
Department of Physics and Astronomy

University of Heidelberg

Master Thesis in Physics

submitted by

Poppy Hicks

born in Dorchester, UK

2024

Investigations into Momentum-Specialised

Graph Neural Networks for Online Track

Reconstruction in the ATLAS Event Filter

This Master thesis has been carried out by

Poppy Hicks

at the

Physikalisches Institut Heidelberg

under the supervision of

Prof. Dr. André Schöning

Acknowledgments

I would like to express my gratitude to my supervisors, Prof. Dr. Andre

Schoening and Dr. Sebastian Dittmeier, for allowing me the opportunity to

work on this project and for enabling my growth as a student.

iii

Abstract

The upcoming High Luminosity upgrade to the LHC poses several chal-

lenges, most notably the huge increase in data to process. This necessitates

improvements to the Trigger and Data Acquisition systems at the ATLAS

experiment, including to its final stage, the Event Filter. Significant effort is

being invested into computing R&D for the Event Filter, to keep resources

within capacity; one potential area is to utilise the recent gains made in

machine learning and highly-parallel architectures such as GPUs. Of those,

algorithms based on graph neural networks (GNNs) are most promising for

track reconstruction in the Inner Tracker detector.

GNNs demonstrate exceptional capability at modelling complex relation-

ships within graph-structured data. Here, a graph represents detector hits as

nodes; edges connecting these nodes represent the possibility the hits belong

to the same particle. A GNN is used to score these edges to quantify that

probability. This thesis presents an overview of the use of GNNs for track

reconstruction in the ITk; a final track efficiency of 0.983 is achieved. The

ability of the pipeline to adjust to high transverse momentums is assessed,

and an iterative approach to track reconstruction performed. This achieves

a final track efficiency of 0.989 for a smaller graph size than the standard

GNN approach, thus reducing the memory footprint.

v

Zusammenfassung

Die bevorstehende Aufrüstung des LHCmit hoher Leuchtkraft bringt mehrere

Herausforderungen mit sich, vor allem die enorme Zunahme der zu verarbeit-

enden Daten. Dies erfordert Verbesserungen an den Trigger- und Datenerfas-

sungssystemen des ATLAS-Experiments, einschließlich seiner letzten Stufe,

dem Ereignisfilter. Erhebliche Anstrengungen werden in die Berechnung

von R&D für den Ereignisfilter investiert, um die Ressourcen innerhalb der

Kapazität zu halten; ein möglicher Bereich ist die Nutzung der jüngsten

Fortschritte im Bereich des maschinellen Lernens und hochparalleler Ar-

chitekturen wie GPUs. Am vielversprechendsten sind Algorithmen, die auf

graphischen neuronalen Netzen (GNNs) basieren, für die Rekonstruktion von

Spuren im Inner-Tracker-Detektor.

GNNs zeigen außergewöhnliche Fähigkeiten bei der Modellierung kom-

plexer Beziehungen innerhalb graphisch strukturierter Daten. In diesem Fall

stellt ein Graph die Detektortreffer als Knoten dar; die Kanten, die diese

Knoten verbinden, repräsentieren die Möglichkeit, dass die Treffer zu dem-

selben Partikel gehören. Ein GNN wird verwendet, um diese Kanten zu

bewerten, um die Wahrscheinlichkeit zu quantifizieren. In dieser Arbeit wird

ein Überblick über die Verwendung von GNNs für die Rekonstruktion von

Spuren im ITk gegeben; es wurde eine endgültige Spureffizienz von 0,983

erreicht. Die Fähigkeit der Pipeline, sich an hohe Quermomente anzupassen,

wird bewertet, und es wird ein iterativer Ansatz zur Spurrekonstruktion

durchgeführt. Dadurch wird eine endgültige Spureffizienz von 0,989 bei einer

geringeren Graphengröße als beim Standard-GNN-Ansatz erreicht, wodurch

der Speicherbedarf verringert wird.

vii

5

Dedicated to...

