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Abstract

The study of the production of charmonia, such as the J/1, is crucial to the investigation
of the quark-gluon plasma and the hadronization processes occurring inside of it. In order
to measure the various effects taking place within this exotic state of matter produced in
heavy-ion collisions, it is of utmost importance to precisely reconstruct the decays of prompt
and non-prompt J/v. The former are produced in the initial hard scattering of partons, while
the latter originate from the decay of beauty hadrons, resulting in different interactions with
the quark-gluon plasma, thus a separation of both types is essential. Naturally, proton-proton
collisions should also be considered, serving as a point of reference for heavy-ion collisions.
In this thesis, the feasibility of the analysis of prompt and non-prompt J/v in proton-proton
collisions at a center of mass energy of /s = 13.6 TeV with the ALICE detector in Run 3 via
the J/¢ — ete™ decay channel is studied. The reconstructed candidates from Run 3 data
collected in 2022 are split into four transverse momentum intervals between 0 GeV/c and 12
GeV/c. For the separation of the two types of J/v and background, Boosted Decision Trees
(BDT), implemented using the XGBoost algorithm, are employed as so-called ” multiclassifiers”.
Lastly, the yield of prompt and non-prompt J/1, as well as the associated significances are
computed through fits of the signal peaks.

Significances between 110.01 and 179.47 are observed for the prompt signal, while lower
significances ranging from 52.19 to 78.28 are determined for non-prompt J/v. Application of
the non-prompt selections reveals an enhanced amount of entries for mass values lower than
the J/1¢ mass, indicating that the models are not fully capable of separating background and
non-prompt signal. Thus, a full analysis of both prompt and non-prompt J/v can only be
deemed feasible, if this residual background problem can ultimately be resolved.



Zusammenfassung

Die Messung der Produktion von Charmonia, wie dem .J/1), spielen eine wichtige Rolle
fiir die Untersuchung des Quark-Gluon-Plasmas und der Hadronisierungsprozesse, welche
darin stattfinden. Um die verschiedenen Effekte, welche in diesem in Schwerionenkollisionen
erzeugten Zustand der Materie stattfinden, zu messen, ist es von duflerst groffer Bedeutung die
Zerfille von prompt und non-prompt J/1) zu rekonstruieren. Erstere werden in harter Streuung
von Partonen erzeugt, wihrend letztere aus Zerfdllen von Beauty-Hadronen stammen, was zu
unterschiedlichen Interaktionen mit dem Quark-Gluon-Plasma fiihrt, weshalb die Trennung
der beide Typen essenziell ist. Selbstverstindlich sollten Proton-Proton-Kollisionen ebenfalls
betrachtet werden, da sie Vergleichswerte fiir Schwerionenkollisionen zur Verfiigung stellen.
In dieser Arbeit wird die Machbarkeit einer Analyse von prompt und non-prompt J/1) fiir
Proton-Proton-Kollisionen bei einer Schwerpunktsenergie von /s = 13.6 TeV mit dem ALICE
Detektor in Run 3 fiir den Zerfallskanal J/4) — eTe™ untersucht. Die rekonstruierten Kandi-
daten aus den in 2022 gesammelten Run 3 Daten werden in vier Intervalle des transversalen
Impulses zwischen 0 GeV/c und 12 GeV /c aufgeteilt. Fiir die Trennung der beiden Typen
von J/v¢ und des Hintergrunds werden Boosted Decision Trees (BDT) eingesetzt, welche
durch den XGBoost Algorithmus implementiert wurden und als sogenannte Multiclassifier
eingesetzt werden. Abschliefend werden die Ertrige, sowie die zugehorigen Signifikanzen der
Signal-Peaks fiir prompt und non-prompt J/ bestimmt.

Die berechnetten Signifikanzen fiir prompt J/v liegen zwischen 110.01 und 179.47, withrend
fiir non-prompt J/1 niedrigere Signifikanzen im Bereich zwischen 52.19 und 78.28 vorliegen.
Die Anwendung der BDT-Selektion fiir non-prompt J/ zeigt, dass eine ungewdhnlich hohe
Menge von Eintrigen fiir Massen unterhalb der J/¢-Masse vorliegt, was nahelegt, dass die
trainierten Modelle nich in der Lage sind, Hintergrund und non-prompt Signal vollstindig zu
trennen. Somit kann eine volle Analyse von prompt und non-prompt J/v nur als machbar
bezeichnet werden, wenn dieses Problem des iibrig bleibenden Hintergrundes endgiiltig gel6st

werden kann.
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1 Introduction

1.1 Motivation

The breakthroughs of high-energy physics have fundamentally changed our understanding of
nature by furthering the comprehension of the composition of matter and the interactions that
govern it. Research of high-energy hadronic collisions has made it possible to understand strongly
interacting matter and establish the associated theory of Quantum Chromodynamics (QCD).
Moreover, collisions of heavy ions allow us to explore the quark-gluon plasma (QGP), an exotic
state of matter characterized by extremely high temperatures and pressures, which is thought to
have been present shortly after the birth of our universe. One of the experiments dedicated to
the research of QCD and the QGP is the ALICE experiment, which is one of the four major
experiments at the Large Hadron Collider (LHC) at CERN [1].

Measuring the production of heavy-flavor hadrons, which contain charm (¢) and beauty (b)
quarks, in proton-proton (pp) collisions serves as a test of perturbative QCD, while also providing
an important reference to production measurements in heavy-ion collisions, which is essential for
the research of the QGP in heavy-ion collisions. Heavy-flavor hadrons are suitable probes of this
rare state of matter, since charm (c) and beauty (b) quarks are exclusively produced in the initial
hard scattering of the collision due to their large masses. Therefore, these quarks experience the
evolution of the QGP from start to finish, thus being subject to momentum and energy exchange
with the medium. Additional effects observed in heavy-ion collisions are the suppression and
regeneration of so-called ”quarkonia”. The J/¢ meson, which is part of this class of particles, is
of particular interest for the research of the QGP. It not only experiences these effects itself, but
it is also the decay product of heavier hadrons which experience the aforementioned interactions
with the medium. Therefore, precise measurements of the production of J/v in pp collisions are
of extraordinary importance, in order to fully understand the evolution of the QGP in heavy-ion
collisions, as well as its effect on the production of J/1).

In order to reach unprecedented precision and to consequently further the current under-
standing of the QGP, the ALICE experiment has undergone major upgrades during the Long
Shutdown 2 (LS2). Using Run 3 data taken with the upgraded detector, this thesis explores
the potential of machine learning methods as a tool to reconstruct prompt and non-prompt

J/v — ete™ decays in pp collisions.



1.2 The Standard Model of particle physics

The Standard Model (SM) forms the fundament of the field of particle physics and describes the
fundamental constituents of the universe: namely the elementary particles and the interactions
between them. While the Standard Model describes all current experimental data remarkably
well, it does not account for all effects, as seen for example with neutrino oscillations. It should
be noted that the Standard Model includes the electromagnetic interaction, the weak interaction
and the strong interaction, but not gravity, thus it only accounts for three of the four fundamental

interactions [2].
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Figure 1: The elementary particles and bosons of the Standard Model of particle physics [3].

Matter in our universe is made up of twelve fundamental spin % particles (fermions), of which
six are quarks and six are leptons, with both types divided into three generations (see fig. 1).
The quarks have a charge of either %e (u, ¢, t) or —%e (d, s, b), carry color charge and differ
in mass and flavor, while interacting strongly, electromagnetically and weakly. Due to their
ability to interact via the strong interaction, they form color-neutral bound states called hadrons
(mesons and baryons). The top quark is the only exception, since its lifetime is shorter than
the hadronization time. Leptons on the other hand can be divided into charged and uncharged
leptons (neutrinos). Electrons (e¢™), muons (1~ ) and taus (77 ) interact electromagnetically and

weakly, whereas their respective neutrinos (ve, v,, v-) only interact weakly, since they have



no electrical charge. Each fermion has an antiparticle, which is charge conjugated form of the
particle. The three fundamental interactions described by the SM are mediated by the gauge
bosons, which are spin 1 particles. Strong interactions are mediated by the eight gluons (g)
carrying color charge, while photons () mediate the electromagnetic interaction and the W=
and Z bosons mediate the weak interaction. Lastly, the Higgs boson (H), a scalar boson with
spin 0, gives rise to the masses of the quarks, charged leptons and the mediators of the weak
interaction via the Higgs mechanism. With the discovery of the Higgs boson by the ATLAS and
CMS experiments at the Large Hadron Collider (LHC) the SM was completed in 2012, validating
the theoretical concepts of the SM [2].

1.3 The Large Hadron Collider and heavy-ion collisions

The Large Hadron Collider (LHC) is a synchrotron with a circumference of 26.7 km, making it
the world’s largest particle accelerator. It is part of the CERN accelerator complex (see fig. 2), of
which large parts are situated on Swiss territory, while the LHC itself and all experiments except
ATLAS also stretch far into French territory. After the Large Electron-Positron collider was
dismantled when operation was finished, the underground circular tunnel at a depth of roughly
100 m, which was housing it, was repurposed for the LHC. The LHC is capable of accelerating
bunches of protons as well as heavy ions and colliding them at four interaction points along
the beam line, where the four main experiments ATLAS, CMS, LHCb and ALICE are located.
While ATLAS and CMS are general purpose detectors, which are specialized for the discovery the
Higgs boson, LHCDb is dedicated to beauty physics and ALICE was constructed to investigate the
QGP. For proton-proton (pp) collisions in Run 3 the LHC can achieve a center of mass energy of
Vs = 13.6 TeV after the upgrades made during the Long Shutdown 2, whereas center of mass
energies per nucleon pair of \/syn = 5.36 TeV can be reached in lead-lead (Pb-Pb). However,
a series of particle accelerators (see fig. 2) is first required to produce the beams of protons or
heavy ions at lower energies, from which the LHC can accelerate them to their final energies.
Proton beams are produced from negative negative hydrogen ions (H™), which are stripped of
their electrons after the first steps of acceleration. Lead ions, on the other hand, originate from
evaporated lead that is injected into a plasma chamber, where the lead atoms are ionized. They
then are accelerated and further stripped of the remaining electrons to create Pb®+
are then injected into the LHC as a beam with up to 1248 bunches [4, 5, 6].

When ultra-relativistic heavy ions collide, a state of matter called quark-gluon plasma (QGP)

ions, which

is formed, which is researched by the ALICE experiment. It is a phase of matter, where the
density and temperature of the medium are very high and the strongly interacting gluons and
quarks are deconfined and therefore not bound in hadrons. Heavy ions take the form of Lorentz
contracted discs at ultra-relativistic velocities, which are present at LHC energies. These discs
consist of many nucleons and carry large amounts of energy, leading to an enormous number
of quarks, gluons and sea quarks contained by them. Due to the high concentration of quarks,
gluons and energy during the collision, the conditions for the QGP to form are fulfilled. From

the initial state, the QGP is formed and after a short period of evolution as an ideal relativistic
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fluid, hadronization occurs inside the medium (see fig. 3). Lastly the freeze-out of the hadrons
takes place, from which hadrons with high momenta remain, that can then be detected inside the
ALICE detector. The quark-gluon plasma is a topic of interest, since it is believed that the QGP
was formed very shortly after the Big Bang, after which the matter cooled down and hadronized.
On another note, heavy ions are required in order to study the QGP with a hadron collider,

although there are some indications that it might be formed in pp collisions as well [1].

