from its CP conjugate M , CP violation can occur in the interference between
a decay without mixing, M → f , and a decay with mixing, M → M → f .
This kind of CP violation is formally expressed by

Im(λf ) 6= 0, (2.11)

where λf is de�ned as

λf :=
q

p

Af
Af

. (2.12)

An example for CP violation in mixing is the decay B0/B0→ J/ψK0
S .

For the measurement of CP violation it is crucial to know the meson's �avour at
decay, for instance if it was a B0 or a B0 meson. A common way to distinguish
a B0 or respectively a B0 decay is to use semileptonic decays, since the charge of
the lepton contains the information about the meson's �avour: The b quark in the
B0 meson can only decay via the emission of a W− boson resulting in a negatively
charged lepton (and a neutrino), whereas the b quark of the B0 emits a W+ when
decaying. To measure CP violation in B0/B0 mixing one de�nes the Semileptonic
Asymmetry adsl as

adsl =
P (B0 → B0)− P (B0 → B0)

P (B0 → B0) + P (B0 → B0)
, (2.13)

where P denotes the probability for the transition given in brackets. The Standard
Model prediction of adsl = −(4.1 ± 0.6)10−4 [29] is tiny compared to the current
experimental sensitivity. Thus, the measurement of adsl is an excellent probe of
the Standard Model and signi�cant deviations from zero would be a signal of New
Physics. A current LHCb measurement of adsl uses the decays B

0→ D−µ+νµX as
well as B0→ D∗−µ+νµX. The result is adsl = −(0.02 ± 0.19 (stat) ± 0.30 (syst))%
and thus consistent with zero at the current precision [10]. With a contribution of
7 · 10−4, backgrounds coming from Λ0

b baryon decays make up around 23% of the
systematic error. As many Λ0

b decays have not been measured yet, they had to rely
on rough estimates. One of these backgrounds is the decay Λ0

b→ D0pµ−νµX, which
is studied in this thesis. If one misses the proton and randomly adds a pion to
the D0 meson to form a D∗ candidate, it mimics a B0→ D∗−µ+νµX decay. Thus,
the understanding of Λ0

b→ D0pµ−νµX helps to improve the measurement of adsl by
reducing the systematic uncertainties.

2.3 Methods of parameter estimation

This section brie�y describes two methods to estimate parameters, which are used
in this thesis.
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2.3.1 Maximum-Likelihood method

A common task in High Energy Physics is to �nd the best estimate for a set of
parameters ~θ by a measurement of some variables ~x. As an example one wants to
measure the mass mX and the width ΓX of a particle X decaying into two daughter
particles A and B, i.e. X → AB. For this purpose, one measures the energies
E and momenta p of the particles A and B in multiple events. Thus, the set of
measured variables is ~x = (EA, ~pA, EB, ~pB) and one determines the �best" value for

the parameters ~θ = (mX ,ΓX). The most frequently used method for the estimate

of ~θ is the Maximum-Likelihood Method. Given a theoretical prediction of the
measured distribution in form of a probability density function f(~x|~θ) one can de�ne
the likelihood function

L(~x|~θ) :=
N∏
i=1

f(~xi|~θ), (2.14)

where N denotes the number of (independent) measurements. The maximum of

this likelihood function L with respect to ~θ is assumed to be the best estimate of ~θ.
Practically one minimises equivalently − log(L) for computational reasons.
Often, a probability density function P is a linear combination of several com-

ponents, e.g. a signal Psig and background component Pbkg. Thus, the number of
events N is a random variable as well. If N obeys the Poisson distribution, the
so-called Extended Likelihood Function can be de�ned as:

Lext(~x|Nsig, Nbkg, ~θ) :=

(Nsig +Nbkg)
N exp (Nsig +Nbkg)

N !

N∏
i=1

[
fsigPbkg(~xi|~θ) + fbkgPbkg(~xi|~θ)

]
,

(2.15)

where Nj denotes the corresponding yield and fj :=
Nj
N

the fraction of the signal
respectively background component. Thus, the maximisation of the extended like-
lihood function Lext enables to estimate the yields of each component at the same
time [18, 30].

2.3.2 Beeston-Barlow method

When one tries to estimate the composition of a data sample, it might happen, that
a distribution cannot be described analytically. Thus, one relies on simulations and
has to bin the data into n bins. This gives a set of numbers di with i ∈ [1, n],
where di denotes the number of data events falling into bin i. Let j denote a source
contained in the data, Pj its strength and aji the number of simulated events from
source j in bin i, then the predicted number of events in bin i is given by

fi := ND

m∑
j=1

Pjaji
Nj

, (2.16)
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where ND is the total number of events in the data sample, Nj the number of
simulated events of source j andm the number of sources. Starting from a Poissonian
distributed probability of observing a particular di as

efi
fdii
di!

(2.17)

the logarithmic likelihood to be maximised looks like

logL =
n∑
i=1

[di log(fi)− fi] (2.18)

after dropping the constant factorials. This likelihood function is also known as
Binned Likelihood.
Nonetheless, the binned likelihood of equation (2.18) does not account for �nite

sizes of the simulation samples. Due to large computation times simulation samples
are often small and there are non-negligible statistical �uctuations in the aji. Thus
the likelihood function has to be modi�ed as follows: The predicted number of events
in a bin is now

fi := ND

m∑
j=1

PjAji
Nj

, (2.19)

where Aji is the unknown expected number of events for source j in bin i. The
�observed" aji in the simulation sample is generated from Aji by a Poisson distribu-
tion6. Thus, the probabilities of observing a set of di and aji have to be combined
and the likelihood function to be maximised is

logL =
n∑
i=1

[di log(fi)− fi] +
n∑
i=1

m∑
j=1

[aji log(Aji)− Aji] . (2.20)

Throughout this analysis, the maximisation of this likelihood function in equation
(2.20) is referred to as Beeston-Barlow Method [31].

6Actually, the aji obey a binomial distribution. However, for Aji << Nj it can be approximated
by a Poisson distribution.
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Chapter 3

The LHCb detector

The Large Hadron Collider (LHC) of the European Organization for Nuclear Re-
search CERN in Geneva, Switzerland is currently the world's most powerful particle
accelerator. Having a circumference of 26.7 km, it is designed to either collide pro-
tons with a centre-of-mass energy of

√
s = 14 TeV or heavy ions with 2.8 TeV per

nucleon [32]. The beams can be brought to collision at four interaction points.
At these points, di�erent experiments are placed. Whereas ATLAS and CMS are
built as multi-purpose detectors [33, 34] and ALICE studies heavy-ion collisions [35],
LHCb is dedicated to study hadrons containing either a heavy b- or c-quark.
Those b- and c-hadrons are mainly produced by gluon-gluon fusion at LHC ener-

gies with subsequent hadronisation. These gluons in general carry di�erent momenta
leading to a boost of the hadron along the beam-pipe. This is why the LHCb detec-
tor is built as a single-arm forward spectrometer. Its layout can be seen in Figure
3.1. It has a forward angular coverage from approximately 10mrad to 300mrad
in the bending respectively to 250mrad in the non-bending plane. A right-handed
coordinate system is adopted with the z axis along the beam-pipe and the y axis
pointing upwards along the vertical. With this choice approximately 25% of all bb
pairs are produced in the acceptance of the LHCb detector [37] though it covers
only 4% of the solid angle as shown in Figure 3.2. The LHCb detector consists of
multiple subdetectors and sensors. They can be roughly separated into two groups
by their dedicated purpose. They are in principle either used for the reconstruction
of particle tracks or to identify the particles and measure their energy. Both groups
will be explained in the following.

3.1 Tracking detectors

Tracking describes the whole procedure to reconstruct the trajectories of (charged)
particles produced in the proton-proton collision. Together with the dipole magnet
that bends charged particles, the particles' charges and momenta can be determined
by the de�ection of the tracks. The magnet provides a magnetic �eld of 4Tm
integrated over a length of 10m. Its main component, the magnetic �eld in y
direction, is shown in Figure 3.7. For the particle tracking, a system of several
subdetectors is aligned up- and downstream the dipole magnet, namely the Vertex
locator (VELO), the Trigger Tracker (TT) and the Trigger stations (T1-T3) built-up
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Chapter 3 The LHCb detector

Figure 3.1: Schematic view of the LHCb detector in the y − z plane. Figure taken
from [36].

by the Inner Tracker (IT) and the Outer Tracker (OT).

3.1.1 Vertex Locator (VELO)

The VErtex LOcator (VELO) is placed directly around the primary interaction
point. Its task is to precisely measure the track coordinates of charged particles
and separate the proton-proton interaction point from other vertices, namely either
other primary vertices (so called pile-up events) or secondary vertices. The latter
ones are typical for b- or c-hadron decays [38] and a good separation and resolution
of these vertices is crucial for the LHCb physics programme. An example is the
measurement of particles' decay lengths and times for the determination of the
rapid B0

s −B0
s oscillation frequency [39].

The VELO is built up by silicon modules due to the required high resolution as
well as the high particle �ux and thus high radiation in the interaction region. It is
placed only 7mm apart from the beam. This is closer than the required aperture
of the LHCb beam pipe at injection. Thus, the VELO sensors are made of silicon
microstrips shaped as slightly overlapping half-discs. The two halfs can be moved
in x- and y-direction to avoid radiation damages unless the beam is stable.
Each module provides a measurement of the r- and φ-coordinates. The sensores

for these measurements are correspondingly called R- and Φ-sensor, which can be
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Figure 3.2: Simulation of the bb production in pp collisions at
√
s = 8 TeV. The

angular acceptance of the LHCb detector is coloured in red. Figure
taken from [37].

seen in Figure 3.3. An overview over the VELO system with its modules is shown
in Figure 3.4. Around the nominal interaction region, the modules are placed closer
to each other. Upstream, there are two R sensors dedicated to veto pile-up events.
Figure 3.4 furthermore shows the VELO in the closed and opened position.
With this setup, the VELO reaches a track �nding e�ciency above 98%. Its

resolution on vertices is 13µm in the transverse plane and 71µm along the beam
axis for vertices with 25 tracks. The resolution on the impact parameter is smaller
than 35µm for particles with a transverse momentum larger than 1GeV [36, 38, 40].

3.1.2 Silicon Tracker (ST)

The Silicon Tracker (ST) uses silicon microstrip detectors with a strip pitch of about
200µm. It comprises two detectors: the Tracker Truciensis (TT) and the Inner
Tracker (IT). The Tracker Turicencis or formerly the Trigger Tracker is located in
front of the entrance of the LHCb magnet. It is used for sevaral tasks:

• deliver transverse momentum information for Level-1 trigger,

• reconstruct trajectories of long-lived neutral particles decaying outside the
VELO

• reconstruct low-momenta particles bent out by the magnet before reaching the
station T1-T3.

The TT consists of one station made of four planes along the beam axis. The �rst
and the fourth layer have vertical readout strips (x layer), while the second (u) and
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Figure 3.3: Schematic representation of an R and a Φ sensor. The R sensor strips are
arranged into four approximately 45◦ segments and have routing lines
perpendicular to the strips. The Φ sensor has two zones with inner and
outer strips. The routing lines of the inner strips are orientated parallel
to the outer strips. Figure and caption taken from [40].

Figure 3.4: Cross section in the (x, z) plane of the VELO silicon sensors, at y = 0,
with the detector in the fully closed position. The front face of the �rst
modules is also illustrated in both, the closed and opened, positions.
The two pile-up veto stations are located upstream of the VELO sensors.
Figure and caption taken from [36].
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Figure 3.5: Layout of the Tracker Turicensis (TT). Figure taken from [41].

third (v) are rotated by an angle ±5◦ to get a high resolution in the bending plane
and additional information in y-direction. Between the u and v layer, there is a gap
of around 30 cm. Figure 3.5 shows schematically the layout of the TT. As already
mentioned, the Inner Tracker uses the same technology as the TT. It builds the
inner part of the three tracking stations T1-T3 (see Figure 3.1), which are located
downstream the magnet. Each station consists of four boxes as shown in Figure
3.6. In each box there are again 4 layers, two vertical and two stereo, analogously
to the TT. Though the IT only covers 1.3% of the geometrical acceptance, 20% of
the track are passing it [36, 41].

3.1.3 Outer Tracker (OT)

The Outer Tracker builds the outer part of the Tracking stations T1-T3 downstream
the magnet. It is a gaseous straw tube detector covering an area of approximately
5× 6 m2 with 12 double layers of straw tubes. The straw tubes are �lled with a gas
mixture of argon (70%), carbon dioxide (28.5%) and oxygen (1.5%). This guarantees
a drift time of less than 50 ns enabling to distinguish consecutive proton bunch
collisions. Again, the three stations consist of 4 layers each in x-u-v-x geometry.
The spatial resolution is 200µm along the x axis. On the one hand this is worse
than the spatial resolution of the IT with 50µm, but on the other hand the angular
coverage is much higher [42].

19



Chapter 3 The LHCb detector

Figure 3.6: Layout of a x detection layer in the second Inner Tracker (IT) station.
Figure taken from [36].

3.1.4 Track classi�cation

For the reconstruction of tracks, the registered hits of the VELO, TT, IT and OT
are combined to form particle trajectories. Depending on the trajectories one de�nes
di�erent classes of trajectories, which are also sketched in Figure 3.7:

• Long tracks traverse the full tracking system from the VELO to the T
stations. Note: Only long tracks are used in this analysis.

• If particles traverse the VELO and TT stations only, their tracks are called
upstream tracks.

• Particles decaying outside the VELO acceptance and leaving hits only in the
TT and T stations are called downstream tracks.

• VELO tracks are measured in the VELO only.

• T tracks only traverse the T stations.

3.2 Particle identi�cation

The reconstruction of b- and c- hadrons require the identi�cation of the particles as-
sociated to the reconstructed tracks. Several facilities for that purpose are available
at the LHCb detector, that are described in the following.

3.2.1 Ring Imaging Cherenkov Detector (RICH)

The RICH detectors at LHCb are dedicated to distinguish charged hadrons, espe-
cially pions, kaons and protons. They make use of the Cherenkov radiation. If
charged particles �y through a dielectric medium with a velocity β = v/c that is
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Figure 3.7: A schematic illustration of the various track types: long, upstream,
downstream, VELO and T tracks. For reference the main B-�eld com-
ponent By is plotted above as function of the z coordinate. Figure and
caption taken from [43].

faster than the speed of light in that medium, photons are emitted in a cone around
their �ight path. The opening angle θC of that light cone is given by

cos θC =
1

βn
, (3.1)

where n denotes the refractive index of the medium [44]. LHCb's RICH detectors
measure the opening angle of the Cherenkov cone and use it to determine the veloc-
ity. Together with the measured momenta from tracking it is possible to calculate
the mass of the particle and thus to identify it. The LHCb detector consists of two
RICH detectors. RICH1 is located upstream the magnet before particles might be
bent out of the LHCb detector acceptance by the magnet. It contains aerogel and
C4F10 gas and is dedicated to measure low-momenta particles between 1GeV and
60GeV. However, RICH2 is placed downstream the magnet, �lled with CF4 gas and
covers the high-momentum range from 15GeV to 100GeV [36, 45].

3.2.2 Calorimeter system

The main purpose of the calorimeter system is to measure the energy of the particles.
Furthermore, it provides the identi�cation of electrons, photons and hadrons and
delivers trigger signals from photons, electrons and hadrons with high transverse mo-
menta. It contains several subsystems which are all located downstream the magnet.
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The �rst part of the calorimeter system is the scintillating pad detector (SPD). It is
used to select charged particles and above all to distinguish between electrons and
photons in the subsequent calorimeter parts. After a 2.5 radiation lengths lead wall
it is followed by the preshower detector (PS) identifying electromagnetic particles.
To measure the energy of electromagnetic particles, the electromagnetic calorimeter
(ECAL) is placed behind the PS. It uses the so-called shashlik-technology, i.e. it
employs an alternating structure of scintillating tiles and lead plates. The last part
of the calorimeter system is the hadronic calorimeter (HCAL). It is a sampling de-
vice made of iron as absorber and scintillating tiles as active material and measures
the energy of hadrons.

Basically, all calorimeters obey the same principle: Scintillation light is transmit-
ted to a Photo-Multiplier (PMT) by wavelength-shifting �bres. Multianode photo-
multiplier tubes (MAPMT) read out the single �bres of the SPD / PS cells. Fibre
bunches in the ECAL and HCAL modules require individual phototubes [36, 46�49].

3.2.3 Muon chambers

Muons as long-lived and minimum ionising particles can penetrate the whole detec-
tor. That is why the muon chambers for the identi�cation of muons are the last
part of the detector. There are �ve muon stations, one (M1) before the calorimeter
system and four (M2-M5) behind. To ensure that only muons penetrate the whole
system the latter ones are interleaved with 80 cm thick iron absorbers. Besides the
inner part of M1, the muon chambers mainly consist of multi-wire proportional
chambers (MWPC) providing a fast readout. In the inner part of M1 a gas electron
multiplier is used due to the high particle �ux [36, 50].

3.3 Trigger

The LHC is designed to collide proton bunches every 25 ns. This is equivalent to a
beam crossing rate of 40MHz. However, it is not possible to record data at this rate.
Thus, the task of the LHCb trigger system is to reduce the rate to a recordable level.
It has to decide quickly if an event is of interest for the LHCb physics programme.
For this purpose, the trigger system is made up of three stages.

