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Abstract

This thesis presents a measurement of the branching fraction of the rare B-meson decay
B+ → K+π+π−µ+µ− relative to the resonant decay B+ → J/ψK+π+π−. The analysis is
performed on data collected by the LHCb Collaboration in the years 2011 and 2012.
Using data corresponding to 3 fb−1, 16425 ± 1358 B+ → K+π+π−µ+µ− decays and
2042318 ± 7376 B+ → J/ψK+π+π− decays are reconstructed, resulting in a relative
branching fraction of

B(B+ → K+π+π−µ+µ−)

B(B+ → J/ψ(→ µ+µ−)K+π+π−)
= (8.13± 0.67 (stat)) · 10−3.

The total branching fraction is determined to be

B(B+ → K+π+π−µ+µ−) = (4.55± 0.38(stat)± 0.74(syst)) · 10−7.

Kurzfassung

Diese Arbeit präsentiert eine Messung des Verzweigungsverhältnisses des seltenen B-
Mesonzerfalls B+ → K+π+π−µ+µ− relativ zum resonanten Zerfall B+ → J/ψK+π+π−.
Die Analyse wird auf von der LHCb Kollaboration aufgenommenen Daten aus den Jahren
2011 und 2012 durchgeführt.
Mit Daten, die einer integrierten Luminosität von 3 fb−1 entsprechen, werden 16425 ±
1358 B+ → K+π+π−µ+µ− Zerfälle und 2042318 ± 7376 B+ → J/ψK+π+π− Zerfälle
rekonstruiert, woraus das relative Verzweigungsverhältnis

B(B+ → K+π+π−µ+µ−)

B(B+ → J/ψ(→ µ+µ−)K+π+π−)
= (8.13± 0.67 (stat)) · 10−3.

folgt. Das absolute Verzweigungsverhältnis wird zu

B(B+ → K+π+π−µ+µ−) = (4.55± 0.38(stat)± 0.74(syst)) · 10−7

berechnet.
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1 Introduction

1 Introduction

The development of the Standard Model (SM) has been one of the greatest achievements
of modern physics. It summarises all known elementary particles and three out of four
fundamental forces that govern interactions between them. This theory provides a descrip-
tion of a wide variety of experimental results and has successfully predicted phenomena
before they have been observed, the most prominent example being the Higgs boson,
which was theorised by Peter Higgs in 1964 [1] and discovered almost 40 years later in
2012 [2].

However, the SM fails to explain some phenomena such as baryon asymmetry or dark
matter. Therefore, the search for New Physics, beyond the SM, is of great interest for
particle physicists. One approach to this pursuit is the search for virtual contributions of
new particles in loop-level processes. Since flavour changing neutral currents (FCNC) are
forbidden on tree-level and may only occur as higher-order loop processes within the SM,
they provide an interesting opportunity for investigating New Physics contributions as the
relative contribution from New Physics could be sizeable. One instance of a rare decay
proceeding via b → s FCNC is the B+ → K+π+π−µ+µ− decay, which will be studied in
this thesis. The tree-level decay B+ → J/ψK+π+π− is used as a normalisation channel.

An introduction of the Standard Model and the physics underlying rare decays is pre-
sented in Section 2. The LHCb detector is described in Section 3. The analysis strategy
is summarised in Section 4. Datasets, selection cuts and the multivariate analysis are
documented in detail in Section 5. The reweighting procedure is explained in Section 6.
The extraction of signal yields is disclosed in Section 7, followed by the calculation of the
branching fraction, which is presented in Section 8.
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2 Theoretical Background

2 Theoretical Background

This section provides an outline of the Standard Model based on [3] and [4], followed by
a brief introduction to flavour physics and rare decays.

2.1 The Standard Model

The Standard Model is a quantum field theory (QFT) describing all known elementary
particles and three out of four known fundamental forces - the electromagnetic, weak and
strong force - as well as the force mediators. The fourth force, gravity, is not included
and since the gravitational force between particles is particularly small compared to the
other forces, it is negligible in particle physics.

2.1.1 Fundamental Particles

The SM contains twelve fermions, five gauge bosons and the Higgs boson. Fermions
are particles with a half-integer spin and therefore obey the Fermi-Dirac statistics. An
essential concept of the SM is the idea that for every fermionic particle, there is a cor-
responding antiparticle with the same mass but opposite charge. Each of these twelve
fermions represents a certain species of particles, also known as flavour. Fermions are
divided into leptons and quarks based on the type of interactions they experience as they
have different physical properties, which are depicted in Table 2.1.
Fermions can be further categorized into three generations, where each succeeding gen-
eration has a higher mass. Each generation consists of two leptons and two quarks. One
differentiates between up-type quarks (up, charm and top) that possess an electric charge
of +2

3
e and down-type quarks (down, strange and bottom) with an electric charge of

−1
3
e. Quarks additionally carry a colour charge, a quantum-chromodynamic equivalent

to electric charge, and interact via the strong force, but also through the electromagnetic
and weak force. In contrast to leptons, quarks cannot exist individually due to colour
confinement. Thus, they only exist in bound color-neutral states either consisting of a
quark-antiquark pair hadronising to a meson or three quarks or antiquarks forming a
baryon.
Leptons do not carry a colour charge and can therefore not take part in strong interac-
tions. Charged leptons, namely electrons, muons and tauons, may interact through the
electromagnetic and weak force. Neutral leptons, the neutrinos, do not carry an electric
charge and therefore only interact weakly.
The three forces are mediated through gauge bosons, the gluon, photon, W± and Z0
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2 Theoretical Background

Table 2.1: The three generations of fundamental fermions divided into leptons and
quarks. Values are taken from [5].

Leptons Quarks

Particle Q[e] Mass[GeV] Particle Q[e] Mass[GeV]
First electron e− -1 0.0005 up u +2/3 0.002
generation neutrino νe 0 < 10−10 down d −1/3 0.005
Second muon µ− -1 0.106 charm c +2/3 1.3
generation neutrino νµ 0 < 10−10 strange s −1/3 0.09
Third tau τ− -1 1.78 top t +2/3 173
generation neutrino ντ 0 < 10−10 bottom b −1/3 4.2

Table 2.2: The fundamental gauge bosons and the Higgs boson [5].

Boson Q[e] Mass [GeV] coupling
Gluon g 0 0 strong
Photon γ 0 0 electromagnetic
W± ± 1 80.4 weak, electromagnetic
Z0 0 91.2 weak
Higgs H0 0 125 mass

bosons. These are spin 1 particles, hence obey Bose-Einstein statistics. Their properties
are listed in Table 2.2. The latest addition to the Standard Model’s elementary particles
is the Higgs boson with a spin of 0, making it the only scalar boson in the SM.