ix

Contents

1 Introduction 1

2 LHC and ATLAS 4

2.1 The Standard Model of Particle Physics 4

2.1.1 Particle Content . 4

2.2 The Large Hadron Collider . 6

2.2.1 The HL-LHC Timeline 6

2.3 The ATLAS Experiment . 7

2.3.1 The ATLAS Detector 8

2.3.2 ATLAS Phase-II Upgrade 9

2.3.3 Tracking in the EF . 12

3 Machine Learning 17

3.1 Neural Networks . 17

3.1.1 The modern neural network 17

3.1.2 Multi-Layer Perceptrons 18

3.1.3 Training . 19

3.1.4 Optimizers . 20

3.1.5 Regularisation and Normalisation 21

3.2 Graph Neural Networks . 21

3.2.1 Graphs . 22

3.2.2 The General Framework 22

3.2.3 Message Passing . 23

4 ATLAS GNN Tracking 26

4.1 ACORN Pipeline . 26

4.1.1 Graph Construction 27

4.1.2 Interaction Network 28

xi

4.1.3 Building Track Candidates 29

5 Baseline Results 33

5.1 Simulation Data . 33

5.2 Baseline . 34

5.2.1 Graph Construction 34

5.2.2 GNN . 41

5.2.3 Track Reconstruction 44

6 Iterative Approach 51

6.1 High Momentum Specialised Graphs 52

6.1.1 Metric Learning . 54

6.2 Iterative Approach . 58

6.2.1 Stage One . 59

6.2.2 Stage 2 . 69

6.2.3 X = 1.5 GeV . 71

6.2.4 X = 2 GeV . 71

6.2.5 3 GeV . 74

6.3 Overall . 75

7 Conclusions and Outlook 78

xii

Chapter 1

Introduction

High energy experimental particle physics aims to probe fundamental nature

at the energy frontier. At this frontier, matter is divided into a collection

of elementary particles, and their interactions are governed by fundamental

forces controlled by a handful of parameters. Most exist only in state for a

fraction of a second - and we aim to study them. This is most successfully

achieved by accelerating particles at each other such that they collide and

interact: this is employed by all particle colliders but most importantly (for

this work) by the Large Hadron Collider. The challenge, then, comes in

bridging the gap between the objects of study, physical processes occurring

at the length- scales of femto metres (or smaller), and the instruments of

measurements, some 15+ orders of magnitude larger.

Two aspects predominantly define modern particle physics: first-principle

predictions derived from quantum field theories, and a huge quantity of data.

The testing of pre-defined models such as that that discovered the Higg’s

boson in 2012 is no longer our only interest; we wish now to discover the

proverbial “needle in the hay stack”, the vanishingly rare signatures that

may shed light into areas of physics as of yet unknown.

To study the needle one must first discard the hay: particle physics stands

tall as an area with a staggeringly successful theoretical framework in the

Standard Model, and as such there are vast areas of phenomena that are

understood and therefore uninteresting. Triggering is the real-time jettison

of these events to keep only those that might contain signatures of interest,

and it is a challenging task. Whilst previously, for model-driven searches, the

approach has been to keep only certain classes of events, in the era of asking

instead “what might theorists be missing” this is no longer appropriate. And

1

as we look for rare-r and rare-r events (and thus increase the event rate) the

trigger must decide faster and faster.

It is an unfortunate truth that scientific research must always be con-

strained by budget - and, without innovation, computational resources and

thus financial demands soar. Rapid growth outside the scientific community

in highly parallel computing architectures and the artificial intelligence which

make use of them are one innovative area that have recently taken the world

of high-energy physics by storm. A particularly promising avenue is the use

of geometrical deep learning methods, well suited for the often sparse nature

of particle collider data; this thesis aims to investigate one such area, the

feasibility of graph neural networks in triggering for the upcoming era of the

LHC.

This thesis is structured as follows: first, a brief overview of the theoretical

and experimental background in Chapter 2; second, the topic of machine

learning and neural nets are introduced in Chapter 3; third, the track finding

procedure using graph neural networks is introduced and it’s capacity tested

in Chapter’s 4 and 5; and finally, attempts at minimising the typical memory

footprint of this procedure is made in Chapter 6.

2

Chapter 2

LHC and ATLAS

Particle physics has one of the most successful models describing it in the

Standard Model (SM); however, it is not a united, comprehensive theory

derived from fundamental assumptions. The path to the fundamental struc-

ture of nature lies in exploring phenomena the SM does not explain. The

observations we are looking for now are mainly present at high energies; as in-

teraction cross sections decrease quadratically with centre-of-mass energies,

these interactions are vanishingly rare. Thus we must also observe more

collisions. These are the guiding principles behind the future of the most

powerful hadron-hadron accelerator in the world, the Large Hadron Collider

(LHC), situated at CERN, the largest physics experiment in the world.