Time: 0 fm/c s 1fm/c ~10 fm/c ~105 fm/c

Figure 3: The evolution of a heavy-ion collision at LHC energies [1].

1.4 Prompt and non-prompt J/¢

One particle of notable interest in Pb-Pb collisions and the research of the QGP is the J /1) meson.
It is an electrically uncharged vector meson consisting of a charm quark and a charm antiquark
(c¢), which is categorized as ”quarkonium” and more specifically ”charmonium”. When c¢ pairs
are created in the initial collision of two lead nuclei, they are likely to separate inside the QGP
due to the high temperatures of the QGP that give rise to so-called ” color-charge screening”. Due
to the high abundance of quarks in the QGP, it is more likely for the charm quarks to recombine
with lighter quarks than with anticharm quarks. This suppression effect of the production rate
of the J/v has been observed at SPS and RHIC. However, the LHC operates at larger center
of mass energies of \/syny = 5.36 TeV per nucleon pair which leads to a regeneration effect
through statistical recombination, that counteracts the suppression effect. The increase in the
production rate of J/1 at higher energies, is due to many more c¢ pairs being produced initially
and therefore the probability is higher that different ¢ quarks and ¢ quarks recombine after some
scattering inside the QGP. Naturally, these effects also take place for other quarkonia, which
consist of ¢¢ or bb pairs. Therefore, one way to study the suppression and regeneration effects as
properties of the QGP is to measure the production rates of these quarkonia [1].

When measuring J/v, a distinction between prompt J/1¢ and non-prompt J/1 has to be



made. Prompt J/v originate from the initial hard scattering of the collision or the regeneration
process, while non-prompt J/1¢ are decay products of heavier B hadrons like B mesons (see
fig. 4). These heavier hadrons are only produced in the initial hard scattering, thus they travel
through the QGP and are subject to energy and momentum exchange with the medium during
it’s entire evolution. Therefore prompt J/1 and non-prompt J/¢ as decay daughters are well
suited candidates to probe the QGP. In order to understand the J/t in heavy-ion collisions,
the production of J/v in pp collisions as a reference is studied. The latest measurements of the
differential cross sections of prompt and non-prompt .J/1 via the J/¢ — e*e™ decay channel (see
fig. 5) are shown in fig. 6. Measurements of the cross sections might be improved in future analysis
by employing Boosted Decision Trees (BDT) in order to differentiate between prompt J/1 and
non-prompt J/1. The reconstruction of prompt and non-prompt J/4 in the J/1) — ete™ decay
channel in pp collisions with the ALICE detector through the use of Boosted Decision Trees is

carried out in this thesis. [1].

X

€

Figure 4: Visualization of the decay topology of prompt J/v and non-prompt J/1. PV stands for primary
vertex, where particles produced in the collision originate from. At a SV (secondary vertex) particles
decay and produce multiple lighter particles. Prompt and non-prompt J/¢ do not necessarily originate
from the same PV, but for illustrative purposes they do in this figure. The decay product X depends on
the type of beauty (B) hadron that decays into the non-prompt J/v. L is the decay length of the J/,
which is an important quantity for the differentiation between prompt and non-prompt J/1).
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Figure 5: Feynman diagram for the J/¢ — eTe™ decay.
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Figure 6: Measurements of the pp-differential cross section of prompt J/v (left) and non-prompt J/¢
(right) at midrapidity (|y| < 0.9) in pp collisions at /s = 13 TeV through the dielectron decay channel.
Additionally, predictions of the differential cross section from model calculations are shown [8].



2 The ALICE experiment

2.1 Overview of the ALICE detector

ALICE (A Large Ion Collider Experiment) is a heavy-ion detector at the Large Hadron Collider
(LHC) at CERN, with a focus on the strong interaction of matter, as well as the quark-gluon
plasma. It allows the extensive study of hadrons, electrons, muons and photons produced in
heavy-ion collisions, particularly Pb-Pb collisions. Since the detector was upgraded during the
Long Shutdown 2 and exclusively Run 3 data is used in this thesis, the description will focus on
the Run 3 version of the detector, ALICE 2 (fig. 7).

° EMCAL | Electromagnetic Calorimeter

o FIT | Fast Interaction Trigger

e HMPID| High Momentum Particle
Identification Detector

o ITS| Inner Tracking System

e MCH| Muon Tracking Chambers
o MFT| Muon Forward Tracker

e MID| Muon Identifier

e PHOS/CPV| Photon Spectrometer
© oF| Time Of Flight

@ TPC| Time Projection Chamber
@ TRD| Transition Radiation Detector
@ 2ZDC| Zero Degree Calorimeter
@ Absorber

@ Dipole Magnet

@ L3 Magnet

Figure 7: Schematic view of the ALICE detector during Run 3 [9].

The dimensions of ALICE are 16 x 16 x 26 m® with a total weight of approximately 10000 t.
It is comprised of a central barrel part, which measures hadrons, electrons and photons, as well
as a forward muon spectrometer. A 0.5 T magnetic field is provided by a large solenoid magnet
surrounding the central part, which was repurposed from the L3 experiment at LEP

The innermost system of the central barrel is the upgraded Inner Tracking System (ITS2),
which consists of seven layers of ALPIDE (ALICE Pixel Detector) monolithic active pixel sensors
(MAPS). Its main function is the reconstruction of particle trajectories, as well as the primary
vertex (PV) and secondary vertices (SV) of heavy-flavor and strange particle decays with a high
spatial and momentum resolution. Furthermore it is used to improve the resolution for particles
reconstructed by the Time Projection Chamber (TPC)



Moving outwards, the ITS is followed by the Time Projection Chamber (TPC), which extends
from 0.85 m to 2.5 m in radial direction with a length of 5 m along the beam. It measures
the mean energy loss of particles % via ionization of the gas in the TPC and can be used for
tracking and particle identification. Since the I'TS and TPC are especially important for the
reconstruction of J/v decays, their structure and functionality will be further elaborated upon
in section 2.2 and section 2.3

The subsequent Transition Radiation Detector (TRD) provides electron identification in the
central barrel. It consists of six layers of gas chambers, each containing a foam/fibre radiator and
a Xe-COy gas mixture. Above 1 GeV/c the transition radiation from electrons passing through a
radiator combined with the information from the specific energy loss in the TPC can be utilized
to differentiate electrons from pions. Below this momentum threshold, the specific energy loss
measurement in the TPC suffices to identify electrons

The TRD is followed by the Time-of-Flight detector (TOF); a large array of Multi-gap
Resistive-Plate Chamber (MRPC) detectors and which further enables the identification of
hadrons over a wide momentum range and electrons at low momentum. However, not all
detectors cover the full azimuthal range and one of them is the ElectroMagnetic Calorimeter
(EMCal), which is comprised of alternating layers of lead and scintillators. Unlike the EMCal,
the PHOton Spectrometer (PHOS) only covers a small range of the acceptance in the central
barrel. It is a high-resolution high-granularity electromagnetic calorimeter specialized for the
detection of photons and consists of scintillating lead tungstate (PbWOQOy) crystals with avalanche
photodiode (APD) photodetectors and preamplifiers. Another detector that not spanning the
whole azimuthal range is the High Momentum Particle Identification Detector (HMPID), which
is a ring-imaging Cherenkov detector with liquid perfluorohexane (CgF14) radiators and adds
hadron identification capabilities at large transverse momenta that can not be provided by the
energy-loss measurement in the TPC

Additionally, the forward pseudorapidity range —4.0 < n < —2.5 is covered by muon
detectors, which identify muons and remove hadrons by utilizing a system of absorbers. Multiwire
proportional chambers (muon tracking chambers, MCH) and resistive plate chambers (muon
identifier, MID) are used for the main muon detector stations. In ALICE 2, the Muon Forward
Tracker (MFT), was added. It is comprised of tracking stations with ALPIDE silicon pixel
sensors that are installed in front of the muon absorber to increase pointing resolution and
mass resolution for the detection of secondary charmonia and muons from B-meson decays.
Additionally, a number of trigger systems, like the Fast Interaction Trigger (FIT), and other
detectors, like the Zero-Degree Calorimeters (ZDC), are utilized. For the online and offline
reconstruction and the physics analysis in Run 3 the new common software framework O? was
developed [9, 10, 11].

The reference coordinate system used in ALICE is a right handed system, where the x-axis
points horizontally towards the center of the LHC, the y-axis points vertically upwards and the
z-axis points along the beam line, away from the muon arm, with the origin of the coordinate
system being the nominal interaction point [9]. A spherical coordinate system is also often used,

where the azimuthal angle ¢ lies in the x-y-plane, the polar angle 6 lies in the y-z-plane and the



r-axis points in radial direction. To describe the acceptance for a portion of the detector, most
of the time the pseudorapidity 7 is used instead of the polar angle §. The pseudorapidity 7 is

defined as follows:
0
n:—lntan§. (1)

2.2 Inner Tracking System

The Inner Tracking System (ITS) constitutes the innermost detector layers in the central barrel of
the ALICE detector. Its main purpose is the reconstruction of particle trajectories, the primary
vertex (PV) and secondary vertices (SV) of heavy-flavor and strange particle decays with a high
spatial and momentum resolution for tracks and high spatial resolution for vertices. Additionally,
it can provide improvements to the momentum and angle resolution of the reconstruction of
particles by the TPC. Therefore, the I'TS contributes to, in principle, all physics topics that the
ALICE experiment addresses [9, 10].

Outer layers

iddle layers

Beam pipe

Figure 8: Schematic layout of the ITS2 [9].

During the LS2, substantial upgrades were made to the ALICE detector, most notably
the original ITS was replaced by the new Inner Tracking System (ITS2). Due to its reduced
distance to the interaction point, which was made possible by new beam pipe, and better position
resolution compared to the first I'TS, it provides better pointing resolution, while also enabling
it to handle a higher interaction rate of 50 kHz for high hit densities in Pb-Pb collisions and 1
MHz in pp collisions. The ITS2, as seen in fig. 8, consists of seven layers of ALPIDE (ALICE
Pixel Detector) Monolithic Active Pixel Sensors (MAPS), making it the largest-scale application
of these sensors in any high-energy physics experiment. It is structured into the inner barrel
(IB), which is made of the three innermost layers, and the outer barrel OB, which consists of two

double layers. Each radial position of the layers, which can be found in table 1, was optimized

10



in order to achieve best performance regarding pr resolution, pointing resolution and tracking
efficiency for Pb-Pb collisions with their high track-density environment. In total the sensors
cover a surface area of around 10 m? and 12.5 billion pixels with digital readout. The ITS
covers the pseudorapidity range of || < 1.22 for the region where 90% of collisions take place,
which translates to interaction vertices located in the range of approximately +10 cm around
the nominal interaction point along the beam axis [9, 12].

Table 1: Main layout parameters of the new I'TS2. A HIC (Hybrid Integrated Circuit) is an assembly of

polyimide Flexible Printed Circuit on which pixel chips and some passive components are bounded. A
stave is the basic detector unit, on which the pixel detectors, electronics and cooling are mounted [9].