2.1.2 Fundamental Forces

Each relevant force in particle physics is described by a quantum field theory characterised
by their corresponding gauge bosons. The first gauge boson to be discovered is the photon,
which mediates electromagnetic interactions, i.e. interactions between charged particles.
The photon is electrically neutral and massless, such that the interaction range is infinite.
The gauge bosons mediating strong interactions are called gluons. They are massless
and electrically neutral like the photon, but additionally carry a combination of colour
and anti-colour, forming an octet of coloured states that mediates interactions between
quarks.
Weak interactions, which all fermions can participate in, are mediated by massive bosons.
While the W+ and W− bosons couple fermions differing in one unit of electric charge, the
Z0 mediates weak neutral-current interactions.
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2 Theoretical Background

2.2 Flavour Physics

Flavour physics refers to the research field revolving around the weak interactions of
quarks and leptons. Within the SM, one differentiates between weak-charged currents
where flavour and charge both change, and weak-neutral currents where both properties
are conserved. Both processes occur on tree-level.
One phenomenon of particular interest is the variation of coupling strengths between
different generations. For example, the coupling between u- and s-quarks is weaker than
the one between u- and d-quarks. A mathematical formulation of this observation was
presented in 1973 via the Cabibbo-Kobayashi-Maskawa (CKM) formalism. It proposes
that the weak eigenstates of quarks differ from their mass eigenstates. The unitary CKM-
matrix yields a direct relation of the weak eigenstates q′ to the mass eigenstates q by d′

s′

b′

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s

b

 . (2.1)

The probability of a flavour eigenstate i transitioning to an eigenstate j through the
coupling to a W -boson is proportional to |Vij|2. Since electrical charge is conserved, i
must be an up-type quark flavour while j is a down-type.
The structure of the CKM-matrix also provides an explanation of why the transition of
flavours between two generations is suppressed compared to those of the same generation,
as the off-diagonal terms are much smaller than the diagonal ones, making the matrix
nearly diagonal. Therefore, it is beneficial to express the matrix as a Taylor expansion in
the parameter λ, leading to the Wolfenstein parametrisation [6]. The CKM-matrix may
now be rewritten in terms of four real parameters λ, A, ρ and η as

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (2.2)

Note that to O(λ3) complex components reside in Vub and Vtb, which are necessary for the
occurence of CP-violation. This leads to η being non-zero. The Wolfenstein parameters
are determined experimentally through a global fit using all available measurements [7]:

λ = 0.22500± 0.00067, A = 0.826+0.018
−0.015

ρ̄ = ρ
(

1− λ2

2

)
= 0.159± 0.010, η̄ = η

(
1− λ2

2

)
= 0.348± 0.010.
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2.3 Search for New Physics

Since the Standard Model fails to correctly account for observations such as matter-
antimatter asymmetry and is incompatible with general relativity as of now, it is crucial
to research physics beyond the Standard Model, New Physics (NP). One approach to the
search for New Physics are precision measurements of processes that could be influenced
by virtual new particles, such as flavour-changing neutral currents (FCNC). Within these
processes, the flavour of a quark changes but the electric charge is conserved, which is
why they cannot occur at tree-level within the SM and only as higher-order electroweak
loop-processes. However, these processes are loop- and CKM suppressed and therefore
rare.
One instance of interactions proceeding through FCNC is rare decays. This makes them
susceptible to New Physics contributions since contributions from NP could be sizeable
and observables like branching fractions or amplitudes would be affected by such.

2.3.1 The Rare Decay B+→ K+π+π−µ+µ−

The rare decay of interest in this thesis is B+ → K+π+π−µ+µ−, which was first ob-
served in 2014 by the LHCb collaboration at CERN using Run 1 data from the LHCb
experiment [8]. It occurs through the transition of a b quark into an s quark, making it
receptive to New Physics contributions, c.f. Figure 2.1. A significant contribution to the
K+π+π−µ−µ− system emerges from the rare decay B+ → K1(1270)µ+µ−. Since the res-
onance structure of the K+π+π− system is unknown, there are no theoretical predictions
for the branching fraction of the rare decay B+ → K+π+π−µ+µ−. The branching fraction
of this rare decay as it was determined by the LHCb collaboration is listed in Table 2.3.
In this thesis, the branching fraction is determined relative to the normalisation chan-
nel, the tree-level decay B+ → J/ψK+π+π−. The J/ψ is reconstructed in its decay via
J/ψ → µ+µ−, such that the final state particles are the same as in the rare decay which
cancels many systematic uncertainties at leading order. Another decay with the same
final state particles which is studied in this thesis is the resonant decay B+ → ψ(2S)K+.
The ψ(2S) then decays via ψ(2S) → J/ψ(→ µ+µ−)π+π−. The world-averages for both
decay channels are denoted in Table 2.4.
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Figure 2.1: Higher order Feynman graph of the B+ → K+π+π−µ+µ− decay in
accordance with the SM (left) and the B+ → K+π+π−µ+µ− decay considering a new

exchange particle Z ′ (right).

Table 2.3: Experimental value for the branching fraction of the rare decay
B+ → K+π+π−µ+µ− by the LHCb experiment [8]. The first and second uncertainties
are statistical and systematical respectively, the third stemming from uncertainties of

the normalisation channel.

Value Branching fraction

Experimental (LHCb) (4.36+0.29
−0.27 ± 0.21± 0.18) · 10−7

Table 2.4: World-average experimental values for the branching fraction of the resonant
decay B+ → ψ(2S)K+ and the tree-level decay B+ → J/ψK+π+π− as well as relevant

subsequent decays [5].

Decay channel Branching fraction

B+ → ψ(2S)K+ (6.24± 0.20) · 10−4

B+ → J/ψK+π+π− (8.1± 1.3) · 10−4

ψ(2S)→ J/ψπ+π− (34.68± 0.30) · 10−2

J/ψ → µ+µ− (5.971± 0.033) · 10−2
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3 The LHCb Experiment

The data analysed in this thesis were recorded by the LHCb collaboration in 2011 and
2012 during Run 1 of the Large Hadron Collider beauty (LHCb) experiment. It is one of
the four major experiments at the Large Hadron Collider (LHC) operated by CERN and
is designed to investigate decays involving bottom and charm quarks.
This section provides an overview of the accelerator and the LHCb detector as well as the
subdetectors.

3.1 The Large Hadron Collider

The LHC is a particle-particle collider and accelerator near Geneva on the French-Swiss
border. It consists of a 26.7 km long ring where two counter-rotating beams of protons or
heavy ions are accelerated. The beams then collide at four interaction points correspond-
ing to the locations of the main experiments - ALICE, ATLAS, CMS, and LHCb.
During the first phase of operation in 2011 and 2012, referred to as Run 1, it operated at
centre-of-mass (CMS) energies of

√
s = 7 TeV and

√
s = 8 TeV respectively. For Run 2,

the CMS energy was increased to
√
s = 13 TeV in the years 2015 - 2018.

3.2 The LHCb Detector

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity1

range of 2 < η < 5, corresponding to an angular range of 10 mrad to 300 (250) mrad in
the bending (non-bending) plane [9]. This particular detector geometry was chosen since
bb̄ pairs are mainly produced on the same forward or backward cones at high energies.
The polar angles of b and b̄ quarks simulated for

√
s = 14 TeV are shown in Figure 3.1.

The detector layout including all subdetectors during Run 1 is shown in Figure 3.2.

