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Abstract

The study of the production of charmonia, such as the J/ψ, is crucial to the investigation

of the quark-gluon plasma and the hadronization processes occurring inside of it. In order

to measure the various effects taking place within this exotic state of matter produced in

heavy-ion collisions, it is of utmost importance to precisely reconstruct the decays of prompt

and non-prompt J/ψ. The former are produced in the initial hard scattering of partons, while

the latter originate from the decay of beauty hadrons, resulting in different interactions with

the quark-gluon plasma, thus a separation of both types is essential. Naturally, proton-proton

collisions should also be considered, serving as a point of reference for heavy-ion collisions.

In this thesis, the feasibility of the analysis of prompt and non-prompt J/ψ in proton-proton

collisions at a center of mass energy of
√
s = 13.6 TeV with the ALICE detector in Run 3 via

the J/ψ → e+e− decay channel is studied. The reconstructed candidates from Run 3 data

collected in 2022 are split into four transverse momentum intervals between 0 GeV/c and 12

GeV/c. For the separation of the two types of J/ψ and background, Boosted Decision Trees

(BDT), implemented using the XGBoost algorithm, are employed as so-called ”multiclassifiers”.

Lastly, the yield of prompt and non-prompt J/ψ, as well as the associated significances are

computed through fits of the signal peaks.

Significances between 110.01 and 179.47 are observed for the prompt signal, while lower

significances ranging from 52.19 to 78.28 are determined for non-prompt J/ψ. Application of

the non-prompt selections reveals an enhanced amount of entries for mass values lower than

the J/ψ mass, indicating that the models are not fully capable of separating background and

non-prompt signal. Thus, a full analysis of both prompt and non-prompt J/ψ can only be

deemed feasible, if this residual background problem can ultimately be resolved.



Zusammenfassung

Die Messung der Produktion von Charmonia, wie dem J/ψ, spielen eine wichtige Rolle

für die Untersuchung des Quark-Gluon-Plasmas und der Hadronisierungsprozesse, welche

darin stattfinden. Um die verschiedenen Effekte, welche in diesem in Schwerionenkollisionen

erzeugten Zustand der Materie stattfinden, zu messen, ist es von äußerst großer Bedeutung die

Zerfälle von prompt und non-prompt J/ψ zu rekonstruieren. Erstere werden in harter Streuung

von Partonen erzeugt, während letztere aus Zerfällen von Beauty-Hadronen stammen, was zu

unterschiedlichen Interaktionen mit dem Quark-Gluon-Plasma führt, weshalb die Trennung

der beide Typen essenziell ist. Selbstverständlich sollten Proton-Proton-Kollisionen ebenfalls

betrachtet werden, da sie Vergleichswerte für Schwerionenkollisionen zur Verfügung stellen.

In dieser Arbeit wird die Machbarkeit einer Analyse von prompt und non-prompt J/ψ für

Proton-Proton-Kollisionen bei einer Schwerpunktsenergie von
√
s = 13.6 TeV mit dem ALICE

Detektor in Run 3 für den Zerfallskanal J/ψ → e+e− untersucht. Die rekonstruierten Kandi-

daten aus den in 2022 gesammelten Run 3 Daten werden in vier Intervalle des transversalen

Impulses zwischen 0 GeV/c und 12 GeV/c aufgeteilt. Für die Trennung der beiden Typen

von J/ψ und des Hintergrunds werden Boosted Decision Trees (BDT) eingesetzt, welche

durch den XGBoost Algorithmus implementiert wurden und als sogenannte Multiclassifier

eingesetzt werden. Abschließend werden die Erträge, sowie die zugehörigen Signifikanzen der

Signal-Peaks für prompt und non-prompt J/ψ bestimmt.

Die berechnetten Signifikanzen für prompt J/ψ liegen zwischen 110.01 und 179.47, während

für non-prompt J/ψ niedrigere Signifikanzen im Bereich zwischen 52.19 und 78.28 vorliegen.

Die Anwendung der BDT-Selektion für non-prompt J/ψ zeigt, dass eine ungewöhnlich hohe

Menge von Einträgen für Massen unterhalb der J/ψ-Masse vorliegt, was nahelegt, dass die

trainierten Modelle nich in der Lage sind, Hintergrund und non-prompt Signal vollständig zu

trennen. Somit kann eine volle Analyse von prompt und non-prompt J/ψ nur als machbar

bezeichnet werden, wenn dieses Problem des übrig bleibenden Hintergrundes endgültig gelöst

werden kann.
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1 Introduction

1.1 Motivation

The breakthroughs of high-energy physics have fundamentally changed our understanding of

nature by furthering the comprehension of the composition of matter and the interactions that

govern it. Research of high-energy hadronic collisions has made it possible to understand strongly

interacting matter and establish the associated theory of Quantum Chromodynamics (QCD).

Moreover, collisions of heavy ions allow us to explore the quark-gluon plasma (QGP), an exotic

state of matter characterized by extremely high temperatures and pressures, which is thought to

have been present shortly after the birth of our universe. One of the experiments dedicated to

the research of QCD and the QGP is the ALICE experiment, which is one of the four major

experiments at the Large Hadron Collider (LHC) at CERN [1].

Measuring the production of heavy-flavor hadrons, which contain charm (c) and beauty (b)

quarks, in proton-proton (pp) collisions serves as a test of perturbative QCD, while also providing

an important reference to production measurements in heavy-ion collisions, which is essential for

the research of the QGP in heavy-ion collisions. Heavy-flavor hadrons are suitable probes of this

rare state of matter, since charm (c) and beauty (b) quarks are exclusively produced in the initial

hard scattering of the collision due to their large masses. Therefore, these quarks experience the

evolution of the QGP from start to finish, thus being subject to momentum and energy exchange

with the medium. Additional effects observed in heavy-ion collisions are the suppression and

regeneration of so-called ”quarkonia”. The J/ψ meson, which is part of this class of particles, is

of particular interest for the research of the QGP. It not only experiences these effects itself, but

it is also the decay product of heavier hadrons which experience the aforementioned interactions

with the medium. Therefore, precise measurements of the production of J/ψ in pp collisions are

of extraordinary importance, in order to fully understand the evolution of the QGP in heavy-ion

collisions, as well as its effect on the production of J/ψ.

In order to reach unprecedented precision and to consequently further the current under-

standing of the QGP, the ALICE experiment has undergone major upgrades during the Long

Shutdown 2 (LS2). Using Run 3 data taken with the upgraded detector, this thesis explores

the potential of machine learning methods as a tool to reconstruct prompt and non-prompt

J/ψ → e+e− decays in pp collisions.
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1.2 The Standard Model of particle physics

The Standard Model (SM) forms the fundament of the field of particle physics and describes the

fundamental constituents of the universe: namely the elementary particles and the interactions

between them. While the Standard Model describes all current experimental data remarkably

well, it does not account for all effects, as seen for example with neutrino oscillations. It should

be noted that the Standard Model includes the electromagnetic interaction, the weak interaction

and the strong interaction, but not gravity, thus it only accounts for three of the four fundamental

interactions [2].

Figure 1: The elementary particles and bosons of the Standard Model of particle physics [3].

Matter in our universe is made up of twelve fundamental spin 1
2 particles (fermions), of which

six are quarks and six are leptons, with both types divided into three generations (see fig. 1).

The quarks have a charge of either 2
3e (u, c, t) or −1

3e (d, s, b), carry color charge and differ

in mass and flavor, while interacting strongly, electromagnetically and weakly. Due to their

ability to interact via the strong interaction, they form color-neutral bound states called hadrons

(mesons and baryons). The top quark is the only exception, since its lifetime is shorter than

the hadronization time. Leptons on the other hand can be divided into charged and uncharged

leptons (neutrinos). Electrons (e−), muons (µ−) and taus (τ−) interact electromagnetically and

weakly, whereas their respective neutrinos (νe, νµ, ντ ) only interact weakly, since they have
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no electrical charge. Each fermion has an antiparticle, which is charge conjugated form of the

particle. The three fundamental interactions described by the SM are mediated by the gauge

bosons, which are spin 1 particles. Strong interactions are mediated by the eight gluons (g)

carrying color charge, while photons (γ) mediate the electromagnetic interaction and the W±

and Z bosons mediate the weak interaction. Lastly, the Higgs boson (H), a scalar boson with

spin 0, gives rise to the masses of the quarks, charged leptons and the mediators of the weak

interaction via the Higgs mechanism. With the discovery of the Higgs boson by the ATLAS and

CMS experiments at the Large Hadron Collider (LHC) the SM was completed in 2012, validating

the theoretical concepts of the SM [2].

1.3 The Large Hadron Collider and heavy-ion collisions

The Large Hadron Collider (LHC) is a synchrotron with a circumference of 26.7 km, making it

the world’s largest particle accelerator. It is part of the CERN accelerator complex (see fig. 2), of

which large parts are situated on Swiss territory, while the LHC itself and all experiments except

ATLAS also stretch far into French territory. After the Large Electron-Positron collider was

dismantled when operation was finished, the underground circular tunnel at a depth of roughly

100 m, which was housing it, was repurposed for the LHC. The LHC is capable of accelerating

bunches of protons as well as heavy ions and colliding them at four interaction points along

the beam line, where the four main experiments ATLAS, CMS, LHCb and ALICE are located.

While ATLAS and CMS are general purpose detectors, which are specialized for the discovery the

Higgs boson, LHCb is dedicated to beauty physics and ALICE was constructed to investigate the

QGP. For proton-proton (pp) collisions in Run 3 the LHC can achieve a center of mass energy of
√
s = 13.6 TeV after the upgrades made during the Long Shutdown 2, whereas center of mass

energies per nucleon pair of
√
sNN = 5.36 TeV can be reached in lead-lead (Pb-Pb). However,

a series of particle accelerators (see fig. 2) is first required to produce the beams of protons or

heavy ions at lower energies, from which the LHC can accelerate them to their final energies.