The �rst stage, the Level-0 (L0) trigger, is completely based on hardware. It
reduces the beam crossing rate of 40MHz down to 1MHz. Due to the high rate, a
full event reconstruction is not possible at this stage. Thus, the L0 trigger only tries
to reconstruct

• the highest transverse energy ET hadron, electron and photon clusters in the
calorimeters,

• the two highest transverse momentum muons in the muon chambers,
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because B mesons often produce large transverse momentum respectively energy
particles due to their large mass [36]. Furthermore, the pile-up system in the VELO
is used to estimate the number of primary pp interactions per bunch-crossing.
The L0 trigger is followed by the software based high-level trigger HLT. The HLT

itself is subdivided into the HLT1 and the HLT2. Events passing the L0 trigger
enter the HLT1 with a rate of about 1MHz. Due to limited computing power only a
partial event reconstruction using particles in the VELO and T stations is possible.
The decision if an event passes the trigger or not is mainly based on the track
quality. This reduces the event rate to about 40 kHz and enables HLT2 to fully
reconstruct the event. The information of all LHCb subsystems are available at this
stage, which allows a more advanced selection. The event rate is reduced to 5 kHz
by HLT2, which is low enough to store the data on disk [36, 51, 52].
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Chapter 4

Analysis strategy

The aim of this analysis is to measure the branching ratio of the inclusive decay
Λ0
b→ D0pµ−νµX. The X means, that the Λ0

b decays at least into a D0pµ−νµ, but
the decay might also include additional particles, e.g. pions. To measure a single
branching ratio one needs to know how many Λ0

b are produced and how many of
them decay via Λ0

b → D0pµ−νµ. At a hadron collider like the LHC, it is hard to
determine how many particles of a certain kind are produced. In this case one would
need to know the bb cross section σ(bb) to a high precision, i.e. a measure, how many
bb quark pairs are produced in a proton-proton (pp) collision. Furthermore, another
number one needs to know is how many of these b quarks hadronise to a Λ0

b . This
ratio is called the fragmentation fraction fΛ0

b
. To avoid these tedious measurements

and increase the precision of the result, a normalisation decay, Λ0
b → Λ+

c µ
−νµ, is

used to rather measure a relative branching ratio,

R =
B(Λ0

b→ D0pµ−νµX)

B(Λ0
b→ Λ+

c µ
−νµ)

. (4.1)

With this choice σ(bb) and fΛ0
b
cancel, since they appear both in the numerator

and the denominator. In addition, one has to consider that the D0 in the signal
channel and the Λ+

c in the normalisation channel are not directly detected. They
decay into more stable particles which are measured and identi�ed in the detector.
These subsequent decays are chosen to be D0→ K−π+ and Λ+

c → pK−π+, because
they can be well measured at LHCb. Following the whole decay chain for the
signal channel, Λ0

b→ D0pµ−νµX, D0→ K−π+, and for the normalisation channel,
Λ0
b→ Λ+

c µ
−νµ, Λ

+
c → pK−π+ one easily sees, that both decays end up in the same

�nal state, namely pK−π+µ−νµ. Incidentally, this ensures that potential detection
e�ciencies, e.g. due to di�erent interaction of particles with the detector material,
cancel at �rst order. Having this in mind, the relative branching ratio splits up to

R =
ND0p

NΛ+
c

·
εΛ+

c

εD0p

· B(Λ+
c → pK−π+)

B(D0→ K−π+)
, (4.2)

where, ND0p and NΛ+
c
denote the signal yields of the channels Λ0

b → D0pµ−νµX
and Λ0

b→ Λ+
c µ
−νµ respectively, εD0p and εΛ+

c
are the corresponding reconstruction

e�ciencies and B (...) are the branching ratios of the subsequent decays. The
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reconstruction e�ciencies describe the fact, that not all particle decays are actually
detected and reconstructed. Such ine�ciencies may have several reasons:

• Each detector has a limited acceptance and a particle may decay outside this
acceptance.

• There are dead regions in the detector.

• Selection requirements are applied to suppress background, but usually some
signal events are vetoed as well.

• And many more ...

Since the decays of the signal and normalisation channel are semileptonic and
thus include a neutrino, which is not reconstructed in the detector, it is not easy to
determine the signal yields ND0p and NΛ+

c
. The missing neutrino prevents to recon-

struct a nice Λ0
b mass peak, which would allow an easy distinction between signal

and background. Thus, more dedicated methods have to be applied. Regarding
Equation (4.2) the analysis proceeds in the following steps:

1. The relevant signal decays have to be reconstructed and selected in the col-
lected data (Chapter 5). Since a huge amount of di�erent particles and decays
are produced in a proton-proton (pp) collision, this is an important step to
reduce the data size and to separate real signal decays from background.

2. The number of Λ0
b → D0pµ−νµX events NΛ+

c
is determined with a two-

dimensional �t to the D0p mass and the logχ2
IP distribution. The variable

logχ2
IP is a measure for the quality of the D0pµ− vertex. It will be thoroughly

de�ned and its choice motivated in Section 6. With, logχ2
IP it is possible to dis-

tinguish between nonresonant signal, i.e. Λ0
b directly decaying into D0pµ−νµ

X without going through intermediate resonances, and background.

3. For the signal event number NΛ+
c
in the normalisation channel Λ0

b→ Λ+
c µ
−νµ,

a di�erent approach is chosen. In this channel, the main challenge is to dis-
tinguish between Λ0

b→ Λ+
c µ
−νµ decays and decays into excited Λ+

c states, e.g.
Λ0
b→ Λc(2595)+µ−νµ. These decays can be separated by a �t to the corrected

Λ0
b mass. The corrected mass is a quantity where one (partially) corrects for

the missing neutrino in the decay. A detailed explanation and motivation
follows in Chapter 7.

4. As a last step the e�ciencies have to be determined. This step makes use of
simulations. However, these simulations do not perfectly describe the data, so
they �rst have to be reweighted (Chapter 8).

5. The branching ratios of the subdecays D0 → K−π+ and Λ+
c → pK−π+ are

taken from PDG or other measurements. Their values are B(D0→ K−π+) =
0.03880± 0.00050 [18] and B(Λ+

c → pK−π+) = 0.0684± 0.0024 [53].
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6. At this point, all desired observables are obtained and can be used to calculate
the relative branching ratio R in Chapter 12.

Concerning the signal channel Λ0
b → D0pµ−νµX, a special focus is put on the

invariantD0pmass spectrum. This subsystem allows to do a spectroscopical analysis
and study excited Λ+

c states. For instance the Λc(2880)+ appears in this spectrum
through the decay chain Λ0

b → Λc(2880)+µ−νµ and Λc(2880)+ → D0p. As a side
e�ect of the two-dimensional �t, the masses and the widths of such resonances can
be determined if the mass resolution of the detector is known. This is also part of
Chapter 7.
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Chapter 5

Data reconstruction and selection

The data sample used in this analysis originates from pp collisions and has been
recorded in the years 2011 at a center of mass energy

√
s = 7 TeV and 2012 at√

s = 8 TeV, corresponding to an integrated luminosity of
∫
L = 3 fb−1. This

chapter describes and motivates the selection criteria for the reconstruction of the
decays Λ0

b→ D0pµ−νµX and Λ0
b→ Λ+

c µ
−νµ

1. As the D0 and the Λ+
c are not stable

enough to be directly indenti�ed and detected, the subsequent decays D0→ K−π+

and Λ+
c → pK−π+ have been chosen for their reconstruction. These decays leave

a clear signature in the detector and can be well reconstructed at LHCb, meaning
that the pollution with background is small. Furthermore, with this choice one
ends up with the same �nal state particles for reconstruction in both signal and
normalisation channel, namely pK−π+µ−. Hence, any ine�ciencies due to di�erent
interaction of particles with the detector should cancel, at least to �rst order.

One experimental di�culty arises due to the semileptonic nature of the signal and
normalisation channel: The neutrino cannot be reconstructed. Consequently it is
not possible to fully reconstruct the Λ0

b and to get a Λ
0
b mass peak for the distinction

between signal and background. This leads to a high pollution of the data sample
with backgrounds.

5.1 Reconstruction of the decay Λ0
b→ D0pµ−νµX

The main strategy in the reconstruction process of the decay Λ0
b → D0pµ−νµX is

to �nd events with the signature Xb → (D0 → K−π+)µ−νµX, where Xb denotes
a b-quark containing hadron, �rst. Then, a proton track is combined to the D0µ−

vertex to make a Λ0
b → D0pµ−νµX candidate. It is apparent, that a main source

of background will be a B0/B+ → D0µ−νµX decay, where a random proton is
added. To better understand the selection criteria and the way, this combinato-
rial background is reduced, it might be helpful to have a look at a sketch of
a typical Λ0

b → D0pµ−νµX decay at the left-hand side of Figure 5.1. Due to its
relatively long lifetime, it is typical for a Λ0

b or in general a b-hadron, that it decays
at a so called secondary vertex (SV) displaced from the primary pp interaction,

1If not stated otherwise, the CP conjugated decays Λ0
b → D0pµ+νµ and Λ0

b → Λ−c µ
+νµ are

included in those samples.
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Figure 5.1: Sketch of the decay topology for a typical Λ0
b→ D0pµ−νµX decay (left)

and for the background decay B0/B+ → D0µ−νµX with a randomly
combined proton (right). In these background events, the proton rather
poorly makes a vertex with the D0µ− candidate, indicated by a large
impact parameter (IP). Particle tracks drawn with a dashed line are not
reconstructed. This sketch does neither account for the correct distances
between the vertices nor the boost of the particles in z-direction.

the primary vertex (PV). The decay products D0, µ− and p originate from the
secondary vertex. The neutrino and further possible (especially neutral) particles
like pions, denoted as X, are not reconstructed. The D0 itself lives long enough to
decay into a K−π+ at a tertiary vertex (TV).
Concerning the combinatorial background B0/B+→ D0µ−νµX with a randomly

added proton, there is one important di�erence to the signal. The proton does
not orgin from the secondary vertex but from another source. It should thus have
a signi�cant impact parameter (IP) with respect to the primary vertex. The
impact parameter is de�ned as the smallest perpendicular distance between a track
and a vertex. An equivalent way is to use the logχ2

IP variable of a given track with
respect to a given vertex, which will be very important throughout this analysis. All
reconstructed tracks and vertices are �tted in LHCb. From each �t, one can retrieve
the �t χ2 and the corresponding number of degrees of freedom (ndf). The logχ2

IP

of the proton is de�ned as the logarithm of the di�erence of the D0µ− vertex �t χ2

with and without the proton, i.e.

logχ2
IP := log

[
χ2

vtx(D0µ−p)− χ2
vtx(D0µ−)

]
. (5.1)

This means the better the proton makes a vertex with the D0µ−, the smaller is
logχ2

IP and the more likely the event is a real Λ0
b→ D0pµ−νµX decay.

5.1.1 Reconstruction of the D0 candidate

The �rst step of the reconstruction process is to reconstruct theD0. This is supposed
to happen via the D0→ K−π+ signature. For both, kaon and pion, it is required
that their momentum is larger than 2 GeV to ensure, that they are not bent out of
the detector by the magnet and that the RICH detectors give reliable results for the
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particle ideniti�cation. Their transverse momentum is required to be larger than
300 MeV. This suppresses kaons and pions from the primary interaction, which are
usually boosted along the beam pipe, thus having a small transverse momentum.
Aside a good track quality quanti�ed with χ2/ndf < 4 of the track �t, only tracks
with a χ2

IP/ndf > 4 with respect to the primary vertex are selected, meaning the
kaons and pions are not coming from the primary interaction. LHCb's particle
identi�cation system provides a likelihood for a particle hypothesis of each particle
candidate. For the pion candidate a likelihood is available, that it is really a pion
or that is a kaon and so on. One de�nes the PIDx variable of a particle candidate,
which denotes the di�erence of the logarithmic likelihoods between the hypotheses,
that this particle is of species x and a pion, i.e.

PIDx = lnLx − lnLπ, (5.2)

where Lπ denotes the likelihood for the pion hypothesis and Lx for particle x re-
spectively. The higher PIDx, the more likely the candidate is really a particle x2.
For the kaon candidate, a PIDK > 4 and for the pion candidate a PIDK < 10 is
required. At �rst glance, it might be confusing why the requirement on the pion's
PIDK is so loose. In a pp collision, there are many more pions produced than kaons.
Thus, it is much more likely that a pion is misidenti�ed as a kaon and the require-
ment on the PIDK needs to be tight. However, for pions most of the background
are pions, too. Hence, there is less motivation to apply requirements on the pion
PID. The pion and kaon candidates and their tracks are now combined to a D0

candidate with a good vertex quality of χ2
vtx/ndf < 6. Another variable one de�nes

for the reconstruction is DIRA. It is de�ned as the cosine of the angle α between
the direction of �ight of a particle from some reference vertex and its momentum.
If the detector resolution was perfect, DIRA would be one (α = 0). Requiring a
DIRA close to one ensures, that the assigned momentum and �ight direction match
to each other. The �ight direction is determined by the connection of the reference
vertex and the decay vertex of the particle. Throughout this selection, all DIRA
requirements are calculated with respect to the primary vertex. Thus, the DIRA
requirements on particles not coming from the primary vertex like the D0 in this
case have to be a bit looser as e.g. for the Λ0

b , which is directly produced at the
primary vertex. For the reconstruction of the D0, events with a DIRA > 0.99 of
the D0 are selected. As last requirement one suppresses combinatorial background
by restricting the D0 to be close to its mean mass, i.e. the mass di�erence to the
PDG value is smaller than 25 MeV and to require a minimum D0 �ight distance with
respect to the primary vertex of 5 mm. Figure 5.2 shows the invariant mass of the
reconstructed D0 candidates after the application of all the requirements except for
the restriction of the D0 mass itself. A clear mass peak with very small sidebands
indicating a small combinatorial background contribution can be seen.

2Throughout this thesis x is either mu for muons, p for protons and K for kaons.
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Chapter 5 Data reconstruction and selection

Figure 5.2: Invariant D0 mass after the application of all selection requirements ex-
cept for the D0 mass itself. The arrows indicate where the selection
requirements are applied. The colour-shaded areas shows the respec-
tive distributions for wrong sign (WS) combinations. A de�nition and
explanation of wrong sign combinations is given at the end of section
5.1.3.

5.1.2 Reconstruction of the D0µ− candidate

Having reconstructed the D0 candidate, one needs a muon track to combine them.
The motivation for the requirements on the muon track is analagous to the kaon and
pion for the D0 reconstruction. Thus they will be just brie�y mentioned: The muon
is required to have a minimum transverse momentum of 1.2GeV and a minimum
momentum of 6GeV. The track χ2/ndf is smaller than 4 and the χ2

IP with respect
to the primary vertex larger than 9. PIDmu is required to be greater than 0.3. It
might happen, that several hits in the detector are incidentally combined to a track
albeit coming from di�erent tracks. The so called ghost probablity gives a measure
of this issue and is required to be less than 0.5 for the muon track.
For the combination of D0 and µ− the vertex shall be again of good qualitiy,

i.e. χ2
vtx/ndf < 3. To avoid completely random combinations the invariant D0µ−

mass is required to be between 2.2 and 8.0GeV and to have a minimum transverse
momentum of 3GeV. The minimum DIRA of the D0µ− candidate is 0.999. With a
requirement on the �ight distance χ2 to be greater than 25 it is ensured, that the
D0µ− decay vertex is certainly displaced form the primary vertex.

5.1.3 Reconstruction of the Λ0
b (D

0µ−p) candidate

The proton's momentum and transverse momentum is required to be larger than
15GeV and 1GeV respectively for a good particle identi�cation and to exclude
protons boosted from the primary interaction. To reduce the amount of fake protons,
i.e. pions or kaons that are misidenti�ed as protons, tight particle identi�cation
requirements are applied: PIDp > 10 and PIDp−PIDK > 10. Having the de�nition
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of the PIDx variable in Equation 5.2 in mind, PIDx serves always as distinction
between a particle x and a pion. Thus, the di�erence between PIDp and PIDK
enables for a better distinction between protons and kaons, since

PIDp− PIDK = (lnLp − lnLπ)− (lnLK − lnLπ)

= (lnLp − lnLK) .

The χ2
IP with respect to the primary vertex is greater than 25, since the proton

must not come from the primary vertex. In contrast, the proton should make a
good vertex with the D0µ− candidate. It is thus required that the logχ2

IP of the
proton with respect to the D0µ− vertex is smaller than 1. It should be noted,
that throughout this thesis, the label logχ2

IP without further speci�cations refers
to this variable. This last requirement on logχ2

IP is not applied in the signal �t to
distinguish nonresonant signal and background as will be thoroughly explained in
Chapter 6.
For the combined D0µ−p candidate, the requirement on the angle α between

�ight direction and momentum is the tightest compared to the daughter candidates.
This is obvious since the impact of the detector resolution leading to a discrepancy
between �ight direction and momentum should be the smallest for the �rst decay
of the decay chain. An angle α < 0.015 is required, which is equivalent to a DIRA
& 0.999999.
As stated at the beginning of this chapter, the information on the neutrino is

missing in the reconstruction. Thus, the reconstructed Λ0
b mass is smeared out and

does not peak at the nominal Λ0
b mass of 5619.5MeV. However, there are di�erent

ways to at least partially account for the missing neutrino. One of them is the so
called corrected mass of the Λ0

b . It is de�ned as

mcorr =
√
m2
D0µ−p + p2

⊥ + p⊥, (5.3)

where mD0µ−p denotes the invariant mass of the D
0µ−p candidate and p⊥ its trans-

verse momentum perpendicular to the Λ0
b �ight direction, which is measured by the

connection of the primary vertex and the Λ0
b decay vertex [54]. It is the minimum

correction to the Λ0
b candidate if any daughters are missing. If only a massless par-

ticle is missed, the corrected mass would be the mass of the Λ0
b [55]. This can be

seen as follows: In the rest frame of the Λ0
b , the Λ

0
b mass can be written as

mΛ0
b

= Evis + Emiss (5.4)

=
√
M2

vis + p2
⊥,vis + p2

‖,vis +
√
M2

miss + p2
⊥,miss + p2

‖,miss
, (5.5)

where the index vis denotes the respective quantities of the visible, i.e. reconstructed
particles and miss the ones of the missing particles. If the missing particle is massless
and if one changes to the Λ0

b rest frame, where p⊥,vis = p⊥,miss = p⊥ and p‖,vis =
p‖,miss = p⊥ the Λ0

b mass becomes

mΛ0
b

=
√
M2

vis + p2
⊥ + p2

‖ +
√
p2
⊥ + p2

‖. (5.6)
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Figure 5.3: Corrected Λ0
b mass after the application of all selection requirements ex-

cept for the corrected Λ0
b mass itself. The arrows indicate where the

selection requirements are applied. The colour-shaded areas shows the
respective distributions for wrong sign (WS) combinations. The cor-
rected Λ0

b mass tends to peak near the nominal Λ0
b mass of M(Λ0

b) =
(5619.5± 0.4) MeV [18].