1The pseudorapidity η is defined as η = − ln(tan( θ2 )) where θ is the polar angle with respect to the
beam.
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Figure 3.1: Simulation of the polar angles of b and b̄ quarks at
√
s = 14 using PYTHIA8

and CTEQ6 NLO [10].

Figure 3.2: Cross section drawing of the LHCb detector in the y-z-plane [11].

3.2.1 Magnet

The momentum of charged particles traversing the detector is measured through the
curvature of their tracks inside a magnetic field. The magnet used to provide the magnetic

8



3 The LHCb Experiment

field consists of two saddle shaped coils in a window-frame yoke with an increasing pole
gap to meet the detector acceptance. The magnet generates a vertical magnetic field with
an integrated magnetic field of 4 Tm along the z-axis. The magnet’s polarity is inverted
regularly during data taking, denoted as MagUp for positive and MagDown for negative
polarity, to minimise effects arising from detector asymmetries.

3.2.2 Tracking System

To accurately reconstruct a particle’s momentum, charge and vertex position, LHCb
utilises silicon microstrip detectors and straw-tubes in the tracking system, consisting
of the Vertex Locator and four tracking stations labeled as TT, T1, T2, T3 in Figure 3.2.

Vertex Locator: The Vertex Locator (VELO) is a silicon microstrip detector located
around the proton-proton interaction point used to identify primary vertices (PV) and
displaced secondary vertices. The 42 semi-circular sensors are placed perpendicularly to
the beam at a radial distance of 7 mm to the beam axis. Each module contains one sensor
for the measurement of the radial distance R to the beam and one for the azimuthal angle
φ, providing a best hit resolution of 4 µm [12].

Silicon Tracker: The Silicon Tracker (ST) refers to two further silicon subdetectors,
the Tracker Turicensis (TT) and Inner Tracker (IT). While the TT is located upstream
of the magnet and covers the full detector acceptance, the IT only covers the centres of
the tracking stations T1 - T3 downstream of the magnet and close to the beam. Each ST
station has four detection layers in an (x-u-v-x) arrangement, i.e. vertical strips in the
first and fourth layer, and strips rotated by a stereo angle of −5◦ and +5◦ in the second
and third layer respectively. Both detectors have a single-hit resolution of about 50 µm.

Outer Tracker: The outer regions of the tracking stations T1 - T3 are covered by the
Outer Tracker (OT) where the track multiplicity is lower than in the IT. The OT is a
drift-time detector for the tracking of charged particles. It is an array of gas-tight straw-
tube modules providing a spacial resolution in x of 200 µm [13]. Similarly to the ST,
there are four detection layers in an (x-u-v-x) arrangement per station.

3.2.3 Particle Identification System

An important part of the reconstruction of a particle is correctly assigning its mass, thus
identifying the particle type. The LHCb Particle Identification (PID) system utilises two
Ring Imaging Cherenkov detectors, two calorimeter systems and muon chambers for that

9



3 The LHCb Experiment

task.

Ring-Imaging Cherenkov system: The Ring-Imaging Cherenkov (RICH) system is
applied to discriminate charged hadrons from one another, mainly pions and kaons since
they are commonly produced in B or D meson decays. This system measures the velocity-
dependent emission angle of Cherenkov photons, which are emitted when a charged parti-
cle traverses a medium with a speed faster than the speed of light in that medium. Having
determined the momentum and velocity, the mass of a particle can be reconstructed. The
RICH system consists of two detectors, RICH1 and RICH2. The former is stationed up-
stream of the magnet covering the full angular range and the lower momentum range of
2 - 40 GeV/c using aerogel and C4F10 radiators. RICH2 is positioned downstream of the
magnet covering a higher momentum range of 15 -100 GeV/c using CF4, with an angular
range of 15 - 120 mrad [14].

Calorimeter system: The calorimeter system measures the energy and momentum of
hadrons, electrons and photons through hadronic and electromagnetic (EM) showers. The
calorimeters are located downstream of the RICH2. The first layer passed by a particle
is the Scintillating Pad Detector (SPD) selecting charged particles, and allowing a dis-
tinction between electrons and photons. It is followed by the PreShower detector (PS),
which is also a scintillating pad detector but with an additional 15 mm of lead in front of
the scintillators, such that EM showers can occur in that layer, hence allowing a discrim-
ination of hadrons and electrons. Photons and electrons are detected in the electromag-
netic calorimeter (ECAL), while hadronic showers take place in the hadronic calorimeter
(HCAL). Both are composed of alternating layers of scintillators and absorbers. Optimal
energy resolution for the ECAL is achieved by containing the whole EM shower in the
calorimeter, resulting in a thickness of 25 radiation lengths. Hadronic showers are recon-
structed in the HCAL, which has a thickness of 5.6 interaction lengths.

Muon system: The muon system consists of five stations. M1 is located in front of
the calorimeter system to improve the transverse momentum pT measurement in the L0
trigger, M2 - M5 downstream. In between each station, an 80 cm thick iron absorber
is placed to filter out hadrons, resulting in only muons with a momentum larger than
6 GeV/c passing all five stations [9]. Thus, M4 and M5 serve to identify particles with
high pT . M1 - M3 have a high spatial resolution in x, allowing a definition of the track
direction and a calculation of pT with a resolution of 20%.
Since the L0-muon trigger, which is discussed in Section 3.2.4, requires a five-fold coinci-
dence among all stations, the efficiency of each station must be ≥ 99% [15]. The average
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muon identification efficiency is 97%, while the misidentification efficiency for pions is
1-3% [16].

3.2.4 Trigger System

The main objective of the trigger system is to reduce the data volume produced by proton-
proton collisions to a manageable size, from a total event rate from about 40 MHz to 2
kHz [9]. That is achieved by using two trigger levels, the hardware-based Level-0 trigger
and the software-based High Level Trigger.

Level-0 trigger: The Level-0 trigger (L0) reduces the beam crossing rate of 40 MHz
to 1 MHz by using information from the calorimeters and the muon system [17]. The
L0-calorimeter trigger processes information from the calorimeter system and computes
the transverse energy ET for clusters in 2x2 cells in the ECAL and the HCAL:

ET =
4∑
i=1

Ei sin θi. (3.1)

Ei denotes the energy deposited in cell i, θi the angle between the z-axis and the line
connecting the mean position of the pp collision to the cell center. Events with high ET
hadrons, photons or electrons are accepted if their energy passes a certain fixed threshold
using information from the SPD and PS.
For this analysis, the muon trigger is of particular interest. The L0-muon trigger searches
for events with hits that define a straight line through all five muon stations and with an
origin close to the interaction point in the y− z plane. In order for events to be accepted,
either the pT of the muon with the highest pT has to exceed the L0Muon pT threshold,
or the product of the pT of the muons with the largest and second largest transverse
momenta has to exceed the L0DiMuon pT threshold.