Proton beams are produced from negative negative hydrogen ions (H−), which are stripped of

their electrons after the first steps of acceleration. Lead ions, on the other hand, originate from

evaporated lead that is injected into a plasma chamber, where the lead atoms are ionized. They

then are accelerated and further stripped of the remaining electrons to create Pb82+ ions, which

are then injected into the LHC as a beam with up to 1248 bunches [4, 5, 6].

When ultra-relativistic heavy ions collide, a state of matter called quark-gluon plasma (QGP)

is formed, which is researched by the ALICE experiment. It is a phase of matter, where the

density and temperature of the medium are very high and the strongly interacting gluons and

quarks are deconfined and therefore not bound in hadrons. Heavy ions take the form of Lorentz

contracted discs at ultra-relativistic velocities, which are present at LHC energies. These discs

consist of many nucleons and carry large amounts of energy, leading to an enormous number

of quarks, gluons and sea quarks contained by them. Due to the high concentration of quarks,

gluons and energy during the collision, the conditions for the QGP to form are fulfilled. From

the initial state, the QGP is formed and after a short period of evolution as an ideal relativistic
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Figure 2: The CERN accelerator complex [7].
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fluid, hadronization occurs inside the medium (see fig. 3). Lastly the freeze-out of the hadrons

takes place, from which hadrons with high momenta remain, that can then be detected inside the

ALICE detector. The quark-gluon plasma is a topic of interest, since it is believed that the QGP

was formed very shortly after the Big Bang, after which the matter cooled down and hadronized.

On another note, heavy ions are required in order to study the QGP with a hadron collider,

although there are some indications that it might be formed in pp collisions as well [1].

Figure 3: The evolution of a heavy-ion collision at LHC energies [1].

1.4 Prompt and non-prompt J/ψ

One particle of notable interest in Pb-Pb collisions and the research of the QGP is the J/ψ meson.

It is an electrically uncharged vector meson consisting of a charm quark and a charm antiquark

(cc), which is categorized as ”quarkonium” and more specifically ”charmonium”. When cc pairs

are created in the initial collision of two lead nuclei, they are likely to separate inside the QGP

due to the high temperatures of the QGP that give rise to so-called ”color-charge screening”. Due

to the high abundance of quarks in the QGP, it is more likely for the charm quarks to recombine

with lighter quarks than with anticharm quarks. This suppression effect of the production rate

of the J/ψ has been observed at SPS and RHIC. However, the LHC operates at larger center

of mass energies of
√
sNN = 5.36 TeV per nucleon pair which leads to a regeneration effect

through statistical recombination, that counteracts the suppression effect. The increase in the

production rate of J/ψ at higher energies, is due to many more cc pairs being produced initially

and therefore the probability is higher that different c quarks and c quarks recombine after some

scattering inside the QGP. Naturally, these effects also take place for other quarkonia, which

consist of cc or bb pairs. Therefore, one way to study the suppression and regeneration effects as

properties of the QGP is to measure the production rates of these quarkonia [1].

When measuring J/ψ, a distinction between prompt J/ψ and non-prompt J/ψ has to be
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made. Prompt J/ψ originate from the initial hard scattering of the collision or the regeneration

process, while non-prompt J/ψ are decay products of heavier B hadrons like B mesons (see

fig. 4). These heavier hadrons are only produced in the initial hard scattering, thus they travel

through the QGP and are subject to energy and momentum exchange with the medium during

it’s entire evolution. Therefore prompt J/ψ and non-prompt J/ψ as decay daughters are well

suited candidates to probe the QGP. In order to understand the J/ψ in heavy-ion collisions,

the production of J/ψ in pp collisions as a reference is studied. The latest measurements of the

differential cross sections of prompt and non-prompt J/ψ via the J/ψ → e+e− decay channel (see

fig. 5) are shown in fig. 6. Measurements of the cross sections might be improved in future analysis

by employing Boosted Decision Trees (BDT) in order to differentiate between prompt J/ψ and

non-prompt J/ψ. The reconstruction of prompt and non-prompt J/ψ in the J/ψ → e+e− decay

channel in pp collisions with the ALICE detector through the use of Boosted Decision Trees is

carried out in this thesis. [1].

Figure 4: Visualization of the decay topology of prompt J/ψ and non-prompt J/ψ. PV stands for primary
vertex, where particles produced in the collision originate from. At a SV (secondary vertex) particles
decay and produce multiple lighter particles. Prompt and non-prompt J/ψ do not necessarily originate
from the same PV, but for illustrative purposes they do in this figure. The decay product X depends on
the type of beauty (B) hadron that decays into the non-prompt J/ψ. L is the decay length of the J/ψ,
which is an important quantity for the differentiation between prompt and non-prompt J/ψ.
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Figure 5: Feynman diagram for the J/ψ → e+e− decay.

ALI-PUB-530283 ALI-PUB-530275

Figure 6: Measurements of the pT -differential cross section of prompt J/ψ (left) and non-prompt J/ψ
(right) at midrapidity (|y| < 0.9) in pp collisions at

√
s = 13 TeV through the dielectron decay channel.

Additionally, predictions of the differential cross section from model calculations are shown [8].
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2 The ALICE experiment

2.1 Overview of the ALICE detector

ALICE (A Large Ion Collider Experiment) is a heavy-ion detector at the Large Hadron Collider

(LHC) at CERN, with a focus on the strong interaction of matter, as well as the quark-gluon

plasma. It allows the extensive study of hadrons, electrons, muons and photons produced in

heavy-ion collisions, particularly Pb-Pb collisions. Since the detector was upgraded during the

Long Shutdown 2 and exclusively Run 3 data is used in this thesis, the description will focus on

the Run 3 version of the detector, ALICE 2 (fig. 7).

Figure 7: Schematic view of the ALICE detector during Run 3 [9].

The dimensions of ALICE are 16× 16× 26 m3 with a total weight of approximately 10000 t.

It is comprised of a central barrel part, which measures hadrons, electrons and photons, as well

as a forward muon spectrometer. A 0.5 T magnetic field is provided by a large solenoid magnet

surrounding the central part, which was repurposed from the L3 experiment at LEP

The innermost system of the central barrel is the upgraded Inner Tracking System (ITS2),

which consists of seven layers of ALPIDE (ALICE Pixel Detector) monolithic active pixel sensors

(MAPS). Its main function is the reconstruction of particle trajectories, as well as the primary

vertex (PV) and secondary vertices (SV) of heavy-flavor and strange particle decays with a high

spatial and momentum resolution. Furthermore it is used to improve the resolution for particles

reconstructed by the Time Projection Chamber (TPC)

8



Moving outwards, the ITS is followed by the Time Projection Chamber (TPC), which extends

from 0.85 m to 2.5 m in radial direction with a length of 5 m along the beam. It measures

the mean energy loss of particles dE
dx via ionization of the gas in the TPC and can be used for

tracking and particle identification. Since the ITS and TPC are especially important for the

reconstruction of J/ψ decays, their structure and functionality will be further elaborated upon

in section 2.2 and section 2.3

The subsequent Transition Radiation Detector (TRD) provides electron identification in the

central barrel. It consists of six layers of gas chambers, each containing a foam/fibre radiator and

a Xe-CO2 gas mixture. Above 1 GeV/c the transition radiation from electrons passing through a

radiator combined with the information from the specific energy loss in the TPC can be utilized

to differentiate electrons from pions. Below this momentum threshold, the specific energy loss

measurement in the TPC suffices to identify electrons

The TRD is followed by the Time-of-Flight detector (TOF); a large array of Multi-gap

Resistive-Plate Chamber (MRPC) detectors and which further enables the identification of

hadrons over a wide momentum range and electrons at low momentum. However, not all

detectors cover the full azimuthal range and one of them is the ElectroMagnetic Calorimeter

(EMCal), which is comprised of alternating layers of lead and scintillators. Unlike the EMCal,

the PHOton Spectrometer (PHOS) only covers a small range of the acceptance in the central

barrel. It is a high-resolution high-granularity electromagnetic calorimeter specialized for the

detection of photons and consists of scintillating lead tungstate (PbWO4) crystals with avalanche

photodiode (APD) photodetectors and preamplifiers. Another detector that not spanning the

whole azimuthal range is the High Momentum Particle Identification Detector (HMPID), which

is a ring-imaging Cherenkov detector with liquid perfluorohexane (C6F14) radiators and adds

hadron identification capabilities at large transverse momenta that can not be provided by the

energy-loss measurement in the TPC

Additionally, the forward pseudorapidity range −4.0 < η < −2.5 is covered by muon

detectors, which identify muons and remove hadrons by utilizing a system of absorbers. Multiwire

proportional chambers (muon tracking chambers, MCH) and resistive plate chambers (muon

identifier, MID) are used for the main muon detector stations. In ALICE 2, the Muon Forward

Tracker (MFT), was added. It is comprised of tracking stations with ALPIDE silicon pixel

sensors that are installed in front of the muon absorber to increase pointing resolution and

mass resolution for the detection of secondary charmonia and muons from B-meson decays.

Additionally, a number of trigger systems, like the Fast Interaction Trigger (FIT), and other

detectors, like the Zero-Degree Calorimeters (ZDC), are utilized. For the online and offline

reconstruction and the physics analysis in Run 3 the new common software framework O2 was

developed [9, 10, 11].