2.1 The Standard Model of Particle Physics

The Standard Model is a Yang Mills theory with SU(3)C × SU(2)L×U(1)Y
gauge symmetry group that encapsulates our knowledge of the fundamental

constituents of matter. It describes three out of four of the fundamental

interactions in nature: the strong, the weak, and the electromagnetic forces

- and to astonishing accuracy. And it does so with only 19 free parameters.

However, despite it’s overwhelming success, the model still contains open

questions.

2.1.1 Particle Content

All elementary particles in the Standard Model, as a QFT, are described

by a quantum field. These particles can be divided into fermions, spin-1/2

4

2.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Flavour Mass Qel TL
3

Leptons

νe < 2.2 eV 0 +1
2

e 0.511 MeV −1 −1
2

νµ < 0.19MeV 0 +1
2

µ 106 MeV −1 −1
2

ντ < 18.2MeV 0 +1
2

τ 1776.86MeV −1 −1
2

Quarks

u 2.16 MeV +2
3

+1
2

d 4.70 MeV −1
3
−1

2

c 1.27 GeV +2
3

+1
2

s 93.5 MeV −1
3
−1

2

t 173 GeV +2
3

+1
2

b 4.18 GeV −1
3
−1

2

Table 2.1: Table of fermions. Masses given approximately. [1]

Boson Interaction Mass Qel

Scalar Higgs H0 None 125 GeV 0

Vector

Photon γ QED < 10−18 eV 0

Gluon g QCD 0 0

Z EW 91.2 GeV 0

W± EW 80.3 GeV ±1

Table 2.2: Table of bosons. Masses given approximately. [1].

particles that obey Fermi-Dirac statistics, and bosons, integer spin particles

that obey Bose-Einstein statistics. These are summarised in Tables 2.1 and

2.2.

Fermions are the constituents of matter, and may be further divided

into leptons and quarks: leptons are spin-1/2 particles that do not experi-

ence the strong force; quarks are spin-1/2 particles that carry colour charge.

Bosons with spin-1, vector bosons, mediate the fundamental forces that gov-

ern particle-particle interactions. W and Z bosons carry the weak force, the

photon carries the electromagnetic force, and the gluon carries the strong

force. The scalar Higgs boson, with spin-0, provides mass to elementary

particles through interaction with the Higgs field.

5

2.2. THE LARGE HADRON COLLIDER

Figure 2.1: The CERN accelerator complex. Figure adapted from [3]

2.2 The Large Hadron Collider

The LHC [2] is a ring-shaped underground synchotron occupying the tunnel

previously housing the Large Electron-Positron (LEP) collider, spanning a

circumference of 27 km, situated on the French-Swiss border. Operation

began (after an accident-prone 2008) in November 2009, with a centre-of-

mass collision energy that has been slowly increased to it’s current
√
s = 13.6

TeV. The tunnel runs parallel beam pipes which intersect at four collision

points around the ring. Each point houses one of the four main experiments

of the LHC: ALICE, ATLAS, CMS, and LHCb. A depiction of the complex

is shown in Figure 2.1. Rather than a continuous stream, the beams consist

of bunches of protons such that collisions occur at discrete intervals - with

each bunch-crossing termed a collision event.

2.2.1 The HL-LHC Timeline

Since operation began in 2008 the LHC has seen much scientific success,

most notably with the detection of the Higgs boson in 2012, the cornerstone

of the Standard Model. It has operated consistently on the frontier of high-

6

2.3. THE ATLAS EXPERIMENT

Figure 2.2: Baseline upgrade programme to the LHC, as of February 2022.

LS refers to a Long Shutdown. Figure adapted from [4].

energy physics (HEP), producing record-breaking proton-proton collisions

at first 7, then 8, and now 13 TeV centre-of-mass energy. The inherent

setup of the LHC, primarily its radius and bending magnet strength, mean

the centre-of-mass energy has now reached its peak; the future of the LHC,

with timeline shown in Figure 2.2, is directed now towards increasing it’s

luminosity. Achieving this goal is at the heart of the technical upgrade to

the LHC, to enter the era of the high-luminosity LHC (HL-LHC).

The HL-LHC is scheduled to start operations 2030 with a peak luminosity

aim of L = 7× 1034cm−2s−1.