Layer no. Average Stave No. of No. of Total no.
radius (mm) length (mm) staves HICs/stave of chips

0 23 271 12 1 108

1 31 271 16 1 144

2 39 271 20 1 180

3 196 844 24 8 2688

4 245 844 30 8 3360

5 344 1478 42 14 8232

6 393 1478 48 14 9408

The ITS2 encloses the new beam pipe with a central beryllium section, where the outer radius
was reduced from 28 mm to 18 mm compared to Run 1 and Run 2. Furthermore, the innermost
detector layer was moved closer, from 39 mm to 22.4 mm to interaction point and the material
budget was reduced to 0.36% X per layer for the innermost layers and limited to 1.10% X per
layer for the outer layers. Most importantly, the pixel size of the silicon pixel sensors was reduced
to 29.24pum x 26.88um, while the number of layers in the inner barrel was increased from two

to three. A comparison of the main detector parameters of the ITS1 and ITS2 can be found in

table 2 [9, 12].

Table 2: Comparison of the main detector parameters of the ITS1 and ITS2 [9].

ITS1 ITS2
Technology Hybrid pixel, strip, drift MAPS
No. of Layers 6 7
Radius 39 — 430 mm 22 — 395 mm
Rapidity coverage In| <0.9 In] <1.3
Material budget/layer 1.14% X inner barrel: 0.36% X
outer barrel: 1.10%X,
Pixel size 425 pum x 50 pm (only the two 27 pm x 29 pm
innermost layers) (all seven layers)
Spatial resolution (r¢ x z) 12 pm x 100 pm 5 pm X 5 pm
Readout Analogue (drift, strip), Digital (Pixel) Digital
Max rate (Pb-Pb) 1 kHz 50 kHz
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2.3 Time Projection Chamber

The Time Projection Chamber (TPC) represents the main tracking detector of the central barrel.
It is optimized to provide, with additional information from other detectors, charged-particle
momentum measurements with good separation of tracks and particle identification over a
wide momentum range. This is done through the measurement of the mean energy loss % by
ionization of the gas in the TPC and the momentum of each charged particle traversing the
detector gas [9, 10, 13].

central electrode

outer field cage N OROC3

OROC2
OROC1
IROC

sector

inner field cage

Figure 9: Schematic view of the TPC [14].

The layout of the TPC is visualized in fig. 9. It is cylindrical and ranges from 0.85m to 2.5m
in radial direction over a length of 5m, giving it a total active volume of 88 m3. Thus, it covers a
symmetric pseudorapidity interval around midrapidity (|n| < 0.9) covering the full azimuth. The
detector’s field cage has a high-voltage electrode in the center that divides the active volume
into halves and causes the free electrons created by ionization of the gas to drift towards the
endplates. Both endplates are subdivided into 18 azimuthal sectors, which each house one inner
(IROC) and one outer readout chamber (OROC). The TPC contains a gas mixture of Ne-CO2-Ny
(90-10-5), which is advantageous since Neon offers a higher ion mobility compared to Argon-based
mixtures, reducing the magnitude of space-charge distortions by a factor of almost two [9, 10].

In Run 1 and Run 2 the readout chambers of the TPC used multiwire proportional chambers
(MWPC), which required active ion gating to minimize space-charge distortions. Since this
requires triggered readout, which is not compatible with the goals of the upgraded ALICE
detector, the new upgraded TPC has to be read out continuously. Simultaneously, the excellent
performance has to be maintained and the space-charge distortions have to be kept at a tolerable
level, despite the high collision rate and the missing active ion gate. For this purpose, Gas
Electron Multipliers (GEMs) have been installed in the upgraded TPC, as they can be arranged

in stacks to create layers of amplification stages that can be tuned and suppress the ion backflow
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to the required level by blocking the path of back-drifting ions [9].
Using the measurements of specific energy loss, momentum and charge of particles, it is

possible to identify the particles (PID) by utilizing the parameterized Bethe-Bloch formula

£(61) = (P2 g - (PS " @;)) )

where 3 is the particle velocity relative to the speed of light, «y is the Lorentz factor and P;-Ps
are fit parameters. A visualization of the measured energy loss versus particle momentum and
corresponding parameterized Bethe-Bloch fits for different particle species can be seen in fig. 10.
At low momenta (p < 1 GeV/c), it is mostly possible to identify the particles on a track-by-track
basis, whereas statistical methods like multi-Gaussian fits have to be applied in order to separate
particles at higher momenta. In any case, identification also relies on PID information from other
detectors [13].
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Figure 10: Specific energy loss as a function of momentum in the TPC for different particle species in pp
collisions at /s = 13.6 TeV in Run 3. Warmer colors represent a higher concentration in track counts,
while the black lines show the parameterized Bethe-Bloch fits for different particle species [15].

In order to distinguish between different particle species by utilizing the TPC measurement,
the discriminating variable i is used. It describes the deviation of the measured signal Stpc
(energy loss %) from the expected signal (Sipq) predicted by eq. (2) for a particle of species i
in units of the TPC resolution o%p. Thus, it is calculated as follows [16]:

_ STPC - <S’11‘PC> (3)

O’i )
TPC ot
TPC
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2.4 Central barrel tracking

For the track reconstruction of the particles passing through the detector, mainly the capabilities
of the ITS2 and the upgraded TPC, but also the TRD and TOF are utilized. Unlike in Run 1
and Run 2, the track reconstruction for the I'TS2 is done completely independently from the
TPC.

The first step is the vertexing, i.e. the reconstruction of a PV, which is done by combining
the hits from every layer into a preliminary track and prolonging it to the inside of the beam
pipe. A PV can then be identified as the point in space, where the maximum number of tracks
meet. Afterwards the track finding and track fitting is applied to reconstruct the tracks through
the ITS. Simultaneously, the TPC starts with Cluster Finding, where the signals in the detector
are assigned positions and errors in both r¢ and z direction to form so-called clusters. Then the
Track Finding, Track Merging and Track Fitting is carried out for the TPC tracks by using a
Kalman Filter. The overall track reconstruction is done in an inward-outward-inward scheme.
In the first inward step the reconstruction starts in the outermost part of the TPC and moves
inward until it reaches the innermost part. Next the tracks from the standalone ITS tracking
and the TPC tracking are matched and the reconstruction is redone from the innermost layer of
the ITS outwards to the outermost part of the TPC. From there it is prolonged into the TRD.
Finally, the reconstruction is then repeated inwards from the outermost part of the TRD to the
innermost layer of the I'TS, which improves the reconstructed tracks even further and allows for
an even more precise determination of not only PVs, but also SVs. Due to the high resolution
made possible by the upgraded tracking systems, it is possible to determine the position of SVs
with even greater spatial resolution than during Run 1 and 2, by finding tracks with a distance
of closest approach (DCA) to the PV above a certain threshold. This is essential for the study of
short-lived heavy-flavor hadrons, which decay before reaching any detector.

On another note, the central barrel tracking is revolutionized by leveraging the potential
of hardware accelerators (GPUs) in Run 3. By running the track reconstruction for the TPC,
ITS and TRD on GPUs it is possible to do more synchronous (previously ”online”) event
reconstruction, which is necessary for calibration, data compression, as well as online quality

control and was unattainable in this scope in Run 1 and 2 [17, 13, 18].

2.5 Bremsstrahlung

Whenever charged particles pass through matter, they are subject to the emission of bremsstrahlung.
It is the electromagnetic radiation that is produced when a charged particle is decelerated by
the electric field of an atomic nucleus. Due to its low mass, electrons and positrons are affected
significantly stronger than other charged particles. The energy loss per distance traveled through

the medium from bremsstrahlung for electrons is given by

E dng,Z?03h*cPE E
(%) -t win @)
dr ) ,..a mZc zZ/3

where a = €2 /(4mephc) is the fine-structure constant, E is the energy of the electron, n, is
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the atom density of the medium, Z is the number of protons in the atomic nucleus and a(F) is a
numerical factor, which indicates at what impact parameter the incoming electron or positron is
still close enough to the nucleus to be deflected. Therefore, the energy loss from bremsstrahlung
increases slightly more than linearly with the energy of the electrons and outweighs the energy
loss from ionization at high momenta. If one disregards the energy dependence of the factor

a(E), eq. (4) can be integrated to compute the electron energy as a function of distance traveled:

E(z) = E(0) - e~/ %0, (5)

The length X, at which the energy of the electron has decreased to 1/e of its original value,

is defined as

Ang Z2a3 22 B -1
Xo:<” ahe A )> (6)

m2ct Z1/3
The cross section for bremsstrahlung with positrons is in general lower than with electrons,
but this effect is negligible for the momenta relevant here. Similarly to bremsstrahlung, the high
momentum electrons and positrons are also deflected by the strong magnetic field of the solenoid
magnet, leading to the emission of synchrotron radiation. When using the J/1 — eTe™ decay
channel, the effects of bremsstrahlung are clearly visible as the invariant mass distribution of the
J /1 reconstructed from the eTe™ pairs has a tail on the left side. This tail indicates that for a
portion of the eTe™ pairs, at least one of the leptons loses energy through bremsstrahlung and
the produced photons are not taken into consideration when reconstructing the J/v mass [19,
20].
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3 Analysis tools

3.1 KF Particle package

In high-energy particle physics, experiments need to cope with very high track densities, while
only rare signals may be of interest. Therefore, high accuracy and high speed are required for the
reconstruction of events, in order to find these rare signals efficiently in the large amounts of data.
The reconstruction of events involves finding and fitting particle tracks, aligning the detectors,
as well as determining the PV and SVs of events from the reconstructed tracks. Fit algorithms
like the Kalman filter are utilized to carry out this process. The Kalman filter is a recursive fit
algorithm for the analysis of linear discrete dynamic systems described by a state vector, which
contains a set of parameters. It provides an optimal estimation of the particle track parameters
in order to achieve the highest accuracy. Even nonlinearities can be taken into account, as long
as the model describing the system can be linearized beforehand. In high-energy physics, the
Kalman filter is used to fit the tracks of charged particles, where trajectories are affected by
energy loss through ionization and excitation in the material of the detector, as well as multiple
scattering and inhomogenities of the magnetic field inside the detector. It takes great effort to
account for such effects using the least squares method when fitting a particle trajectory, since
new parameters have to be introduced and fitted for each effect. On the other hand, the Kalman
filter is able to handle these nonlinearities, due to the fact that the discrete measurements in the
detectors allow for a linearization of the particle track segments, while aforementioned effects
in the detector material can be added in the neighborhood of each measurement. Therefore, it
is perfectly suited for the challenges of tracking particles with utmost precision in high-energy
physics experiments [21, 22, 23].

The KF Particle package is a software package, which uses the Kalman filter method for
the reconstruction of decay chains and short-lived particles. It was developed by the CBM
collaboration for the vertex reconstruction in high-energy experiments. Since the KF Particle
package uses the Kalman filtering algorithm, it provides an optimal estimation of the state vector
r of a particle with the corresponding covariance matrix C, which are iteratively updated after

each propagation to the next measurement. The state vector is defined as follows:

r:($7yazapmapy7p27EaS)T' (7)

In the KF Particle package, particles are parametrized with their spatial coordinates (x, y, z),

their momentum components (p, py, p.) and their energy E. Additionally, the parameter s =

S |~

is included, where L is the distance between the production and decay vertex of the particles
in the laboratory frame, while p is the total momentum of the particle. After the estimate
optimization of the state vector and its covariance matrix is completed, physical properties of
the particle such as mass, lifetime and decay length can be calculated with low computing effort.
Additional parameters of the reconstructed tracks, for example the signal that the particle leaves
in the ALICE TPC due to energy loss, are also provided by the KF Particle package. Some of

these quantities provided by the KF Particle package are used as input features for the training

16



of BDTs, to differentiate between background and prompt or non-prompt J/1¢ [21, 22, 23].