Furthermore, if the longitudinal momentum can be ignored in the present rest frame
the Λ0

b mass is described by the corrected mass mcorr [56, 57]. Hence, it is required
that the corrected Λ0

b mass lies around its PDG mass M(Λ0
b) = (5619.5± 0.4) MeV

[18] between 5 and 6 GeV. Figure 5.3 shows the distribution of the corrected Λ0
b

mass. Due to the correction of the missing neutrino it peaks near the PDG mass as
explained above.

Another background might be the decay Λ0
b→ D0pπ−, where the pion is misidenti-

�ed as muon. In this case, all �nal state particles are reconstructed and the invariant
D0µ−p mass peaks around the Λ0

b mass. To veto such backgrounds only events with
an invariant D0µ−p mass of less than 5.5 GeV are selected. A detailed discussion of
these backgrounds can be found in Chapter 9, especially Figure 9.3 visualises this
veto.

Table 5.1 summarises all selection requirements mentioned in the last sections.
After the reconstruction and application of these requirements, there are in total
21444 Λ0

b → D0pµ−νµX candidates left for the analysis. In the nominal signal�t,
the cut on logχ2

IP is not applied. In this case, there are 34760 candidates available.
Figure 5.4 shows the invariant D0p mass (top) and the logχ2

IP distribution (bottom).
The �rst one is used for a spectroscopical analysis later. If this thesis refers to the
(invariant) D0p mass, there is actually the quantity M(D0p)−M(D0) +MPDG(D0)
meant, where one �rst subtracts the reconstructed D0 mass and then adds up the
nominal D0 mass from the PDG. With this trick, one �subtracts" the �nite width
of the D0 from the D0p mass spectrum and thus improves the mass resolution
especially at D0p mass threshold. Some peaking structures can be seen in the
spectrum, indicating that the decay Λ0

b→ D0pµ−νµX might happen via intermediate
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Table 5.1: Summary of the selection requirements for the decay Λ0
b→ D0pµ−νµX.

Variable Value
Event number of long tracks < 250

µ− Momentum > 6 GeV
Transverse momentum > 1.2 GeV
Ghost probability < 0.5
Track χ2/ndf < 4
χ2

IP w.r.t. PV > 9.0
PIDmu > 0.3

D0 → K−π+ Daughter momentum > 2 GeV
Daughter transverse momentum > 300.0 MeV
Daughter ghost probablity < 0.5
Daughter track χ2/ndf < 4
Daughter χ2

IP w.r.t. PV > 4
K− daughter PIDK > 4
π+ daughter PIDK < 10
χ2

vtx/ndf < 6
DIRA w.r.t. PV > 0.99
Mass di�erence to PDG < 25 MeV
Flight distance w.r.t. PV > 5 mm

D0µ− Mass ∈ [2.2, 8.0] GeV
χ2

vtx/ndf < 3
DIRA w.r.t. PV > 0.999
Flight distance χ2 w.r.t. PV > 25
Transverse momentum > 3000 MeV

p χ2
IP w.r.t. PV > 25

PIDp−PIDK > 10
PIDp > 10
Momentum > 15 GeV
Transverse momentum > 1 GeV
logχ2

IP w.r.t. D0µ− vertex < 1
D0µ−p arccos(DIRA) w.r.t. PV < 0.015

Mass < 5.5 GeV
Corrected mass ∈ [5, 6] GeV
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Chapter 5 Data reconstruction and selection

Figure 5.4: Invariant D0p mass (top) after the application of all selection require-
ments and logχ2

IP distribution (bottom) after all requirements except
for logχ2

IP itself. The arrow in the logχ2
IP distribution indicates where

the selection requirement is applied. The colour-shaded areas shows the
respective distributions for wrong sign (WS) combinations.
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b→ Λ+

c µ
−νµ

resonances. There is furthermore a broad distribution under the peaks. This is
assumed to be either background or nonresonant signal. For their distinction, the
logχ2

IP distribution is used. The plot con�rms the explanation above: Background
events tend to peak at higher logχ2

IP than signal events. This is justi�ed by the so
called wrong sign (WS) combinations. To the physical decay Λ0

b→ D0pµ−νµX
there are also samples produced with one charge conjugated daughter particle in the
�nal state. There are three possibilities of combining a wrong sign particle:

• WSp: D0pµ− �nal state

• WSD0: D0pµ− �nal state

• WSmu: D0pµ+ �nal state

There is no physical process that allows the decay of a Λ0
b into these �nal states. The

most apparent violation of a physical law in these decays is the charge conservation.
Whereas the Λ0

b is electrically neutral, the �nal states of WSp and WSmu have a
total charge of ∓2. For the WSD0 combinations, the electrical charge is �ne, but
the decay Λ0

b→ D0pµ− would require the quark transition b →c, which is forbidden
in the Standard Model. Thus if one reconstructs such unphysical decays these either
arise due to random combinations of particle tracks or due to true physical decays,
where one misidenti�es a particle. As example for the latter case serves a decay
like B0→ D0µ−π+π+π0 where one misidenti�es the π0 as p and misses the two π+.
Being caused by either random combinations or misidenti�cation of particles, the
wrong sign events provide a �rst, rough estimate of the Λ0

b→ D0pµ−νµX background
behaviour.

5.2 Reconstruction of the decay Λ0
b→ Λ+

c µ
−νµ

The reconstruction of the Λ0
b→ Λ+

c µ
−νµ channel with Λ+

c → pK−π+ is done quite
similarly to the decay Λ0

b → D0pµ−νµX. The main di�erence between those two
channels is, that the proton is now combined with theK−π+ to make a Λ+

c → pK−π+

candidate instead of being combined with the D0µ−. As to the rest, the topology is
analogous to Λ0

b→ D0pµ−νµX. The lifetime of the Λ0
b is long enough, such that the

Λ0
b decays at a secondary vertex into a Λ

+
c and µ−. Like the D0, the Λ+

c �ies another
distance, �nally decaying at a tertiary vertex into pK−π+. The strategy for the
selection is thus to �nd decays with the signature Xb → (Λ+

c → K−π+p+)µ−ν̄µX.

5.2.1 Reconstruction of the Λ+
c (pK−π+) candidate

First of all, requirements on the tracks of the �nal state particles p, K and π are
made. These are required to have a minimum momentum of 2GeV and a transverse
momentum of 250MeV, their ghost probability should be less than 0.5 and the χ2

IP

with respect to the primary vertex is greater than 4. The motivation for these cuts
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Figure 5.5: Plot of the invariant pK−π+ mass distribution. A clear mass peak iden-
ti�ed as the Λ+

c can be seen. The yellow shaded area shows events with
the WS combination Λ+

c µ
+.

are the same as for the D0 reconstruction in Section 5.1.1: a good vertex quality,
tracks not pointing to the primary vertex, good kinematics for particle identi�cation
and for not being bent out by the magnet. To be compatible to the Λ0

b→ D0pµ−νµX
decay and to ensure a similar reconstruction of the proton, the requirements on
the proton are adopted from the Λ0

b → D0pµ−νµX reconstruction: A minimum
momentum of 15 GeV, a minimum transverse momentum of 1 GeV and a minimum
χ2

IP with respect to the primary vertex of 25 is required. Furthermore fake protons
are suppressed by demanding PIDp > 10 and PIDp−PIDK > 10. The kaon must
satisfy PIDK > −5 and the pion PIDK < 20.

For the combined pK−π+, i.e. Λ+
c candidate, the vertex must be of good quality,

guaranteed by χ2
vtx/ndf < 3. Its DIRA is required to be larger than 0.99 to match

�ight direction and momentum. The di�erence of the Λ+
c mass to its PDG value

is required to be smaller than 80MeV only, since the Λ+
c sidebands are later used

to subtract combinatorial backgrounds below the Λ+
c mass peak. Aside from a

minimum transverse momentum of 2.1 GeV, prompt Λ+
c , i.e. Λ

+
c directly coming

from the primvary vertex, are supressed by requiring the logarithm of the Λ+
c impact

parameter to be grater than -1.5 and a �ight distance χ2 of more than 25, both with
respect to the primary vertex. Figure 5.5 shows a clear peak of the invariant Λ+

c

mass.

5.2.2 Reconstruction of the Λ0
b (Λ

+
c µ
−) candidate

The reconstruction of the muon track is completely analogous to the description in
Section 5.1.2 and hence not discussed here again. The combined Λ+

c µ
−, i.e. the
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5.2 Reconstruction of the decay Λ0
b→ Λ+

c µ
−νµ

Figure 5.6: Plot of the invariant Λ0
b mass distribution (left) and of the corrected Λ0

b

mass (right). Due to the missing neutrino the Λ0
b mass peak is shifted

to lower masses compared its nominal mass of 5619.5 MeV. With the
correction for the missing neutrino, the peak is close to the nominal Λ0

b

mass. The yellow shaded area shows events with the WS combination
Λ+
c µ

+.

Λ0
b candidate should make a good vertex with a maximum χ2

vtx of 6. Its DIRA is
required to be larger than 0.999. Being a semileptonic decay again, only a loose
selection on the invariant Λ+

c µ
− mass can be applied. It must have a mass between

2.2 and 8.0 GeV.
Compared to Λ0

b → D0pµ−νµX, main backgrounds are not assumed to be of
combinatorial nature, but rather Λ0

b decays into excited Λ
+
c states. A good example

is the decay Λ0
b → Λc(2595)+µ−νµ with Λc(2595)+ → Λ+

c π
0, where the π0 is not

reconstructed. Its decay topology does not di�er from Λ0
b→ Λ+

c µ
−νµ, because the

Λc(2595)+ decays immediately. However, if the massive π0 is missing in addtion,
the corrected Λ0

b mass should be shifted to lower masses compared to Λ
0
b→ Λ+

c µ
−νµ.

That is why there is not any requirement made on the Λ0
b corrected mass here.

The di�erent behaviour of the corrected masses is used in the normalisation �t in
Chapter 7 to disentangle the signal from those backgrounds.
Table 5.2 summarises all requirements for the reconstruction of the Λ0

b→ Λ+
c µ
−νµ

candidates. After application of all these requirements there are in total 2670999
Λ0
b→ Λ+

c µ
−νµ candidates left for the further analysis. Figure 5.6 shows on the left-

hand side the invariant mass distribution of the Λ0
b candidates and on the right-hand

side the corrected Λ0
b mass distribution. Whereas the Λ0

b mass is shifted to lower
masses due to the missing neutrino, the corrected mass peaks close to the PDG mass
of about 5619.5MeV [18].
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Chapter 5 Data reconstruction and selection

Table 5.2: Summary of the selection requirements for the reconstruction of Λ0
b →

Λ+
c µ
−νµ candidates.

Variable Value
Event number of long tracks < 250

µ− Transverse momentum > 1 GeV
Momentum > 6 GeV
Ghost probability < 0.5
Track χ2/ndf < 4
χ2

IP w.r.t. PV > 9.0
PIDmu > 0.3

Λ+
c → pK−π+ Daughter momentum > 2 GeV

Daughter transverse momentum > 250.0 MeV
Daughter ghost probability < 0.5
Daughter χ2

IP w.r.t. PV > 4.0
p daughter PIDp > 10
p daughter PIDp−PIDK > 10
p daughter p > 15 GeV
p daughter pT > 1 GeV
p daughter χ2

IP w.r.t. PV > 25
K− daughter PIDK > −5.0
π+ daughter PIDK < 20.0
χ2

vtx/ndf < 3
DIRA w.r.t. PV > 0.99
Mass di�. to PDG < 80 MeV
Transverse momentum > 2.1 GeV
log10(IP) w.r.t. PV > −1.5
Flight distance χ2 w.r.t. PV > 25

Λ+
c µ
− Mass ∈ [2.2, 8.0] GeV

χ2
vtx/ndf < 6

DIRA w.r.t. PV > 0.999
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Chapter 6

Signal �t

This chapter describes the way, how the yield ND0p of the signal decays Λ0
b →

D0pµ−νµX is determined. Due to the missing neutrino, the reconstructed Λ0
b mass

does not peak at its actual mass and cannot be used to distinguish signal from
background. Nonetheless the D0p subsystem is of particular interest. Recently,
BaBar measured the decay of two Λ+

c resonances into D0p, namely Λc(2880)+→ D0p
respectively Λc(2940)+→ D0p [20]. It is expected, that the Λc(2880)+ and Λc(2940)+

also appears in the invariant D0p mass of the decay Λ0
b→ D0pµ−νµX through the

decay Λ0
b → Λc(2880/2940)+µ−νµ with Λc(2880/2940)+→ D0p. Indeed, there are

some peaking structures at M(D0p) around 2880MeV and 2940MeV as Figure 5.4
(top) shows. As a nice side e�ect, the masses and widths of those resonances can
be determined, too. However, it is expected that most of the Λ0

b → D0pµ−νµX
decays are nonresonant, i.e. they decay directly into the D0pµ−νµX �nal state
without going through an intermediate resonance. It should be stressed, that the
measurement of B (Λ0

b → D0pµ−νµX) is an inclusive measurement. This means,
that every decay of a Λ0

b into a �nal state including a D0pµ−νµ is considered as
signal. Thus, the nonresonant Λ0

b decays as well as the decays via the Λc(2880)+

and Λc(2940)+ resonances are counted to the signal yield ND0p.

Unfortunately, the nonresonant Λ0
b decays cannot be disentangled in the D

0p mass
from combinatorial background like B0/B+→ D0µ−νµX with randomly combined
protons. As already mentioned in Chapter 9, an appropriate discriminating variable
between signal and those combinatorial backgrounds is logχ2

IP. Just to remind, it
has been de�ned as the logarithm of the di�erence between the χ2

vtx of the D
0µ− can-

didate with and without the proton, i.e. logχ2
IP := log [χ2

vtx(D0pµ−)− χ2
vtx(D0µ−)].

The smaller logχ2
IP, the better the proton makes a vertex with the D0µ− candidate

and the more likely it is a Λ0
b → D0pµ−νµX signal event. Figure 5.4 (bottom) il-

lustrates the discriminating power of logχ2
IP when one compares the data and the

wrong sign distributions.

The strategy for the signal �t is to perform a two-dimensional binned likelihood
�t to the D0p mass to learn as much about intermediate resonant states as pos-
sible and to the logχ2

IP distribution to disentangle Λ0
b → D0pµ−νµX signal from

combinatorial background. Unfortunately, there is no theoretical description of the
Λ0
b → D0pµ−νµX decay and the distributions of M(D0p) and logχ2

IP. Thus, the
most important task is to �nd a proper parametrisation of the two-dimensional dis-
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Chapter 6 Signal �t

tribution on an empirical basis. Depending on the respective variables either data
driven methods or simulations are used for that purpose as will be described in the
following section.

6.1 Empiric determination of the two-dimensional

logχ2
IP/M(D0p) distribution's shape

This section describes the determination of the shapes for the logχ2
IP distribution

and the D0p mass shape. Though there will be a two-dimensional �t in the end, it
is assumed that the logχ2

IP and M(D0p) distributions can be determined separately
for each �t component. The two-dimensional �t is rather needed for the separation
of the di�erent �t components, for instance the M(D0p) shapes are very similar for
nonresonant signal and background but completely di�er in their logχ2

IP shape, i.e.
their vertex quality.

For logχ2
IP, the functions to be �tted on data are determined with simulations.

This determination is done for signal and background separately. Both shapes are
then combined and �tted to data.

Concerning the invariant D0p mass, there do not exist any reliable simulations
predicting its shape. Here it is assumed that the behaviour of the combinatorial
background component is similar to the wrong sign events. Hence, the M(D0p)
distribution of the wrong sign events is used to get the shape of the background
component. The signal component is determined with the data itself. To highly
suppress combinatorial background leaking into the D0p mass distribution, only
events with a logχ2

IP < 1 are �tted. This corresponds to the distribution shown in
Figure 5.4 (top).

6.1.1 logχ2
IP
shape

As already mentioned both, logχ2
IP signal and background components, are deter-

mined with simulations. The logχ2
IP distribution of the signal simulation in Figure

6.1 reminds of a Gaussian curve, but having di�erent widths to the left and the right
from the maximum. Thus, it is parametrised with a so called bifurcated Gaus-
sian. A bifurcated Gaussian is an asymmetric Gaussian with two di�erent widths
for the left and the right part from the maximum. If G(x|x0, σ) = 1√

2πσ
exp

(
−x−x0

2σ

)
denotes a usual Gaussian with mean x0 and width σ, a Bifurcated Gaussian can be
written as1

BfG(x|x0, σL, σR) ∝

{
G(x|x0, σL) for x < x0

G(x|x0, σR) for x > x0

, (6.1)

1All �tfunctions in the following are given without normalisation factors. That is why there
always appears a ∝ sign instead of an equal sign.
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6.1 Empiric determination of the two-dimensional logχ2
IP
/M(D0p) distribution's shape

Figure 6.1: Fit to the logχ2
IP distribution of the signal simulation. As parametrisa-

tion a double bifurcated Gaussian has been chosen.

The tails on both sides of logχ2
IP are very broad compared to the peaking part.