The reference coordinate system used in ALICE is a right handed system, where the x-axis

points horizontally towards the center of the LHC, the y-axis points vertically upwards and the

z-axis points along the beam line, away from the muon arm, with the origin of the coordinate

system being the nominal interaction point [9]. A spherical coordinate system is also often used,

where the azimuthal angle ϕ lies in the x-y-plane, the polar angle θ lies in the y-z-plane and the
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r-axis points in radial direction. To describe the acceptance for a portion of the detector, most

of the time the pseudorapidity η is used instead of the polar angle θ. The pseudorapidity η is

defined as follows:

η = − ln tan
θ

2
. (1)

2.2 Inner Tracking System

The Inner Tracking System (ITS) constitutes the innermost detector layers in the central barrel of

the ALICE detector. Its main purpose is the reconstruction of particle trajectories, the primary

vertex (PV) and secondary vertices (SV) of heavy-flavor and strange particle decays with a high

spatial and momentum resolution for tracks and high spatial resolution for vertices. Additionally,

it can provide improvements to the momentum and angle resolution of the reconstruction of

particles by the TPC. Therefore, the ITS contributes to, in principle, all physics topics that the

ALICE experiment addresses [9, 10].

�

✁ ✂ ✂

✂

ALI-PUB-563507

Figure 8: Schematic layout of the ITS2 [9].

During the LS2, substantial upgrades were made to the ALICE detector, most notably

the original ITS was replaced by the new Inner Tracking System (ITS2). Due to its reduced

distance to the interaction point, which was made possible by new beam pipe, and better position

resolution compared to the first ITS, it provides better pointing resolution, while also enabling

it to handle a higher interaction rate of 50 kHz for high hit densities in Pb-Pb collisions and 1

MHz in pp collisions. The ITS2, as seen in fig. 8, consists of seven layers of ALPIDE (ALICE

Pixel Detector) Monolithic Active Pixel Sensors (MAPS), making it the largest-scale application

of these sensors in any high-energy physics experiment. It is structured into the inner barrel

(IB), which is made of the three innermost layers, and the outer barrel OB, which consists of two

double layers. Each radial position of the layers, which can be found in table 1, was optimized
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in order to achieve best performance regarding pT resolution, pointing resolution and tracking

efficiency for Pb-Pb collisions with their high track-density environment. In total the sensors

cover a surface area of around 10 m2 and 12.5 billion pixels with digital readout. The ITS

covers the pseudorapidity range of |η| < 1.22 for the region where 90% of collisions take place,

which translates to interaction vertices located in the range of approximately ±10 cm around

the nominal interaction point along the beam axis [9, 12].

Table 1: Main layout parameters of the new ITS2. A HIC (Hybrid Integrated Circuit) is an assembly of
polyimide Flexible Printed Circuit on which pixel chips and some passive components are bounded. A
stave is the basic detector unit, on which the pixel detectors, electronics and cooling are mounted [9].

Layer no. Average Stave No. of No. of Total no.
radius (mm) length (mm) staves HICs/stave of chips

0 23 271 12 1 108
1 31 271 16 1 144
2 39 271 20 1 180
3 196 844 24 8 2688
4 245 844 30 8 3360
5 344 1478 42 14 8232
6 393 1478 48 14 9408

The ITS2 encloses the new beam pipe with a central beryllium section, where the outer radius

was reduced from 28 mm to 18 mm compared to Run 1 and Run 2. Furthermore, the innermost

detector layer was moved closer, from 39 mm to 22.4 mm to interaction point and the material

budget was reduced to 0.36%X0 per layer for the innermost layers and limited to 1.10%X0 per

layer for the outer layers. Most importantly, the pixel size of the silicon pixel sensors was reduced

to 29.24µm× 26.88µm, while the number of layers in the inner barrel was increased from two

to three. A comparison of the main detector parameters of the ITS1 and ITS2 can be found in

table 2 [9, 12].

Table 2: Comparison of the main detector parameters of the ITS1 and ITS2 [9].

ITS1 ITS2

Technology Hybrid pixel, strip, drift MAPS
No. of Layers 6 7

Radius 39− 430 mm 22− 395 mm
Rapidity coverage |η| ≤ 0.9 |η| ≤ 1.3

Material budget/layer 1.14%X0 inner barrel: 0.36%X0

outer barrel: 1.10%X0

Pixel size 425 µm × 50 µm (only the two 27 µm × 29 µm
innermost layers) (all seven layers)

Spatial resolution (rφ× z) 12 µm × 100 µm 5 µm × 5 µm
Readout Analogue (drift, strip), Digital (Pixel) Digital

Max rate (Pb-Pb) 1 kHz 50 kHz
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2.3 Time Projection Chamber

The Time Projection Chamber (TPC) represents the main tracking detector of the central barrel.

It is optimized to provide, with additional information from other detectors, charged-particle

momentum measurements with good separation of tracks and particle identification over a

wide momentum range. This is done through the measurement of the mean energy loss dE
dx by

ionization of the gas in the TPC and the momentum of each charged particle traversing the

detector gas [9, 10, 13].

Figure 9: Schematic view of the TPC [14].

The layout of the TPC is visualized in fig. 9. It is cylindrical and ranges from 0.85m to 2.5m

in radial direction over a length of 5m, giving it a total active volume of 88 m3. Thus, it covers a

symmetric pseudorapidity interval around midrapidity (|η| < 0.9) covering the full azimuth. The

detector’s field cage has a high-voltage electrode in the center that divides the active volume

into halves and causes the free electrons created by ionization of the gas to drift towards the

endplates. Both endplates are subdivided into 18 azimuthal sectors, which each house one inner

(IROC) and one outer readout chamber (OROC). The TPC contains a gas mixture of Ne-CO2-N2

(90-10-5), which is advantageous since Neon offers a higher ion mobility compared to Argon-based

mixtures, reducing the magnitude of space-charge distortions by a factor of almost two [9, 10].

In Run 1 and Run 2 the readout chambers of the TPC used multiwire proportional chambers

(MWPC), which required active ion gating to minimize space-charge distortions. Since this

requires triggered readout, which is not compatible with the goals of the upgraded ALICE

detector, the new upgraded TPC has to be read out continuously. Simultaneously, the excellent

performance has to be maintained and the space-charge distortions have to be kept at a tolerable

level, despite the high collision rate and the missing active ion gate. For this purpose, Gas

Electron Multipliers (GEMs) have been installed in the upgraded TPC, as they can be arranged

in stacks to create layers of amplification stages that can be tuned and suppress the ion backflow
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to the required level by blocking the path of back-drifting ions [9].

Using the measurements of specific energy loss, momentum and charge of particles, it is

possible to identify the particles (PID) by utilizing the parameterized Bethe-Bloch formula

f(βγ) =
P1

βP4

(
P2 − βP4 − ln

(
P3 +

1

(βγ)P5

))
(2)

where β is the particle velocity relative to the speed of light, γ is the Lorentz factor and P1-P5

are fit parameters. A visualization of the measured energy loss versus particle momentum and

corresponding parameterized Bethe-Bloch fits for different particle species can be seen in fig. 10.

At low momenta (p ≲ 1 GeV/c), it is mostly possible to identify the particles on a track-by-track

basis, whereas statistical methods like multi-Gaussian fits have to be applied in order to separate

particles at higher momenta. In any case, identification also relies on PID information from other

detectors [13].
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Figure 10: Specific energy loss as a function of momentum in the TPC for different particle species in pp
collisions at

√
s = 13.6 TeV in Run 3. Warmer colors represent a higher concentration in track counts,

while the black lines show the parameterized Bethe-Bloch fits for different particle species [15].

In order to distinguish between different particle species by utilizing the TPC measurement,

the discriminating variable nσi
TPC

is used. It describes the deviation of the measured signal STPC

(energy loss dE
dx ) from the expected signal ⟨SiTPC⟩ predicted by eq. (2) for a particle of species i

in units of the TPC resolution σiTPC. Thus, it is calculated as follows [16]:

nσi
TPC

=
STPC − ⟨SiTPC⟩

σiTPC

. (3)
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2.4 Central barrel tracking

For the track reconstruction of the particles passing through the detector, mainly the capabilities

of the ITS2 and the upgraded TPC, but also the TRD and TOF are utilized. Unlike in Run 1

and Run 2, the track reconstruction for the ITS2 is done completely independently from the

TPC.

The first step is the vertexing, i.e. the reconstruction of a PV, which is done by combining

the hits from every layer into a preliminary track and prolonging it to the inside of the beam

pipe. A PV can then be identified as the point in space, where the maximum number of tracks

meet. Afterwards the track finding and track fitting is applied to reconstruct the tracks through

the ITS. Simultaneously, the TPC starts with Cluster Finding, where the signals in the detector

are assigned positions and errors in both rϕ and z direction to form so-called clusters. Then the

Track Finding, Track Merging and Track Fitting is carried out for the TPC tracks by using a

Kalman Filter. The overall track reconstruction is done in an inward-outward-inward scheme.

In the first inward step the reconstruction starts in the outermost part of the TPC and moves

inward until it reaches the innermost part. Next the tracks from the standalone ITS tracking

and the TPC tracking are matched and the reconstruction is redone from the innermost layer of

the ITS outwards to the outermost part of the TPC. From there it is prolonged into the TRD.

Finally, the reconstruction is then repeated inwards from the outermost part of the TRD to the

innermost layer of the ITS, which improves the reconstructed tracks even further and allows for

an even more precise determination of not only PVs, but also SVs. Due to the high resolution

made possible by the upgraded tracking systems, it is possible to determine the position of SVs

with even greater spatial resolution than during Run 1 and 2, by finding tracks with a distance

of closest approach (DCA) to the PV above a certain threshold. This is essential for the study of

short-lived heavy-flavor hadrons, which decay before reaching any detector.

On another note, the central barrel tracking is revolutionized by leveraging the potential

of hardware accelerators (GPUs) in Run 3. By running the track reconstruction for the TPC,

ITS and TRD on GPUs it is possible to do more synchronous (previously ”online”) event

reconstruction, which is necessary for calibration, data compression, as well as online quality

control and was unattainable in this scope in Run 1 and 2 [17, 13, 18].