High Level Trigger: The High Level Trigger (HLT) is divided into two stages, HLT1
and HLT2. HLT1 partially reconstructs events that passed the L0 trigger stage using
information from the VELO and the T-stations, either confirming or rejecting them. The
remaining event rate of about 30 kHz then allows a full pattern recognition in HLT2, such
that the data can be written to storage for further analysis.
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4 Analysis Strategy

The aim of this thesis is to calculate the branching fraction of the rare decay B+ →
K+π+π−µ+µ− using the tree-level decay B+ → J/ψK+π+π− as a normalisation channel.
The J/ψ subsequently decays via J/ψ → µ+µ−, such that the final state particles are the
same as in the rare decay. This strategy is beneficial since most systematic uncertainties
are expected to cancel each other out at leading order, for example muon identification
and reconstruction. Moreover, the branching fraction of the normalisation channel has
been established [5]. The rare decay has already been observed as well by the LHCb
Collaboration [8], which is why this analysis is performed without blinding.

The analysis strategy consists of the following steps:

1. Dataset stripping: A series of loose preselection cuts is applied to the datasets
produced by the LHCb experiment to reduce the computing effort of the analyses.

2. Signal preselection: Another set of loose cuts is applied to extract the signal and
reduce combinatorial background, i.e. background arising from combinations of
particle pairs that do not originate from the same decay.

3. Signal selection: The combinatorial background is further reduced by performing a
multivariate analysis. A Boosted Decision Tree (BDT) is trained on a data sample
from the high B mass sideband as signal proxy and simulated Monte Carlo samples
serving as a signal proxy.

4. Reweighting: Signal candidates for B+ → K+π+π−µ+µ− and B+ → J/ψK+π+π−

events are reweighted with their inverse efficiency to account for acceptance effects.
The BDT reweighter is trained on Monte Carlo simulations at generator-level and
reconstructed and selected candidates.

5. Signal yield determination: The reweighted mass distributions ofB+ → K+π+π−µ+µ−

and B+ → J/ψK+π+π− are fitted by using extended weighted unbinned maximum
likelihood fits.

6. Branching fraction calculation: The relative branching fraction of the rare decay to
the resonant decay is calculated using

B(B+ → K+π+π−µ+µ−)

B(B+ → J/ψ(→ µ+µ−)K+π+π−)
=

NKππµµ

NJ/ψKππ

· ε
J/ψKππ
DecProd

εKππµµDecProd

. (4.1)
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N denotes the yields from the weighted fits and εDecProd the geometrical efficiency.
The geometrical efficiency accounts for the limited angular range of the detector, as
only a certain fraction of events ends up in the detector’s acceptance.
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5 Data Analysis

This section documents the variables and datasets used for the analysis.

5.1 Definition of Variables

Variables that are used for calculations or training the BDT classifier are defined and
explained below.

Invariant mass: The invariant mass of a particle X that is combined from e.g. tracks
is calculated from its four-momentum vector p = (E, px, py, pz)

T provided by the tracking
system, with E being the energy and px, py, pz the momentum components in x, y and
z direction respectively, by

mX =
√
p2X . (5.1)

Transverse momentum: The transverse momentum is defined as the momentum com-
ponent perpendicular to the beam line (the z-axis)

pT =
√
p2x + p2y. (5.2)

DLL: The Delta Log-Likelihood (DLL) of a particle X is defined as the difference of the
logarithmic likelihood of X to the logarithmic likelihood of a pion

∆ ln(L(X − π)) = lnL(X)− lnL(π) = ln

(
L(X)

L(π)

)
. (5.3)

The likelihood function L is computed by the PID system.

Track and vertex fit quality: The χ2 of a track or vertex fit is a measure for its fit
quality.

Impact parameter: The impact parameter (IP) of a particle is the minimal distance
between the particle’s reconstructed track and the primary vertex (PV). The χ2

IP is de-
fined as the difference of the PV’s χ2 before and after the track was added, thus providing
a measure for the likelihood of the particle track originating from said PV.

Flight distance: The flight distance is the distance a particle has travelled before de-
caying.

Direction angle: The direction angle (DIRA) is defined as the cosine of the angle be-
tween the reconstructed momentum vector and flight direction. The flight direction is
determined by the vector connecting the PV and the secondary vertex.
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Ghost probability: A particle’s ghost probability Pghost is the probability of the particle
track being a fake track from combinations of random hits in the tracking system.

ISMUON: Binary variable classifying whether candidate is compatible with being a
muon based on muon station and calorimeter information.

HASMUON: Binary variable classifying whether muon candidate has information from
the muon stations assigned.

5.2 Datasets

The dataset used in this analysis was recorded by the LHCb in 2011 and 2012 with a
centre-of-mass energy of

√
s = 7 TeV and

√
s = 8 TeV respectively with both magnet

polarities MagUp and MagDown. Data correspond to an integrated luminosity of 3 fb−1 for
Run 1.
In addition to real data, phase-space (PHSP) Monte Carlo simulations are used for both
the rare and normalisation channel during several stages of the analysis. Simulations
are used for training the BDT classifier on a pure signal sample as well as unfolding
efficiency distributions which are used to reweight data. They have to pass the same
reconstruction and preselection criteria as the real datasets, thus making it possible to
extract pure, “truthmatched” signal samples. The simulations with the corresponding
geometrical efficiencies used for later calculations are listed in Table 5.1.

5.3 Stripping

Reconstructed candidates for B+ → K+π+π−µ+µ− and B+ → J/ψK+π+π− decays must
pass a series of loose selection requirements based on their decay topology, the process
being commonly referred to as stripping. The used stripping line is Bu2KpipiMM, consid-
ering only decays with the requested initial and final state particles. The requirements
are listed in Table 5.2.

5.4 Preselection

In order to reduce background contributions from resonant decays and separate the dif-
ferent decay channels from one another, cuts on the invariant mass of the dimuon-system,
referred to as q2 in the following, are applied, ruling out that the muons originate from
charmonium decays (J/ψ or ψ(2S)), as depicted in Table 5.3. Mass requirements for the
normalisation and control channel are listed in Table 5.4. The q2 of normalisation channel

15
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candidates is required to be within 50 MeV/c2 of the known J/ψ mass. For the control
channel, the invariant mass of the π+π−µ+µ− system must lie within 60 MeV/c2 of the
known ψ(2S) mass. Additional preselection cuts to reduce combinatorial background are
listed in Table 5.5.
While the B mass peaks are clearly visible in the normalisation and control channels
(see Figures 5.1d and 5.1c), the rare channel is still heavily dominated by combinatorial
background (see Figure 5.1b).

Table 5.1: Monte Carlo simulated samples used in this analysis. Up and down refer to
the polarity of the magnet. Ngen is the number of generated events, Nreco the number of

reconstructed and selected ones.

Year Decay Ngen Nreco εDecProd

2011 B+ → K+π+π−µ+µ− up 501308 44975 0.14549 ± 0.00049
2011 B+ → K+π+π−µ+µ− down 500599 45265 0.14629 ± 0.00049
2012 B+ → K+π+π−µ+µ− up 948205 78917 0.14865 ± 0.00051
2012 B+ → K+π+π−µ+µ− down 939668 78256 0.14959 ± 0.00051

2011 B+ → J/ψK+π+π− up 501187 43531 0.14739 ± 0.00049
2011 B+ → J/ψK+π+π− down 500246 43632 0.14749 ± 0.00051
2012 B+ → J/ψK+π+π− up 919153 74272 0.15084 ± 0.00054
2012 B+ → J/ψK+π+π− down 929547 75274 0.15047 ± 0.00052

16



5 Data Analysis

Table 5.2: Cuts applied during stripping on the Bu2KpipiMM stripping line [18].