Thus a single bifurcated Gaussian is not su�cient. The �nal �t function for the
signal logχ2

IP shape is the sum of two bifurcated Gaussians, in the following called
a double Bifurcated Gaussian DBfG

DBfG(x|x0, ~σL , ~σR , fBfG1) ∝
fBfG1BfG(x|x0, σL1 , σR1) + (1− fBfG1)BfG(x|x0, σL2 , σR2), (6.2)

where fBfG1 denotes the fraction of the �rst BfG and the two BfG share a common
mean x0. The �t result for the signal simulation can be seen in Figure 6.1. In order
to estimate the quality of the �t, the pull distribution is also shown in Figure 6.1
below the logχ2

IP distribution. The pull of a variable x is de�ned as

pull(x) =
Nmeas(x)−N�t(x)

σNmeas(x)
. (6.3)

Referring to Figure 6.1, Nmeas(x) denotes the number of entries in the bin with
logχ2

IP = x, N�t(x) the corresponding result of the �t in the respective bin and
σNmeas(x) the error on Nmeas(x). In other words, the pulls are the residuals of the �t
normalised to the uncertainty. If the �t describes the data well, the pull distribution
should peak and �uctuate around zero with mean 1 [58]. From the pull distribution
it can be stated that the chosen �t model describes the data well, especially in the
tails. A little bias might be included if one closer looks at the region of logχ2

IP ≈ 0.
Concerning the logχ2

IP background shape, only a simulation with very little statis-
tics is available. To get a better idea of the background logχ2

IP shape and to increase
statistics, right sign and wrong sign events of this sample have been added. In this
case, wrong sign events refers to events with a Λ+

c µ
+ in the �nal state. Compared
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Chapter 6 Signal �t

Figure 6.2: Comparison of the logχ2
IP distribution for right sign and wrong sign

events in the background simulation. Both, the shapes for right sign and
wrong sign are very similar and thus can be added to increase statistics.

to the signal logχ2
IP shape, both, right sign and wrong sign events, describe com-

binatorial background. Thus, it is assumed that their logχ2
IP shapes are similar as

Figure 6.2 con�rms. According to this, the addition of right sign and wrong sign is
appropriate to increase statistics in this case.

The logχ2
IP distribution of the background simulation looks like a Gaussian around

the maximum, but has a long tail to lower logχ2
IP values. That is why a single

CrystalBall function is chosen as �t function for the logχ2
IP background shape. This

function was �rst used by the CrystalBall collaboration to account for radiative
losses in J/ψ or ψ(2S) decays [59]. It is de�ned as

CB(x|x0, σ, α, n) ∝

{
exp

(
− (x−x0)2

2σ2

)
for x−x0

σ
> −α

A ·
(
B − x−x0

σ

)−n
for x−x0

σ
≤ −α

, (6.4)

where

A =

(
n

|α|

)n
exp

(
−|α|

2

2

)
, (6.5)

B =
n

|α|
− |α|. (6.6)

Hence, the CrystalBall function is a Gaussian with an enhanced tail at one side of
the maximum, due to the power law for x−x0

σ
≤ −α. So α denotes the transition

between the Gaussian and the power law tail and n the latter's exponent.

The result of the �t to the background simulation can be seen in Figure 6.3. Ac-
cording to the pull distribution the �t nicely describes the data points. Nonetheless,
one has to note, that statistics here are very little.
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6.1 Empiric determination of the two-dimensional logχ2
IP
/M(D0p) distribution's shape

Figure 6.3: Fit to the (RS and WS added) logχ2
IP shape of the background simula-

tion. The distribution is modeled with a CrystalBall function.

6.1.2 One-dimensional �t to the logχ2
IP
distribution in data

To control if the chosen parametrization of the logχ2
IP distribution gained from sim-

ulation describes data, a one-dimensional logχ2
IP-�t on data is performed. For that

purpose, the double bifurcated Gaussian as signal component and the CrystalBall
as background component are added, i.e. the total probability density function P
for that �t is:

P(x|Nsig, Nbkg, x0,sig, x0,bkg ~σL ,sig, ~σR ,sig, fBfG1 , σbkg, α, n) ∝
NsigDBfG(x|x0,sig, ~σL ,sig, ~σR ,sig, fBfG1) +NbkgCB(x|x0,bkg, σbkg, α, n), (6.7)

where Nsig denotes the signal yield and Nbkg the background yield respectively. The
�t result can be seen in Figure 6.4 and the corresponding yields and parameter
values are listed in Table 6.1.

The chosen model very nicely describes the data as can be seen in the pull distri-
bution. Thus the chosen parametrisation for the logχ2

IP shape is reasonable. This
�t is later also used for systematic studies, since it is already able to distinguish
between signal and background yields, see Chapter 5 for further discussions.

6.1.3 D0p mass shape

To get an idea of the (combinatorial) background shape in theD0pmass distribution,
events with a wrong sign proton, i.e. events with D0pµ− in the �nal state are
used since the transition from Λ0

b to a D0pµ− �nal state is physically forbidden
by charge conservation and should thus give a good proxy for randomly combined
Λ0
b→ D0pµ−νµ candidates. The M(D0p) distribution of these wrong sign events is
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Chapter 6 Signal �t

Figure 6.4: logχ2
IP distribution of the data sample. A binned likelihood �t is per-

formed on it with the sum of a double bifurcated Gaussian for the signal
(blue, dashed line) and a CrystalBall function for the background com-
ponent (yellow shaded).

shown in Figure 6.5 and modeled with an empirical background function [60]

EBG(m|m0,m1,m2, p, c1) = PS(m|m1,m2) · (m−m0)
p · exp

[
c1

(
1− m0

m

)]
,

(6.8)

where m0 := m1 +m2 denotes the kinematic D
0p mass threshold and PS the phase

space function

PS(m|m1,m2) =
1

2m

√
[m2 − (m1 +m2)2] [m2 − (m1 −m2)2]. (6.9)

The term with the power p is included as correction, in case the phase-space function
does not satisfactorily describe the threshold shape. Here and in the following �ts,
m1 and m2 are �xed to the D0 respectively proton PDG mass values. Figure 6.5
shows the result of the �t. Again, the model nicely describes the distribution. It
should be noted here, that there is no structure observed in this wrong sign mass
spectrum. This is a good con�rmation, that the identi�cation of the two peaks in
the D0p mass for right sign events as Λc(2880)+ and Λc(2940)+ is appropiate.
Unfortunately, there is no reliable simulation predicting the mass shape for the

D0p invariant mass. A shape for the signal therefore has to be determined empir-
ically on data. A �t to the D0p mass distribution is applied with the requirement
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6.1 Empiric determination of the two-dimensional logχ2
IP
/M(D0p) distribution's shape

Table 6.1: Results of the onedimensional logχ2
IP �t on data.

Variable Value
Yields
signal yield Nsig (2.325±0.028) · 104

background yield Nbkg (1.086±0.026) · 104

Signal (DBfG)
mean x0,sig (4.59±0.26) · 10−1

left width 1 σL,sig,1 (8.72±0.56) · 10−1

right width 1 σ2,sig,1 (5.74±0.44) · 10−1

left width 2 σL,sig,2 (4.72±0.55) · 10−1

right width 2 σR,sig,2 (3.37±0.23) · 10−1

fraction BfG 1 fBfG1 (5.61±0.89) · 10−1

Background (CB)
CB mean x0,bkg (2.6±0.017) · 100

CB σbkg (6.85±0.14) · 10−1

CB α (2.035±0.099) · 100

CB n (1.62±0.45) · 100

that the D0pµ system makes a good vertex, i.e. logχ2
IP < 1. It is shown in Figure 6.6

top. This hard requirement strongly suppresses combinatorial background and al-
lows to determine the signal distribution. As already stated before, the main part of
the signal will be nonresonant. Besides that it is expected to see the two Λc(2880)+

and Λc(2940)+ resonances. They are parametrised by a relativistic Breit-Wigner
distribution convoluted with a double Gaussian to account for the detector's mass
resolution. The relativistic Breit-Wigner distribution is de�ned as follows:

RelBW(m|mR,m1,m2,Γ0) ∝
mΓ(m|mR,m1,m2,Γ0)

(m2 −m2
R)2 + (mRΓ(m|mR,m1,m2,Γ0))2

,

(6.10)

with

Γ(m|mR,m1,m2,Γ0) = Γ0
mR

m

S(m|m1,m2)

S(mR|m1,m2)
, (6.11)

where PS denotes the phase space function of equation (6.9), mR the resonance's
mass and Γ0 its width [61]. Thus, each resonance is modeled with

RES(m|mR,m1,m2,Γ0, σ1, σ2, f1) ∝
RelBW(m|mR,m1,m2,Γ0)⊗ [f1G(m|0, σ1) + (1− f1)G(m|0, σ2)] (6.12)

The determination of the mass resolution is thoroughly described in section 6.2. The
obtained resolution will be �xed in all �ts later.
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Figure 6.5: Fit to the D0p mass of wrong sign proton events. As model an empiric
background function has been chosen, see equation (6.8)

The non-resonant signal part is modeled with the sum of two exponential functions
multiplied by a turn-on function.

TDExp(m|m0, c0, c1, c2, fc1) ∝
(
1− ec0(m−m0)

)
· [fc1ec1m + (1− fc1)ec2m] .

(6.13)

The turn-on factor is needed to model the steep rise at the D0p mass threshold.
The �t to the invariant D0p mass distribution, that is shown on the upper side

of Figure 6.6 does not describe the data at low D0p mass. Di�erent models for the
non-resonant component have been tried to describe this steep curvature without
success. However, when adding another resonant component, the �t converges and
describes the data well as can be seen on the lower side of Figure 6.6. This additional
component will be labeled �low mass enhancement" throughout the analysis. Thus,
the total �t function consists of four parts: The non-resonant part modeled with the
�turn-on double exponential" function TDExp of Equation (6.13) and relativistic
Breit-Wigner functions according Equations (6.12) for the Λc(2880)+, Λc(2940)+

and the low mass enhancement. The �t results can be seen in Figure 6.6 (bottom)
and Table 6.2.
Note, that at this point, the additional resonant component, the low mass en-

hancement, is merely introduced to enable the �t to converge and match the data.
In principle, there are several possible reasons for such an enhancement, but there
is some motivation to choose a resonant model as additional component: On the
one hand the peak looks similar to the other resonances. On the other hand, there
is a similar peak seen in other analyses e.g. BaBar is discussing a (much less pro-
nounced) peak at an invariant D0p mass of about 2840MeV in its study on the
D0p �nal state in [20]. The reason for this peak is not understood so far and is
currently studied in di�erent ongoing LHCb analyses. Besides some detector e�ects,
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Figure 6.6: Invariant D0p mass distribution when requiring logχ2
IP < 1. The upper

�gure shows a �t with two resonances (red lines) for the Λc(2880)+ and
Λc(2940)+ and a nonresonant part (blue dashed line). Di�erent attempts
have been made to get a proper and converging �t, matching the data
at low D0p mass, without success. This issue can be solved by adding
an additional resonant component (lower �gure, green line), obeying the
same �t model like the two resonances.
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Table 6.2: Results of the D0p mass �t.

Variable Value
Yields
Λc(2880)+ signal yield NΛc(2880)+ (1.2±0.14) · 103

Λc(2940)+ signal yield NΛc(2940)+ (9.4±2.3) · 102

mass enhancement yield Nenh (2.06±0.4) · 103

nonresonant yield Nnonres (1.672±0.063) · 104

Λc(2880)+ resonance
mean mΛc(2880)+ [ MeV] (2.88197±0.00034) · 103

width Γ0,Λc(2880)+ [ MeV] (7.5±1.3) · 100

Λc(2940)+ resonance
mean mΛc(2940)+ [ MeV] (2.9375±0.0017) · 103

width Γ0,Λc(2940)+ [ MeV] (2.34±0.6) · 101

Low mass enhancement
mean menh [ MeV] (2.84204±0.00087) · 103

width Γ0,enh [ MeV] (2.44±0.37) · 101

nonresonant part
turn on mass threshold m0 [ MeV] (2.80119±0.0005) · 103

turn on slope c0 [ MeV−1] (−4.0±7.4) · 10−4

exponential 1 slope c1 [ MeV−1] (−2.3±0.11) · 10−2

exponential 2 slope c2 [ MeV−1] (−6.84±0.39) · 10−3

fraction exponential 1 fc1 (7.41±0.22) · 10−1

backgrounds or kinematical re�ections it is not excluded, that a new particle is seen
here. A thorough discussion, if this additional component is actually needed and
what might cause this peak follows in Chapter 11. In the following, this component
is treated as signal since it appears very clear when requiring logχ2

IP < 1, i.e. in the
background suppressed region making a good decay vertex.

6.2 Determination of the mass resolution

Due to resolution e�ects, the width of a resonance in a mass spectrum can appear
wider than its natural width. In this analysis, the e�ect is accounted for by convo-
luting the Breit-Wigner, which is assumed to be the natural shape of the resonance,
with a double Gaussian, describing the smearing of the resonance due to �nite mass
resolution, see Equation (6.12).
The determination of the mass resolution is performed in a simulation by com-

paring the generated (also called �true") mass with the reconstructed mass. The
mean of the mass di�erence distribution is expected to be zero and the width refers
to the mass resolution. The distribution is described by a double Gaussian func-
tion f1G(m|m0, σ1) + (1 − f1)G(m|m0, σ2) to properly describe the broadening of
the mass di�erence distribution in the tails. To account for a potential mass de-
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Table 6.3: Results of the �ts to the mass di�erence distributions for the determina-
tion of the mass resolution. Only the values, which are required for the
further analysis are quoted here.
Resonant component σ1[ MeV] σ2[ MeV] f1[ MeV]
Λc(2880)+ 1.576±0.065 3.9±1.9 0.814±0.073
Λc(2940)+ 1.966±0.045 5.8±1.5 0.789±0.029
enhancement 0.830±0.041 1.75±0.16 0.524±0.072

pendence, this �t is performed in several bins of the true invariant D0p mass. The
left-hand side of Figure 6.7 exemplarily shows the mass di�erence between recon-
structed and generated mass together with the �t of a double Gaussian in the bin
2910 < M(D0p) < 2980 MeV. This bin corresponds to the Λc(2940)+ resonance.
The �ts of all bins can be seen in Appendix A, Figure A.1. The widths σ1 and σ2

and the fraction of the �rst Gaussian f1 obtained by these �ts in the respective bins
are used for the parametrisation of the resonances in the nominal D0p mass �t as
described by Equation (6.12). Table 6.3 summarises the obtained values, which are
used for the further analysis. Though there is a mass dependence of the resolution
over the whole D0p mass spectrum it is assumed, that the mass resolution can be
considered as constant over the natural width of the resonances. The right-hand side
of Figure 6.7 shows the root-mean-square of the mass di�erence distributions in the
di�erent bins. This serves as a measure for the mass resolution and how it evolves
since it is hard to assign a single value for the mass resolution due to the �t of a
double Gaussian. At D0p mass threshold, the D0 and the proton are at rest. Thus,
the measured D0p mass is just the sum of the PDG masses of the D0 and the proton.
Hence, there is no sensitivity to a mass resolution at threshold. If the measured D0p
mass is above the threshold, there are contributions from the momenta of theD0 and
the proton to the measured D0p mass, too, in�uencing the mass resolution. As the
uncertainties of the momenta gets larger for increasing momenta, the mass resolution
increases as well. The PDG values for the the natural widths of the two resonances
are ΓΛc(2880)+,PDG = (5.8 ± 1.1) MeV and ΓΛc(2940)+,PDG = (17+8

−6) MeV. Thus, the
resolution and natural width are of same order for the Λc(2880)+. Concerning the
Λc(2940)+ resonance, the natural width dominates.

6.3 Nominal �t in two dimensions

With a two-dimensional �t to theD0pmass and the logχ2
IP distribution, it is possible

to distinguish between nonresonant signal and background in theD0pmass spectrum
as already explained. Thus, the di�erent pieces of the previous sections are put
together for a �t of both distributions.

It is assumed that the logχ2
IP distribution is the same for all 4 di�erent signal com-

ponents (non-resonant signal, Λc(2880)+, Λc(2940)+, enhancement), since their de-

51



Chapter 6 Signal �t

Figure 6.7: Left: Fit of a Gaussian to the di�erence between generated and re-
constructed D0p mass of the simulation sample in the range 2910 <
M(D0p) < 2980 MeV, corresponding to the bin of the Λc(2940)+ reso-
nance. Right: root-mean-square (RMS) of the mass di�erence distribu-
tions for each bin. The RMS serves as a measure for the mass resolution
since it is not easy to assign a single value for the mass resolution, since
the distribution is modeled with a double Gaussian.

cay topologies are the same2. Hence, their logχ2
IP distributions share all parameters.

For the logχ2
IP signal part a double Bifurcated Gaussian DBfG is chosen, whereas

the background is modeled by a CrystalBall function CB. The D0p mass signal com-
ponents are modeled with the same parametrisation as described in Section 6.1.3.
The empiric background function EBG is used to describe the background. Thus,
the total parametrisation P2D of the two-dimensional logχ2

IP/M(D0p) distribution
is

P2D(x,m|~λ) ∝
DBfG(x|x0,sig, ~σL,sig, ~σR,sig, fBfG1)

· [ Nnonres · TDExp(m|m0, c0, c1, c2, fc1)

+NΛc(2880)+ · RES(m|mΛc(2880)+ ,m1,m2,Γ0,Λc(2880)+ , ~σΛc(2880)+ , f1,Λc(2880)+)

+NΛc(2940)+ · RES(m|mΛc(2940)+ ,m1,m2,Γ0,Λc(2940)+ , ~σΛc(2940)+ , f1,Λc(2940)+)

+Nenh · RES(m|menh,m1,m2,Γ0,enh, ~σenh, f1,enh) ]

+ CB(x|x0,bkg, σbkg, α, n) ·Nbkg · EBG(m|m0,m1,m2, p, c1,bkg), (6.14)

where x denotes logχ2
IP, m the invariantD0pmass, ~λ the set of all �t parameters and

Ni the yields of the respective components. All other parameters are explained in the
sections before, where the di�erent functions have been introduced. All parameters
are �oating except for the mass resolution parameters of the resonant components
in RES(...) and the D0 and proton mass (m1 respectively m2), that are required
in the phase space function PS, which again is part of the relativistic Breit-Wigner
and the empiric background function. The results of the �t are shown in Table 6.4

2Presumed, that the enhancement indeed emerges to be a resonance or another signal component.
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6.4 Fit to the wrong sign proton data as cross-check

and the projections can be seen in Figure 6.8. The model very nicely describes the
data. The pull distributions do not show any abnormalities. A discussion of the
result follows in Section 6.5.