2.5 Bremsstrahlung

Whenever charged particles pass through matter, they are subject to the emission of bremsstrahlung.

It is the electromagnetic radiation that is produced when a charged particle is decelerated by

the electric field of an atomic nucleus. Due to its low mass, electrons and positrons are affected

significantly stronger than other charged particles. The energy loss per distance traveled through

the medium from bremsstrahlung for electrons is given by(
dE

dx

)
rad

=
4naZ

2α3ℏ2c2E
m2
ec

4
· ln a(E)

Z1/3
, (4)

where α = e2/(4πε0ℏc) is the fine-structure constant, E is the energy of the electron, na is
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the atom density of the medium, Z is the number of protons in the atomic nucleus and a(E) is a

numerical factor, which indicates at what impact parameter the incoming electron or positron is

still close enough to the nucleus to be deflected. Therefore, the energy loss from bremsstrahlung

increases slightly more than linearly with the energy of the electrons and outweighs the energy

loss from ionization at high momenta. If one disregards the energy dependence of the factor

a(E), eq. (4) can be integrated to compute the electron energy as a function of distance traveled:

E(x) = E(0) · e−x/X0 . (5)

The length X0, at which the energy of the electron has decreased to 1/e of its original value,

is defined as

X0 =

(
4naZ

2α3ℏ2c2

m2
ec

4
· ln a(E)

Z1/3

)−1

. (6)

The cross section for bremsstrahlung with positrons is in general lower than with electrons,

but this effect is negligible for the momenta relevant here. Similarly to bremsstrahlung, the high

momentum electrons and positrons are also deflected by the strong magnetic field of the solenoid

magnet, leading to the emission of synchrotron radiation. When using the J/ψ → e+e− decay

channel, the effects of bremsstrahlung are clearly visible as the invariant mass distribution of the

J/ψ reconstructed from the e+e− pairs has a tail on the left side. This tail indicates that for a

portion of the e+e− pairs, at least one of the leptons loses energy through bremsstrahlung and

the produced photons are not taken into consideration when reconstructing the J/ψ mass [19,

20].

15



3 Analysis tools

3.1 KF Particle package

In high-energy particle physics, experiments need to cope with very high track densities, while

only rare signals may be of interest. Therefore, high accuracy and high speed are required for the

reconstruction of events, in order to find these rare signals efficiently in the large amounts of data.

The reconstruction of events involves finding and fitting particle tracks, aligning the detectors,

as well as determining the PV and SVs of events from the reconstructed tracks. Fit algorithms

like the Kalman filter are utilized to carry out this process. The Kalman filter is a recursive fit

algorithm for the analysis of linear discrete dynamic systems described by a state vector, which

contains a set of parameters. It provides an optimal estimation of the particle track parameters

in order to achieve the highest accuracy. Even nonlinearities can be taken into account, as long

as the model describing the system can be linearized beforehand. In high-energy physics, the

Kalman filter is used to fit the tracks of charged particles, where trajectories are affected by

energy loss through ionization and excitation in the material of the detector, as well as multiple

scattering and inhomogenities of the magnetic field inside the detector. It takes great effort to

account for such effects using the least squares method when fitting a particle trajectory, since

new parameters have to be introduced and fitted for each effect. On the other hand, the Kalman

filter is able to handle these nonlinearities, due to the fact that the discrete measurements in the

detectors allow for a linearization of the particle track segments, while aforementioned effects

in the detector material can be added in the neighborhood of each measurement. Therefore, it

is perfectly suited for the challenges of tracking particles with utmost precision in high-energy

physics experiments [21, 22, 23].

The KF Particle package is a software package, which uses the Kalman filter method for

the reconstruction of decay chains and short-lived particles. It was developed by the CBM

collaboration for the vertex reconstruction in high-energy experiments. Since the KF Particle

package uses the Kalman filtering algorithm, it provides an optimal estimation of the state vector

r of a particle with the corresponding covariance matrix C, which are iteratively updated after

each propagation to the next measurement. The state vector is defined as follows:

r = (x, y, z, px, py, pz, E, s)
T . (7)

In the KF Particle package, particles are parametrized with their spatial coordinates (x, y, z),

their momentum components (px, py, pz) and their energy E. Additionally, the parameter s = L
p

is included, where L is the distance between the production and decay vertex of the particles

in the laboratory frame, while p is the total momentum of the particle. After the estimate

optimization of the state vector and its covariance matrix is completed, physical properties of

the particle such as mass, lifetime and decay length can be calculated with low computing effort.

Additional parameters of the reconstructed tracks, for example the signal that the particle leaves

in the ALICE TPC due to energy loss, are also provided by the KF Particle package. Some of

these quantities provided by the KF Particle package are used as input features for the training
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of BDTs, to differentiate between background and prompt or non-prompt J/ψ [21, 22, 23].

3.2 Boosted Decision Trees

The importance of Machine Learning (ML) for modern particle physics as an analysis tool

has grown over the years. Many analyses now utilize ML to handle billions of events, which

allows for an even more precise extraction of signal compared to rectangular cuts. In this thesis,

Boosted Decision Trees (BDT) are employed to precisely classify background, prompt J/ψ and

non-prompt J/ψ. For this task, the XGBoost algorithm and the hipe4ml Python package were

used [24, 25].

Decision trees, which are non-parametric supervised learning algorithms used for classification

and regression tasks, are the basic units of a BDT. The structure of such a decision tree can be

seen in fig. 11 [26].

Figure 11: Structure of a simple decision tree [26].

A decision tree forms a hierarchical tree structure with a root node at the top, branching into

internal nodes and lastly, leaf nodes. To train a model, a set of candidates where each candidate

holds a set of parameters and should be assigned to one unambiguous class, is considered. The

first decision is made at the root node, where all candidates start. If, for example, the decay

length of a candidate is higher than a certain threshold, it will follow the first branch to an

internal node, while it will follow the second otherwise. This procedure is then repeated until a

leaf node is reached. At each leaf node, candidates of predominantly one class should be collected,

since it is essential to achieve the highest possible purity for each leaf node. Decision trees can

be chosen to have higher depth and complexity, but at a certain point not enough data falls into

each subtree, which can lower the purity of leaf nodes. This is called overfitting and it manifests

in data not used for the training reaching significantly lower scores than the training data. The

reason for this is that the model learns statistical fluctuations instead of the desired properties
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when the trees have high depth or complexity. In the XGBoost algorithm, classification and

regression trees (CART) are employed. These CARTs are a slightly modified version of decision

trees, where the leaf nodes do not represent a given class. Instead they assign a score to each

candidate, which leaves more room for the interpretation of tree outputs. In order to increase

performance without increasing the complexity of the trees, an ensemble of trees is be used,

which can yield better performance than any single decision tree could [24, 26, 27].

XGBoost employs so-called ”boosting”, where low complexity decision trees (weak learners)

are combined into one strong learner . This sequential learning process is iterative, meaning

that each tree is constructed in such a way that the previous weak learners with their errors are

considered. In fig. 12, a visualization of this boosted decision tree model is depicted [24, 27].

Figure 12: Scheme of tree boosting, where each tree learns from errors of the previous weak learners [28].

The XGBoost algorithm in the context of supervised learning tasks uses a set of features xi

of the training data set to make a prediction ŷi of the target value yi. For the given use case

of classifying heavy-flavor hadrons, the prediction value is interpreted as the probability for a

candidate to belong to a given class. BDT models are made up of many different parameters,

such as the features which will be used to make a decision, but also so-called hyperparameters,

which are optimize for the training, like the maximum tree depth. During the training of a

model, parameters will be varied to fit the training data, while hyperparameters are determined

beforehand. Hyperparameters like the maximum tree depth and learning rate are optimized

using the Optuna package included in the hipe4ml Python package, ultimately improving the

predictions [24, 29].

BDT models can be used for binary classification, where the classes are background and signal.

However, since prompt and non-prompt J/ψ should be differentiated, multiclass classification is

utilized, with background, prompt and non-prompt as the classes. In order to carry out multiclass

classification, it is separated into multiple binary classifications, where two different approaches,

One-vs-One (OvO) and One-vs-Rest (OvR), can be used. For the OvO approach, one BDT is

trained for every combination of two classes. The classes compete against each other one by

one, resulting in the pairs background vs. prompt, background vs. non-prompt and prompt vs.

non-prompt. Thus, three models are trained in total and when the model is applied, a majority

vote decides the final model prediction and an output score from zero to one for each class. On

the other hand, the OvR approach trains three models again, one for each class. However, in this

case, the classes always train against the rest of the classes, i.e. background vs. rest, prompt vs

rest and non-prompt vs. rest. The result is again an output score from zero to one for each class,
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which states the likeliness of the candidate to belong to the specific class. At a later stage of the

analysis, selections for the output scores must be determined, to classify the data with minimal

losses. For this analysis, the OvR approach is chosen. In this specific use case, the performance

difference between the approaches is minimal [30].
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4 Analysis

4.1 Preselections

This analysis of the decay channel J/ψ → e+e− uses data measured in pp collisions at a center

of mass energy of
√
s = 13.6 TeV with the ALICE detector during Run 3 at midrapidity range

(|y| < 0.9). To carry out the analysis in this thesis, a data set with reconstructed candidates

and a Monte Carlo (MC) simulation set for both prompt and non-prompt J/ψ were provided.