Particle or event Variable Cut
Event nSPD < 600
B |m(Kππµµ)−mPDG| < 1500MeV/c2

χ2
vtx / dof < 9

χ2
FD wrt. PV > 100
χ2

IPwrt. PV < 25
DIRA > 0.9995

K χ2
trk /ndof < 3
Pghost < 0.4
pT > 250MeV/c
χ2

IP > 4
π χ2

trk /ndof < 3
Pghost < 0.4
pT > 250MeV/c
χ2

IP > 4
K1 m(Kππ) > 0MeV/c2

m(Kππ) < 6000MeV/c2∑
K,π,π pT 800MeV/c

χ2
vtx < 12∑

K,π,π χ
2
IP > 48

µ pT > 300MeV/c
χ2

IP > 9
ISMUON True

HASMUON True
Dimuon pT > 0MeV/c

m < 5500MeV/c2

χ2
vtx / dof < 9

χ2
FD wrt. PV > 16
χ2

IPwrt. PV > 0

Table 5.3: Charmonium veto regions defined through the q2 of the dimuon system.
B+ → K+π+π−µ+µ− event candidates must not lie within these regions.

Veto region q2 [GeV2/c4]
J/ψ [8.0, 11.0]
ψ(2S) [12.5, 15.0]
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Table 5.4: Mass requirements for B+ → J/ψK+π+π− and B+ → ψ(2S)K+ channel.

Decay channel Mass requirement
B+ → J/ψK+π+π− 3046.9 < m(µ+µ−) < 3146.9 MeV/c2
B+ → ψ(2S)K+ 3626.1 < m(π+π−µ+µ−) < 3746.1 MeV/c2

Table 5.5: Overview of the preselection cuts applied to rare channel and normalisation
channel.

Variable Cut
K± PIDK > −5
pT (K±) > 500 MeV/c
pT (π±) > 500 MeV/c
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(a) B+ mass distribution after stripping.

4600 4800 5000 5200 5400 5600 5800 6000 6200 6400
Mass [MeV]

200

300

400

500

600

700

800

900

E
nt

rie
s

(b) B+ mass distribution with q2 cut for rare
channel.
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(c) B+ mass distribution with q2 cut for
normalisation channel.
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(d) B+ mass distribution with q2 cut for
control channel.

Figure 5.1: B+ mass distributions before and after preselection and cuts on q2.
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5.5 Multivariate Analysis

To separate background and signal events more efficiently, the multivariate analysis (MVA)
method known as the Boosted Decision Tree (BDT) model is applied. This section doc-
uments the training of the BDT, input variables and optimising the output using the
ROOT library TMVA [19].

5.5.1 Introduction to Boosted Decision Trees

A single decision tree is a binary decision structure used to classify events either as signal
or background. Repeated either/or decisions are performed on a variable from a set train-
ing sample in one node until a stop criterion is fulfilled, such that the space of variables
is split into regions that can be eventually classified as signal or background. However, a
single tree is prone to learning statistical fluctuations, which is why it is beneficial to use
a multitude of trees, referred to as forest. These trees are also derived from the training
sample, but the event weights are subsequently subjected to boosting, a process where
misclassified events are assigned increased weights before being passed on to the next tree.
For training the BDT, an adaptive boost algorithm (AdaBoost) is implemented. Misclas-
sified events from the training sample are repeatedly assigned an increased boost weight
α determined by the previous tree. α is derived from the misclassification rate, err, via

α =
1− err
err

. (5.4)

Defining the result of a single classifier as h(x) with x being the tuple of input variables
as h(x) = +1 for signal and h(x) = −1 for background, the output value yBoost is given
by

yBoost =
1

NTrees
·
NTrees∑
i

ln(αi) · hi(x). (5.5)

5.5.2 Creating a Training Sample

The BDT used for suppressing the combinatorial background is trained on pure signal
and background samples. The signal sample is extracted from MC simulations where the
normalisation channel serves as a proxy for the rare decay channel. Furthermore, only
truthmatched events are taken into account.
The background sample is extracted from the high B mass sideband where m(B+) > 5600

MeV/c2. The lower mass sideband is not included since it contains partially reconstructed
events.
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5.5.3 Training and Testing the BDT Classifier

The BDT is trained on several geometric and kinematic variables as well as the fit quality
of the B decay vertex and its displacement. The variables are chosen based on their
background-discriminating power, i.e. the signal and background distributions must ex-
hibit a significant difference in shape. Distributions of several variables used are depicted
in Figure 5.2. As expected, the pT of kaons and B mesons tend to be higher for signal
events (see Figures 5.2a and 5.2b), which is characteristic for heavy particle decays. Since
B mesons are produced at the primary vertex, their impact parameter and the corre-
sponding χ2 are expected to be small for signal candidates, as illustrated in Figure 5.2c.
The kaons, however, must come from a detached vertex and thus have a higher IP with
regard to the PV (see Figure 5.2d). The entirety of variables used to train the BDT is
listed in Table 5.6. Remaining distributions can be found in Appendix A.
After training, the BDT is applied to a testing sample in order to check for overtraining
(see Figure 5.3a), which occurs when the algorithm learns statistical fluctuations from the
training sample and is unable to adapt to new data. A measure for the performance is
provided by the Receiver Operations Characteristics (ROC) curve by plotting the back-
ground rejection (1 - background efficiency) against signal efficiency. The area under the
curve (AUC) then describes how well the classifier separates signal and background. An
AUC score of 1 indicates a perfect performance, whereas a score of 0.5 would correspond
to random guessing [20]. The BDT used for this analysis indeed seems to perform quite
well with an AUC score of 0.996, as can be seen in Figure 5.3b.

Table 5.6: Variables used to train the BDT.

IP pT PID(µ) DIRA χ2(Endvertex) χ2(FD)
B+ B+ B+ B+ B+

K+ K+

π+ π+

π− π−

µ+ µ+

µ− µ−
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Input variable: muplus_PIDmu(a) Transverse momentum of the
kaon.
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(d) Impact parameter of the kaon.