2.3 The ATLAS Experiment

The ATLAS Collaboration presented a technical proposal for a ”...General-

Purpose pp Experiment at the LHC..” in 1994 [5]. It was designed to exploit

the LHC to full extent, in order to run high precision tests of, among others,

QCD, electroweak interactions, and flavour physics [6]. The premier goal, the

discovery of the Higgs boson, H, required in particular the ATLAS detector

to be sensitive to a wide range of signatures due to the unknown mass of H.

Specifications for the ATLAS detector were defined by considering both the

set of processes that would further our physics goals and the nature of the

LHC. The processes are rare: in proton-proton collisions, QCD jet produc-

tion cross-sections dominate. The identification of experimental signatures

characteristic of the processes is challenging and imposes further demands

on the required luminosity and the particle-identification capabilities. The

requirements were as follows:

• Detectors to be made of fast, radiation-hard electronics and sensor

elements

• Large acceptance in pseudorapidity with almost full azimuthal angle

7

2.3. THE ATLAS EXPERIMENT

coverage

• Good momentum resolution and reconstruction efficiency in the inner

tracker

2.3.1 The ATLAS Detector

An overview of the ATLAS detector [7] is shown in Figure 2.3. The mag-

netic configuration is comprised of an inner superconducting solenoid around

the inner detector cavity, and large superconducting toroids surrounding the

calorimeters. The Inner Detector, closest to the interaction point and im-

mersed in a solenoidal magnetic field of 2 T, is contained within a cylinder

of length 6.80 m and radius 1.15 m, and measures only the trajectories of

charged particles. Surrounding the ID are the calorimeter systems : this is

responsible for precise energy reconstruction and measurement of all parti-

cles other than the muon. It reconstructs particles originating from the hard

interaction vertex by initialising a cascade of secondary particles: a parti-

cle shower. Particle showers can be categorised as electronic or hadronic,

with strongly dependent features, and as such the ATLAS detector has both

an electromagnetic (for reconstructing electrons or photons) and hadronic

calorimeter (for measuring showers involving the strong interaction). Fi-

nally, the ATLAS detector has the muon spectrometer : dedicated solely to

the measurement of muons. All other particles are assumed to have been

absorbed by the preceding components.

Triggering and Data Acquisition

The Trigger and Data Acquisition (TDAQ) system at ATLAS is responsible

for all online processing of detector data. It’s job is to select and transfer

to storage events judged to contain interesting signatures for the physics

programme, and to discard all others. In Run 3 [8], it is formed of a hardware-

based first level trigger, L1, and a software-based high-level trigger, HLT.

The L1 trigger, using information from the muon and calorimeter systems,

searches for high pT muons, electrons, photons and jets, and also for large

or missing transverse energy, and reduces event rate from the bunch crossing

rate of 40 MHz to 100 kHz. Muons are identified using information from the

barrel and end-cap regions of the spectrometer; calorimetry-based selections

use information from all calorimeters. Regions of Interest, RoIs, regions

8

2.3. THE ATLAS EXPERIMENT

Figure 2.3: Cut-away view of the ATLAS detector, from [6].

within the detector with interesting features, are also identified and passed

on. Events passing the L1 trigger selection are transferred to the HLT which

use full detector granularity and information with tracking to further reduce

event rate to 3 kHz.

2.3.2 ATLAS Phase-II Upgrade

The Phase-II upgrade for ATLAS is required to enable the ATLAS physics

program planned for the HL-LHC: namely precision measurements of the

properties of the Higgs boson to study electroweak symmetry breaking, im-

proved measurements of SM parameters, and searches for BSM signatures

and flavour physics [9]. The nominal luminosity of the HL-LHC, L =

5 × 1034cm−2s−1, with additional ability to reach L = 7.5 × 1034cm−2s−1

(operating at the LHC’s ultimate configuration), requires the experiment to

cope with pile-up of up to 200 inelastic collisions per bunch-crossing. This

corresponds to a total integrated luminosity in the range of 3000− 4000fb−1

by the end of Run 6, which (at the lower estimate) is an order of magnitude

higher than collected prior to the upgrade. The upper estimate of 4000fb−1,

i.e. the LHC operating at ultimate configuration with pile-up of 200, is what

the Phase-II upgrade is designed to facilitate.