6.4 Fit to the wrong sign proton data as

cross-check

As a cross-check, the two-dimensionsal �t is performed for the wrong sign data with
the same parametrisation as for the right sign data in Section 6.3. However, due
to the absence of resonances, it is purely described by the nonresonant functions,
i.e. the nonresonant signal component and the background component. The re-
spective plots can be seen in Figure 6.9. No structure in the mass distribution is
seen, especially the Λc(2880)+ and Λc(2940)+ resonances vanish in the wrong sign
D0p. Interesting is to note, that besides the two resonances even the enhancement
vanishes. Thus, it cannot be explained by random combinations of the particles.
Concerning the logχ2

IP distribution, there is nevertheless a �signal-like" part. This
is presumably background from B0/B+ → D0µ−νµX decays, where the X is of
�wrong charge" and moreover misidenti�ed as (anti)proton. Since the physics are
di�erent for right sign and wrong sign events, the yield obtained in this WS �t
cannot easily be subtracted from the nominal �t to account for fake proton back-
grounds. A more thorough study on fake backgrounds will be performed in Chapter
9.

6.5 Extraction of Λ0
b→ D0pµ−νµX signal yield

and Λc(2880)
+/ Λc(2940)

+ properties

From the previous �ts, di�erent results can be obtained. The most important result
is the Λ0

b→ D0pµ−νµX signal yield ND0p for the determination of R. This result
is obtained by the nominal two-dimensional �t. The obtained yields for the non-
resonant component, the Λc(2880)+ and the Λc(2940)+ as well as the enhancement,
which can be found in Table 6.4, are summed up. Thus, the total Λ0

b→ D0pµ−νµX
signal yield is

ND0p = Nnonres +NΛc(2880)+ +NΛc(2940)+ +Nenh

= (2.293± 0.088) · 104.

Remember, that the aim of this thesis is to measure the inclusive branching ratio of
Λ0
b→ D0pµ−νµX. That is why all components ending up in a �nal state containing

a D0 meson, a proton and a muon are summed up for the total signal yield. Again, it
has to be con�rmed in chapter 11, that it is appropriate to consider the enhancement
as signal.
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Figure 6.8: Two-dimensional �t to the Λ0
b → D0pµ−νµX candidates. Top: pro-

jection of invariant D0p mass. Bottom: projection of logχ2
IP distribu-

tion projection. The �t model is described in the text. The yellow
shaded area shows the background component, stacked on top the non-
resonant signal component marked as blue, dashed line. The two identi-
�ed Λc(2880)+ and Λc(2940)+ resonances are drawn with a red solid line,
the additional enhancement in green. For comparison the open circles
show the wrong sign events.
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6.5 Extraction of Λ0
b→ D0pµ−νµX signal yield and Λc(2880)+/ Λc(2940)+ properties

Table 6.4: Results of the twodimensional M(D0p) and logχ2
IP �t.

Variable Value
Yields
Λc(2880)+ signal yield NΛc(2880)+ (1.28±0.15) · 103

Λc(2940)+ signal yield NΛc(2940)+ (1.06±0.24) · 103

mass enhancement yield Nenh (2.29±0.45) · 103

nonresonant signal yield Nnonres (1.83±0.069) · 104

background yield Nbkg (9.42±0.14) · 103

Λc(2880)+ resonance
mean mΛc(2880)+ [ MeV] (2.88197±0.00034) · 103

width Γ0,Λc(2880)+ [ MeV] (7.4±1.3) · 100

Λc(2940)+ resonance
mean mΛc(2940)+ [ MeV] (2.9374±0.0016) · 103

width Γ0,Λc(2940)+ [ MeV] (2.44±0.55) · 101

Low mass enhancement
mean menh [ MeV] (2.84222±0.00088) · 103

width Γ0,enh [ MeV] (2.51±0.37) · 101

Nonresonant signal
turn on mass threshold m0 [ MeV] (2.80127±0.00057) · 103

turn on slope c0 [ MeV−1] (−2.0±36.0) · 10−4

exponential 1 slope c1 [ MeV−1] (−2.34±0.14) · 10−2

exponential 2 slope c2 [ MeV−1] (−7.03±0.78) · 10−3

fraction exponential 1 fc1 (7.36±0.25) · 10−1

Background (mass)
Empiric BG c1,bkg [ MeV−1] (−1.595±0.05) · 101

Empiric BG p (5.6±3.0) · 10−2

Signal (logχ2
IP
)

mean x0,sig (4.8±0.16) · 10−1

left width 1 σL,sig,1 (9.76±0.27) · 10−1

right width 1 σR,sig,1 (6.22±0.32) · 10−1

left width 2 σL,sig,2 (5.37±0.24) · 10−1

right width 2 σR,sig,2 (3.41±0.15) · 10−1

fraction BfG 1 fBfG1 (4.21±0.42) · 10−1

Background (logχ2
IP
)

CB mean x0,bkg (2.573±0.012) · 100

CB σbkg (6.87±0.11) · 10−1

CB α (7.1±3.8) · 100

CB n (3.0±1.4) · 100
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Figure 6.9: InvariantD0pmass (left) and logχ2
IP (right) distribution for �wrong sign"

(WS) events. The signal-like component (blue, dashed line) of the �t can
be assigned to B0/B+→ D0µ−νµX decays, where the X is a fake proton
of �wrong" charge.

As a side e�ect, the properties of the Λc(2880)+ and Λc(2940)+ resonances are
extracted from the �t of the invariant D0p mass. In this case it is not needed to
distinguish between nonresonant signal and background, since only the peaks are of
interest. To avoid uncertainties caused by this distinction, the properties of the two
resonances are taken from the one-dimensional �t to the invariant D0p mass (see
Table 6.2):

Λc(2880)+ : mΛc(2880)+ = (2881.97± 0.34) MeV,

ΓΛc(2880)+ = (7.5± 1.3) MeV,

Λc(2940)+ : mΛc(2940)+ = (2937.5± 1.7) MeV,

ΓΛc(2940)+ = (23.4± 6.0) MeV.

The PDG values for the properties of the two resonances are mΛc(2880)+,PDG =
(2881.53 ± 0.35) MeV and ΓΛc(2880)+,PDG = (5.8 ± 1.1) MeV for the Λc(2880)+ as
well as mΛc(2940)+,PDG = (2939.3+1.4

−1.5) MeV and ΓΛc(2940)+,PDG = (17+8
−6) MeV for

the Λc(2940)+ respectively. These values are based on a BaBar measurement of
the D0p �nal state and a Belle measurement of Λc(2880)+/Λc(2940)+ decays into
Σc(2455)0,++π± [62]. The obtained results are in good agreement with the current
world averages.
Though the reason for the low mass enhancement is not understood so far and

it cannot be concluded, if a new particle is seen, the obtained mass and width are
quoted here for the sake of completeness:

enhancement : menh = (2842.04± 0.87) MeV,

Γenh = (24.4± 3.7) MeV.
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Chapter 7

Fit to the reference channel

Λ0
b→ Λ+

c µ
−νµ

This chapter describes the measurement of the signal yield NΛ+
c
in the normalisation

channel Λ0
b→ Λ+

c µ
−νµ (Λ+

c → pK−π+). The method is di�erent to the one in the
signal channel Λ0

b→ D0pµ−νµX due to several reasons: All of the �nal state particles
of the subdecay Λ+

c → pK−π+ can be reconstructed and the statistics is much higher.
Going through an intermediate resonance, it is possible to see a clear Λ+

c mass peak
as shown in Figure 7.1. In Λ0

b→ D0pµ−νµX decays, the major part of the decays
was non-resonant. The small sidebands indicate a small combinatorial background in
the subdecay Λ+

c → pK−π+. The background contribution coming from a random
combination of a Λ+

c with a muon can be estimated by investigating the wrong
sign �nal states combinations Λ+

c µ
+. Since a Λ0

b cannot decay into a Λ+
c µ

+ due
to charge conservation, this unphysical combination serves as model for randomly
combined Λ+

c µ
−. The second reason why a di�erent method is chosen compared to

the Λ0
b→ D0pµ−νµX channel, is the fact that the Λ0

b can decay into several excited
Λ+
c states, in the following denoted as Λ∗+c for any excited Λ+

c state. Contrary to
Λ0
b → D0pµ−νµX, the yield of the decay Λ0

b → Λ+
c µ
−νµ is measured exclusively.

This means, that all decays going through intermediate resonances etc. have to
be subtracted. It has been shown in [11], that the Λ0

b→ Λ+
c µ
−νµ data is polluted

by the decays Λ0
b→ Λc(2595)+µ−νµ and Λ0

b→ Λc(2625)+µ−νµ. These excited Λ∗+c
baryons instantly decay for instance in Λ+

c π
+π− or Λ+

c π
0. If these (neutral) pions

are not reconstructed, those decays cannot be distinguished from Λ0
b→ Λ+

c µ
−νµ by

its topology. Thus, a �t of logχ2
IP, a measure for the vertex quality, as done in

Chapter 6 would not help to distinguish between Λ0
b→ Λ+

c µ
−νµ and Λ

0
b→ Λ∗+c µ−νµ

and a di�erent approach for the determination of NΛ+
c
has to be chosen.

The solution of the latter problem is to �t the corrected pK−π+µ− alias Λ0
b mass.

It has been stated in Chapter 5, that the corrected pK−π+µ− or Λ0
b mass peaks

close to the nominal Λ0
b mass, if the missing particle is massless. Concerning the

Λ0
b → Λ∗+c µ−νµ decays, on misses not only the neutrino, but furthermore massive

particles like the neutral pions. Thus, the corrected Λ0
b mass is shifted to lower

masses, enabling a �t to distinguish between the semileptonic Λ0
b decay into a Λ+

c

or Λ∗+c . This assumption on the corrected mass is veri�ed in Section 7.2.
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b→ Λ+

c µ
−νµ

Figure 7.1: Plot of the invariant pK−π+ mass distribution. A clear mass peak iden-
ti�ed as the Λ+

c can be seen. The dark shaded area indicates the chosen
signal band and the light grey area the background bands for the side-
band subtraction.

7.1 Reduction and handling of backgrounds

This section describes the ways, how di�erent sources of backgrounds are either
handled or reduced.

7.1.1 Non Λ+
c background

As already mentioned, the reconstruction of pK−π+ yields a nice mass peak forming
the hadronically decaying Λ+

c , which can be seen in Figure 7.1. Events outside of
this peak can be explained by a random combination of a proton, a kaon and a pion.
Nonetheless, there is also a certain amount of this �combinatorial" background in
the peak region. It is statistically eliminated by a sideband subtraction. For this
purpose, one assumes that the distribution of a kinematic variable of background
under the peak region (also called signal band) is very similar to the distribution
of the background in the (averaged) sidebands. Thus, the background distribution
of a certain kinematic variable in the peak region is eliminated by subtracting the
distribution of that variable in the sidebands. The signal band is chosen to lie in the
invariant pK−π+ mass range of M(pK−π+) ∈ [2260, 2320] MeV. The background
bands are M(pK−π+) ∈ [2225, 2260] MeV or M(pK−π+) ∈ [2320, 2345] MeV. The
chosen bands are visualised in Figure 7.1.
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7.2 Fit to the corrected pK−π+µ− (Λ0
b) mass

7.1.2 Random combinations of Λ+
c and µ−

The next possible source of backgrounds are random combinations of a correctly
reconstructed Λ+

c baryon and a muon µ−. Due to the missing neutrino νµ, there
is no signal mass peak and it is not possible to use a sidebandsubtraction on the
invariant pK−π+µ− (Λ+

c µ
−) mass. Thus, wrong sign events, i.e. �unphysical" events

with a Λ+
c µ

+ in the �nal state as explained above are used to estimate the amount
of random Λ+

c µ
− background. It is assumed that the shape and the number of

the wrong sign events are compatible with the shape and number of random Λ+
c µ
−

combinations. Finally, the amount of wrong sign events is subtracted from the �right
sign" events to statistically eliminate this source of backgrounds.

7.1.3 Peaking backgrounds

The third source of backgrounds is peaking background from partially reconstructed
decays. This means, that there are physical decays mimicking to be signal, since
some of the particles are not reconstructed. In this case, the Λ0

b → Λ+
c µ
−νµ data

is polluted by the decays Λ0
b→ Λ∗c(2595)+µ−νµ and Λ0

b→ Λ∗c(2625)+µ−νµ [11]. A
Λ∗+c subsequently decays into a Λ+

c and a not reconstructed neutral remnant, e.g.
π0, π+π−. Since this decay happens instantaneously, it looks the same as Λ+

c →
pK−π+ in the detector. As already explained, those decays can be distinguished
from Λ0

b → Λ+
c µ
−νµ by their corrected Λ0

b mass. Thus, these kind of backgrounds
are not subtracted from the data, but rather included as component into the �t to
the corrected Λ0

b mass.

7.2 Fit to the corrected pK−π+µ− (Λ0
b) mass

In this chapter it is veri�ed in a simulation, that the corrected pK−π+µ− mass is
di�erent for Λ0

b→ Λ+
c µ
−νµ, Λ

0
b→ Λ∗c(2595)+µ−νµ and Λ

0
b→ Λ∗c(2625)+µ−νµ. Figure

7.2 shows the simulated corrected pK−π+µ− mass distributions for the di�erent
decays.
With the help of Figure 7.2, one can draw the following conclusions:

• The corrected pK−π+µ− mass indeed looks di�erent for Λ0
b → Λ+

c µ
−νµ and

Λ0
b → Λ∗+c µ−νµ decays. It peaks close to the nominal Λ0

b mass for Λ0
b →

Λ+
c µ
−νµ, whereas it is shifted to lower masses for the decays into the excited

Λ∗+c states.

• It is not possible to distinguish in the Λ0
b corrected mass spectrum between

the semileptonic Λ0
b decays into Λ

∗
c(2595)+ and Λ∗c(2625)+ as their shapes are

too similar.

The latter conclusion is not really a problem since the only result of interest is the
Λ0
b→ Λ+

c µ
−νµ signal yield. A distinction among the excited states is not needed. In
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Figure 7.2: Comparison of the pK−π+µ− corrected mass for the semileptonic Λ0
b

decays via Λ+
c , Λ

∗
c(2595)+ and Λ∗c(2625)+ gained from simulation. The

black points show the sideband subtracted data distribution. The shape
of the combinatorial Λ+

c µ
− background (WS events), which is subtracted

for the �t, is shown in orange.

the �t, there will be just one common component for both �nal states. Having this
in mind, the �t procedure is performed as follows:

1. The data is sideband-subtracted using the pK−π+ (i.e. Λ+
c ) mass bands.

2. The corrected pK−π+µ− mass distribution from wrong sing events is sub-
tracted from the respective distribution from the right sign data.

3. A �t of the pK−π+µ− mass is performed using the Beeston-Barlow method (see
Section 2.3.2) to account for uncertainties in the corrected mass templates from
simulation. The �tted parameters are the Λ+

c signal yield and one common
yield for the two excited Λ∗+c channels.

The results can be seen in Figure 7.3 and Table 7.1. They are presented in di�erent
ways: The left-hand side shows the �t result with the adjusted templates accord-
ing to the Beeston-Barlow method, i.e. the templates have been modi�ed binwise
within their uncertainties to better match the data. The agreement with the data
is remarkable, even on a logarithmic scale, shown in the bottom row of Figure 7.3.
The right-hand side compares data and �t result with the bare templates. Slight
deviations can be �gured out here, above all in the tails with few statistics. The
Λ0
b→ Λ+

c µ
−νµ signal yield NΛ+

c
, obtained by the �t to the corrected pK−π+µ− mass

and required for the determination of R, is:
NΛ+

c
= (1.544± 0.011) · 106
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7.2 Fit to the corrected pK−π+µ− (Λ0
b) mass

Table 7.1: Results of the Λ+
c corrected mass �t.

Variable Value
Λ+
c candidates NΛ+

c
(1.544±0.011) · 106

excited Λ∗+c candidates (4.375±0.096) · 105

combinatoric background (1.196±0.033) · 104

Figure 7.3: Fit to the pK−π+µ− corrected mass for the determination of the Λ0
b→

Λ+
c µ
−νµ signal yield. The left plot shows the �t result with the adjusted

templates according to the Beeston-Barlow method, the right one the
bare templates without any modi�cation. The top row shows the result
on a linear, the bottom row on logarithmic scale.
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Chapter 8

E�ciencies

The detection and reconstruction of particle decays is not perfect at all, i.e. not all
particles and tracks originating from the pp interaction are detected and recorded.
The ratio of the detected and selected signal yields and the total number of de-
cays, which took place, is referred to as �e�ciencies". There are several reasons for
ine�ciencies. Here are some examples:

• Particles escape the geometrical detector acceptance.

• There are dead regions in the detector.

• Applying selection requirements for the reduction of backgrounds prevents
signal events to pass these requirements as well.

For the measurement of the number of signal events, the exact knowledge / de-
termination of all e�ciencies is crucial. The way, how the e�ciencies for the
Λ0
b → D0pµ−νµX and Λ0

b → Λ+
c µ
−νµ decays are accounted for the measurement

of the relative branching ratio R, is shown in Equation (4.2).
For this analysis, the e�ciencies are determined using simulated events. These

simulation samples contain information about all generated as well as reconstructed
events for which detector e�ects are accounted for. The simple way is to divide the
number of reconstructed and selected simulated events by the number of generated
events. This e�ciency is hereafter called selection e�ciency εsel. However, some
generated events are rejected before they enter the simulation process, since above
all the simulation of the detector takes a lot of time. Thus, several requirements
are already applied during generation to reduce the computation time of the simu-
lation production, for instance all generated events are required to be in the LHCb
acceptance. A further acceleration of the production process can be achieved with
additional requirements on the �nal state particles' (transverse) momenta. Con-
cerning the Λ0

b → D0pµ−νµX and Λ0
b → Λ+

c µ
−νµ channel, these requirements are

di�erent and likewise the e�ciencies of the generation process. Thus, the so-called
generator level e�ciency εgen also has to be determined for both channels. The total
e�ciency used for the calculation of R is the product εgen · εsel.
Unfortunately, it is known that the simulations do not perfectly describe the

data. Since the decay Λ0
b→ D0pµ−νµX is not well-known, the physical properties

are not correctly modeled in simulation and thus disagree with data. Additionally,
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Chapter 8 E�ciencies

Figure 8.1: Comparison of data (black points) and simulation for the Λ0
b →

D0pµ−νµX channel before (red line) and after (red shaded area) three-
dimensional reweighting as described in the text (see Sec. 8.2).

no theoretical prediction of the Λ0
b→ D0pµ−νµX channel is available. The plots in

Figure 8.1 show a comparison of data (black points) and the simulation (red lines).
A huge disagreement between the (unweighted) simulation and data can be seen,
above all in the M(D0p) and M(D0µ−) distributions. In order to adjust the decay
kinematics, the simulated events hence have to be reweighted. This leads to a more
proper estimate of the e�ciency. Several reweigthing steps are applied and will be
described in the following. The e�ect of the reweighting is also shown in Figure 8.1.
A discussion on it follows.