3.2 Boosted Decision Trees

The importance of Machine Learning (ML) for modern particle physics as an analysis tool
has grown over the years. Many analyses now utilize ML to handle billions of events, which
allows for an even more precise extraction of signal compared to rectangular cuts. In this thesis,
Boosted Decision Trees (BDT) are employed to precisely classify background, prompt J/1 and
non-prompt J/1. For this task, the XGBoost algorithm and the hipe4dml Python package were
used [24, 25].

Decision trees, which are non-parametric supervised learning algorithms used for classification
and regression tasks, are the basic units of a BDT. The structure of such a decision tree can be
seen in fig. 11 [26].

Root node

Internal node Internal node

Figure 11: Structure of a simple decision tree [26].

A decision tree forms a hierarchical tree structure with a root node at the top, branching into
internal nodes and lastly, leaf nodes. To train a model, a set of candidates where each candidate
holds a set of parameters and should be assigned to one unambiguous class, is considered. The
first decision is made at the root node, where all candidates start. If, for example, the decay
length of a candidate is higher than a certain threshold, it will follow the first branch to an
internal node, while it will follow the second otherwise. This procedure is then repeated until a
leaf node is reached. At each leaf node, candidates of predominantly one class should be collected,
since it is essential to achieve the highest possible purity for each leaf node. Decision trees can
be chosen to have higher depth and complexity, but at a certain point not enough data falls into
each subtree, which can lower the purity of leaf nodes. This is called overfitting and it manifests
in data not used for the training reaching significantly lower scores than the training data. The

reason for this is that the model learns statistical fluctuations instead of the desired properties
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when the trees have high depth or complexity. In the XGBoost algorithm, classification and
regression trees (CART) are employed. These CARTS are a slightly modified version of decision
trees, where the leaf nodes do not represent a given class. Instead they assign a score to each
candidate, which leaves more room for the interpretation of tree outputs. In order to increase
performance without increasing the complexity of the trees, an ensemble of trees is be used,
which can yield better performance than any single decision tree could [24, 26, 27].

XGBoost employs so-called "boosting”, where low complexity decision trees (weak learners)
are combined into one strong learner . This sequential learning process is iterative, meaning
that each tree is constructed in such a way that the previous weak learners with their errors are

considered. In fig. 12, a visualization of this boosted decision tree model is depicted [24, 27].

— Dataset]
decisiontreel.fit(Subset1) decisiontree2.fit(Subset2) decisiontree_n.fit(Subset n)
Boosting — }/ \I \I
1 2 n
learning from mistake learning from mistake
Adjusted Dataset Adjusted Dataset2]
- [ —

Figure 12: Scheme of tree boosting, where each tree learns from errors of the previous weak learners [28].

The XGBoost algorithm in the context of supervised learning tasks uses a set of features z;
of the training data set to make a prediction §; of the target value y;. For the given use case
of classifying heavy-flavor hadrons, the prediction value is interpreted as the probability for a
candidate to belong to a given class. BDT models are made up of many different parameters,
such as the features which will be used to make a decision, but also so-called hyperparameters,
which are optimize for the training, like the maximum tree depth. During the training of a
model, parameters will be varied to fit the training data, while hyperparameters are determined
beforehand. Hyperparameters like the maximum tree depth and learning rate are optimized
using the Optuna package included in the hipedml Python package, ultimately improving the
predictions [24, 29].

BDT models can be used for binary classification, where the classes are background and signal.
However, since prompt and non-prompt .J/1 should be differentiated, multiclass classification is
utilized, with background, prompt and non-prompt as the classes. In order to carry out multiclass
classification, it is separated into multiple binary classifications, where two different approaches,
One-vs-One (OvO) and One-vs-Rest (OvR), can be used. For the OvO approach, one BDT is
trained for every combination of two classes. The classes compete against each other one by
one, resulting in the pairs background vs. prompt, background vs. non-prompt and prompt vs.
non-prompt. Thus, three models are trained in total and when the model is applied, a majority
vote decides the final model prediction and an output score from zero to one for each class. On
the other hand, the OvR approach trains three models again, one for each class. However, in this
case, the classes always train against the rest of the classes, i.e. background vs. rest, prompt vs

rest and non-prompt vs. rest. The result is again an output score from zero to one for each class,
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which states the likeliness of the candidate to belong to the specific class. At a later stage of the
analysis, selections for the output scores must be determined, to classify the data with minimal

losses. For this analysis, the OvR approach is chosen. In this specific use case, the performance
difference between the approaches is minimal [30].
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4 Analysis

4.1 Preselections

This analysis of the decay channel J/¢ — eTe™ uses data measured in pp collisions at a center
of mass energy of /s = 13.6 TeV with the ALICE detector during Run 3 at midrapidity range
(lyl < 0.9). To carry out the analysis in this thesis, a data set with reconstructed candidates
and a Monte Carlo (MC) simulation set for both prompt and non-prompt J/v were provided.
Specifically, 22pass7 data and monte carlo simulations are used, where 22pass7 is an expression
for the seventh reconstruction pass of the raw data from 2022. Before the data is further analyzed,
it should be noted that a number of preselections for the tracks were applied to the dataset prior
to this analysis. The preselection cuts are listed in table 3 and will be explained briefly. In order
to restrict the data to regions of the detector where the track reconstruction works best, i.e. the
center of the detector, the event cut |V;| < 10 cm was chosen, where V is the position of the PV

in z-direction of an event.

Table 3: List of preselections applied to the reconstructed tracks.

Selection conditions
pr > 0.7 GeV/c
In| < 0.9
ITSibAny = true
Xirg < 5.0
TPCncls > 60
|IDCAzy| < 1.5 cm
|IDCA;| < 1.5 cm
n - | <4.0

TPC
n‘ﬂfPC > 2.5
N2 > 2.5

e pr: This is the transverse momentum of each decay particle, which can in principle be any
charged particle of which the momentum is measured, e.g. a pion, kaon, proton or electron.
It is sensible to use only tracks above a certain momentum threshold to exclude irrelevant

background.

e n: The pseudorapidity range is limited to the coverage of the TPC, since the PID and

tracking capabilities of it are used.

e : This cut requires the fit of a track via the I'TS to pass the given threshold. Additionally,

the tracks of the particles have to originate from the same vertex.

e [TSibAny: This variable indicates whether at least one hit was measured by the innermost
three layers of the ITS.

. X%TS: This cut requires the fit of a track via the ITS to pass the given threshold. Addi-

tionally, the tracks of the particles have to originate from the same vertex.
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e TPCncls: In order to ensure that only tracks with a certain amount of measurements by the
TPC are used, in order to obtain high track quality, it is required that the TPC measured

a certain amount of clusters for the particle.

e DCA,, and DCA;: The distance of closest approach (DCA) of a particle to its associated
PV needs to be below a certain threshold. Above this threshold, it is very unlikely that

particles stem from a J/.

e n s Moz, and Ngp,: These PID quantities were explained in section 2.3. They describe

oTpC
the distance of the energy loss measurement to the energy loss band of the specified particle.
Therefore, they are used to exclude most of the background, since no electrons will be

present in the regions beyond the used cuts.

These preselection are necessary in order to filter out any background candidates, which
would be easily classified, since the BDT training should focus on candidates more difficult to

classify to achieve the best results.

4.2 Signal extraction with rectangular cuts

Before making use of machine learning via BDT's, the signal extraction achieved with only the
rectangular cuts of the preselection is determined for later use as a point of reference. Since the
goal, ultimately, is to measure the pp-differential cross section of the J/1), the data is divided into
four transverse momentum intervals (0 —2 GeV/c, 2 —4 GeV/c, 4 —6 GeV/c and 6 — 12 GeV /c)
of the J/v. In order to reconstruct the J/1 signal, the invariant mass distributions for these
intervals have to be fit with an adequate fit function that represents the shape of the invariant
mass distribution of the J/¢ and the background. The final fit function consists of a Crystal
Ball function to accurately describe the signal shape and a second degree polynomial for the
background. An asymmetrical tail provided by the Crystal Ball function takes into account both
the detector resolution, as well as the loss in invariant mass resolution due to bremsstrahlung.
The Crystal Ball function consists of a Gaussian core with a power-law tail to the left side and is

defined as follows:
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with the normalization factor IV, the mean of the Gaussian u and the standard deviation of the
Gaussian 0. The parameter « specifies the position of the transition between the Gaussian and
the power-law tail, while n specifies how fast the tail falls off. However, before the fitting is carried

out, a like sign invariant mass distribution is created via the combination of two reconstructed
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particles with the same charge (like eTe™ or e"e™) and is subsequently subtracted from the
unlike sign distribution from two particles with opposite charge (like ee™). By subtracting the
combinatorial background like this, the background fitted by the polynomial is lower and more
flat, improving the quality of the overall fit. It should be noted that the like sign background
had to be scaled up to represent the combinatorial background. Afterwards, the remaining mass
distribution is fitted by the aforementioned combination of a Crystal Ball function and a second
order polynomial. The invariant mass distributions of unlike sign data and like sign data, as
well as the fits of the residual distributions are shown in fig. 13 for every pr interval. From
the fits, the number of J/¢ candidates in the signal region mass range of 2.7 < m/;, < 3.2
GeV/c? is calculated via the fit of the Crystal Ball function, as well as the number of background
candidates in the same region, with both the residual and combinatorial background included.

Additionally, the signal-to-background ratio % and the significance \/Siﬁ are computed. The

same procedure is carried out with additional PID cuts of nez, ., > 4.0 and NP > 4.0 and the
resulting invariant mass fits are shown in fig. 14. These specific cuts were chosen, since they are
later also utilized for the selection of features for the BDT training. Applying such selections may
be beneficial to increase the signal-to-background ratio and significance, due to the reduction of
background, though the yield of J/v is also drastically reduced. In the case of the 6 — 12 GeV/c
pr range, the significance is lower than before, demonstrating that rectangular cuts have to be
applied with great care, especially in a range where only a low amount of signal is available. The
signal extraction carried out here does not differentiate between prompt and non-prompt J/v.
Separation of these two categories via rectangular cuts would lead to a further decrease in signal
events. Therefore, the application of BDTs for the purpose of further decreasing background and

separating prompt and non-prompt J/1 is tested.

4.3 Machine learning training
4.3.1 Training candidate selection

Boosted decision trees are well suited for the separation of background, prompt .J/v and non-
prompt J/1, due to their ability to find and use patterns and correlations in the data for the
classification. ML models however, have to be trained on a training data set. For the background
data, the sidebands of the J/v invariant mass distribution in data are chosen, which in this case
includes the ranges 1.2 < Meandidate < 2.2 GeV/c? and 3.2 < Meandidate < 4.0 GeV/c?. These
ranges are chosen since the training background data set should include as few J/v signal as
possbile, while also matching the properties of the background that lies within the signal region
(2.2 < Meandidate < 3.2 GeV/c?). The signal data set is made up of MC simulated prompt and
non-prompt J/¢. Additionally, it should be noted that a model is trained for each pr interval,
since features can behave differently and have varying importance in the classification process,
depending on the transverse momentum of the J/v. The total number of candidates used in
the training for each class and each transverse momentum interval is shown in table 4. For the
number of candidates used in the training of the model all available prompt and non-prompt

candidates are considered, while for the background the number equals to the total amount of

22



80000

70000

60000

Entries per 40 MeV/c?