Specifically, 22pass7 data and monte carlo simulations are used, where 22pass7 is an expression

for the seventh reconstruction pass of the raw data from 2022. Before the data is further analyzed,

it should be noted that a number of preselections for the tracks were applied to the dataset prior

to this analysis. The preselection cuts are listed in table 3 and will be explained briefly. In order

to restrict the data to regions of the detector where the track reconstruction works best, i.e. the

center of the detector, the event cut |Vz| < 10 cm was chosen, where Vz is the position of the PV

in z-direction of an event.

Table 3: List of preselections applied to the reconstructed tracks.

Selection conditions

pT > 0.7 GeV/c
|η| < 0.9

ITSibAny = true
χ2
ITS < 5.0

TPCncls > 60
|DCAxy| < 1.5 cm
|DCAz| < 1.5 cm
|n
σe−
TPC

| < 4.0

nσπ
TPC

> 2.5

nσp
TPC

> 2.5

� pT : This is the transverse momentum of each decay particle, which can in principle be any

charged particle of which the momentum is measured, e.g. a pion, kaon, proton or electron.

It is sensible to use only tracks above a certain momentum threshold to exclude irrelevant

background.

� η: The pseudorapidity range is limited to the coverage of the TPC, since the PID and

tracking capabilities of it are used.

� : This cut requires the fit of a track via the ITS to pass the given threshold. Additionally,

the tracks of the particles have to originate from the same vertex.

� ITSibAny: This variable indicates whether at least one hit was measured by the innermost

three layers of the ITS.

� χ2
ITS : This cut requires the fit of a track via the ITS to pass the given threshold. Addi-

tionally, the tracks of the particles have to originate from the same vertex.
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� TPCncls: In order to ensure that only tracks with a certain amount of measurements by the

TPC are used, in order to obtain high track quality, it is required that the TPC measured

a certain amount of clusters for the particle.

� DCAxy and DCAz: The distance of closest approach (DCA) of a particle to its associated

PV needs to be below a certain threshold. Above this threshold, it is very unlikely that

particles stem from a J/ψ.

� n
σe−
TPC

, nσπ
TPC

and nσp
TPC

: These PID quantities were explained in section 2.3. They describe

the distance of the energy loss measurement to the energy loss band of the specified particle.

Therefore, they are used to exclude most of the background, since no electrons will be

present in the regions beyond the used cuts.

These preselection are necessary in order to filter out any background candidates, which

would be easily classified, since the BDT training should focus on candidates more difficult to

classify to achieve the best results.

4.2 Signal extraction with rectangular cuts

Before making use of machine learning via BDTs, the signal extraction achieved with only the

rectangular cuts of the preselection is determined for later use as a point of reference. Since the

goal, ultimately, is to measure the pT -differential cross section of the J/ψ, the data is divided into

four transverse momentum intervals (0− 2 GeV/c, 2− 4 GeV/c, 4− 6 GeV/c and 6− 12 GeV/c)

of the J/ψ. In order to reconstruct the J/ψ signal, the invariant mass distributions for these

intervals have to be fit with an adequate fit function that represents the shape of the invariant

mass distribution of the J/ψ and the background. The final fit function consists of a Crystal

Ball function to accurately describe the signal shape and a second degree polynomial for the

background. An asymmetrical tail provided by the Crystal Ball function takes into account both

the detector resolution, as well as the loss in invariant mass resolution due to bremsstrahlung.

The Crystal Ball function consists of a Gaussian core with a power-law tail to the left side and is

defined as follows:

f(x;α, n, µ, σ) = N ·

exp
(
− (x−µ)2

2σ2

)
, for x−µ

σ > −α

A ·
(
B − x−µ

σ

)−n
, for x−µ

σ ≤ −α
,

where

A =

(
n

|α|

)n
· exp

(
−|α|2

2

)
,

B =
n

|α|
− |α|,

(8)

with the normalization factor N , the mean of the Gaussian µ and the standard deviation of the

Gaussian σ. The parameter α specifies the position of the transition between the Gaussian and

the power-law tail, while n specifies how fast the tail falls off. However, before the fitting is carried

out, a like sign invariant mass distribution is created via the combination of two reconstructed
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particles with the same charge (like e+e+ or e−e−) and is subsequently subtracted from the

unlike sign distribution from two particles with opposite charge (like e+e−). By subtracting the

combinatorial background like this, the background fitted by the polynomial is lower and more

flat, improving the quality of the overall fit. It should be noted that the like sign background

had to be scaled up to represent the combinatorial background. Afterwards, the remaining mass

distribution is fitted by the aforementioned combination of a Crystal Ball function and a second

order polynomial. The invariant mass distributions of unlike sign data and like sign data, as

well as the fits of the residual distributions are shown in fig. 13 for every pT interval. From

the fits, the number of J/ψ candidates in the signal region mass range of 2.7 < mJ/ψ < 3.2

GeV/c2 is calculated via the fit of the Crystal Ball function, as well as the number of background

candidates in the same region, with both the residual and combinatorial background included.

Additionally, the signal-to-background ratio S
B and the significance S√

S+2B
are computed. The

same procedure is carried out with additional PID cuts of nσπ
TPC

> 4.0 and nσp
TPC

> 4.0 and the

resulting invariant mass fits are shown in fig. 14. These specific cuts were chosen, since they are

later also utilized for the selection of features for the BDT training. Applying such selections may

be beneficial to increase the signal-to-background ratio and significance, due to the reduction of

background, though the yield of J/ψ is also drastically reduced. In the case of the 6− 12 GeV/c

pT range, the significance is lower than before, demonstrating that rectangular cuts have to be

applied with great care, especially in a range where only a low amount of signal is available. The

signal extraction carried out here does not differentiate between prompt and non-prompt J/ψ.

Separation of these two categories via rectangular cuts would lead to a further decrease in signal

events. Therefore, the application of BDTs for the purpose of further decreasing background and

separating prompt and non-prompt J/ψ is tested.

4.3 Machine learning training

4.3.1 Training candidate selection

Boosted decision trees are well suited for the separation of background, prompt J/ψ and non-

prompt J/ψ, due to their ability to find and use patterns and correlations in the data for the

classification. ML models however, have to be trained on a training data set. For the background

data, the sidebands of the J/ψ invariant mass distribution in data are chosen, which in this case

includes the ranges 1.2 < mcandidate < 2.2 GeV/c2 and 3.2 < mcandidate < 4.0 GeV/c2. These

ranges are chosen since the training background data set should include as few J/ψ signal as

possbile, while also matching the properties of the background that lies within the signal region

(2.2 < mcandidate < 3.2 GeV/c2). The signal data set is made up of MC simulated prompt and

non-prompt J/ψ. Additionally, it should be noted that a model is trained for each pT interval,

since features can behave differently and have varying importance in the classification process,

depending on the transverse momentum of the J/ψ. The total number of candidates used in

the training for each class and each transverse momentum interval is shown in table 4. For the

number of candidates used in the training of the model all available prompt and non-prompt

candidates are considered, while for the background the number equals to the total amount of
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Figure 13: Invariant mass distribution fits for inclusive J/ψ → e+e− for all pT ranges with no additional
PID cuts applied and combinatorial background subtracted.
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Figure 14: Invariant mass distribution fits for inclusive J/ψ → e+e− for all pT ranges with nσπ
TPC

> 4.0
and nσp
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> 4.0 cuts applied and combinatorial background subtracted.
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signal candidates (Bkg = P + NP). In case there is not enough background data to fulfill this

condition, as in the case of the 6− 12 GeV/c pT range, all available background candidates are

used. Using an equal amount of candidates for each class was tested and found to yield slightly

worse results. Only 50% of the chosen candidates are used for training, while the other 50% are

used for testing and validation.

Table 4: Number of candidates for each pT interval and each class, used in the BDT training process.

pT [GeV/c] 0− 2 2− 4 4− 6 6− 12

Background 505201 498096 280534 127613
Prompt 437855 429855 243665 186320

Non-prompt 67346 68241 36869 24794

4.3.2 Feature selection

In order to train a model, it is necessary to select features, which allow the BDT to differentiate

between the classes. It is, in principle, possible to use every available quantity of the candidates as

an input feature, but this increases the complexity of the model, possibly resulting in overfitting.

Hence, only the most impactful features are used to train the BDTs. The chosen features should

not include the invariant mass and the transverse momentum, since it would bias the classification

towards certain values of mass and momentum. However, fitting the mass and measuring the

pT -differential cross section correctly, requires a model that is unbiased towards these quantities.

For the selection of the features, their distributions in the prompt and non-prompt MC data, the

sideband background data, as well as in the signal region data with nσπ
TPC

> 4.0 and nσp
TPC

> 4.0

PID cuts applied, are examined (see fig. 15).

Some features are better suited to differentiate between background and signal, while others

help to separate prompt and non-prompt J/ψ. Both types of features are necessary for an efficient

and meaningful classification. As an example for the first type, the quantity ”TPCNSigmaEl”

(n
σe−
TPC

) is chosen (see fig. 16), since parts of the distribution for the background differ significantly

from both MC distributions. It should be noted that the MC distributions are slightly shifted to

the right due to calibration problems in this data set, but it was found that the usage of this

feature improves the model nevertheless.

For the second type of feature, the quantity ”DecayLengthOverErrorKFGeo” is utilized, due

to the difference in the distributions of prompt and non-prompt J/ψ, enabling a differentiation

between the two classes. The difference in the distributions becomes more pronounced for rising

transverse momentum. In total, seven features have been chosen for model training, of which the

remaining distributions for every transverse momentum interval are shown in fig. 24 to fig. 27 in

the appendix. The features are the following:

� TPCNSigmaEl1/2: This is the n
σe−
TPC

PID variable for electrons provided by the TPC

energy loss measurement, as explained in section 2.3.