The overall upgrade strategy of ATLAS can be divided into four main

elements; the ITk Pixel [10] and Strip [11] Detectors, the LAr and Tile

Calorimeters, the Muon Spectrometer, and TDAQ [12], [9]. The discussion

9

2.3. THE ATLAS EXPERIMENT

Figure 2.4: Schematic depiction of one quadrant of the ITk for ATLAS Phase-

II upgrade. The z-axis is along the beam line with zero being the interaction

point. The r-axis is transverse distance from the interaction point. Active

elements of the strip detector are shown in blue, active elements of the pixel

detector shown in red. Figure from [13].

of the workings of ATLAS below will incorporate the expected upgrades.

Inner Tracker

The anticipated increase in luminosity of the HL-LHC and the radiation

damage accumulated during the high centre-of-mass energy of Run 3 ren-

der the ATLAS Inner Detector non-functional for future Runs. It will be

replaced with a new all-silicon tracker, the Inner Tracker (ITk), to main-

tain the tracking performance of Run 3 whilst operating with the higher-

occupancy environment and coping with the increased integrated radiation

dose. A schematic view of one quadrant of the ITk is shown in Figure 2.4.

It consists of pixel layers close to the interaction point (depicted in red), and

strip layers at larger radii (in blue). The pixel and strip detector modules

form a system of cylindrical layers in the central detector region, the barrel,

and a system of rings beyond, called the endcap.

• ITk strip detector: the strip sub-detector consists of a four-layer

barrel region and one end-cap with six disks on each side. It covers

pseudorapidity of |η| = 2.7 The two inner barrel layers are equipped

10

2.3. THE ATLAS EXPERIMENT

with short strips of 24.1 mm length; the two outer barrel layers with

long strips of 48.2 mm length. Each barrel layer is 2.8 m long.

• ITk pixel detector: the pixel sub-detector consists of a five-layer

barrel region and four end-cap ring layers. It covers pseudorapidity of

|η| = 4. In the end-cap region, the positions of the pixel rings along

the z-axis are optimised to provide hermetic coverage.

The ITk provides highly granular, hermetic coverage with at least nine

points in the barrel region, and 13 in the end caps.

LAr and Tile Calorimeters

The readout electronics of both the LAr and tile calorimeters must be up-

graded to cope with the increased radiation, trigger rates, and latencies that

of Run 4.

Muon Spectrometer

Primarily the performance of the muon trigger chambers must be improved.

T-DAQ

The Phase-II upgrade of the ATLAS T-DAQ system must facilitate the

planned physics program of ATLAS in Run 4 and beyond whilst operating

under the conditions of the HL-LHC. Exceptional performance is required to

cope with increased pile-up: calorimeter energy resolution is reduced whilst

the rate of interesting events is increased. Tracking, a key component of

the trigger, becomes more challenging due to the higher hit density in the

detector.

The baseline design for Phase-II was a single Level-0 hardware trigger,

with input from calorimeter and muon spectrometer systems, with a trigger

rate of 1 MHz and a maximum latency of 10 µs; there was potential evolution

into a two level trigger that would include hardware-based tracking. This

has been updated to reflect refinements to the design of the ITk, with novel

approaches to track reconstruction and advances in commercial accelerators

also informing the decision. An independent ATLAS committee re-evaluated

the future of Event Filter (EF) tracking and recommended “TDAQ should

continue investigating using hardware accelerators to optimize the EF farm.

11

2.3. THE ATLAS EXPERIMENT

The Heterogeneous commodity task force has largely demonstrated proof-of-

concept, and a heterogeneous solution (including FPGAs and/or GPUs) could

lead to substantial power and cost savings.” [12].

The planned T-DAQ Phase II architecture is shown in Figure 2.5. The

Level-0 system (in purple) processes muon and calorimeter data at 40 MHz,

the frequency of the bunch crossing. This triggers at 1 MHz the read out of

all detectors, which send data through the DAQ system to the Event Filter.

The Event Filter performs regional tracking on events in RoIs identified

by the L-0 trigger. This is used to perform an initial trigger selection, and

full-scan tracking is then run over the entire ITk detector at a rate of 150

kHz, to transfer to permanent storage at a rate of 10 kHz.

2.3.3 Tracking in the EF

Track reconstruction in the Event Filter follows a three step procedure:

• clustering and space point formation of hits from the raw ITk

data

• seeding and pattern recognition takes a subset of hits to find likely

track candidates

• track extension, fitting, and ambiguity resolution extends track

seeds into complete track candidates, utilises algorithms for duplicate

removal, fake rejection, and the resolution of ambiguous track candi-

dates, and determines track parameters with a high precision fit

Clustering and space point formation

Hits are formed from the Athena space point formation algorithm [14]. A con-

nected components analysis groups channels with a common edge or corner

and where the deposited energy yields charge above a threshold into clusters.