50000

40000

30000

20000

10000

Run3 pp {s=13.6 TeV

NEVEMS -

0.0 <p < 2.0 GeVic

)
o'
\d o'

00..

1649.46 B, J/Y - e'e’

g000%0®%00000e,,

—@— Unlike sign
—@— Like sign

ooq ‘“.

35000

30000

25000

20000

15000

10000

5000

Ny = 164200 £ 2170
Ngyg = 532077 £ 2003
S/B =0.308+ 0.003

S __-14805
S+28

—@— Unlike - Like sign
—— Total fit

~—— Signal

—— Background

| = 3.0800 + 0.0015
0 =0.0445 + 0.0014
X2/NDF = 4.04

MM"'»-N

o b Lo Ly

32 34 36 38 4
m,, [GeV/c?]

k3 £ —@— Unlike sign
S 22000 \%
g E  Run3pp {5=13.6 Tev
S 20000 N, 649468, J/p - e'e
N =
5 18000 40<p <60 GeVic .
2 =
3 16000? . .
£ 14000 .
E °
12000E A .
10000 oo*°
= Lo0o®
8000Feeese®e00es o
60003- eeeeo ‘.
4000 T o0 .me..
2000 ::“m
PN R P E N I IV R I R I
C —@— Unlike - Like sign
14000 Ny, = 90688 + 1060 — ;m:la ?‘
[ Ny = 72300+ 981 — ground
[ S/B=1.254+0.007
12000 S~ 1ass i
L Vs+2B : u = 3.0599 + 0.0020
10000 6= 0.0655 £ 0.0017
L X2INDF = 1.46
8000(—
6000—
4000(—
2000 :
R T T IO L v R T i

Figure 13: Invariant mass distribution fits for inclusive J/1 — ete™ for all py ranges with no additional
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Figure 14: Invariant mass distribution fits for inclusive J/1¢ — eTe™ for all py ranges with Nogpe > 4.0
and Ng2 o > 4.0 cuts applied and combinatorial background subtracted.
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signal candidates (Bkg = P + NP). In case there is not enough background data to fulfill this
condition, as in the case of the 6 — 12 GeV /c pr range, all available background candidates are
used. Using an equal amount of candidates for each class was tested and found to yield slightly
worse results. Only 50% of the chosen candidates are used for training, while the other 50% are

used for testing and validation.

Table 4: Number of candidates for each pr interval and each class, used in the BDT training process.

pr [GeV/c] 0—2 2—-4 4—-6 6—12
Background 505201 498096 280534 127613

Prompt 437855 429855 243665 186320
Non-prompt 67346 68241 36869 24794

4.3.2 Feature selection

In order to train a model, it is necessary to select features, which allow the BDT to differentiate
between the classes. It is, in principle, possible to use every available quantity of the candidates as
an input feature, but this increases the complexity of the model, possibly resulting in overfitting.
Hence, only the most impactful features are used to train the BDTs. The chosen features should
not include the invariant mass and the transverse momentum, since it would bias the classification
towards certain values of mass and momentum. However, fitting the mass and measuring the
pr-differential cross section correctly, requires a model that is unbiased towards these quantities.
For the selection of the features, their distributions in the prompt and non-prompt MC data, the
sideband background data, as well as in the signal region data with nyz > 4.0 and Nob o > 4.0
PID cuts applied, are examined (see fig. 15).

Some features are better suited to differentiate between background and signal, while others
help to separate prompt and non-prompt J/v. Both types of features are necessary for an efficient
and meaningful classification. As an example for the first type, the quantity ” TPCNSigmaEl”
(na%; C) is chosen (see fig. 16), since parts of the distribution for the background differ significantly
from both MC distributions. It should be noted that the MC distributions are slightly shifted to
the right due to calibration problems in this data set, but it was found that the usage of this
feature improves the model nevertheless.

For the second type of feature, the quantity ”DecayLengthOverErrorKFGeo” is utilized, due
to the difference in the distributions of prompt and non-prompt J/1, enabling a differentiation
between the two classes. The difference in the distributions becomes more pronounced for rising
transverse momentum. In total, seven features have been chosen for model training, of which the
remaining distributions for every transverse momentum interval are shown in fig. 24 to fig. 27 in

the appendix. The features are the following:

e TPCNSigmakEIl1/2: This is the n_.- PID variable for electrons provided by the TPC

. TTPC :
energy loss measurement, as explained in section 2.3.

e DecayLengthOverErrKFGeo: This is the decay length of the reconstructed candidate
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Figure 15: Distribution of the invariant mass for data in the sideband regions, prompt MC, non-prompt
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Figure 16: Distribution of TPCNSigmakl for data in the sideband regions, prompt MC, non-prompt MC
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divided by its error. The decay length is defined as the distance between the PV and the
decay vertex of the J/i.

PseudoproperDecayTimeKFGeo: This is the decay time calculated from the projection
of the decay length in the x-y-plane. The formula is:

m
T=—Lyy. 9
Ly )

DCAxyzBetweenTrksKF': This is the distance of closest approach between the two

tracks associated with the candidate in three dimensions.

Chi20verNDFKFGeo: This describes the xy2/NDF of a geometrical fit of the candidate

track.

CosPAKFGeo: This is the cosine of the pointing angle, which is the angle between the
momentum of the reconstructed J/v candidate and the line that connects its decay vertex

with the primary vertex.
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Figure 17: Distribution of DecayLengthOverErrKFGeo for data in the sideband regions, prompt MC,

non-prompt MC and data in the peak region with n,z . > 4.0 and Nr,. > 4.0 cuts applied in all pr
ranges.

Additionally, it is essential to check the correlations of the features, since correlations only

present in a specific class can beneficial to the classification. On the other hand, correlations

between the features used for training and the invariant mass as well as the momentum have
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to be avoided, since it would distort the results. The correlation matrices for all three classes

for the 2 — 4 GeV/c pr interval model are shown in fig. 18. For all transverse momentum

intervals, no significant levels of correlation are found. Although there is some correlation
between "DCAxyzBetweenTrksKF” and ”Chi20verNDFKFGeo”, it was found that including

both features improves the performance of the models. It is also insightful to take a look at the

importance of the different features, which is shown in fig. 19 for the 2 — 4 GeV /c pr interval.

In the figure, the features are sorted by relevance, which is quantified by the so-called "mean

SHAP (SHapley Additive exPlanations) values”. These values indicate the average impact of the

respective feature on the model, while the different colors show how important the feature is for

the classification to a specific class.
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Figure 18: Correlation matrices of the used features, invariant mass m and transverse momentum pp for
the three classes in the 2 < pr < 4 GeV/c range.

Due to changes in the feature distributions with respect to momentum, the feature importances
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Figure 19: Impact of the used features on the model for each class measured by the mean SHAP value.
These are the feature importances of the model for the 2 < pr < 4 GeV/c range.

and correlations vary between the different transverse momentum intervals, but they do not show
any unwanted behavior in any case. Feature correlations for the remaining intervals are shown in
fig. 32, fig. 33 and fig. 34, while importances are shown in fig. 35, fig. 36 and fig. 37.

4.3.3 Hyperparameter optimization

After the selection of the features used to train the models, the hyperparameter optimizations
are carried out using the Optuna module. In essence, this means that the predefined ranges for
the parameters are scanned iteratively, where each iteration considers the previous evaluations
to choose the next set of values for the hyperparameters. They are optimized to optimize
performance, while reducing complexity without signficant performance loss. The optimized
hyperparameters are shown in table 5 for the four models associated with transverse momentum
intervals.

The first hyperparameter is the maximum depth of a single weak learner, for which values
between 1 and 4 were tested. In three of the four models the upper limit of the range is reached.
However, allowing higher values for the maximum depth can lead to overfitting, which should be
avoided to retain optimal performance of the models. The rate at which the model is adapted
to the data is parameterized by the learning rate. For this parameter, a range from 0.01 to
0.1 was tested. High learning rates achieve faster adaptation, which can lead to the model
not converging to the optimum, while low learning rates are slower, but more thorough. The
number of weak learners in a BDT model is determined by the number of estimators, which
should be high, since a low tree depth and therefore trees with low complexity are used. A
range from 20 to 1500 was tested for this hyperparameter. For half of the models, the number
of estimators is close to the upper boundary, so higher values could be tested to possibly yield
a better performance, but this was deemed sufficient for now. The hyperparameter minimum

child weight is important for the so-called pruning process, which optimizes the depth of each
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weak learner, so unnecessary complexity is avoided. This parameter quantifies the minimum
sum of weights for a daughter node of a decision tree to not be removed by the pruning process.
Low values lead to a large number of tree partitions, while large values lead to fewer partitions.
The test range for this parameter was between 1 and 10. Since always using the whole data
sample can lead to overfitting, subsamples which are randomly chosen are used. The size of
these subsamples for every step of boosting as a fraction of the entirety of the data is described
by the subsample hyperparameter, where a test range from 0.8 to 1.0 was chosen. Finally, the
hyperparameter column sample by tree is the fraction of randomly selected features used to train
each decision tree. As for the fraction of the data samples, always using every feature to generate
each tree, instead of randomly choosing a fraction of the features, can lead to overfitting. For

this last hyperparameter, the range between 0.8 and 1.0 was tested [24].

Table 5: Optimized hyperparameters for each pr interval and therefore each BDT model.

pr [GeV/c] 0-2 2—-4 4-6 6-12
Maximum Depth 3 4 4 4

Learning Rate 0.092 0.053 0.052 0.039

No. of Estimators 782 1092 1495 1461
Minimum child weight 1 4 6 3

Subsample 0.934 0.901 0.969 0.849

Col. Sample by Tree 0.833 0.961 0.900 0.865

4.3.4 Trained models

After the optimization of the hyperparameters, the models for each interval of transverse
momentum are trained on the candidates (see table 4) with the seven chosen features (see
fig. 35). In order to check the performance of a model for each class, the Receiver Operating
Characteristic (ROC) curves are considererd. The ROC curves describe the true positive rate as
a function of the false positive rate for each class. True positive candidates are correctly classified
candidates, e.g. a candidate from the non-prompt MC data set is correctly assesed to belong
to the non-prompt class. On the other hand, a false positive candidate is incorrectly classified,
which for this example means that a candidate from the prompt MC or background data set
is incorrectly classified to the non-prompt class. However, the model only assigns scores to the
candidates, which quantify the likelihood of candidates to be part of a certain class, so it does
not classify them unambiguously. Therefore, the true positive rates and true negative rates are
dependent on the selection of the scores.