� DecayLengthOverErrKFGeo: This is the decay length of the reconstructed candidate
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Figure 15: Distribution of the invariant mass for data in the sideband regions, prompt MC, non-prompt
MC and data in the peak region with nσπ

TPC
> 4.0 and nσp

TPC
> 4.0 cuts applied in all pT ranges.
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divided by its error. The decay length is defined as the distance between the PV and the

decay vertex of the J/ψ.

� PseudoproperDecayTimeKFGeo: This is the decay time calculated from the projection

of the decay length in the x-y-plane. The formula is:

τ =
m

pT
Lxy. (9)

� DCAxyzBetweenTrksKF: This is the distance of closest approach between the two

tracks associated with the candidate in three dimensions.

� Chi2OverNDFKFGeo: This describes the χ2/NDF of a geometrical fit of the candidate

track.

� CosPAKFGeo: This is the cosine of the pointing angle, which is the angle between the

momentum of the reconstructed J/ψ candidate and the line that connects its decay vertex

with the primary vertex.
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Figure 17: Distribution of DecayLengthOverErrKFGeo for data in the sideband regions, prompt MC,
non-prompt MC and data in the peak region with nσπ

TPC
> 4.0 and nσp

TPC
> 4.0 cuts applied in all pT

ranges.

Additionally, it is essential to check the correlations of the features, since correlations only

present in a specific class can beneficial to the classification. On the other hand, correlations

between the features used for training and the invariant mass as well as the momentum have
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to be avoided, since it would distort the results. The correlation matrices for all three classes

for the 2 − 4 GeV/c pT interval model are shown in fig. 18. For all transverse momentum

intervals, no significant levels of correlation are found. Although there is some correlation

between ”DCAxyzBetweenTrksKF” and ”Chi2OverNDFKFGeo”, it was found that including

both features improves the performance of the models. It is also insightful to take a look at the

importance of the different features, which is shown in fig. 19 for the 2− 4 GeV/c pT interval.

In the figure, the features are sorted by relevance, which is quantified by the so-called ”mean

SHAP (SHapley Additive exPlanations) values”. These values indicate the average impact of the

respective feature on the model, while the different colors show how important the feature is for

the classification to a specific class.
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Figure 18: Correlation matrices of the used features, invariant mass m and transverse momentum pT for
the three classes in the 2 < pT < 4 GeV/c range.

Due to changes in the feature distributions with respect to momentum, the feature importances
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Figure 19: Impact of the used features on the model for each class measured by the mean SHAP value.
These are the feature importances of the model for the 2 < pT < 4 GeV/c range.

and correlations vary between the different transverse momentum intervals, but they do not show

any unwanted behavior in any case. Feature correlations for the remaining intervals are shown in

fig. 32, fig. 33 and fig. 34, while importances are shown in fig. 35, fig. 36 and fig. 37.

4.3.3 Hyperparameter optimization

After the selection of the features used to train the models, the hyperparameter optimizations

are carried out using the Optuna module. In essence, this means that the predefined ranges for

the parameters are scanned iteratively, where each iteration considers the previous evaluations

to choose the next set of values for the hyperparameters. They are optimized to optimize

performance, while reducing complexity without signficant performance loss. The optimized

hyperparameters are shown in table 5 for the four models associated with transverse momentum

intervals.

The first hyperparameter is the maximum depth of a single weak learner, for which values

between 1 and 4 were tested. In three of the four models the upper limit of the range is reached.

However, allowing higher values for the maximum depth can lead to overfitting, which should be

avoided to retain optimal performance of the models. The rate at which the model is adapted

to the data is parameterized by the learning rate. For this parameter, a range from 0.01 to

0.1 was tested. High learning rates achieve faster adaptation, which can lead to the model

not converging to the optimum, while low learning rates are slower, but more thorough. The

number of weak learners in a BDT model is determined by the number of estimators, which

should be high, since a low tree depth and therefore trees with low complexity are used. A

range from 20 to 1500 was tested for this hyperparameter. For half of the models, the number

of estimators is close to the upper boundary, so higher values could be tested to possibly yield

a better performance, but this was deemed sufficient for now. The hyperparameter minimum

child weight is important for the so-called pruning process, which optimizes the depth of each
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weak learner, so unnecessary complexity is avoided. This parameter quantifies the minimum

sum of weights for a daughter node of a decision tree to not be removed by the pruning process.

Low values lead to a large number of tree partitions, while large values lead to fewer partitions.

The test range for this parameter was between 1 and 10. Since always using the whole data

sample can lead to overfitting, subsamples which are randomly chosen are used. The size of

these subsamples for every step of boosting as a fraction of the entirety of the data is described

by the subsample hyperparameter, where a test range from 0.8 to 1.0 was chosen. Finally, the

hyperparameter column sample by tree is the fraction of randomly selected features used to train

each decision tree. As for the fraction of the data samples, always using every feature to generate

each tree, instead of randomly choosing a fraction of the features, can lead to overfitting. For

this last hyperparameter, the range between 0.8 and 1.0 was tested [24].

Table 5: Optimized hyperparameters for each pT interval and therefore each BDT model.

pT [GeV/c] 0− 2 2− 4 4− 6 6− 12

Maximum Depth 3 4 4 4
Learning Rate 0.092 0.053 0.052 0.039

No. of Estimators 782 1092 1495 1461
Minimum child weight 1 4 6 3

Subsample 0.934 0.901 0.969 0.849
Col. Sample by Tree 0.833 0.961 0.900 0.865

4.3.4 Trained models

After the optimization of the hyperparameters, the models for each interval of transverse

momentum are trained on the candidates (see table 4) with the seven chosen features (see

fig. 35). In order to check the performance of a model for each class, the Receiver Operating

Characteristic (ROC) curves are considererd. The ROC curves describe the true positive rate as

a function of the false positive rate for each class. True positive candidates are correctly classified

candidates, e.g. a candidate from the non-prompt MC data set is correctly assesed to belong

to the non-prompt class. On the other hand, a false positive candidate is incorrectly classified,

which for this example means that a candidate from the prompt MC or background data set

is incorrectly classified to the non-prompt class. However, the model only assigns scores to the

candidates, which quantify the likelihood of candidates to be part of a certain class, so it does

not classify them unambiguously. Therefore, the true positive rates and true negative rates are

dependent on the selection of the scores.

A ROC curve is constructed by applying the entire range of possible selections and plotting

the resulting true positive rates as a function of the true negative rates. When the selection

is set as high as possible, both the true positive rate and the false positive rate are 0, since

all candidates from a given data set are not assigned correctly, while no candidates from the

other two data sets are incorrectly assigned to that class. If, however, the lowest score and every

value higher than that is selected, both a true positive rate of 1 and a false positive rate of 1 are

observed, because then every background, prompt, and non-prompt candidate is assigned to that
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specific class. Good models produce ROC curves that show a steep rise to a true positive value

of 1 with respect to the false positive rate, hence selecting the correct class of the candidate

effectively, while rejecting most of the candidates from the remaining classes. Therefore, a simple

way to assess the quality of the model is to calculate the Area Under Curve (AUC) of a ROC

curve, where a perfect classifier yields an AUC value of 1. For the 2− 4 GeV/c pT model, the

ROC curves of each class and their respective AUC values are shown in fig. 20.

In order to check for possible overfitting, plotting the ROC curves and AUC values for both

the training and test data sets is necessary. For strong overfitting, the ROC curves of the training

and test data sets will strongly deviate from each other, resulting in a lower AUC score for the

test data. Curves that lie very close to each other in all regions on the other hand, are a sign

for little to no overfitting being present and therefore lead to similar AUC scores for both ROC

curves. The AUC values of every model for each class, as well as the average values are shown in

table 6, while the ROC curves for the remaining three pT intervals can be seen in fig. 38, fig. 39

and fig. 40. None of the trained models show strong overfitting.
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Figure 20: ROC curves and their AUC values of the model for the 2 < pT < 4 GeV/c range.

Finally, the results of the classifier model are shown in fig. 21. In these histograms, the

probabilities of all candidates to belong to the given class is visualized for background, prompt and
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Table 6: AUC scores of each class for each pT interval, as well as the average scores.

pT [GeV/c] 0− 2 2− 4 4− 6 6− 12

Background Test 0.9786 0.9851 0.9818 0.9745
Background Training 0.9796 0.9863 0.9850 0.9788

Prompt Test 0.9603 0.9742 0.9756 0.9711
Prompt Training 0.9622 0.9757 0.9794 0.9757
Non-prompt Test 0.9113 0.9509 0.9573 0.9557

Non-prompt Training 0.9158 0.9562 0.9671 0.9686
Average Test 0.9501 0.9701 0.9716 0.9671

Average Training 0.9525 0.9727 0.9772 0.9744

non-prompt candidates and both the training and test data set. The distributions for the training

and test data sets do not deviate significantly, which leads to the conclusion that practically no

overfitting is present. Looking at the BDT output for background, given the large range of the

y-axis, a clear separation of real background from prompt and non-prompt J/ψ is visible. For

the prompt output, most real prompt J/ψ candidates get assigned high probabilities and most

background candidates receive low values, while a small fraction of non-prompt candidates are

incorrectly associated. Lastly, background and prompt candidates achieve low values for the

non-prompt BDT output and non-prompt candidates have high probabilites, but a small portion

of the non-prompt candidates gets low values assigned. Nevertheless, the model is capable of

separating candidates from the three classes efficiently and only a small fraction of the candidates

that are not of interest should remain after the cuts for a specific class are applied. The same is

true for all other models, for which the BDT output plots are shown in fig. 41, fig. 42 and fig. 43.