Figure 5.2: Distributions of signal samples (blue) and background samples (red) for
different variables used to train the BDT.
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Figure 5.3: BDT classifier output and ROC curve.
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5.5.4 Optimising the BDT Output Cut

In order to maximise background rejection and minimise signal loss, the optimal cut on
the BDT response must be determined. This is done by maximising the Figure of Merit
(FoM)

FoM =
S√
S +B

, (5.6)

where S and B denote the expected signal and background yields, respectively. The
background yield is estimated by fitting an exponential to the high B mass sideband and
extrapolating the yield into the signal region m(B)± 50 MeV (see Figure 5.4a).
The expected signal yield is extracted by scaling the yield of the normalisation channel
by the ratio of selection efficiencies and the branching fraction ratio

Srare = Snorm ·
B(B+ → K+π+π−µ+µ−)

B(B → J/ψ(→ µ+µ−)K+π+π−)
· ε

rare
sel

εnormsel

. (5.7)

The selection efficiencies are determined through Monte Carlo simulations as well as the
signal yield for the normalisation channel, where a double Crystal Ball (CB) function is
fitted to the MC simulation via an unbinned maximum likelihood fit. This fit is shown in
Figure 5.4b.
The FoM may now be described as a function of the BDT response as depicted in Figure
5.5. The local maximum of this distribution is at -0.08, thus corresponding to the optimal
BDT cut value.
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Figure 5.4: Fits to obtain the expected signal and background yields in order to
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6 Reweighting

To correct for acceptance effects, a BDT reweighter [21] is used. This is done by weighting
each event by the inverse selection and reconstruction efficiency. The reweighter is trained
on generator level and reconstructed and selected MC samples and then applied to the
data that have passed the BDT classifier as signal candidates. This section outlines the
machine learning algorithm, testing on a toy model and its application to real data.

6.1 Introduction to BDT Reweighters

Usually, reweighting is applied to Monte Carlo simulations to minimise differences between
real data (RD) and simulations stemming from inaccuracies of the simulation, such that
the MC distribution (original) coincides with real data (target). The easiest approach to
reweighting is splitting the space of variables into bins and multiplying the MC events in
a given bin by

multiplierbin =
wbin, RD

wbin, MC
, (6.1)

wbin, RD and wbin, MC being the total weights of the real data and MC distributions. How-
ever, this method proves to be flawed, especially when reweighting multidimensional dis-
tributions, since the amount of data needed to reliably estimate density functions grows
exponentially with an increasing number of variables.
One solution to this problem is offered by a BDT reweighter. The space of variables is
split into regions by the BDT in accordance to the given problem rather than each vari-
able being simply divided into several bins. Those regions are determined by maximising
the metric χ2.

χ2 =
∑
leaf

(wleaf, MC − wleaf, RD)2

wleaf, MC + wleaf, RD
. (6.2)

wleaf, MC denotes the amount of MC events within one region (leaf), wleaf, RD the amount
of RD events. Regions of high importance for the reweighting process are characterised
by their high corresponding summands in χ2, for example when wleaf, MC is much higher
than wleaf, RD.
Analogous to the previously described BDT classifier (see Section 5.5.1), multiple trees
are trained successively, each one correcting for discrepancies found in previous trees.
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6 Reweighting

6.2 Implementation of BDT Reweighter

In contrast to the example above, the aim of using the reweighter in this thesis is reweight-
ing real data events, assigning each of them a weight wi, corresponding to the per-event
efficiency ε−1i . The efficiency description is obtained by reweighting generated MC distri-
butions to match the reconstructed and selected ones, resulting in efficiency distributions
in dependence of given variables. Based on those variables, the algorithm then assigns
event weights for real data events.

6.2.1 Testing BDT Reweighter on Toy Model

Before the reweighter is applied to the multi-dimensional distribution, it was tested on a
toy sample reduced to one dimension, such that the structure of the BDT decisions could
be made visible. The variable m(K+π+π−) was chosen for this. There are to be more
events in the generator level sample in the lower mass regions, and less in the higher mass
region (see Figure 6.1). Therefore, the weights in the lower mass regions are expected to
be < 1, while they should be > 1 for higher invariant masses.
This hypothesis was tested for various numbers of decision trees, each with a depth of
one, such that each BDT cut is visualised through the change in predicted weights, as
illustrated in Figure 6.2: One tree implies one cut, i.e. two plateaus in the m(K+π+π−)

vs. weight distribution. Five trees produce six plateaus, etc. Indeed, the reweighter
predicts the weights for different mass regions according to expectations.
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Figure 6.1: m(K+π+π−) distributions on generator and reconstructed and selected level.
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Figure 6.2: Weights predicted by BDT reweighter for m(K+π+π−) toy sample for
different numbers of trees in a forest.

6.2.2 Training BDT Reweighter on Multidimensional Distributions

The BDT reweighter is trained on seven-dimensional B+ → K+π+π−µ+µ− MC simu-
lated distributions, the original distribution being on generator-level, the target being
reconstructed and selected level. The efficiency is parametrised as a function of m2(ππ),
m2(Kπ), m(Kππ), q2 and the cosines of decay angles cos θL, cos θK and cos θV . The
decay angles are illustrated in Figure 6.3. Both distributions used for training are shown
in Figure 6.4, as well as the reweighted generated distribution. While the distributions
already coincide well in m2(ππ) and m2(Kπ), implying an even selection efficiency, they
differ significantly in shape for the decay angles, m(Kππ) and q2. The acceptance seems
to be quite low for small decay angles for example. The reweighter accounts for that dif-
ference by assigning those events a smaller weight, such that a good agreement between
the generated reweighted distribution and the reconstructed and selected one is observed.
The hyperparameters set for training the reweighter on those distributions are listed in
Table 6.1.
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Figure 6.4: Distributions of generator-level, both unweighted and reweighted, and
reconstructed and selected variables for B+ → K+π+π−µ+µ− simulations. In order to

compare the generated distribution to the reweighted generated one, all distributions are
normalised.
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Table 6.1: Parameters used for the BDT reweighter.

Parameter Explanation Setting
n_estimators Number of trees in a forest. Large values

increase stability of reweighting rule, but
increase risk of overfitting.

200

learning_rate Step size shrinkage. Lesser learning rate
requires more trees but makes reweighting
rule more stable.

0.1

max_depth Maximal depth of trees. Large values in-
crease complexity of the model, but also
risk of overfitting.

3

min_samples_leaf Minimal number of events remaining in a
leaf. Large values decrease risk of overfit-
ting.

400

subsample Fraction of data that is randomly chosen
to train one tree.

0.4

6.2.3 Cross-Checking Efficiencies Determined by BDT Reweighter in
B+ → J/ψK+π+π− channel

Since events in the normalisation channel are also reweighted by the reweighter trained
on rare channel samples, the efficiencies determined by the reweighter have to be cross-
checked with the actual reconstruction and selection efficiency. This is done by reweighting
the MC generator-level distribution. The number of reweighted generated events, which
is given by the sum of the weights

Nreweighted generated =

Ngenerated∑
i=1

wi, (6.3)

should approximately equal the number of reconstructed and selected events. This yields
Nreweighted generated = 78585, which deviates by 1.8% from the number of reconstructed and
selected events Nreconstructed&selected = 79997.
The reweighted generated distribution as well as the reconstructed and selected one is
shown in Figure 6.5. The q2 distribution is not shown since q2 is a sharp peak on generator
level because of sharp J/ψ resonance, but a Gaussian on reconstructed and selected level
due to limited detector resolution. Since the reweighter is trained on B+ → K+π+π−µ+µ−

simulations, it does not account for that effect.
The cos θL distribution shows that porting to reweighting from the rare mode seems to be
not perfect, nevertheless feasible to estimate the efficiency for the normalisation mode.
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Figure 6.5: Distributions of generator-level, both unweighted and reweighted, and
reconstructed and selected variables for B+ → J/ψK+π+π− simulations. In order to

compare the generated distribution to the reweighted generated one, all distributions are
normalised.