A ROC curve is constructed by applying the entire range of possible selections and plotting
the resulting true positive rates as a function of the true negative rates. When the selection
is set as high as possible, both the true positive rate and the false positive rate are 0, since
all candidates from a given data set are not assigned correctly, while no candidates from the
other two data sets are incorrectly assigned to that class. If, however, the lowest score and every
value higher than that is selected, both a true positive rate of 1 and a false positive rate of 1 are

observed, because then every background, prompt, and non-prompt candidate is assigned to that
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specific class. Good models produce ROC curves that show a steep rise to a true positive value
of 1 with respect to the false positive rate, hence selecting the correct class of the candidate
effectively, while rejecting most of the candidates from the remaining classes. Therefore, a simple
way to assess the quality of the model is to calculate the Area Under Curve (AUC) of a ROC
curve, where a perfect classifier yields an AUC value of 1. For the 2 — 4 GeV /c pr model, the
ROC curves of each class and their respective AUC values are shown in fig. 20.

In order to check for possible overfitting, plotting the ROC curves and AUC values for both
the training and test data sets is necessary. For strong overfitting, the ROC curves of the training
and test data sets will strongly deviate from each other, resulting in a lower AUC score for the
test data. Curves that lie very close to each other in all regions on the other hand, are a sign
for little to no overfitting being present and therefore lead to similar AUC scores for both ROC
curves. The AUC values of every model for each class, as well as the average values are shown in
table 6, while the ROC curves for the remaining three pr intervals can be seen in fig. 38, fig. 39
and fig. 40. None of the trained models show strong overfitting.
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Figure 20: ROC curves and their AUC values of the model for the 2 < pr < 4 GeV/c range.

Finally, the results of the classifier model are shown in fig. 21. In these histograms, the

probabilities of all candidates to belong to the given class is visualized for background, prompt and
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Table 6: AUC scores of each class for each pr interval, as well as the average scores.

pr [GeV/c] 0—-2 2-4 4—-6 6—12
Background Test 0.9786 0.9851 0.9818 0.9745
Background Training 0.9796 0.9863 0.9850 0.9788
Prompt Test 0.9603 0.9742 0.9756 0.9711
Prompt Training 0.9622 0.9757 0.9794 0.9757
Non-prompt Test 0.9113 0.9509 0.9573 0.9557
Non-prompt Training 0.9158 0.9562 0.9671 0.9686
Average Test 0.9501 0.9701 0.9716 0.9671
Average Training 0.9525 0.9727 0.9772 0.9744

non-prompt candidates and both the training and test data set. The distributions for the training
and test data sets do not deviate significantly, which leads to the conclusion that practically no
overfitting is present. Looking at the BDT output for background, given the large range of the
y-axis, a clear separation of real background from prompt and non-prompt J/v is visible. For
the prompt output, most real prompt .J/v candidates get assigned high probabilities and most
background candidates receive low values, while a small fraction of non-prompt candidates are
incorrectly associated. Lastly, background and prompt candidates achieve low values for the
non-prompt BDT output and non-prompt candidates have high probabilites, but a small portion
of the non-prompt candidates gets low values assigned. Nevertheless, the model is capable of
separating candidates from the three classes efficiently and only a small fraction of the candidates
that are not of interest should remain after the cuts for a specific class are applied. The same is
true for all other models, for which the BDT output plots are shown in fig. 41, fig. 42 and fig. 43.

4.4 Selection of working points

The BDTs are now applied to all available data, hence every reconstructed candidate is assigned
an output value for each of the three classes. In order to efficiently extract prompt or non-prompt
J /1 signal, working points have to be chosen, i.e. optimal selections for the outputs have to be
made. For the background outputs, the selection value is an upper bound, since only prompt and
non-prompt candidates are of interest and background should be excluded. In contrast, selecting
candidates with the prompt or non-prompt output requires a lower bound, since either prompt or
non-prompt candidates should be chosen. Setting loose working points leads to high efficiency of
the signal extraction with a low purity, where for example the fraction of non-prompt J/v is high,
while only prompt are of interest. Although high purity can be achieved by choosing the working
points very strictly, this approach results in low efficiency for signal selection. Therefore, a
balance between efficiency and signal purity needs to be found by finding an appropriate working
point. In principle, this optimal working point is found using a full working point determination,
where the significance and fraction of prompt and non-prompt signal is optimized for an efficient
and pure extraction of either prompt or non-prompt .J/1. However, this process is not carried

out here. Instead, a working point for the prompt or non-prompt output is first chosen and then

S
VS+2B

the significance of the signal S is maximized. For every model, the working point for the
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Figure 21: BDT outputs for the three classes with training and test data in the 2 < pr < 4 GeV /c range.
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extraction of prompt signal is chosen to be at the crossing point of the histograms of prompt
and non-prompt candidates in the prompt BDT output plot. These selections are chosen to
achieve a high fraction of prompt candidates, as well as a low fraction of non-prompt candidates,
although exact numbers for these fractions are unknown. This may be in contradiction to the
statement, that efficieny should not be given up for high purity, but it is a good method to
examine whether the separate extraction of prompt and non-prompt J/1 leads to any problems.
In order to calculate the significance, a similar fitting procedure as in section 4.2 is employed,
while simultaneously a large portion the candidates is already excluded due to the prompt BDT
output cut applied. The important difference is that the parameters o and n of the Crystal Ball
function are fixed to the values retrieved from fits of the prompt and non-prompt MC invariant
mass distributions, to match the shape of the power-law tail. By varying the background selection
using the background BDT outputs, the significance can then be maximized. The process is
analogously applied to select the working points for non-prompt signal, where the fraction of
non-prompt candidates is now chosen to be high, while the fraction of prompt candidates is low.

These procedures yield the working points and significances shown in table 7 and table 8.

Table 7: Working points selected for each pp interval for the prompt signal, as well as the significances
gained from fits.

pr [GeV/c] 0—-2 2—-4 4—-6 6—12
Prompt selection 0.72 0.70 0.66 0.65
Background selection 0.3 0.3 0.35 0.35

Significance 130.33 179.47 146.64 110.01

Table 8: Working points selected for each pp interval for the non-prompt signal, as well as the significances
gained from fits.

pr [GeV/c] 0-2 2—-4 4-6 6-—12
Non-prompt selection 0.12 0.12 0.11 0.10
Background selection 0.9 0.9 0.9 0.9

Significance 68.43 78.28 63.49 52.19

4.5 Results

After selecting the woring points, the cuts on the BDT outputs are applied to the data. The
resulting invariant mass distributions of the four transeverse momentum intervals are then fit
with the same procedure as in section 4.3.4, which is shown in fig. 22 for prompt and in fig. 23
for non-prompt J/v signal. As before, the like sign invariant mass distribution is first subtracted
from the unlike sign distribution and the residual distribution is then fit with the combination of a
Crystal Ball function for the signal and a second order polynomial for the remaining background.
The parameters o and n of the Crystal Ball function are fixed to the values gained from fitting
the MC mass distributions. It is especially important to fix these quantities in the case of the
non-prompt signal, since the fit otherwise does not converge correctly, due to the unexpectedly

large amount of entries on the left side of the signal peak. The total fit is shown in red, while the
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signal fit and the background fit are plotted in green and blue, respectively. Additionally, the

number of J/1¢ (S) as well as the amount of background (B) in the signal region (2.7 < me, < 3.2

GeV/c?) is computed, from which the signal-to-background ratio % and significance \/Siﬁ are

calculated. In table 9, a summary of all calculated quantities, as well as the values for the mean
and width of the peak retrieved from the fits is shown for all py intervals and both prompt and

non-prompt signal.

Table 9: Summary of quantities calculated by the fits for prompt and non-prompt J/.

pr [GeV/c] 0—-2 2—-4 4—6 6—12
P Signal S 37856 + 528 47389 £ 409 25676 + 246 13748 £ 164
P Background B 23257 + 466 11166 + 329 2492 + 180 935 £ 110
P S/B 1.628 4+ 0.020 4.244 + 0.096 10.303 £ 0.659  14.710 £+ 1.581
P Significance 130.33 179.47 146.64 110.01

P Mean [GeV/c?]
P Width [GeV/c?]

3.0955 £ 0.0010 3.0878 +0.0007 3.0792 £ 0.0010
0.0329 £ 0.0007  0.0401 £ 0.0006 0.0534 £ 0.0010

3.0650 4 0.0015
0.0672 £ 0.0015

NP Signal S
NP Background B
NP S/B
NP Significance
NP Mean [GeV/c?|
NP Width [GeV/c?]

15769 £ 534 13649 £ 316 6779 £ 159
18667 £ 501 8377 £ 279 2311 £ 128
0.845 £ 0.015 1.629 £+ 0.028 2.934 £ 0.107
68.43 78.28 63.49

3.0746 £ 0.0034 3.0751 £0.0023  3.0690 +£ 0.0029
0.0549 £0.0035 0.0515 £0.0023 0.0623 £ 0.0027

4227 £ 117
1166 £ 91
3.624 + 0.201
52.19
3.0572 £ 0.0039
0.0823 £ 0.0038

For the prompt signal, the number of J/v first increases from the lowest pr interval to the
next and then decreases for the remaining intervals, which matches the trend in fig. 6. On the
other hand, the number of non-prompt .J/1 decreases with increasing py. This is not compatible
with the expectation (see fig. 6), since a lower value for the lowest pr interval is expected. The
signal-to-background ratio for prompt and non-prompt J/1 increases with rising transverse
momentum. Furthermore, the significances are overall high, but decrease for rising pr after
an initial increase from the lowest pr interval. However, the mean pu of the fitted functions in
general shifts to lower values and the width ¢ increases for higher pp intervals, due to the peak
shifting and widening in the mass distribution, which the fit function matches. Particles with
higher momenta show tracks with less curvature, leading to worse momentum resolution, which
could be an explanation for the shifting and widening. The PDG reference value for the mean is
m.y s = (3096.900 £ 0.006) MeV /c?, for which only the prompt value from the lowest transverse
momentum interval is in a 30 range [31].

The quality of the residual mass distributions and fits should also be addressed. In the case
of the prompt signal fits, the background is significantly reduced compared to the invariant mass
distributions before the application of ML. This trend continues with respect to the peak height
with rising transverse momentum. Therefore, the invariant mass distributions foremostly show
the invariant mass distribution of the J/v¢ with the bremsstrahlung tail. As a result, the signal
fit lies close to the total fit, hence it can be concluded that the reduction of background works
well for prompt signal with the specific working points applied. However, it should be noted that
the number of J/v calculated from these fits is significantly lower than before the usage of the
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BDTs. The reason for this is twofold: First, the numbers from the first fits included both prompt
and non-prompt J/1, and second, the chosen working points are most likely cutting away a
significant amount of real J/1 as they are chosen quite harshly. Nevertheless, the resulting fits
are overall satisfactory.

On the other hand, the invariant mass distributions for non-prompt selections indicate some
problems with the BDT models or data. While the background overall is reduced with respect to
the peak heights compared to before the models were applied, there is also an increased amount
of entries to the left side of the mass peak. This effect is present for all pr intervals, but is
dampened with increasing pp. Since the background decreases with rising pr for the prompt
cuts, it is very likely that the increased amount of entries here also stems from background that
is not filtered out by the BDT model. Further increasing the harshness of the non-prompt and
background selection does not lead to any meaningful reduction of the increased background
on the left side. The effect is also observed in the J/v sidebands, where the distributions of
the training features after application of the non-prompt selections reveal that the remaining
background might resemble the non-prompt J/1 to such a degree, that it is incorrectly classified
as such. It is ultimately unknown what causes this high remaining background, but a fraction of
it might stem from correlated background from semileptonic decays of charm and beauty hadrons
(32, 33].