4.4 Selection of working points

The BDTs are now applied to all available data, hence every reconstructed candidate is assigned

an output value for each of the three classes. In order to efficiently extract prompt or non-prompt

J/ψ signal, working points have to be chosen, i.e. optimal selections for the outputs have to be

made. For the background outputs, the selection value is an upper bound, since only prompt and

non-prompt candidates are of interest and background should be excluded. In contrast, selecting

candidates with the prompt or non-prompt output requires a lower bound, since either prompt or

non-prompt candidates should be chosen. Setting loose working points leads to high efficiency of

the signal extraction with a low purity, where for example the fraction of non-prompt J/ψ is high,

while only prompt are of interest. Although high purity can be achieved by choosing the working

points very strictly, this approach results in low efficiency for signal selection. Therefore, a

balance between efficiency and signal purity needs to be found by finding an appropriate working

point. In principle, this optimal working point is found using a full working point determination,

where the significance and fraction of prompt and non-prompt signal is optimized for an efficient

and pure extraction of either prompt or non-prompt J/ψ. However, this process is not carried

out here. Instead, a working point for the prompt or non-prompt output is first chosen and then

the significance S√
S+2B

of the signal S is maximized. For every model, the working point for the
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Figure 21: BDT outputs for the three classes with training and test data in the 2 < pT < 4 GeV/c range.
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extraction of prompt signal is chosen to be at the crossing point of the histograms of prompt

and non-prompt candidates in the prompt BDT output plot. These selections are chosen to

achieve a high fraction of prompt candidates, as well as a low fraction of non-prompt candidates,

although exact numbers for these fractions are unknown. This may be in contradiction to the

statement, that efficieny should not be given up for high purity, but it is a good method to

examine whether the separate extraction of prompt and non-prompt J/ψ leads to any problems.

In order to calculate the significance, a similar fitting procedure as in section 4.2 is employed,

while simultaneously a large portion the candidates is already excluded due to the prompt BDT

output cut applied. The important difference is that the parameters α and n of the Crystal Ball

function are fixed to the values retrieved from fits of the prompt and non-prompt MC invariant

mass distributions, to match the shape of the power-law tail. By varying the background selection

using the background BDT outputs, the significance can then be maximized. The process is

analogously applied to select the working points for non-prompt signal, where the fraction of

non-prompt candidates is now chosen to be high, while the fraction of prompt candidates is low.

These procedures yield the working points and significances shown in table 7 and table 8.

Table 7: Working points selected for each pT interval for the prompt signal, as well as the significances
gained from fits.

pT [GeV/c] 0− 2 2− 4 4− 6 6− 12

Prompt selection 0.72 0.70 0.66 0.65
Background selection 0.3 0.3 0.35 0.35

Significance 130.33 179.47 146.64 110.01

Table 8: Working points selected for each pT interval for the non-prompt signal, as well as the significances
gained from fits.

pT [GeV/c] 0− 2 2− 4 4− 6 6− 12

Non-prompt selection 0.12 0.12 0.11 0.10
Background selection 0.9 0.9 0.9 0.9

Significance 68.43 78.28 63.49 52.19

4.5 Results

After selecting the woring points, the cuts on the BDT outputs are applied to the data. The

resulting invariant mass distributions of the four transeverse momentum intervals are then fit

with the same procedure as in section 4.3.4, which is shown in fig. 22 for prompt and in fig. 23

for non-prompt J/ψ signal. As before, the like sign invariant mass distribution is first subtracted

from the unlike sign distribution and the residual distribution is then fit with the combination of a

Crystal Ball function for the signal and a second order polynomial for the remaining background.

The parameters α and n of the Crystal Ball function are fixed to the values gained from fitting

the MC mass distributions. It is especially important to fix these quantities in the case of the

non-prompt signal, since the fit otherwise does not converge correctly, due to the unexpectedly

large amount of entries on the left side of the signal peak. The total fit is shown in red, while the
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signal fit and the background fit are plotted in green and blue, respectively. Additionally, the

number of J/ψ (S) as well as the amount of background (B) in the signal region (2.7 < mee < 3.2

GeV/c2) is computed, from which the signal-to-background ratio S
B and significance S√

S+2B
are

calculated. In table 9, a summary of all calculated quantities, as well as the values for the mean

and width of the peak retrieved from the fits is shown for all pT intervals and both prompt and

non-prompt signal.

Table 9: Summary of quantities calculated by the fits for prompt and non-prompt J/ψ.

pT [GeV/c] 0− 2 2− 4 4− 6 6− 12

P Signal S 37856± 528 47389± 409 25676± 246 13748± 164
P Background B 23257± 466 11166± 329 2492± 180 935± 110

P S/B 1.628± 0.020 4.244± 0.096 10.303± 0.659 14.710± 1.581
P Significance 130.33 179.47 146.64 110.01

P Mean [GeV/c2] 3.0955± 0.0010 3.0878± 0.0007 3.0792± 0.0010 3.0650± 0.0015
P Width [GeV/c2] 0.0329± 0.0007 0.0401± 0.0006 0.0534± 0.0010 0.0672± 0.0015

NP Signal S 15769± 534 13649± 316 6779± 159 4227± 117
NP Background B 18667± 501 8377± 279 2311± 128 1166± 91

NP S/B 0.845± 0.015 1.629± 0.028 2.934± 0.107 3.624± 0.201
NP Significance 68.43 78.28 63.49 52.19

NP Mean [GeV/c2] 3.0746± 0.0034 3.0751± 0.0023 3.0690± 0.0029 3.0572± 0.0039
NP Width [GeV/c2] 0.0549± 0.0035 0.0515± 0.0023 0.0623± 0.0027 0.0823± 0.0038

For the prompt signal, the number of J/ψ first increases from the lowest pT interval to the

next and then decreases for the remaining intervals, which matches the trend in fig. 6. On the

other hand, the number of non-prompt J/ψ decreases with increasing pT . This is not compatible

with the expectation (see fig. 6), since a lower value for the lowest pT interval is expected. The

signal-to-background ratio for prompt and non-prompt J/ψ increases with rising transverse

momentum. Furthermore, the significances are overall high, but decrease for rising pT after

an initial increase from the lowest pT interval. However, the mean µ of the fitted functions in

general shifts to lower values and the width σ increases for higher pT intervals, due to the peak

shifting and widening in the mass distribution, which the fit function matches. Particles with

higher momenta show tracks with less curvature, leading to worse momentum resolution, which

could be an explanation for the shifting and widening. The PDG reference value for the mean is

mJ/ψ = (3096.900± 0.006) MeV/c2, for which only the prompt value from the lowest transverse

momentum interval is in a 3σ range [31].

The quality of the residual mass distributions and fits should also be addressed. In the case

of the prompt signal fits, the background is significantly reduced compared to the invariant mass

distributions before the application of ML. This trend continues with respect to the peak height

with rising transverse momentum. Therefore, the invariant mass distributions foremostly show

the invariant mass distribution of the J/ψ with the bremsstrahlung tail. As a result, the signal

fit lies close to the total fit, hence it can be concluded that the reduction of background works

well for prompt signal with the specific working points applied. However, it should be noted that

the number of J/ψ calculated from these fits is significantly lower than before the usage of the
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BDTs. The reason for this is twofold: First, the numbers from the first fits included both prompt

and non-prompt J/ψ, and second, the chosen working points are most likely cutting away a

significant amount of real J/ψ as they are chosen quite harshly. Nevertheless, the resulting fits

are overall satisfactory.

On the other hand, the invariant mass distributions for non-prompt selections indicate some

problems with the BDT models or data. While the background overall is reduced with respect to

the peak heights compared to before the models were applied, there is also an increased amount

of entries to the left side of the mass peak. This effect is present for all pT intervals, but is

dampened with increasing pT . Since the background decreases with rising pT for the prompt

cuts, it is very likely that the increased amount of entries here also stems from background that

is not filtered out by the BDT model. Further increasing the harshness of the non-prompt and

background selection does not lead to any meaningful reduction of the increased background

on the left side. The effect is also observed in the J/ψ sidebands, where the distributions of

the training features after application of the non-prompt selections reveal that the remaining

background might resemble the non-prompt J/ψ to such a degree, that it is incorrectly classified

as such. It is ultimately unknown what causes this high remaining background, but a fraction of

it might stem from correlated background from semileptonic decays of charm and beauty hadrons

[32, 33].

Due to the distorted shape of the non-prompt invariant mass distributions, fitting the Crystal

Ball function with polynomial background leads to signal shapes, which differ severly from the

prompt fits. Therefore, it is very likely that the values calculated from the fits do not reflect

reality correctly. The cause of the effect has to be found and eliminated, in order to correctly

measure the non-prompt J/ψ and all associated values via the usage of BDT models in a future

analysis.

In this thesis, the real fractions of prompt and non-prompt J/ψ in the prompt and non-prompt

signals are not determined and have to be further studied in a future analysis. Considering the

high significances and the stringently selected working points to achieve a high fraction of either

prompt or non-prompt J/ψ, the analysis of prompt and non-prompt J/ψ in the J/ψ → e+e−

decay channel through the usage of BDTs can be feasible in a future anlaysis, as long as the

mentioned unexpected residual background in the non-prompt invariant mass distribution can be

explained and reduced to an acceptable level. As this thesis shows very promising results for the

prompt J/ψ, an anlysis of only prompt J/ψ could be feasible. However, a point of contention is

the usage of BDT models that can not fully distinguish between background and non-prompt

J/ψ for reasons that have yet to be investigated.
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Figure 22: Invariant mass distribution fits for prompt J/ψ → e+e− for all pT ranges with combinatorial
background subtracted.
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Figure 23: Invariant mass distribution fits for non-prompt J/ψ → e+e− for all pT ranges with combinatorial
background subtracted.
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5 Conclusion and outlook

In this thesis, the feasibility of the prompt and non-prompt J/ψ analysis in pp collisions at
√
s = 13.6 TeV with ALICE in Run 3 at midrapidity via the J/ψ → e+e− decay channel has

been investigated. The data set of reconstructed J/ψ candidates is split into four intervals of

the transverse momentum in the 0 < pT < 12 GeV/c range. Suitable features are selected for

the differentiation of background, prompt and non-prompt candidates, by comparing the feature

distributions for the background data with the distributions for prompt and non-prompt MC data.