6.2.4 Applying BDT Reweighter to Real Data

The BDT reweighter is now applied to real data events that have passed the multivariate
selection and were classified as signal events. Both rare channel and normalisation channel
data are reweighted, meaning that each event is assigned a per-event efficiency and thus
weighted accordingly. The distributions of variables chosen to parametrise the efficiencies
are shown in Figures 6.6 and 6.7. The corresponding weight distributions can be found
in Appendix B.
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Figure 6.6: Normalised distributions of variables for efficiency parametrisation for rare
channel real data, unweighted and reweighted.
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Figure 6.7: Normalised distributions of variables for efficiency parametrisation for
normalisation channel real data, unweighted and reweighted.
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7 Signal Yields

The signal yields for rare channel and normalisation channel are obtained by perform-
ing weighted unbinned extended maximum likelihood fits. This section outlines this fit
method as well as the used fit models and correct error determinations.

7.1 Extended Maximum Likelihood Method

Considering N measurements x1, . . . , xN and a known probability density function (PDF)
p(xi;a), where a = {a1, . . . , am} is a set of unknown parameters, the likelihood function
L is given by

L =
N∏
i=1

p(xi;a). (7.1)

In contrast to the standard method of maximum likelihood, where the PDF is normalised
to unity, the extended maximum likelihood method does not require that constraint on
the normalisation. The likelihood function becomes

L =
NNe−N

N !

N∏
i=1

p(xi;a), (7.2)

where N = N (a) denotes the predicted number of events and N the observed number
of events. The optimal parameters â are estimated by maximising the likelihood. In
practice, a modified log-likelihood function2 is used to avoid numerical problems:

ln L̃ =
N∑
i=1

ln p(xi;a)−N (a). (7.3)

The maximisation as well as uncertainty calculations are typically performed numerically
using software packages like Minuit [22].
However, when considering per-event weights as it is done in this thesis, the expression
for the logarithmic likelihood becomes

lnL =
N̂∑
i

wi ln p(xi;a) + N̂tot lnNtot −Ntot, N̂tot =
N̂∑
i

wi, (7.4)

2The log-likelihood function is lnL =
∑N
i=1 ln p(xi;a) − N (a) − ln(N !), but since ln(N !) does not

depend on the parameters, ln L̃ = lnL+ ln(N !) is maximised.
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N being the number of detected events, Ntot the weighted number of events. Furthermore,
parameter uncertainties cannot simply be determined by inverting the Hessian matrix of
the negative log-likelihood anymore since this approach does not yield asymptotically
correct errors. The asymptotically correct approach for weighted maximum likelihood fits
is derived in [23].

7.2 Signal Fit to Data

All fit models used for the mass fits in this thesis consist of double Crystalball (CB) func-
tions [24] for the signal component with an exponential as the combinatorial background
component. The CB is continuous and composed of a Gaussian core and a power-law tail:

CB(x;α, n, µ, σ) = N ·

exp
(
− (x−µ)2

2σ2

)
, for x−µ

σ
> −α

A ·
(
B − x−µ

σ

)−n
, for x−µ

σ
≤ −α

(7.5)

with
A =

(
n

|α|

)n
· exp

(
−|α|

2

2

)
,

B =
n

|α|
− |α|.

(7.6)

N denotes the normalisation factor. µ and σ are the mean and resolution of the Gaussian
core distribution. The parameter α marks the transition of the Gaussian into the power-
law tail and n is the exponent of said tail.
To account for differences between the left and right side of the invariant mass spectrum,
a linear combination of two CBs with a shared mean is used. The fit model for the signal
component is thus given by:

FS = f · CB(m;α1, n1, µ, σ1) + (1− f) · CB(m;α2, n2, µ, σ2), (7.7)

where f is the fraction of the first CB and m the mass.
The background component is modelled by an exponential:

FB =
1

Nexp
· exp(−λm), (7.8)

Nexp being the normalisation and λ the slope of the exponential.
The model for the entire mass distribution in the signal range is therefore given by:

F =
NS

NS +NB

· FS(m;α1, α2, n1, n1, µ, σ1, σ2) +
NB

NS +NB

· FB(m; τ), (7.9)
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where NS and NB denote the signal and background yields, respectively. The signal range
is constrained through the B mass m(B+) ∈ [5170; 5600] MeV/c2 to reject background
from partially reconstructed decays accumulating in the lower mass range. While all
parameters are allowed to vary in the fit for the B+ → J/ψK+π+π− channel, mass shape
parameters are fixed for the rare channel, using the ones from the normalisation channel,
see Table 7.1. The fits for both decay channels are shown in Figures 7.1 and 7.2. The
signal yields for both channels are summarised in Table 7.2.

Table 7.1: Fixed fit parameters for rare channel that were previously determined
through fit on normalisation channel.

Parameter Fixed value
α1 3.94
α2 1.30
n1 4.36
n2 2.23
σ1 20.64
σ2 13.96

Table 7.2: Signal yields of fits to B+ → K+π+π−µ+µ− and B+ → J/ψK+π+π−.

Channel NS

B+ → K+π+π−µ+µ− 16425 ± 1358
B+ → J/ψK+π+π− 2042318 ± 7376
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Figure 7.1: Weighted mass fit to rare channel using a double CB as signal component
and exponential as background.
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Figure 7.2: Weighted mass fit to normalisation channel using a double CB as signal
component and exponential as background.
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8 Determination of the Branching Fraction

This section describes the calculation of the branching fraction of the rare decay B+ →
K+π+π−µ+µ− relative to the normalisation channel B+ → J/ψK+π+π−, using the signal
yields from Section 7.2.

8.1 Branching Fraction Results

Having implicitly included the selection efficiencies by weighting the events and known
geometrical efficiencies, the relative branching fraction can be calculated as follows:

B(B+ → K+π+π−µ+µ−)

B(B+ → J/ψ(→ µ+µ−)K+π+π−)
=

NKππµµ

NJ/ψKππ

· ε
J/ψKππ
DecProd

εKππµµDecProd

. (8.1)

Using the weighted signal yields from Table 7.2, the relative branching fraction is deter-
mined as

B(B+ → K+π+π−µ+µ−)

B(B+ → J/ψ(→ µ+µ−)K+π+π−)
= (8.13± 0.67 (stat)) · 10−3.

The total branching fraction of the normalisation channel is calculated from multiplying
the branching fractions of B+ → J/ψK+π+π− and J/ψ → µ+µ− [5]

B(B+ → J/ψK+π+π−) = (8.1± 1.3) · 10−4

B(J/ψ → µ+µ−) = (5.971± 0.033) · 10−2.