Due to the distorted shape of the non-prompt invariant mass distributions, fitting the Crystal
Ball function with polynomial background leads to signal shapes, which differ severly from the
prompt fits. Therefore, it is very likely that the values calculated from the fits do not reflect
reality correctly. The cause of the effect has to be found and eliminated, in order to correctly
measure the non-prompt J/v and all associated values via the usage of BDT models in a future
analysis.

In this thesis, the real fractions of prompt and non-prompt J/ in the prompt and non-prompt
signals are not determined and have to be further studied in a future analysis. Considering the
high significances and the stringently selected working points to achieve a high fraction of either
prompt or non-prompt J/1, the analysis of prompt and non-prompt .J/¢ in the J/¢ — eTe™
decay channel through the usage of BDTs can be feasible in a future anlaysis, as long as the
mentioned unexpected residual background in the non-prompt invariant mass distribution can be
explained and reduced to an acceptable level. As this thesis shows very promising results for the
prompt J/1, an anlysis of only prompt J/1 could be feasible. However, a point of contention is
the usage of BDT models that can not fully distinguish between background and non-prompt
J /1 for reasons that have yet to be investigated.
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Figure 23: Invariant mass distribution fits for non-prompt .J/1 — e*e™ for all p; ranges with combinatorial

background subtracted.
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5 Conclusion and outlook

In this thesis, the feasibility of the prompt and non-prompt J/1) analysis in pp collisions at
V8 = 13.6 TeV with ALICE in Run 3 at midrapidity via the J/1 — eTe™ decay channel has
been investigated. The data set of reconstructed .J/v¢ candidates is split into four intervals of
the transverse momentum in the 0 < pp < 12 GeV/c range. Suitable features are selected for
the differentiation of background, prompt and non-prompt candidates, by comparing the feature
distributions for the background data with the distributions for prompt and non-prompt MC data.
Using these features, a multiclass BDT model is trained for each separate transverse momentum
interval in order to classify the reconstructed candidates into the categories background, prompt
and non-prompt. Working points are chosen for the BDT outputs on the basis of either a high
prompt or non-prompt fraction and an optimized significance, in order to investigate possible
classification problems. The selections are applied to the data and the signal peaks of the
invariant mass distributions are fitted for both prompt and non-prompt signal. Exact fractions
of prompt and non-prompt signal have not been not calculated, but selections are optimized to
ensure high fractions for the respective type of interest, in order to facilitate the judgement of
the model capabilities. Significances between 110.01 and 179.47 are found for prompt J/v, while
for non-prompt J/1 lower significances between 52.19 and 78.28 are observed. The invariant
mass distributions for non-prompt signal show an increased amount of background to the left of
the mass peak, of which the origin is not fully understood. Therefore, the analysis of prompt
and non-prompt J/1 using the J/¢) — eTe~ decay channel can be deemed feasible, as long
as the problem of residual background for non-prompt signal can be resolved. Thus, further
investigation is necessary to definitively settle the question of feasibility.

Expanding on the studies of this thesis, a full working point determination should be carried
out in order to find the fractions of prompt and non-prompt candidates and the significance of
the signal. Furthermore, the exact prompt and non-prompt fractions of the (non-)prompt signal
need to be determined in a separate calculation. Additionally, remaining prompt candidates in
non-prompt signal need to be removed, while non-prompt candidates are to be subtracted from
the prompt signal. In the selection processes, a number of candidates is excluded, which also
needs to be accounted for in the calculation of the differential cross section. Due to the fact that
a fraction of real prompt and non-prompt .J/1) are not included in the extracted signals, efficiency
corrections have to be applied. These efficiency corrections include preselection efficiencies and
BDT efficiencies, but also consider the detector acceptance. In order to correctly assess the
results, systematic uncertainties also need to be considered. Different bin widths, fit ranges or
background fit functions can lead to slightly different signal fits, thus varying the number of
extracted J/1. Systematic uncertainties also result from the selection of working points, which
can be estimated through variation of the chosen strictness.

The successful continuation of this analysis will simultaneously allow for an application of these
analysis methods in heavy-ion collisions, which can lead to improvements in the measured J/1
and beauty hadron production cross sections in Pb-Pb collisions. This will ultimately contribute

to an improved understanding of the QGP and its evolution, as well as the hadronization of
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beauty quarks. On the other hand, the analysis of a variety of other charm and beauty hadron
decays will be required, to fully grasp the mechanisms behind hadronization and the evolution of
the QGP.
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6 Appendix

6.1 Feature distributions
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Figure 24: Distribution of DCAxyzBetweenTrksKF for data in the sideband regions, prompt MC, non-
prompt MC and data in the peak region with n,z . > 4.0 and NP > 4.0 cuts applied in all pp ranges.
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Figure 25: Distribution of Chi20verNDFKFGeo for data in the sideband regions, prompt MC, non-prompt
MC and data in the peak region with ngz > 4.0 and Nor,. > 4.0 cuts applied in all pp ranges.
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Figure 26: Distribution of PseudoproperDecayTimeKFGeo for data in the sideband regions, prompt MC,
non-prompt MC and data in the peak region with nyz > 4.0 and NP > 4.0 cuts applied in all pp
ranges.
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Figure 27: Distribution of CosPAKFGeo for data in the sideband regions, prompt MC, non-prompt MC
and data in the peak region with nyz > 4.0 and NP > 4.0 cuts applied in all py ranges.
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Figure 28: Distributions of the used features, invariant mass m and transverse momentum pp in the
0 < pr < 2 GeV/c range.
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Figure 30: Distributions of the used features, invariant mass m and transverse

4 < pr < 6 GeV/c range.
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Figure 31: Distributions of the used features, invariant mass m and transverse momentum pp in the
6 < pr < 12 GeV/c range.
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6.2 Correlation matrices
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Figure 32: Correlation matrices of the used features, invariant mass m and transverse momentum pr for
the three classes in the 0 < pr < 2 GeV/c range.
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Figure 33: Correlation matrices of the used features, invariant mass m and transverse momentum pp for
the three classes in the 4 < pr < 6 GeV/c range.
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Figure 34: Correlation matrices of the used features, invariant mass m and transverse momentum pp for
the three classes in the 6 < pr < 12 GeV/c range.
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6.3 Feature importance

fTPCNSigmaEI2

fTPCNSigmaEI1

fDecayLengthOverErrKFGeo

fDCAxyzBetweenTrksKF

fCosPAKFGeo

fChi20verNDFKFGeo

fPseudoproperDecayTimeKFGeo

W Background
= Prompt J/y
=== Non-prompt J/y

°
°
°
«
0

X 3 2.0 25 3.0
mean(|SHAP value|) (average impact on model output magnitude)

Figure 35: Impact of the used features on the model for each class measured by the mean SHAP value.
These are the feature importances of the model for the 0 < pr < 2 GeV/c range.
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Figure 36: Impact of the used features on the model for each class measured by the mean SHAP value.
These are the feature importances of the model for the 4 < pr < 6 GeV/c range.
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Figure 37: Impact of the used features on the model for each class measured by the mean SHAP value.
These are the feature importances of the model for the 6 < pr < 12 GeV/c range.
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6.4 ROC curves
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Figure 38: ROC curves and their AUC values of the model for the 0 < pr < 2 GeV/c range.
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Figure 39: ROC curves and their AUC values of the model for the 4 < pr < 6 GeV/c range.
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Figure 40: ROC curves and their AUC values of the model for the 6 < pr < 12 GeV/c range.
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6.5 BDT outputs
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Figure 41: BDT outputs for the three classes with training and test data in the 0 < pr < 2 GeV /c range.
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Figure 42: BDT outputs for the three classes with training and test data in the 4 < pr < 6 GeV /c range.




Counts (arb. units)

Background pdf Training Set
Prompt J/y pdf Training Set
Non-prompt J/y pdf Training Set
Background pdf Test Set
Prompt J/y pdf Test Set
Non-prompt J/y pdf Test Set

Counts (arb. units)

Background pdf Training Set
Prompt J/y pdf Training Set
Non-prompt J/y pdf Training Set
Background pdf Test Set
Prompt J/y pdf Test Set
Non-prompt J/y pdf Test Set

Counts (arb. units)

w111

Background pdf Training Set
Prompt J/y pdf Training Set
Non-prompt J/y pdf Training Set
Background pdf Test Set
Prompt J/y pdf Test Set
Non-prompt J/y pdf Test Set

04 06
BDT output for Background

60

Figure 43: BDT outputs for the three classes with training and test data in the 6 < pr < 12 GeV/c range.




List of Acronyms
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ALPIDE
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0?2

A Large Ton Collider Experiment

ALICE Pixel Detector
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Area Under Curve
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Classification and regression trees

Compressed Baryonic Matter

Conseil Européen pour la Recherche Nucléaire (European
Organization for Nuclear Research)

Compact Muon Solenoid
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Fast Interaction Trigger

Gas Electron Multiplier

Graphics Processing Unit

Hybrid Integrated Circuit

Minimal heavy ion physics environment for Machine Learn-
ing
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Monte Carlo
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Non-prompt

Software framework used for online and offline reconstruc-

tion and physics analysis in Run 3
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OovO
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Pb-Pb
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PID
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QCD
QGP
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Standard Model of particle physics
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Zero-Degree Calorimeters

62



References

1]

[10]

[11]

[12]

S. Acharya et al. ,The ALICE experiment: a journey through QCD*. In: The European
Physical Journal C 84.8 (Aug. 2024). 1SSN: 1434-6052. DOI: 10.1140/epjc/s10052-024~
12935-y. URL: http://dx.doi.org/10.1140/epjc/s10052-024-12935-7y.

Mark Thomson. Modern Particle Physics. Cambridge, United Kingdom: Cambridge Uni-
versity Press, 2013.

Andrew Purcell. ,Go on a particle quest at the first CERN webfest. Le premier webfest
du CERN se lance a la conquéte des particules®. In: 35/2012 (2012), p. 10. URL: https:
//cds.cern.ch/record/1473657.

Piotr Traczyk. The LHC lead-ion collision run starts. Sept. 2023. URL: https://home.

cern/news/news/experiments/lhc-lead-ion-collision-run-starts.

CERN webpage. Accelerator upgrades during LS2. 2022. URL: https://home.cern/press/
2022/accelerator-upgrades-during-1s2.

Rende Steerenberg. Accelerator Report: Getting lead ions ready for physics. Sept. 2023.
URL: https://home.cern/news/news/accelerators/accelerator-report-getting-

lead-ions-ready-physics.

Ewa Lopienska. ,,The CERN accelerator complex, layout in 2022. Complexe des accélérateurs
du CERN en janvier 2022%. In: (2022). General Photo. URL: https://cds.cern.ch/
record/2800984.

S. Acharya et al. ,Prompt and non-prompt J/1 production cross sections at midrapidity
in proton-proton collisions at /s = 5.02 and 13 TeV*“. In: Journal of High Energy Physics
2022.3 (Mar. 2022). 1sSN: 1029-8479. DOI: 10.1007/jhep03(2022)190. URL: http://dx.
doi.org/10.1007/JHEP03(2022) 190.

ALICE Collaboration. ALICE upgrades during the LHC Long Shutdown 2. 2023. arXiv:
2302.01238 [physics.ins-det].