Using these features, a multiclass BDT model is trained for each separate transverse momentum

interval in order to classify the reconstructed candidates into the categories background, prompt

and non-prompt. Working points are chosen for the BDT outputs on the basis of either a high

prompt or non-prompt fraction and an optimized significance, in order to investigate possible

classification problems. The selections are applied to the data and the signal peaks of the

invariant mass distributions are fitted for both prompt and non-prompt signal. Exact fractions

of prompt and non-prompt signal have not been not calculated, but selections are optimized to

ensure high fractions for the respective type of interest, in order to facilitate the judgement of

the model capabilities. Significances between 110.01 and 179.47 are found for prompt J/ψ, while

for non-prompt J/ψ lower significances between 52.19 and 78.28 are observed. The invariant

mass distributions for non-prompt signal show an increased amount of background to the left of

the mass peak, of which the origin is not fully understood. Therefore, the analysis of prompt

and non-prompt J/ψ using the J/ψ → e+e− decay channel can be deemed feasible, as long

as the problem of residual background for non-prompt signal can be resolved. Thus, further

investigation is necessary to definitively settle the question of feasibility.

Expanding on the studies of this thesis, a full working point determination should be carried

out in order to find the fractions of prompt and non-prompt candidates and the significance of

the signal. Furthermore, the exact prompt and non-prompt fractions of the (non-)prompt signal

need to be determined in a separate calculation. Additionally, remaining prompt candidates in

non-prompt signal need to be removed, while non-prompt candidates are to be subtracted from

the prompt signal. In the selection processes, a number of candidates is excluded, which also

needs to be accounted for in the calculation of the differential cross section. Due to the fact that

a fraction of real prompt and non-prompt J/ψ are not included in the extracted signals, efficiency

corrections have to be applied. These efficiency corrections include preselection efficiencies and

BDT efficiencies, but also consider the detector acceptance. In order to correctly assess the

results, systematic uncertainties also need to be considered. Different bin widths, fit ranges or

background fit functions can lead to slightly different signal fits, thus varying the number of

extracted J/ψ. Systematic uncertainties also result from the selection of working points, which

can be estimated through variation of the chosen strictness.

The successful continuation of this analysis will simultaneously allow for an application of these

analysis methods in heavy-ion collisions, which can lead to improvements in the measured J/ψ

and beauty hadron production cross sections in Pb-Pb collisions. This will ultimately contribute

to an improved understanding of the QGP and its evolution, as well as the hadronization of
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beauty quarks. On the other hand, the analysis of a variety of other charm and beauty hadron

decays will be required, to fully grasp the mechanisms behind hadronization and the evolution of

the QGP.

40



6 Appendix

6.1 Feature distributions
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Figure 24: Distribution of DCAxyzBetweenTrksKF for data in the sideband regions, prompt MC, non-
prompt MC and data in the peak region with nσπ

TPC
> 4.0 and nσp

TPC
> 4.0 cuts applied in all pT ranges.
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Figure 25: Distribution of Chi2OverNDFKFGeo for data in the sideband regions, prompt MC, non-prompt
MC and data in the peak region with nσπ

TPC
> 4.0 and nσp

TPC
> 4.0 cuts applied in all pT ranges.
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Figure 26: Distribution of PseudoproperDecayTimeKFGeo for data in the sideband regions, prompt MC,
non-prompt MC and data in the peak region with nσπ

TPC
> 4.0 and nσp

TPC
> 4.0 cuts applied in all pT

ranges.

43



1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
fCosPAKFGeo 

3−
10

2−10

N
or

m
al

iz
ed

 e
nt

rie
s

T
p ψ J/cfCosPAKFGeo for 0-2 GeV/

=13.6 TeVsRun3 pp 
This thesis

-e+ e→ ψJ/

Data, sidebands

Data, peak, strong PID cuts

Prompt MC

Non-prompt MC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
fCosPAKFGeo 

3−
10

2−10

1−10

N
or

m
al

iz
ed

 e
nt

rie
s

T
p ψ J/cfCosPAKFGeo for 2-4 GeV/

=13.6 TeVsRun3 pp 
This thesis

-e+ e→ ψJ/

Data, sidebands

Data, peak, strong PID cuts

Prompt MC

Non-prompt MC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
fCosPAKFGeo 

3−
10

2−10

1−10

N
or

m
al

iz
ed

 e
nt

rie
s

T
p ψ J/cfCosPAKFGeo for 4-6 GeV/

=13.6 TeVsRun3 pp 
This thesis

-e+ e→ ψJ/

Data, sidebands

Data, peak, strong PID cuts

Prompt MC

Non-prompt MC

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
fCosPAKFGeo 

4−10

3−
10

2−10

1−10

N
or

m
al

iz
ed

 e
nt

rie
s

T
p ψ J/cfCosPAKFGeo for 6-12 GeV/

=13.6 TeVsRun3 pp 
This thesis

-e+ e→ ψJ/

Data, sidebands

Data, peak, strong PID cuts

Prompt MC

Non-prompt MC

Figure 27: Distribution of CosPAKFGeo for data in the sideband regions, prompt MC, non-prompt MC
and data in the peak region with nσπ

TPC
> 4.0 and nσp

TPC
> 4.0 cuts applied in all pT ranges.
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Figure 28: Distributions of the used features, invariant mass m and transverse momentum pT in the
0 < pT < 2 GeV/c range.
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Figure 29: Distributions of the used features, invariant mass m and transverse momentum pT in the
2 < pT < 4 GeV/c range.
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Figure 30: Distributions of the used features, invariant mass m and transverse momentum pT in the
4 < pT < 6 GeV/c range.
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Figure 31: Distributions of the used features, invariant mass m and transverse momentum pT in the
6 < pT < 12 GeV/c range.
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6.2 Correlation matrices
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Figure 32: Correlation matrices of the used features, invariant mass m and transverse momentum pT for
the three classes in the 0 < pT < 2 GeV/c range.
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Figure 33: Correlation matrices of the used features, invariant mass m and transverse momentum pT for
the three classes in the 4 < pT < 6 GeV/c range.
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Figure 34: Correlation matrices of the used features, invariant mass m and transverse momentum pT for
the three classes in the 6 < pT < 12 GeV/c range.
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6.3 Feature importance
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Figure 35: Impact of the used features on the model for each class measured by the mean SHAP value.
These are the feature importances of the model for the 0 < pT < 2 GeV/c range.
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Figure 36: Impact of the used features on the model for each class measured by the mean SHAP value.
These are the feature importances of the model for the 4 < pT < 6 GeV/c range.
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Figure 37: Impact of the used features on the model for each class measured by the mean SHAP value.
These are the feature importances of the model for the 6 < pT < 12 GeV/c range.
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6.4 ROC curves
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Figure 38: ROC curves and their AUC values of the model for the 0 < pT < 2 GeV/c range.
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Figure 39: ROC curves and their AUC values of the model for the 4 < pT < 6 GeV/c range.
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Figure 40: ROC curves and their AUC values of the model for the 6 < pT < 12 GeV/c range.
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6.5 BDT outputs
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Figure 41: BDT outputs for the three classes with training and test data in the 0 < pT < 2 GeV/c range.
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Figure 42: BDT outputs for the three classes with training and test data in the 4 < pT < 6 GeV/c range.
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Figure 43: BDT outputs for the three classes with training and test data in the 6 < pT < 12 GeV/c range.
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List of Acronyms

ALICE A Large Ion Collider Experiment

ALPIDE ALICE Pixel Detector

APD Avalanche Photodiode

AUC Area Under Curve

BDT Boosted Decision Tree

CART Classification and regression trees

CBM Compressed Baryonic Matter

CERN Conseil Européen pour la Recherche Nucléaire (European

Organization for Nuclear Research)

CMS Compact Muon Solenoid

DCA Distance of Closest Approach

EMCal ElectroMagnetic Calorimeter

FIT Fast Interaction Trigger

GEM Gas Electron Multiplier

GPU Graphics Processing Unit

HIC Hybrid Integrated Circuit

hipe4ml Minimal heavy ion physics environment for Machine Learn-

ing

HMPID High Momentum Particle Identification Detector

IB Inner Barrel

IROC Inner Readout Chamber

ITS Inner Tracking System

LEP Large Electron-Positron Collider

LHC Large Hadron Collider

LS2 Long Shutdown 2

MAPS Monolithic Active Pixel Sensors

MC Monte Carlo

MCH Muon tracking Chambers

MFT Muon Forward Tracker

MID Muon Identifier

ML Machine Learning

MRPC Multi-gap Resistive-Plate Chamber

MWPC Multiwire Proportional Chamber

NP Non-prompt

O2 Software framework used for online and offline reconstruc-

tion and physics analysis in Run 3
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OB Outer Barrel

OROC Outer Readout Chamber

OvO One-vs-One

OvR One-vs-Rest

P Prompt

Pb-Pb Lead-Lead

PDG Particle Data Group

PHOS PHOton Spectrometer

PID Particle Identification

pp proton-proton

PV Primary Vertex

QCD Quantum Chromodynamics

QGP Quark-Gluon Plasma

RHIC Relativistic Heavy Ion Collider

ROC Receiver Operating Characteristic

SHAP SHapley Additive exPlanations

SM Standard Model of particle physics

SPS Super Proton Synchrotron

SV Secondary Vertex

TOF Time-of-Flight detector

TPC Time Projection Chamber

TRD Transition Radiation Detector

XGBoost eXtreme gradient Boosting

ZDC Zero-Degree Calorimeters
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