These are used to construct three-dimensional objects, space points, which

represent where the charged particle traversed the active material of the ITk.

Each cluster in the pixel sub-detector equates to one space point. Within the

strip sub-detector, the procedure is more complex: a charged particle cross-

ing the module outputs two one-dimensional measurements (instead of one

two-dimensional measurement as in the pixel) that must be combined into

12

2.3. THE ATLAS EXPERIMENT

Figure 2.5: A schematic of the TDAQ Phase-II architecture, taken from [12].

The black dotted arrows indicate the Level-0 dataflow from detector systems

to the L-0 trigger system; the L-0 trigger decision, indicated by the red dashed

arrows, is transmitted to the detectors. Trigger and detector data, shown by

the solid black arrows, pass through the Data Acquisition System and into

the Event Filter, which reduces event rate to 10 kHz. Events selected by the

EF trigger are transferred to permanent storage.

13

2.3. THE ATLAS EXPERIMENT

Figure 2.6: Estimated CPU resources required for 2020 to 2036 under differ-

ent scenarios. The two solid lines indicate improvements in the capacity of

hardware annually by 10 and 20%, assuming a sustained budget. The blue

dots indicate the conservative R&D scenario, the red dots the aggresive R&D

scenario. Vertical shaded bands are periods ATLAS will be collecting data.

Figure from [15].

a two-dimensional measurement using the stereo angle between the silicon

strips on opposite sides of the module.

Computational Challenges

Even with the upgraded Phase-II detector systems, dealing with the increased

event complexity in the HL-LHC era poses a significant computational chal-

lenge. All aspects of event reconstruction but, in particular, track reconstruc-

tion require significant CPU resources. Projections run to inform resource

requirements during the HL-LHC show that, assuming a flat budget, needs

will not be met solely by improvements to computing hardware. Figure 2.6

shows resource projections for conservative and aggressive R&D scenarios:

future shortcomings are evident unless significant progress is made.

Experience from Run 3 has showed tracking dominates CPU resources,

[8]; it also indicates that it scales worse-than-linearly with pile up, as seen

in Figure 2.7. Significant effort is therefore being invested into the reduc-

tion of computing resources for tracking, seeking improvements to existing

algorithms and the development of new ones. A promising avenue is the use

of machine learning algorithms that can utilise accelerators such as GPUs

and FPGAs. Applications of ML algorithms in high-energy physics have

soared in the last decade; in particular the development of geometric deep

14

2.3. THE ATLAS EXPERIMENT

Figure 2.7: Execution time for fast tracking and silicon data preparation

time for full scan tracking in jet triggers in Run 3. Figure from [8].

learning, which allow non-Euclidean inputs, are well suited for the sparse

samplings common from particle physics experiments. Set- and graph-based

architectures have been utilised in particle physics in the last few years for

a huge variety of tasks, including jet classification, event classification, ver-

texing, pile-up mitigation, and, crucially, charged particle tracking (reviewed

in [16]). Deep learning as a field offers proven efficacy in HEP tasks: it also

offers a natural way to switch to the highly parallel architectures of GPUs

and FPGAs, the clear future of computing power.

In particular, graph neural networks (GNNs) have been demonstrated to

be effectively utilised in charged particle tracking at the HL-LHC (first by S

Farrell et al. [17]), with excellent performance seen in, for example, [18],[19].

15

Chapter 3

Machine Learning

Machine learning has helped shape experimental particle physics since the

1980s [20]; indeed, the 2024 Nobel laureates in Physics were awarded to two

pioneers of the subject. Unlike other experimental techniques, deep learning

algorithms extract high-level patterns using lower-level information directly

from the data. Here, an overview of the basics of machine learning, and more

specifically deep neural networks, is given - with an emphasis on techniques

that will be used later in this work.

3.1 Neural Networks

3.1.1 The modern neural network

A neural network can most simply be thought of as a numerically defined fit

function with model parameters θ,

fθ(x) ≈ f(x) (3.1)

which converts input vector x ∈ RD to some output fθ(x).