The ALICE Collaboration et al. ,,The ALICE experiment at the CERN LHC*. In: Journal
of Instrumentation 3.08 (Aug. 2008), S08002. poI: 10.1088/1748-0221/3/08/508002.
URL: https://dx.doi.org/10.1088/1748-0221/3/08/S08002.

In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 881 (Feb. 2018), pp. 88—127. 1sSN: 0168-9002.
DOI: 10.1016/j.nima.2017.09.028. URL: http://dx.doi.org/10.1016/j.nima.2017.
09.028.

F. Reidt. ,,Upgrade of the ALICE ITS detector“. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 1032 (2022), p. 166632. 1ssN: 0168-9002. DOI: https://doi.org/10.1016/
j.nima.2022.166632. URL: https://www.sciencedirect.com/science/article/pii/
S0168900222002042.

63


https://doi.org/10.1140/epjc/s10052-024-12935-y
https://doi.org/10.1140/epjc/s10052-024-12935-y
http://dx.doi.org/10.1140/epjc/s10052-024-12935-y
https://cds.cern.ch/record/1473657
https://cds.cern.ch/record/1473657
https://home.cern/news/news/experiments/lhc-lead-ion-collision-run-starts
https://home.cern/news/news/experiments/lhc-lead-ion-collision-run-starts
https://home.cern/press/2022/accelerator-upgrades-during-ls2
https://home.cern/press/2022/accelerator-upgrades-during-ls2
https://home.cern/news/news/accelerators/accelerator-report-getting-lead-ions-ready-physics
https://home.cern/news/news/accelerators/accelerator-report-getting-lead-ions-ready-physics
https://cds.cern.ch/record/2800984
https://cds.cern.ch/record/2800984
https://doi.org/10.1007/jhep03(2022)190
http://dx.doi.org/10.1007/JHEP03(2022)190
http://dx.doi.org/10.1007/JHEP03(2022)190
https://arxiv.org/abs/2302.01238
https://doi.org/10.1088/1748-0221/3/08/S08002
https://dx.doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1016/j.nima.2017.09.028
http://dx.doi.org/10.1016/j.nima.2017.09.028
http://dx.doi.org/10.1016/j.nima.2017.09.028
https://doi.org/https://doi.org/10.1016/j.nima.2022.166632
https://doi.org/https://doi.org/10.1016/j.nima.2022.166632
https://www.sciencedirect.com/science/article/pii/S0168900222002042
https://www.sciencedirect.com/science/article/pii/S0168900222002042

[13]

[14]

[21]

[22]

23]

,Performance of the ALICE experiment at the CERN LHC*. In: International Journal of
Modern Physics A 29.24 (2014), p. 1430044. po1: 10.1142/S0217751X14300440. eprint:
https://doi.org/10.1142/S0217751X14300440. URL: https://doi.org/10.1142/
S0217751X14300440.

Philip Hauer. ,, The upgraded ALICE TPC*. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1039
(2022), p. 167023. 13SN: 0168-9002. DOT: https://doi.org/10.1016/j.nima.2022.167023.
URL: https://www.sciencedirect.com/science/article/pii/S016890022200448X.

ALICE Performance Figures. ALI-PERF-542396. URL: https://alice-figure.web.cern.
ch/node/26843.

Simon Grof-Bélting. ,, Measurement of the AT production in proton-proton collisions for
A — pK; at /s = 5.02TeV with the ALICE detector“. Bachelor’s Thesis. Heidelberg,
Germany: Physikalisches Institut of the University of Heidelberg, Nov. 2021. URL: https:
//www . physi.uni-heidelberg . de/Publications/BachelorThesis _Simon_Gross-—

Boelting.pdf.

David Rohr et al. Track Reconstruction in the ALICE TPC using GPUs for LHC Run 3.
2018. arXiv: 1811.11481 [physics.ins-det].

Carolina Reetz. ,Measurement of =1 in proton-proton collisions at /s = 13TeV with the
ALICE detector“. Master’s Thesis. Heidelberg, Germany: Physikalisches Institut of the
University of Heidelberg, Aug. 2022. URL: https://www.physi.uni-heidelberg.de/

Publications/MasterThesis_CarolinaReetz_wo.pdf.

Wolfgang Demtroder. Fxperimentalphysik 4 Kern-, Teilchen- und Astrophysik. Kaiser-
slautern, Germany: Springer Spektrum, 2017.

I. J. Feng, R. H. Pratt, and H. K. Tseng. ,,Positron bremsstrahlung“. In: Phys. Rev.
A 24 (3 Sept. 1981), pp. 1358-1363. DOI: 10.1103/PhysRevA .24 .1358. URL: https:
//link.aps.org/doi/10.1103/PhysRevA.24.1358.

Sergey Gorbunov. ,,On-line reconstruction algorithms for the CBM and ALICE experi-
ments“. PhD thesis. Goethe U., Frankfurt (main), Frankfurt U., 2013.

Maksym Zyzak. ,,Online selection of short-lived particles on many-core computer archi-
tectures in the CBM experiment at FAIR“. doctoralthesis. Universitétsbibliothek Johann
Christian Senckenberg, 2016, p. 165.

Phil Lennart Stahlhut. ,Performance test of the KF Particle package for open heavy-
flavour baryon reconstruction with ALICE“. Bachelor’s Thesis. Heidelberg, Germany:
Physikalisches Institut of the University of Heidelberg, June 2023. URL: https://www.
physi.uni-heidelberg.de/Publications/BachelorThesis_PhilStalhut.pdf.

XGBoost Documentation. URL: https://xgboost.readthedocs.io/en/stable/index.
html.

hipe4ml. URL: https://github.com/hipe4ml/hipedml.

64


https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1142/S0217751X14300440
https://doi.org/https://doi.org/10.1016/j.nima.2022.167023
https://www.sciencedirect.com/science/article/pii/S016890022200448X
https://alice-figure.web.cern.ch/node/26843
https://alice-figure.web.cern.ch/node/26843
https://www.physi.uni-heidelberg.de/Publications/BachelorThesis_Simon_Gross-Boelting.pdf
https://www.physi.uni-heidelberg.de/Publications/BachelorThesis_Simon_Gross-Boelting.pdf
https://www.physi.uni-heidelberg.de/Publications/BachelorThesis_Simon_Gross-Boelting.pdf
https://arxiv.org/abs/1811.11481
https://www.physi.uni-heidelberg.de/Publications/MasterThesis_CarolinaReetz_wo.pdf
https://www.physi.uni-heidelberg.de/Publications/MasterThesis_CarolinaReetz_wo.pdf
https://doi.org/10.1103/PhysRevA.24.1358
https://link.aps.org/doi/10.1103/PhysRevA.24.1358
https://link.aps.org/doi/10.1103/PhysRevA.24.1358
https://www.physi.uni-heidelberg.de/Publications/BachelorThesis_PhilStalhut.pdf
https://www.physi.uni-heidelberg.de/Publications/BachelorThesis_PhilStalhut.pdf
https://xgboost.readthedocs.io/en/stable/index.html
https://xgboost.readthedocs.io/en/stable/index.html
https://github.com/hipe4ml/hipe4ml

[29]

[30]

[33]

IBM. What is a decision tree? URL: https://www.ibm.com/think/topics/decision-

trees.

Christian Kleiber. , Feasability study of the non-prompt A} — pK ~ 7" analysis in p-Pb
collisions at /syny = 5.02TeV with ALICE®. Bachelor’s Thesis. Heidelberg, Germany:
Physikalisches Institut of the University of Heidelberg, Mar. 2023. URL: https://www.
physi.uni-heidelberg.de/Publications/BachelorThesis_Christian_Kleiber.pdf.

Gaurov. An Introduction to Gradient Boosting Decision Trees. URL: https : //wuw .
machinelearningplus . com/machine - learning / an - introduction - to - gradient -

boosting-decision-trees/.

Optuna - An open source hyperparameter optimization framework to automate hyperparam-

eter search. URL: https://optuna.org/.

Jason Brownlee. One-vs-Rest and One-vs-One for Multi-Class Classification. Apr. 2021.
URL: https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-

multi-class-classification/.

S. Navas et al. ,Review of Particle Physics“. In: Phys. Rev. D 110 (3 Aug. 2024), p. 030001.
DOIL: 10.1103/PhysRevD.110.030001. URL: https://1link. aps.org/doi/10.1103/
PhysRevD.110.030001.

S. Acharya et al. ,Dielectron and heavy-quark production in inelastic and high-multiplicity
proton—proton collisions at /s = 13 TeV “. In: Physics Letters B 788 (Jan. 2019), pp. 505—
518. 18SN: 0370-2693. DOI: 10.1016/j .physletb.2018.11.009. URL: http://dx.doi.
org/10.1016/j.physletb.2018.11.009.

S. Acharya et al. ,Inclusive J/v production at midrapidity in pp collisions at /s = 13
TeV«. In: The European Physical Journal C' 81.12 (Dec. 2021). 1SSN: 1434-6052. DOLI:
10.1140/epjc/s10052-021-09873-4. URL: http://dx.doi.org/10.1140/epjc/s10052-
021-09873-4.

65


https://www.ibm.com/think/topics/decision-trees
https://www.ibm.com/think/topics/decision-trees
https://www.physi.uni-heidelberg.de/Publications/BachelorThesis_Christian_Kleiber.pdf
https://www.physi.uni-heidelberg.de/Publications/BachelorThesis_Christian_Kleiber.pdf
https://www.machinelearningplus.com/machine-learning/an-introduction-to-gradient-boosting-decision-trees/
https://www.machinelearningplus.com/machine-learning/an-introduction-to-gradient-boosting-decision-trees/
https://www.machinelearningplus.com/machine-learning/an-introduction-to-gradient-boosting-decision-trees/
https://optuna.org/
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
https://doi.org/10.1103/PhysRevD.110.030001
https://link.aps.org/doi/10.1103/PhysRevD.110.030001
https://link.aps.org/doi/10.1103/PhysRevD.110.030001
https://doi.org/10.1016/j.physletb.2018.11.009
http://dx.doi.org/10.1016/j.physletb.2018.11.009
http://dx.doi.org/10.1016/j.physletb.2018.11.009
https://doi.org/10.1140/epjc/s10052-021-09873-4
http://dx.doi.org/10.1140/epjc/s10052-021-09873-4
http://dx.doi.org/10.1140/epjc/s10052-021-09873-4

Decleration of Authorship

Ich versichere, dass ich diese Arbeit selbststindig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.
Mannheim, den 22.03.2025.



	Introduction
	Motivation
	The Standard Model of particle physics
	The Large Hadron Collider and heavy-ion collisions
	Prompt and non-prompt J/

	The ALICE experiment
	Overview of the ALICE detector
	Inner Tracking System
	Time Projection Chamber
	Central barrel tracking
	Bremsstrahlung

	Analysis tools
	KF Particle package
	Boosted Decision Trees

	Analysis
	Preselections
	Signal extraction with rectangular cuts
	Machine learning training
	Training candidate selection
	Feature selection
	Hyperparameter optimization
	Trained models

	Selection of working points
	Results

	Conclusion and outlook
	Appendix
	Feature distributions
	Correlation matrices
	Feature importance
	roc curves
	bdt outputs

	List of Acronyms
	References