The branching fraction of the rare decay B+ → K+π+π−µ+µ− with the charmonium veto
regions removed is determined to be

B(B+ → K+π+π−µ+µ−) = (3.93± 0.33(stat)) · 10−7.

Extrapolating the current signal yield into the q2 bins of the previous analysis3 [8] yields
a branching fraction of

B(B+ → K+π+π−µ+µ−) = (4.25± 0.35(stat)) · 10−7.

The fraction of events removed by the charmonium veto cuts is determined from MC
simulations of the B+ → K+π+π−µ+µ− decay and yields 15.9%. Taking this correction

3The q2 bins of the previous analysis are set to [0.10, 8.68] GeV2/c4, [10.09, 12.86] GeV2/c4,
[14.18, 19.00] GeV2/c4.
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8 Determination of the Branching Fraction

into account, the total branching fraction of the rare decay is found to be

B(B+ → K+π+π−µ+µ−) = (4.55± 0.38(stat)) · 10−7.

The samples used to determine the branching fraction in this analysis and the previous
one are not statistically independent, but the exact statistical overlap is not known.
Therefore, the branching fractions cannot simply be compared through their σ-deviation
from one another. One major difference between this analysis and the previous one is
the selection of the normalisation channel: The previous analysis used B+ → ψ(2S)K+

as the normalisation channel. This decay channel was chosen since its branching fraction
has a relative uncertainty of 3%.
In this analysis, B+ → J/ψK+π+π− is used as the normalisation channel because the
efficiencies unfolded by the reweighter could be cross-checked with MC simulations. This
is not the case for the B+ → ψ(2S)K+ channel since simulations for that decay do not
exist, thus one could not verify the efficiencies predicted by the reweighter.

8.2 Systematic Uncertainties

While a complete investigation of systematic uncertainties is out of the scope of this thesis,
some suspected dominant sources are discussed briefly.
The most prominent uncertainty stems from the uncertainty of the branching fraction of
the normalisation channel, having a relative error of 16%. Taking this error into account
yields an uncertainty on the rare decay branching fraction of 0.73 · 10−7, which is much
higher than the previously measured one (0.18 · 10−7). However, this is to be expected
using the B+ → J/ψK+π+π− decay as a normalisation channel. Since the previous
analysis uses the B+ → ψ(2S)K+ mode as the normalisation channel, which has a much
smaller relative uncertainty, the systematic uncertainty stemming from the normalisation
is considerably smaller.
Other quantifiable sources of uncertainties are the statistical uncertainties of geometrical
acceptances εDecProd, which have been determined through Monte Carlo simulations for
both relevant decay channels. Another systematic uncertainty emerges from the deviation
between the number of reweighted generated events and the number of reconstructed
and selected events for the normalisation channel, as described in Section 6.2.3. The
contribution from those systematic uncertainties is determined to be 0.11 · 10−7.
An additional source of uncertainties in this analysis that is not included is the model
assumption for the fits of the B mass distributions. The uncertainty arising from the fit
model could be estimated by using other fit models, such as a Student’s t-distribution for
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8 Determination of the Branching Fraction

the signal component, since its shape resembles the double Crystalball, and a polynomial
for the background instead of an exponential.
Major systematic uncertainties that are not quantified in this thesis originate from the
efficiency calculations on PHSP Monte Carlo simulations, i.e. mismodeling in simulations.
The fraction of events removed by the charmonium vetoes, which is determined on those
PHSP simulations, has an uncertainty that is also not taken into account. This yields an
underestimation of the total systematic uncertainties.
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9 Conclusions

A measurement of the branching fraction of the rare decay B+ → K+π+π−µ+µ− relative
to the tree-level decay B+ → J/ψK+π+π− is presented in this thesis. The analysis is
carried out on Run 1 data recorded by the LHCb experiment at

√
s = 7 TeV in 2011 and

√
s = 8 TeV in 2012, corresponding to an integrated luminosity of 3 fb−1.

Signal candidates for the rare decay are selected by applying a series of loose preselection
cuts to remove combinatorial background. To isolate the signal peak, combinatorial back-
ground has to be further reduced, which is done by performing a multivariate analysis.
Event candidates for the normalisation channel are chosen analogously.
To account for acceptance effects and unfold the selection and reconstruction efficiency,
both decay channel mass distributions are reweighted by applying a machine learning
algorithm trained on Monte Carlo simulations on generator and reconstructed and se-
lected level. Signal yields are obtained by performing extended maximum likelihood fits
on the unbinned, reweighted data. 16425 ± 1358 B+ → K+π+π−µ+µ− events and
2042318 ± 7376 B+ → J/ψK+π+π− events are reconstructed, yielding a relative branch-
ing fraction of

B(B+ → K+π+π−µ+µ−)

B(B+ → J/ψ(→ µ+µ−)K+π+π−)
= (8.13± 0.67 (stat)) · 10−3.

The total branching fraction is determined to be

B(B+ → K+π+π−µ+µ−) = (4.55± 0.38(stat)± 0.11(syst)± 0.73(norm)) · 10−7.

The total branching fraction determined in the previous analysis [8] by the LHCb Collab-
oration in 2014, also using 3 fb−1 of data, is

Blit(B+ → K+π+π−µ+µ−) = (4.36+0.29
−0.27(stat)± 0.21(syst)± 0.18(norm)) · 10−7.

The statistic uncertainty as well as the uncertainty arising from the measurement of the
branching fraction of the normalisation channel are higher in this analysis, the latter
stemming from the choice of the current normalisation channel, which has a relative un-
certainty of 16%. This uncertainty could be reduced by using the B+ → ψ(2S)K+ as
the normalisation channel, which has a much lower uncertainty than the currently chosen
normalisation channel. However, this decay channel was not chosen in this thesis since
MC simulations for that channel are not available, hence the efficiencies determined by
the reweighter could not be cross-checked with the actual reconstruction and selection
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efficiency.
The systematic uncertainty only takes the statistical uncertainty of the geometrical effi-
ciencies and the deviation between the number of reweighted generated events and the
number of reconstructed and selected events into account, therefore poses an underesti-
mation of the total systematic uncertainties.
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Figure A.1: Distributions of signal samples (blue) and background samples (red) for
different variables used to train the BDT (1).
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A Plots of BDT Training Variables
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Figure A.2: Distributions of signal samples (blue) and background samples (red) for
different variables used to train the BDT (2).

45



B Weight Distributions for Real Data

B Weight Distributions for Real Data
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Figure B.1: Weight distribution for rare channel.
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Figure B.2: Weight distribution for normalisation channel.
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Figure C.1: Unweighted mass fit to rare channel using a double CB as signal component
and exponential as background. Shape parameters have previously been determined on

normalisation channel and fixed, as described in Section 7.2.
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Figure C.2: Unweighted mass fit to normalisation channel using a double CB as signal
component and exponential as background.
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C Unweighted Mass Distribution Fits

Table C.1: Fixed fit parameters for rare channel unweighted fit that were previously
determined through fit on normalisation channel.

Parameter Fixed value
α1 3.00
α2 1.33
n1 5.00
n2 2.56
σ1 20.75
σ2 14.06
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