8.1 Kinematic reweighting of the simulated

Λ0
b→ D0pµ−νµX and Λ0

b→ Λ+
c µ
−νµ decays

The production of Λ0
b baryons depends strongly on their transverse momentum as

Figure 8.2 (left) taken from Reference [63] shows. This dependence is not well
emulated in the simulation and thus has to be corrected. This was already done
in the semileptonic LHCb-measurement of |Vub| in Ref. [11] using the decay Λ0

b→
J/ψD0p. To calculate the weights, data and simulation of this hadronic Λ0

b decay
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8.2 Reweighting of the simulated Λ0
b→ D0pµ−νµX decays

Figure 8.2: Left: Ratio of Λ0
b to B

0 production as a function of pT. Figure taken
from [63]. Right: Transverse Λ0

b momentum for Λ0
b→ J/ψD0p decays in

data and simulation. Figure taken from the documentation belonging to
[11].

channel was compared as shown in Figure 8.2 (right). In this analysis, the applied
weights are determined from the same channel with the help of the distributions
in Figure 8.2 (right). The reweighting is applied in both, Λ0

b → D0pµ−νµX and
Λ0
b→ Λ+

c µ
−νµ, channels according to the true Λ

0
b transverse momentum pT, i.e. the

actual generated transverse momentum.

8.2 Reweighting of the simulated

Λ0
b→ D0pµ−νµX decays

It has already been mentioned that the decay dynamics of the Λ0
b → D0pµ−νµX

decay is not correctly modeled in the simulation. Since there are no theoretical
predictions for that channel, the reweighting of the simulation has to be done directly
on data. To come as close to data as possible, a three-dimensional reweighting in
the variables, M(D0p), M(D0µ−), M(D0pµ−) has been chosen. This choice is not
trivial and above all not obvious, but there are several reasons for it:

1. The simulation shows large di�erences compared to the data distribution in
these variables.

2. These variables are already available at generator level, i.e. before detector
e�ects are simulated. To calculate the selection e�ciency, the simulation has
to be reweighted at generator stage as well.

3. There are no selection requirements on these variables. Otherwise, no weights
could be assigned to events, not ful�lling the requirements1.

1There exists a selection requirement on M(D0pµ−) in this analysis to eliminate Λ0
b → D0pπ−
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The reweighting and the calculation of the e�ciencies is performed with the following
steps:

1. Determination of the weights
There are two normalised three-dimensional histograms drawn for both, data2

as well as simulated events after reconstruction, applying selection cuts and
the kinematic reweighting. The dimensions of these histograms are the three
mass variables mentioned above. The histogram containing the weights is now
calculated by dividing the histogram with the data through the histogram
containing the simulated events.

2. Assigning weights to the events
Now, this weight histogram is used to assign a weight w to each selected and
generated event. To get the correct bin in the weight histogram, the generated
masses Mtrue(D

0p), Mtrue(D
0µ−) and Mtrue(D

0pµ−) are used, in the following

brie�y denoted as ~Mtrue.

3. Calculation of the e�ciency
The e�ciency is calculated with

ε =

Nsel∑
i=1

wi( ~Mtrue)

Ngen∑
i=1

wi(
~Mtrue)

, (8.1)

where Nsel and Ngen denote the number of selected respectively generated
events. To account for the loss of statistical power due to reweighting, both,
the numerator and denominator in Equation (8.1), are multiplied by the renor-

malisation factor
∑Ngen

i=1 wi/
∑Ngen

i=1 w2
i . This does not a�ect the central value

of ε, but in�uences the statistical error, which is calculated using binomial
statistics [64], i.e.

σε =

√
ε(1− ε)

n
, (8.2)

with n :=
∑Ngen

i=1 wi( ~Mtrue).

It becomes clear, that with this procedure, one must not apply selection requirements
on the weighting variables, since otherwise the weights outside the cut region are
zero. Hence, it would not be clear, how to reweight the generated events not ful�lling
the selection requirements. The distribution of the masses after reweighting are
shown in Figure 8.1. The agreement between data and the reweighted simulation

background, but less than 0.5% of all events have their generated mass above this value. Thus,
its impact on the e�ciency can be neglected.

2Note, that again a logχ2
IP
< 1 is required to suppress combinatorial background.
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is much better than without reweighting. Nonetheless, some discrepancies can be
seen at higher D0µ− and D0pµ− masses. They arise due to empty bins in either
data or simulation. The last two bins in M(D0µ−) in Figure 8.1 serve as an good
example. No simulated events exist here, though there is still data. Nonetheless,
these events are weighted with zero, resulting in slight discrepancies. Many more
comparisons between data and simulation before and after reweighting can be found
in the Appendix B in Figure B.1.
Concerning the channel Λ0

b→ Λ+
c µ
−νµ, no further reweighting is applied since the

agreement in the comparison between data and simulation seems to be su�cient.
Several comparison plots for this channel can be found in Figure C.1 in Appendix
C. With this framework, the e�ciencies are calculated at di�erent stages of the
simulation process.

8.3 Generator level e�ciencies

As a reminder, generator level e�ciencies arise due to the fact, that one demands the
generated events to be in the LHCb acceptance and apply some (loose) requirements
on the kinematics to accelerate the simulation process. The generator level samples
are reweighted as described above: the Λ0

b→ Λ+
c µ
−νµ sample with the kinematic pT

(Λ0
b) reweighting and the Λ0

b→ D0pµ−νµ sample with both reweightings. For signal
and normalisation channel, the following generator level e�ciencies are obtained:

εgen,Λ+
c

= 0.345± 0.016,

εgen,D0p = 0.2026± 0.0070.

The quoted error is statistical and calculated as described in the previous section.

8.4 Reconstruction and selection e�ciencies

The reconstruction and selection e�ciencies are calculated analogously. The same
reweighting procedure on the di�erent samples is performed. The results for signal
and normalisation channel are:

εsel,Λ+
c

= (3.810± 0.023)× 10−3,

εsel,D0p = (8.30± 0.17)× 10−3.

Again, the error relies to limited simulation statistics.

8.5 Total e�ciencies

To summarise the values above, the total e�ciencies for the channels are:

εD0p = εgen,D0p · εsel,D0p = (1.682± 0.067)× 10−3,

εΛ+
c

= εgen,Λ+
c
· εsel,Λ+

c
= (1.314± 0.063)× 10−3.
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Chapter 8 E�ciencies

This results in an e�ciency ratio of

εΛ+
c

εD0p

= 0.781± 0.049,

which is later used when determining the relative branching ratio R. The quoted
errors are statistical and propagated from the the two latter sections. Systematic
uncertainties due to the reweighting itself are discussed in Chapter 10.
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Chapter 9

Backgrounds

The big disadvantage of semileptonic decays is that the neutrino cannot be recon-
structed. At hadron colliders like the LHC, it is impossible to know the kinematics of
the initial state, so one does not have enough constraints to reconstruct the full kine-
matic information about the decaying particle. Being aware of these problems due to
the experimental setup, it is clear, that one cannot use a well reconstructed Λ0

b mass
peak to separate signal from background. A main source of background is expected
to be the decay B0/B+ → D0µ−νµX where one randomly combines a proton to
this decay. This background is handled by the �t of the logχ2

IP distribution. Other
sources of backgrounds and their possible impact on the obtained signal yield ND0p

are discussed in the following. For the Λ0
b→ Λ+

c µ
−νµ channel it is assumed, that all

non-negligible backgrounds are accounted for due to the sideband-subtraction and
including wrong sign events as well as resonant mode components in the �t. Thus,
the discussion in this chapter refers completely to the Λ0

b→ D0pµ−νµX channel.

9.1 Proton misidenti�cation

A possible source of backgrounds is to misinterpret a decay as Λ0
b→ D0pµ−νµX if one

misidenti�es a �nal state particle. In this analysis, it is most likely that the proton is
fake, since the �nal state pion and kaon are reconstructed to a D0 yielding in a nice
peak and the muon leaves a clear signature in the detector due to its relatively long
lifetime and low interaction with matter. Examples for this kind of backgrounds
are the decays B0

s → D0K+µ−νµX and B0/B+→ D0π+µ−νµX, where either the
K+ or π+ is misidenti�ed as proton. Though there are tight requirements on the
proton identi�cation at selection stage, the data is still polluted by misidenti�ed
particles. To identify the amount of misidenti�ed protons, a slightly di�erent data
sample than the nominal one is used. In this sample, no requirements on the proton
iden�cation are applied. All other requirements are the same as described in Section
5. However, the removal of the particle identi�cation requirements for the protons
lets the data size of the sample rapidly increase. To keep the data size acceptable,
a so called 5% prescaling is applied, i.e. only 5% of all events are actually stored.
The decision, if a particle is stored or not, is made by random. That is why absolute
numbers quoted in this section cannot be compared to the obtained signal yields
etc. in the previous sections. The study on misidenti�ed backgrounds is done in

69



Chapter 9 Backgrounds

three steps.

9.1.1 De�nition of particle identi�cation regions - Number of
particle candidates

As a �rst step, it has to be de�ned, what requirements have to be ful�lled, that a
particle is called a proton, pion or kaon. For that purpose, the PID (for Particle
IDenti�cation) variables are used. Remember, that LHCb's particle identi�cation
system provides likelihoods for each particle hypothesis. The PID variables describe
di�erences between the logarithms of these likelihoods, e.g. PIDp is de�ned as the
di�erence of the logarithmic likelihoods between the proton and pion hypothesis. A
value of PIDp > 0 hence means, that the particle is more likely a proton than a pion.
Respectively, the PIDK compares kaon to pion hypothesis. If one wants to separate
protons from kaons, it is useful to look at PIDp−PIDK. The de�nition what will be
called proton is motivated by the requirements applied in the analysis (see Section
5). In detail, the regions for the identi�cation of protons, pions and kaons are:

• pion: PIDp < 10.0 and PIDK < 0.0

• proton: PIDp− PIDK > 10.0 and PIDp > 10.0

• kaon: PIDp− PIDK < 10.0 and PIDK > 0.0

Furthermore, these regions and their population are visualised in Figure 9.1. From
this, the number of candidates for each particle species is obtained, in the following
denoted as N i

cand, with i ∈ [π,K, p]. The number of candidates are

Nπ
cand = 5052± 71, (9.1)

NK
cand = 2175± 47, (9.2)

Np
cand = 989± 31. (9.3)

9.1.2 Determination of �true" candidates with PID
e�ciencies

This choice of regions is a bit arbitrary and it does not prevent real protons, pions
and kaons to enter the other regions. With the PID variables, it is only possible to
increase or decrease the probability, that a particle enters a �foreign" region. Thus,
one needs to determine the e�ciencies that a real proton, pion or kaon passes the
requirements for the identi�cation of being a proton, kaon or pion. For this purpose,
the LHCb PIDcalib tool is used [65]. This tool includes calibration samples of decays,
cleanly reconstructed without use of the PID variables. For instance, one uses the
decay Λ→ pπ− for the determination of proton e�ciencies. Since no requirement
on the PID has been applied before, it is now possible to study the impact of
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9.1 Proton misidenti�cation

Figure 9.1: De�ned regions for the number of particle candidates. Events in black
are de�ned as protons, red as kaons and blue as pions.

these requirements. The PID e�ciency for each of the 9 possible combinations
(real particle to be identi�ed as other particle according to PID) is determined
binwise depending on the particle momentum. The results can be seen in Figure
9.2. The top left �gure clearly shows that pions and kaons hardly ful�l the tight
requirements PIDp > 10 and PIDp−PIDK > 10 made on the proton identi�cation
in the reconstruction of Λ0

b → D0pµ−νµX and Λ0
b → Λ+

c µ
−νµ. Only, if they have

a momentum of about 20 GeV there is a little chance to pass the selection. To
determine a �nal value for each identi�cation e�ciency and to account for di�erences
in the kinematics between the decays of the test samples and the Λ0

b→ D0pµ−νµX
decay, the histograms are weighted with respect to the kinematic distribution of the
Λ0
b→ D0pµ−νµX data. The result is:επ+→π+ εK−→π+ εp→π+

επ+→K− εK−→K− εp→K−

επ+→p εK−→p εp→p

 =

0.9409 0.0241 0.1309
0.0474 0.9681 0.3798
0.0117 0.0077 0.4893


Here, εi→j denotes the e�ciency, that a real (true) particle i is identi�ed as what is
called j according to the particle regions de�ned in Section 9.1.1. For the following
steps, PID e�ciency errors are assumed to be negligible compared to the corre-
sponding uncertainties of the particle candidates N i

cand. With the PID e�ciencies
εi→j and the number of particle candidates N

k
cand, the number of real (true) particles

can now be estimated by solving the matrix equationNπ
cand

NK
cand

Np
cand

 =

επ→π εK→π εp→π
επ→K εK→K εp→K
επ→p εK→p εp→p

Nπ
true

NK
true

Np
true

 .
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Figure 9.2: E�ciencies that real protons, kaons and pions are identi�ed as protons
(top left), kaons (top right) or pions (bottom). The tight requirements
on the proton PID applied in this analysis ensures that only few kaons
and pions enter the proton region paying the prize, that one looses a lot
of protons as well.

Assuming that the e�ciency matrix is invertible, one obtains

Nπ
true = 5075± 76, (9.4)

NK
true = 1260± 55, (9.5)

Np
true = 1880± 65. (9.6)

N i
true denotes the number of real particles i in the sample.

9.1.3 Estimate of misidenti�ed protons

Using the results of the previous subsections it is now possible to estimate the
number of misidenti�ed protons, i.e. �true" kaons or pions entering the proton
region. This is calculated by multiplying the number of �true" particles N i

true with
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9.2 Misidenti�ed muons

Figure 9.3: Invariant D0pµ− mass. A peak at Λ0
b mass (≈ 5620 MeV) can be seen

caused by misidenti�ed muons coming from hadronic decays like Λ0
b→

D0pπ where the pion is misidenti�ed as muon. A veto on the D0pµ−

mass indicated by the arrow eliminates such backgrounds.

the PID e�ciency εi→p to be identi�ed as proton.

Nπ = επ→pN
π
true = 59.25± 0.89, (9.7)

NK = εK→pN
K
true = 9.74± 0.42, (9.8)

Np = εp→pN
p
true = 920± 32. (9.9)

Thus, the amount of misidenti�ed protons is at a single-digit percent level, namely
(6.98 ± 0.24)%. Note again, that the absolute values cannot be compared to the
signal yields obtained in previous parts of this analysis. It is only the lastly quoted
ratio which can be used in the following.

9.2 Misidenti�ed muons

Though not as prominent as misidenti�ed protons, the misidenti�cation of muons is
also considered. One possibility is that the muon is misidenti�ed from an exclusive
3-body decay of the Λ0

b for instance Λ
0
b→ D0pπ−. If this is the case, the decay is not

semileptonic but rather hadronic. Consequently, the Λ0
b can be fully reconstructed

since all �nal state particles are seen. This leads to a peak in the invariant D0pµ−

mass around the nominal Λ0
b mass. There is indeed such a peak as �gure 9.3 shows.

Thus, this kind of backgrounds can be easily eliminated by vetoing D0pµ masses
around the Λ0

b mass, in this case all masses above 5500MeV.
The situation becomes more tricky, if the background is coming from a multi-body

Λ0
b decay, i.e. a decay with more than three �nal state particles. Since this analysis

aims to measure the inclusive branching ratio B (Λ0
b→ D0pµ−νµX), misidenti�ed

muons could also come from decays like Λ0
b → D0p3π, where one of the 3 pions

is misidenti�ed as muon. These backgrounds are not easy to eliminate, since the
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Figure 9.4: InvariantD0pµ− mass versus PIDmu of the muon. No structures tending
to low PIDmu can be seen.

other 2 pions are not reconstructed and the decay is thus not peaking in D0pµ−

mass. Nonetheless, if they are existent in the data sample, it might be possi-
ble, that such backgrounds tend to sit at lower PIDmu of the muon saying the
lower the PIDmu of a muon is the more likely it is to be a misidenti�ed parti-
cle. Unfortunately, no distinct structures can be seen in Figure 9.4. This might
be a hint that these backgrounds play a minor role. Assuming that the decay
Λ0
b → D0p3π behaves in comparison to Λ0

b → D0pπ− similar to the meson decays
B0 → D−3π and B0 → D−π+ with B(B0 → D−3π) = (2.76 ± 0.13) · 10−3 ≈
B(B0→ D−π+) = (2.68± 0.13) · 10−3 (see [18]), they should have similar branching
ratios and thus should equally leak as background into this analysis. A comparison
with B(B0→ D−3π)/B(B0→ D−`+ν`) ≈ 10% and the misidenti�cation probability
of a hadron of less than 10% [66] justi�es the assumption that this background leaks
with about 1% in the signal yield. Furthermore, there are other possible but not yet
measured peaking backgrounds such as Λ0

b→ D0pρ− or Λ0
b→ D0pπ−ρ0. Since they

have not been measured so far, their contribution can only be guessed. Starting
from the 1% contribution of Λ0

b→ D0p3π a conservative estimate of a total peak-
ing background ratio of (5.0 ± 2.5)% is assumed. The large error accounts for the
uncertainty in the estimate how many other decay channels and how strongly they
contribute.