Neural networks are composed of a set of connected neurons; the strength

of connection between two neurons are determined by its weight, such that a

weight of zero would cut the connection. The input function x is propagated

along neurons to reach network output fθ(x); most simply, this propagation

from neurons {j} to neuron i uses the affine transformation,

hi = Wijhj + bi (3.2)

17

3.1. NEURAL NETWORKS

where the output hj of neuron j is connected to neuron i via weight Wij

and the learnable bias bi. A propagation defined exactly as this would allow

the neural network to approximate solely linear functions, as the composition

of linear functions is always a linear function; non-linearity is introduced

to increase network expressivity via an activation function, which further

processes the propagation output. The most simple activation function is

the rectified linear unit, ReLU,

ReLU(xj) := max(0, xj) =

{
0 if x ≤ 0,

x if x > 0.
(3.3)

Other common activation functions include the Sigmoid,

S(x) =
1

1 + exp−x
(3.4)

and the Tanh,

tanhx =
expx− exp−x

expx+exp−x
. (3.5)

3.1.2 Multi-Layer Perceptrons

The multi-layer perceptron (MLP) is among the most common form of neural

networks. Neurons (hence called nodes) are grouped into a set of layers; the

nodes of layer i are connected to nodes of layers i ± 1 with the strength of

connection determined, as before, by its weight. The layers are separated into

the three categories: the input layer, with n nodes corresponding to the n-

dimensional input vector xk; the output layer, which returns the transformed

input data yj = fθ(xk); and all other interim layers, known as the hidden

layers - so-called because the computations performed are not immediately

visible to the user, and whilst the model parameters can now be tracked it

can be difficult to conceptualise the patterns they represent. The structure of

a multi-layer perceptron containing only one hidden layer (known as shallow)

is shown in Figure 3.1.

The complexity and expressivity of the network are partially determined

by it’s depth (the number of hidden layers) and width (the number of nodes

in each hidden layer). The propagation function (now with some activation

function Φ) from layer n to layer n+ 1, can now be written as

h
(n+1)
i = Φ[W

(n+1)
ij h

(n)
j + b

(n+1)
i] (3.6)

18

3.1. NEURAL NETWORKS

Figure 3.1: A shallow multi-layer perceptron, with n inputs, m outputs, and

one hidden layer comprised of l nodes.

Encoders and Decoders

Encoders and decoders are vital components of many larger neural net sys-

tems, and are generally formed of MLPs. An encoder maps input data into a

high-dimensional latent space representation, capturing abstract features; a

decoder transforms this latent space representation into a task-specific out-

put.

3.1.3 Training

The previous sections have introduced the basic concepts of neural networks,

as well as some relevant topologies. This section will introduce the concepts

behind network learning.

For the purposes here, we are concerned only with supervised learning ;

this occurs when both the input x and the truth f(x) of the training data

are known. This is in contrast to unsupervised learning where the truth is

always unknown.

A training dataset (x, f)j gives implicit access to the truth f(x); our

model parameters θ must be determined such that the our network output

fθ(x) approximates the truth,

fθ(x) ≈ f(x) (3.7)

19

3.1. NEURAL NETWORKS

The discrepancy between these functions is measured using a loss func-

tion; this is used to update the model parameters θ each iteration, to improve

the prediction of the next. The loss function, L ≥ 0, is an encapsulation

of the network’s approximation error; a smaller loss corresponds to a better

approximation.

The choice of loss function must be inspired by the task at hand; a sim-

ple classification task may use a cross entropy, whilst the classic tool for a

regression task is the mean squared error. The loss functions pertinent to

this thesis will be discussed later.

The pursuit of a neural network is to minimise the loss by applying the

correct configuration of model parameters. This is done iteratively, as follows:

Training Step

Using our training dataset (x, f)j,

1. Forward pass: xj is propagated forward through the network to produce

some output f(xj); this output is compared to the truth fj via some

loss function.

2. Backward pass: The network is propagated through backward; at each

node, the node’s parameters are updated to minimise the loss function.

Validation Step

A forward pass is completed using a validation dataset; the loss is computed

and logged to check for overtraining. No backward pass is completed.

3.1.4 Optimizers

Optimizers are used to update model parameters during the backward pass

using the loss function; typically the optimizer of choice is the gradient de-

scent algorithm. One must first calculate the loss functions derivative with

respect to that node’s parameters; the parameters are now updated by ’tak-

ing a step’ in the direction of the negative gradient; a naive approach could

be

θ
(t+1)
j = θ

(t)
j − α

〈
∂L (t)

∂θj

〉
(3.8)

20

3.2. GRAPH NEURAL NETWORKS

The step size (as in the second term of Eq. 3.8) is determined by the learn-

ing rate, α, a hyperparameter of the model. Consider a high-dimensional loss

landscape L (θ). Far away from the minimum, the gradients are unreliable

and large “steps” more efficiently search the global landscape - and avoid

getting trapped in local minima. Approaching the minimum, smaller steps

are wanted so as not to miss it. For this reason, the learning rate is often

scheduled as an exponential decay.