9.3 Prompt D0 mesons

With prompt D0, one denotes D0 mesons coming directly from the primary pp
interaction, thus being not a product of other decaying particles. The production
of prompt D0 is usually a lot higher than the production of Λ0

b baryons. Prompt
D0 can be mixed up with the Λ0

b→ D0pµ−νµX if one adds a fake muon or a muon
from another source and a proton e.g. from the primary interaction. One typically
measures a prompt D0 background of about 1% in semileptonic b-hadron decays
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9.4 Other possible backgrounds

Figure 9.5: Logarithm of the D0 impact parameter with respect to the primary pp
interaction. No special behaviour of the wrong sign combinations indi-
cating an enhancement of prompt D0 background can be seen.

[10]. As cross-check, the logarithm of the D0 impact parameter with respect to
the primary vertex is drawn. Prompt D0 should have a smaller impact parameter
compared to D0 coming from the Λ0

b decay. This should become more clearly visible
in wrong sign combinations with respect to the right sign data. However, Figure
9.5 does not show any discrepancies between data and wrong sign combinations,
which would indicate the in�uence of prompt D0 backgrounds. Furthermore, one
requires in the reconstruction process that the D0 candidate is combined with a µ−

and a p to form a Λ0
b candidate at a secondary vertex displaced from the primary

interaction. Thus, it seems that the selection requirements in the reconstruction
process suppress the prompt D0 background to an negligible amount compared to
other backgrounds.

9.4 Other possible backgrounds

In this section, some possible backgrounds not being studied in this analysis are
mentioned. Some of these decays have not been measured or seen so far, but should
be possible.

• Λ0
b → D0D−p:

This decay has not been measured yet. For semileptonic D− → µ−X decays,
where one misses the X, this channel mimics to be Λ0

b→ D0pµ−νµX signal.

• Λ0
b → D−Λ+

c :
This decay has not been measured yet. It fakes to be signal, if the kaon
of Λ+

c → pK−π+ is misidenti�ed as muon and the D− decays to the doubly
Cabbibo-suppressed mode D−→ K−π0 with missing the π0.

• prompt Λc(2880)+ or Λc(2940)+ decays with a randomly combined µ−:
This background should be reduced by requiring the Λc(2880)+ respectively
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Λc(2940)+ vertex to be well separated from the PV as done by the combination
with a muon to make a Λ0

b candidate.

Since the two Λ0
b decays mentioned above have not been measured yet, it is hard to

estimate their contribution. To account for these backgrounds, it is assumed that
the conservative estimate in Section 9.2 with an uncertainty of 2.5% covers them as
well.

9.5 Backgrounds summary and estimate of

background yield

The largest background contributions leaking into the signal yield ND0p obtained by
the two-dimensional �t are discussed to come from either misidenti�ed protons or
muons. All other backgrounds seem to be negligible compared to the latter ones or
are included in a conservative estimate with a large uncertainty. Adding them up
leads to a total ratio of background events in the signal yield of (12.0± 2.5)%. This
corresponds to a number of background events of

Nbgd
D0p = 2750± 100.

Note, that the error on the background ratio will be assigned as the systematic
uncertainty.
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Systematics

In this section, studies on systematic uncertainties are presented. They will not be
presented as systematic uncertainty on R, but rather discussed separately for the
signal yields and the e�ciencies.

10.1 Branching ratio uncertainty of subsequent

decays

Regarding Equation (4.2), a precise knowledge of the daughter decays' D0→ K−π+

and Λ+
c → pK−π+ branching ratios is essential for the determination of R. The

values used in this analysis are taken from PDG [18] for B(D0→ K−π+) and from
a recent Belle measurement [53] for B(Λ+

c → pK−π+). They are

B(D0→ K−π+) = 0.03880± 0.00050,

B(Λ+
c → pK−π+) = 0.0684± 0.0024.

Their errors are assigned as systematic uncertainty of R. They correspond to a
relative systematic uncertainty of 1.29% respectively 3.51%.

10.2 Kinematic pT (Λ0
b) reweighting of

Λ0
b→ D0pµ−νµX and Λ0

b→ Λ+
c µ
−νµ

simulated events

To account for the wrong emulation of the Λ0
b kinematics in the simulation, both,

the Λ0
b→ D0pµ−νµX and the Λ0

b→ Λ+
c µ
−νµ simulation events have been reweighted

in the transverse momentum of the Λ0
b . Compared to the reweighting of the Λ0

b→
D0pµ−νµX decay model, this is a minor correction and it is thus su�cient to compare

the e�ciency ratio
ε
Λ+
c

εD0p
with and without the kinematic pT (Λ0

b) reweighting. The

di�erence between both cases is assigned as systematic uncertainty and amounts to
0.00878 corresponding to 1.12%.
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Table 10.1: Comparison of the e�ciency εsel,D0p for di�erent numbers of bins in each
dimension.

# bins εsel,D0p di�erence to nominal reweighting in %

5 (9.2±0.15) · 10−3 8.94× 10−4 10.77%
10 (8.77±0.15) · 10−3 4.71× 10−4 5.68%
15 (8.4±0.17) · 10−3 1.02× 10−4 1.23%
20 (8.3±0.17) · 10−3 0. 0.00%
25 (7.99±0.18) · 10−3 −3.14× 10−4 −3.78%
30 (7.88±0.19) · 10−3 −4.18× 10−4 −5.03%
40 (8.06±0.22) · 10−3 −2.44× 10−4 −2.94%

10.3 Reweighting of Λ0
b→ D0pµ−νµX simulated

events

10.3.1 Choice of reweighting dimensions

As it is not obvious which variables are the best for the reweighting of the Λ0
b →

D0pµ−νµX simulation sample to determine the e�ciency, the choice of a certain
set of weighting variables is another source of a systematic uncertainty on the �-
nal result. Having a closer look at the comparisons between data and reweighted
simulation (see Fig. B.1) one might argue, that both distributions still are not in
good agreement regarding the particles' momenta. Thus, another three-dimensional
reweighting in the momenta of the D0pµ−, D0µ− and D0 candidates is performed
and compared with the nominal reweighting. The di�erence in the e�ciencies εD0p

is 4.05× 10−5 or 2.41%.

10.3.2 Number of bins per dimension

To reweight the data, the three dimensions are binned. Each dimension has been
split up in 20 bins. It is thus interesting to see, how strong the e�ciency depends
on the choice of the number of bins. For this purpose the reweighting is redone for
a variety of di�erent numbers of bins. The results of the e�ciency εD0p and the
di�erence to the nominal reweighting can be seen in Table 10.1. A binning with 5
bins per dimension is too coarse to satisfy the behaviour of the three dimensions.
Using 40 bins per dimension, there are too many vanishing weighting bins where
there is no data or simulation, hence pulling the other one down and distorting the
reweighting. This e�ect can be nicely seen in Figure 10.1. As systematic uncertainty,
the biggest deviation except for the reweighting with 5 or 40 bins per dimension is
assigned, namely 5.68%.
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b→ D0pµ−νµX simulated events

Figure 10.1: Comparison of data (black points) and simulation for the Λ0
b →

D0pµ−νµX channel before (red line) and after (red shaded area) three-
dimensional reweighting as described in the text (see Sec. 8.2) for
di�erent number of bins per dimension, namely 5, 10, 20, 30, 40 bins
per dimension from top row to bottom row.
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Table 10.2: Comparison of the e�ciency εsel,D0p for di�erent allowed maximum
weights.

maximum weight εsel,D0p di�erence to nominal reweighting in %

5 (8.79±0.15) · 10−3 4.84× 10−4 5.83%
10 (8.4±0.16) · 10−3 9.60× 10−5 1.16%
15 (8.32±0.17) · 10−3 2.00× 10−5 0.24%
20 (8.3±0.17) · 10−3 0. 0.00%
25 (8.3±0.17) · 10−3 −5.96× 10−6 −0.07%
30 (8.29±0.17) · 10−3 −1.06× 10−5 −0.13%
40 (8.28±0.17) · 10−3 −2.07× 10−5 −0.25%

10.3.3 Maximum allowed weight

When reweighting events, there might be some outliers getting a much higher weight
than most of the other events. Such events dominate a reweighting disproportionally.
To shrinken the impact of single outlier events, a maximum allowed weight of 20 has
been de�ned in the reweighting process. All events with a higher weight are weighted
with this maximum weight. Analogously to the study of the reweighting in di�erent
bins per dimension, a check of the e�ciencies obtained by di�erent maximum weights
is done. The results can be seen in Table 10.2. Again, a maximum weight of 5 is
a too tight restriction since there are too many events with weights larger than 5.
Apart from that, the biggest discrepancy to the nominal case is taken as systematic
uncertainty. The impact on R due to the allowed maximum weight amounts to
1.16%. Thus, it is a small e�ect compared to other systematics.

10.4 Choice of �t strategy

The determination of the Λ0
b→ D0pµ−νµX signal yield is based on a two-dimensional

�t to the D0p mass and the logχ2
IP distribution. However, the distinction between

signal and background is mainly based on the logχ2
IP distribution. Hence, it should

be su�cient, to �t to the logχ2
IP distribution only, to extract the signal yield ND0p.

As a cross-check, the signal yield ND0p is determined by a one-dimensional �t on
the logχ2

IP distribution as described and reported in Section 6.1.2. The results are
listed there in Table 6.1. The di�erence between this one-dimensional �t and the
nominal two-dimensional �t amounts to 317.0 events which is equivalent to 1.38%.

10.5 Knowledge of backgrounds

A limited knowledge of the backgrounds contributing to the signal yields raises an-
other systematic uncertainty. Di�erent sources of backgrounds have been discussed
in Chapter 9. In the end, it is concluded that the background fraction in the ob-
tained signal yield ND0p is estimated to be fbkg = (12.0 ± 2.5)%. Propagating the
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Table 10.3: Summary of all considered systematics.
Systematic ND0p NΛ+

c
εD0p εΛ+

c

ε
Λ+
c

εD0p
B (Λ+

c → pK−π+) B (D0→ K−π+)

branching ratios � � � � � 3.51% 1.29%
signal �t 1.38% � � � � � �
backgrounds 2.85% � � � � � �
Λ0
b pT reweighting � � � � 1.12% � �

Λ0
b→ D0pµ−νµX reweighting � � 2.41% � 2.41% � �

bins per reweighting dimension � � 5.68% � 5.68% � �
maximum weight in reweighting � � 1.16% � 1.16% � �
total 3.17% 0.00% 6.27% 0.00% 6.37% 3.51% 1.29%

uncertainty on that estimate to the calculation of R, this means a systematic un-
certainty on ND0p due to the limited knowledge of the backgrounds of 576.0 events
or 2.85%. Note, that the relative error is 2.85% and not just 2.5%, since one has to
scale it up to the background subtracted signal yield (1− fbkg)ND0p.

10.6 Systematics overview

Table 10.3 summarises all considered systematics and gives a total value for each
quantity. The reweighting process due to the poor physics description in the sim-
ulation is clearly the dominant systematic. It is followed by the uncertainty on
the Λ+

c → pK−π+ branching ratio. Summing them all up in quadrature, the total
systematic error on R is

∆Rsyst. = 0.0014

∆Rsyst.

R
= 7.8%
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Chapter 11

Checks concerning the

enhancement at low D0p mass

In Chapter 6 it has been stated, that the �t to the D0p mass spectrum needs an
additional component to parametrise an anomalous enhancement at low D0p masses
right after threshold. The enhancement's yield is counted as signal to ND0p in this
analysis. The following sections ought to show, that this is reasonable with the
current knowledge about the enhancement.
The �t has converged and matched the data well, if this enhancement had been

modeled like the two Λc(2880)+ and Λc(2940)+ resonances. This does not mean
that there is really an additional or new resonance seen at all. There might be other
reasons for the enhancement :

• Detector threshold / acceptance e�ects,

• Low mass behaviour induced by some selection requirements,

• Feed-down from partially reconstructed decays,

• Threshold enhancement due to wide resonances below D0p mass threshold.

In this chapter, several checks are presented to either explain the origin of this
enhancement or rule out some of the ideas. It should be mentioned, that there will
not be a �nal answer to that question. If this was really something new, it would be
really hard to prove it with a semileptonic decay channel. There is currently another
LHCb analysis on the exclusive hadronic decay Λ0

b→ D0pπ− running, seeing a similar
enhancement at low D0p mass. This channel enables to study the enhancement with
more methods for instance with an amplitude analysis. Hopefully, one can �nd a
�nal answer with that decay. Nonetheless, the checks presented here are inevitable.

11.1 Detector threshold / acceptance e�ect

One possible explanation of the enhancement might be a simple threshold respec-
tively acceptance e�ect of the detector. Such an e�ect could also be caused by the
application of some selection requirements. To clarify this possibility and estimate
the e�ects of the detector and the selection requirements, the simulation samples at
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Chapter 11 Checks concerning the enhancement at low D0p mass

Figure 11.1: Simulated (true) invariant D0p mass at di�erent stages, namely after
generation (green), detector simulation (blue) and reconstruction and
selection (red). The black line shows the measured data. The simu-
lated distributions in the highlighted enhancement region behaves very
similar at all stages. Thus, the reconstruction and selection process is
not responsible for the enhancement.

generator level and at reconstruction / selection level are used. Figure 11.1 shows
the invariant D0p mass at di�erent stages of generation and reconstruction. The
green distribution shows the D0p mass at generation level, i.e. there is no simula-
tion of the detector or any reconstruction applied here. In blue, one sees the D0p
mass after the simulation of the detector and in red the mass after reconstruction
and selection. For comparison, the measured data distribution is shown in black as
well. In this case, always the so called �true" masses are plotted, i.e. there are no
in�uences of the detector resolution in these distributions. The simulations show a
similar behaviour at all stages, especially in the enhancement region, which is high-
lighted in Figure 11.1. Thus, there is no signi�cant acceptance e�ect arising, neither
due to the detector itself nor due to the reconstruction and selection process that
would lead to a peaking structure in the data distribution. Thus, the enhancement
cannot be caused by such an e�ect.

At this point, it should be mentioned that there are other analyses seeing a similar
behaviour in this D0p mass region. First of all, there is a study by BaBar on the
D0p �nal state aiming to measure the Λc(2880)+ and Λc(2940)+ resonance (and in
the latter case to even observe it) as shown in Figure 11.2 a). While discussing their
systematics, they are wondering if this bump at roughly 2840MeV might change
their results by adding an additional resonance component to their �t, see Figure
11.2 c). Though that bump is much less pronounced compared to the enhancement
in this anlaysis, it appears at the same mass. Since the impact is not that large
on their �nal result, they just include the deviations as systematic uncertainty,
unfortunately without trying to understand the origin of this bump [20].

Furthermore, there are two more ongoing LHCb studies on either prompt D0p
events and, as already mentioned, on the hadronic Λ0

b → D0pπ− decay. It can be
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11.2 Threshold enhancement from other resonances

Figure 11.2: BaBar study on the D0p �nal state. They suspect to see a structure
similar to the enhancement in the current analysis and �t it in c) with
an additional resonance component for their systematic studies. Figure
taken from [20].

disclosed that they are struggling with the same problem, seeing a pronounced en-
hancement around 2840MeV without being (currently) able to explain it. However,
since there does not exist any approved material, nothing of their studies can be
shown in this thesis.

Being seen in di�erent channels and analyses substantiates the assumption, that
there is a physical reason for the enhancement.

11.2 Threshold enhancement from other

resonances

In principle, it might be possible that resonances below the D0p mass threshold of
2803 MeV can enter the distribution due to their �nite width. If this was the case,
one would expect a very steep rise of the distribution at threshold region compared
to a normal phase space behaviour. Though this does not seem to be the case
if one looks left to the highlighted region in Figure 11.1, there are two resonance
candidates which might cause such a threshold enhancement and should be brie�y
discussed here. There exists the broad Λc(2765)+ about which is hardly anything
known. Its width is currently quoted with 50 MeV in the PDG [18], but internal
LHCb measurements on Λ0

b form factors show, that this is an overestimate of the
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Chapter 11 Checks concerning the enhancement at low D0p mass

Figure 11.3: Invariant D0p mass versus logχ2
IP distribution. The Λc(2880)+ and

Λc(2940)+ are clearly visible as bands in D0p mass tending to cluster
around logχ2

IP ≈ 0.5. The observed enhancement behaves very similar
compared to the resonances excluding that the enhancement can not
be caused by combinatorial backgrounds.

Λc(2765)+ width. The leakage into theD0pmass spectrum should thus be negligible.

Another resonance exactly sitting at the D0p mass threshold is the Σc(2800)+.
So far, it is only seen in the hadronic decay Σc(2800)+ → Λ+

c π
0, but the decay

Σc(2800)+ → D0p is not forbidden by any conservation law1. The mean mass
of the Σc(2800)+ with 2792+14

−5 MeV is indeed below the D0p mass threshold of
2803MeV, but it has a width of 62+60

−40 MeV [18] and is thus a possible candidate
for a threshold enhancement. The Σc(2800)+ itself could come from the decay
Λ0
b → Σc(2800)+µ−νµ, which has not been observed yet either. Thus, it is hard

to estimate how probable a threshold enhancement by this Σc(2800)+ is. Since
this thesis aims for an inclusive measurement of the decay Λ0

b→ D0pµ−νµX, the en-
hancement would still be signal if it was caused by either the decay of the Λc(2765)+

or Σc(2800)+, similar to the semileptonic Λ0
b decays via the Λc(2880)+ or Λc(2940)+

resonance.

11.3 Possible background sources

It has to be checked that the peaking structure of the enhancement is not caused
by any kind of background. One can easily exclude that combinatorial background
causes the enhancement. Firstly, it does not appear in the wrong sign D0p mass
distribution as already shown in Figure 6.9. Second, a two-dimensional plot of the
invariant D0p mass versus logχ2

IP distribution shows that the enhancement obeys
the same line structure over logχ2

IP than the Λc(2880)+ and Λc(2940)+ resonances
as can be seen in Figure 11.3. This means that the decay topology looks exactly

1The quark content of the Σc(2800)+ is (udc)
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11.3 Possible background sources

Figure 11.4: Invariant D0p mass for events in the D0 mass sidebands M(D0) <
1820 MeV or M(D0) > 1910 MeV. No enhancement or any other peak-
ing structure can be seen, indicating that fake D0 backgrounds don't
cause the enhancement.

the same for the enhancement and the resonances leading to the conclusion that the
enhancement looks like signal.
Albeit, peaking backgrounds could enter the D0p mass spectrum due to either

a misidenti�ed D0 or p. For this purpose, the invariant D0p mass is plotted for
the D0 mass sidebands, namely for events with M(D0) < 1820 MeV or M(D0) >
1910 MeV. As these events are clearly away from the D0 mass peak, they have to
be background. Figure 11.4 shows that neither the enhancement nor any of the
identi�ed Λ+

c resonances appears here. This is a clear sign, that backgrounds from
fake D0 do not cause the enhancement.
It is left to check for fake protons. When estimating the amount of fake protons

in Section 9.1, only an average value for the total misidenti�cation ratio has been
given. However, it is conceivable, that the misidenti�cation ratio depends on theD0p
mass and is particularly high in the enhancement region. Thus, the estimate of the
misidenti�cation ratio is repeated for three bins inD0pmass to see if fake protons are
more likely to be in the enhancement region. One obtains for the misidenti�cation
ratio:

• (3.64± 0.27)% for M(D0p) < 2860 MeV,

• (6.12± 0.32)% for 2860 < M(D0p) < 3000 MeV,

• (11.63± 0.73)% for M(D0p) > 3000 MeV.

The bins have been chosen such that the �rst one only covers the enhancement
region, the second bin the Λc(2880)+ and Λc(2940)+ resonances and the third bin
the region above. Interestingly, the misidenti�cation ratio is the smallest in the
enhancement region. It is the region with least pollution from fake backgrounds.
A further cross-check can be seen in Figure 11.5. Here, the invariant D0p mass
is plotted for di�erent tight requirements on the particle identi�cation (PIDp and
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Chapter 11 Checks concerning the enhancement at low D0p mass

Figure 11.5: Invariant D0p mass for di�erent requirements on the proton's particle
identi�cation variables PIDp and PIDp−PIDK (for a de�nition of these
variables see Chapter 5). The enhancement does not disappear with
tighter requirements on the proton identi�cation. This con�rms that
real protons make up the enhancement.

PIDp−PIDK) of the proton. All other requirements are the same as described in
Chapter 5. If the enhancement is made up of events with particles misidenti�ed
as protons, then it should disappear if one tightens the requirements on the proton
identi�cation. However, this is not the case here. The enhancement stays as pro-
nounced as the Λc(2880)+ resonance for increasing PIDp and PIDp−PIDK variables
and should thus be made up of real protons.

11.4 Partially reconstructed decays

Assuming that real protons and D0 cause the enhancement, it is not con�rmed that
this enhancement is a resonance decaying into a D0p. It might be, that one sees a
so called �feed-down" from a partially reconstructed decay. Partially reconstructed
decay means that not all particles participating in an event are reconstructed. A
good example are semileptonic decays like Λ0

b → D0pµ−νµX since the neutrino is
not reconstructed. This is furthermore an inclusive measurement, i.e. there might
be in addition some not reconstructed particles X like kaons or pions. Above all
the reconstruction of neutral pions is hard at LHCb. One possibility of getting a
peak in D0p mass without being a direct decay product would be that the inital
Λ0
b decays semileptonically into some resonance R and this resonance R afterwards

decays into a D∗p. The D∗ decays into a Dπ in turn. The total decay chain would
then be Λ0

b→ Rµ−νµ, R→ D∗p and D∗→ Dπ. If one misses the �nal state π and
combines the D and the p to look at the invariant Dp mass, a peak would appear
here, which is not the product of a direct resonant decay R̃→ Dp, but rather just the
�re�ection" or �feed-down" from a di�erent decay of another resonance R. To check
if the enhancement is a feed-down from a di�erent decay and a potentially well-
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11.4 Partially reconstructed decays

Figure 11.6: Invariant D0p mass where no other (charged) hadron leaves the D0pµ−

decay vertex (left) and with at least one additional hadron coming from
the D0pµ− decay vertex. In the �rst case the Λc(2880)+ and Λc(2940)+

resonance as well as the enhancement are clearly visible. In the latter
case with additional hadrons, the peaking structure and above all the
enhancement vanishes. As a consequence, it is very probable that the
enhancement originates from direct decays into D0p.

known resonance, a tool recently developed by Marian Stahl, a Heidelberg Ph.D.
student, is used. It enables to isolate tracks, i.e. it is possible to require and control,
how many tracks come from a certain decay vertex. With this tool, two further
plots of the D0p invariant mass are produced and plotted in Figure 11.6: The left-
hand side shows the invariant D0p mass distribution with the requirement that no
other charged hadron (e.g. π, K) track comes from the D0pµ− decay vertex. Thus,
the plot shows Λ0

b decays into the D0pµ− �nal state without any other charged
particles. Since neutral particles do not leave tracks in the detector, a contribution
from neutral particles cannot be excluded, though. A D0p mass spectrum similar
to the distribution of the nominal �t in Figure 6.8 can be seen there including the
resonances Λc(2880)+ and Λc(2940)+ as well as the enhancement. In the right plot
of Figure 11.6 it is required that there is at least one additional charged particle
coming from the D0pµ− decay vertex. Following this, it shows the invariant D0p
mass distribution for partially reconstructed decays. The Λc(2880)+, Λc(2940)+

resonances as well as the enhancement have vanished. This is a clear sign, that the
enhancement likely decays into D0p and is not an e�ect of partially reconstructed
decays with missing a charged particle.

It should be noted again, that it is hard to conclude anything for additional
neutral particles since they do not leave a track in the detector. Having D mesons
in a mass spectrum, it is very common that one sees peaks coming from a partially
reconstructed decay with a D∗ → Dπ. As a last check a possible impact on the
D0p mass spectrum for the special case of a D∗0→ D0π0 decay with missing the π0

is estimated: Assuming that there exists a resonance R+, obeying the decay chain
Λ0
b→ R+µ−νµ, R

+→ D∗0p and D∗0→ D0π0, the question comes up, which mass
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Chapter 11 Checks concerning the enhancement at low D0p mass

this resonance R+ must have, to cause a peak in D0p mass in the enhancement
region. A simple phase space simulation delivers that this mass of R+ should be
about 2980 MeV. Indeed, there exists a resonance, namely the Ξc(2980)+ with a
mass of (2971±3.3) MeV [18]. However, the quark content of a Ξ+

c is (ucs), whereas
neither a D∗0 nor the proton contain a s quark. Thus, the decay Ξc(2980)+→ D∗0p
would need to decay via the weak interaction. Nonetheless, the Ξc(2980)+ is heavy
enough to decay also strongly. That is why the potential decay Ξc(2980)+→ D∗0p
is highly suppressed. So there is currently no resonance known that can decay via a
D∗0p and have a mass that allows to peak in the D0p mass.

11.5 General conclusions on the enhancement

In the previous sections, di�erent attempts have been made to �nd either a solution
or rule out some potential reasons of the enhancement seen in the invariantD0pmass
spectrum of the Λ0

b→ D0pµ−νµX channel. An e�ect from the detector as well as
backgrounds especially from misidenti�ed particles seems to be very unlikely. By all
indications, there are realD0 and protons involved in the nature of the enhancement.
It is likely that the process responsible for the enhancement is directly decaying into
a D0p �nal state without being a �feed-down" from a partially reconstructed decay,
whereas the presence of neutral particles cannot be ruled out. Finally, it can not be
concluded if there is a new resonance appearing in the invariant D0p mass spectrum.
If this enhancement would be a new Λ+

c resonance, then it should be seen in the
Λ+
c π

+π− �nal state as well, which is not the case [18]. The question on the origin of
the enhancement is still open and interesting to pursue. One has to keep in mind,
that the main purpose of this thesis is the measurement of the inclusive branching
ratio B (Λ0

b→ D0pµ−νµX). Considering the fact that a lot of potential background
sources causing the enhancement can be ruled out and the enhancement seems to
decay into aD0 and a proton, it should be justi�ed that the yield of the enhancement
is counted as signal to the total signal yield ND0p in the nominal �t (see Chapter 6).

90



Chapter 12

Results

This chapter summarises all the ingredients needed for the calculation of the relative
branching ratio R. As a reminder, the relative branching ratio of the decays Λ0

b→
D0pµ−νµX and Λ0

b→ Λ+
c µ
−νµ is calculated by:

R =
B(Λ0

b→ D0pµ−νµX)

B(Λ0
b→ Λ+

c µ
−νµ)

=
ND0p

NΛ+
c

·
εΛ+

c

εD0p

· B(Λ+
c → pK−π+)

B(D0→ K−π+)
. (12.1)

Concerning the signal yield ND0p of the Λ
0
b→ D0pµ−νµX channel, not all back-

grounds could be separated in the signal �t, since it is only able to separate random
background. In Chapter 9 additional background contributions like fake protons
etc. have been discussed and a background yield Nbgd

D0p has been assigned. Thus the
�nal calculation of R is modi�ed to

R =
ND0p −Nbgd

D0p

NΛ+
c

·
εΛ+

c

εD0p

· B(Λ+
c → pK−π+)

B(D0→ K−π+)
. (12.2)

Note, that for the �t to the reference channel Λ0
b→ Λ+

c µ
−νµ and the determination

of NΛ+
c
it is assumed, that all non-negligible backgrounds are considered in the �t.

The e�ciency ratio
ε
Λ+
c

εD0p
has been determined by the use of simulation samples.

These had to be reweighted to better emulate the data distribution.

An overview of all important variables can be found in Table 12.1. With these
values, me obtains for the relative branching ratio

R = 0.0180± 0.0013 (stat)± 0.0014 (syst).

The statistical and the systematic uncertainties are of same order. Concerning the
statistical uncertainties, the main contribution comes from the statistical uncer-
tainty on the e�ciency ratio. The systematic uncertainties are dominated by the
reweighting of the Λ0

b→ D0pµ−νµ channel.

As a side e�ect, the widths and masses of the peaking structures in the invariant
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Table 12.1: Final results needed for the calculation of the relative branching ratio R
according to Equation (12.2). The errors correspond to the statistical
(�rst) and systematic (second) precision.

Variable Value
Signal yields
ND0p (2.29±0.09±0.07) · 104

NΛ+
c

(1.54±0.01±0.00) · 106

Backgrounds

Nbgd
D0p (2.75±0.10±0.00) · 103

Branching ratios
B(D0 → K−π+) (3.88±0.00±0.05) · 10−2

B(Λc → p+K−π+) (6.84±0.00±0.24) · 10−2

E�ciencies
εD0p (1.68±0.07±0.11) · 10−3

εΛ+
c

(1.31±0.06±0.00) · 10−3

ε
Λ+
c

εD0p
(7.81±0.49±0.50) · 10−1

D0p mass spectrum have been measured. The results are

Λc(2880)+ : mΛc(2880)+ = (2881.97± 0.34 (stat)) MeV,

ΓΛc(2880)+ = (7.5± 1.3 (stat)) MeV,

Λc(2940)+ : mΛc(2940)+ = (2937.5± 1.7 (stat)) MeV,

ΓΛc(2940)+ = (23.4± 6.0 (stat)) MeV,

enhancement : menh = (2842.04± 0.87 (stat)) MeV,

Γenh = (24.4± 3.7 (stat)) MeV.

No studies on systematic uncertainties of these values are done. As the enhance-
ment and the Λc(2880)+ resonance overlap, the widths of the peaking structures
obviously depend on the parametrisation of the enhancement and are thus prelim-
inary. Nonetheless, these (preliminary) results are in agreement with the current
PDG values as discussed in Section 6.5.
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Chapter 13

Conclusion

This thesis presents the �rst branching ratio measurement of the semileptonic decay

Λ0
b→ D0pµ−νµX in form of a relative branching fraction ratio R :=

B(Λ0
b→D

0pµ−νµX)

B(Λ0
b→Λ

+
c µ−νµ)

.

The analysed data was collected by the LHCb experiment during 2011 and 2012 and
corresponds to an integrated luminosity of 3 fb−1. The determination of R requires
in principle four quantities: the signal yields of the channels Λ0

b→ D0pµ−νµX and
Λ0
b→ Λ+

c µ
−νµ as well as the corresponding reconstruction and selection e�ciencies.

Since only events with the daughter decays D0 → K−π+ and Λ+
c → pK−π+ are

reconstructed, R has to be corrected for their respective branching ratios. These
values are taken from other experiments.

Due to the semileptonic nature of signal and normalisation channel, it is not
possible to reconstruct the Λ0

b mass to get the signal yields. The signal yield of
the decay Λ0

b → D0pµ−νµX is determined with a two-dimensional �t to the D0p
mass and the logχ2

IP distribution. Being a measure of how well the p makes a
vertex with the D0µ− candidate, logχ2

IP enables to distinguish between signal and
background from randomly combined protons. This is very helpful to disentangle the
nonresonant Λ0

b→ D0pµ−νµX decays from background in the D0p mass spectrum.
The �t yields in total (2.293± 0.088) · 104 signal candidates. However, the �t does
not prevent that other backgrounds than randomly combined protons leak into the
signal. It is shown that the main backgrounds are either fake protons or muons, i.e.
decays, that mimic to be Λ0

b→ D0pµ−νµX since one of the particles is misidenti�ed
as proton or muon. The leakage of backgrounds into the signal yield is estimated to
be (12.0± 2.5)%.

An anomalous enhancement is observed in the invariant D0p mass spectrum at a
mass of about 2840 MeV. Di�erent attempts to explain its origin do not provide
a �nal solution. As it currently seems that this enhancement is anyhow part of an
inclusive Λ0

b→ D0pµ−νµX decay, its yield is counted as signal.

For the reference channel Λ0
b→ Λ+

c µ
−νµ, the main source of backgrounds are Λ0

b

decays into excited Λ∗+c states. These decays are identi�ed by their lower corrected
Λ0
b mass. The �t to the corrected mass is based on simulation templates and yields

(1.544±0.011)·106 Λ0
b→ Λ+

c µ
−νµ events. It is assumed that all relevant backgrounds

are already subtracted before or in the �t.

For the determination of the reconstruction and selection e�ciencies, the necessary
simulations are reweighted, especially the simulation of the decay Λ0

b→ D0pµ−νµX.
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The ratio of both e�ciencies is determined to be εΛ+
c
/εD0p = 0.781± 0.049.

This leads to the �nal result of the relative branching ratio

R = 0.0180± 0.0013 (stat)± 0.0014 (syst).

The statistical and the systematic uncertainties are of same order. The biggest
contribution to the systematic uncertainties comes from the reweighting process.
It will certainly become more accurate if a proper theoretical physics description
is available. There is currently no theoretical prediction to be compared with the
obtained result. Since this is the �rst measurement of B (Λ0

b→ D0pµ−νµX) anyway,
there are no other experimental results for comparison either.
What is left is the question of the origin of the enhancement at low D0p mass.

There are currently di�erent ongoing analyses at LHCb observing a similar be-
haviour in the invariant D0p mass. Hopefully, an explanation can be found with
combined e�orts. Since this enhancement overlaps with the Λc(2880)+ resonance in
the D0p spectrum, the obtained masses and widths of the Λc(2880)+ and Λc(2940)+

are only preliminary. These results clearly depend on the parametrisation of the
enhancement. Thus, the obtained properties of the Λc(2880)+ and Λc(2940)+ are
not quoted here again. To get reliable results here, it has to be clear, what the
enhancement's nature is and how large the impact of the Λc(2765)+ and Σc(2800)+

to the invariant D0p mass at threshold is.
This thesis complements the results of BaBar on the Λc(2880)+ and Λc(2940)+

resonances [20]. With the �rst measurement of the decay Λ0
b → D0pµ−νµX, it

furthermore contributes to the currently largely unexplored b baryon sector. Both
help to understand more of the dynamics of light quarks in the vicinity of the heavy
b and might improve e�ective theories of QCD. The relative branching ratio R
itself can be included in the background estimations of the adsl or semileptonic |Vub|
measurements presented in Chapter 2, to reduce systematic uncertainties. This is
necessary to hopefully reveal the contributions of New Physics in future, since the
current experimental precision is not su�cient for that purpose.
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Appendix A

Mass resolution

Figure A.1 shows the �ts to all bins of D0p mass for the determination of the mass
resolution. The whole method and prodecure is described in Section 6.2.

Figure A.1: Fit of a double Gaussian to the di�erence between generated and re-
constructed D0p mass (simulation sample) in di�erent bins of true D0p
mass. The width of distributions corresponds to the mass resolution for
the respective bin.
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Appendix B

Reweighting of Λ0
b→ D0pµ−νµX

decay simulation

Figure B.1 shows several more comparisons of data and simulation before and after
reweighting. More on the reweighting process can be found in Section 8.2.
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Appendix B Reweighting of Λ0
b→ D0pµ−νµX decay simulation

Figure B.1: Comparison of data (black points) and simulation for the Λ0
b →

D0pµ−νµX channel before (red line) and after (red shaded area) three-
dimensional reweighting as described in Section 8.2.
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Appendix C

Reweighting and comparison of

the Λ0
b→ Λ+

c µ
−νµ candidates

Except for the kinematic pT (Λ0
b) reweighting, no additional reweighting is applied

as for Λ0
b → D0pµ−νµ. However, the data is polluted by two decays into excited

states, Λ0
b → Λ∗c(2593)+µ−νµ and Λ0

b → Λ∗c(2625)+νµ. Thus, Figure C.1 shows a
comparison of side bandsubtracted data and the sum of the three di�erent channels.
They are summed up according to the yields obtained by the �t to the corrected Λ0

b

mass in Section 7.
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Appendix C Reweighting and comparison of the Λ0
b→ Λ+

c µ
−νµ candidates

Figure C.1: Comparison of sidebandsubtracted data and the sum of the simulations

describing the decays Λ+
c → pK−π+, Λ0

b → Λ∗c(2593)+µ−νµ and Λ0
b →

Λ∗c(2625)+µ−νµ. Only the kinematic pT (Λ0
b) reweighting is applied.
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