This walk through loss landscape is inherently unstable, and whether

the global minimum has been reached is unknown (in fact in many cases it

has not). There are some methods of stabilisation: for instance, momen-

tum mixes the loss gradient at the most recent step with gradients from

updates before; the vector travelling through parameter space incurs accel-

eration from the gradient of the loss, and therefore changes in direction are

dampened. Another widely used optimizer is the Adam optimizer, intro-

duced in [21], which builds on momentum with adaptive learning rates: by

adjusting the learning rate for each parameter using estimates of the first

and second moments of the gradients, it improves convergence stability.

3.1.5 Regularisation and Normalisation

Normalisation is a technique used to mitigate problems encountered when

training neural networks such as over-fitting. Normalisation techniques work

to stabilise gradients, ensure inputs to subsequent layers maintain a consis-

tent scale and distribution, and reduce the effect of outliers in the data

• Batch normalisation normalises the inputs of each layer within a

mini-batch.

• Layer normalisation normalises the activations of each sample of a

neural net layer: normalisation is thus performed across the features of

each sample

3.2 Graph Neural Networks

Much data in the real-world can be represented as graphs; think, for in-

stance, of social networks, molecular structures, or - for this thesis - events

in high-energy physics. Until recently, using deep learning models on these

datasets required converting them to Euclidean structures such as sequences

21

3.2. GRAPH NEURAL NETWORKS

or images, and in the process masking some relational information. The rise

of geometric deep learning as a sub-field of machine learning has enabled

the more traditional structures of neural nets to be adjusted to support

non-Euclidean inputs. Graph neural networks (GNNs) are one such area;

networks designed to facilitate a graph-like input and exploit it’s relational

structure. GNNs have been used in many areas of particle physics already.

3.2.1 Graphs

Any set of objects with relations between them can be expressed as a graph,

with the objects as nodes and the relations as edges connecting those nodes.

These edges can have direction (as for a directed graph), or can be direction-

less (an undirected graph). Graphs thus have four features that may want to

be used to direct predictions: node-level, edge-level, global, and connectivity.

The last, in particular, makes graph representation difficult.

Typically, a graph is represented by an adjacency matrix : an nnodes ×
nnodes matrix whose (i, j)th element indicates whether the node i is adjacent

(i.e. connected) to node j. As most graphs are far from fully-connected, the

adjacency matrix is generally sparse and therefore space-inefficient. Adja-

cency matrices are also not permutation invariant, and for undirected graphs

are symmetric, containing redundant information.

One solution to this is to instead represent graphs as a 2 × nedges adja-

cency list: these describe the connectivity of the edge ek between nodes i and

j as a tuple (i, j) in the kth element of the list. Unlike adjacency matrices,

this format is permutation invariant, and in general is a more concise repre-

sentation. Figure 3.2 shows an example of a directed graph, and both forms

of representation.

3.2.2 The General Framework

Fundamentally, GNNs are graph-to-graph mappings that ascertain higher-

level information by transforming features whilst preserving connectivity.

Similarly to an MLP, a GNN has a layered structure; information between

connected nodes is transformed from layer to layer.

Assume we have as our input a graph with n nodes, and input node

feature vectors {x1, x2, ..., xn}. These node features are embedded into a

latent space, with each layer of the GNN transforming the embeddings, such

22

3.2. GRAPH NEURAL NETWORKS

Figure 3.2: A directed graph (left), it’s adjacency matrix (top right), and it’s

adjacency list (bottom right). The edges are not weighted.

that the representation of the ith node in the kth layer is given by h
(k)
i . The

nodes within each layer of the neural net is inherited from the structure of

the input graph. Connections are also determined by the input graph: self

connections exist between the same node on adjacent layers, and neighbour

connections exist between neighbouring nodes on adjacent layers. These

connections ensure that the embedding in layer k of node i in layer k + 1 is

determined by the embedding of both node i and by it’s nearest neighbours.

This aggregation of information is called message passing, and is discussed in

the next section. An example of a graph used as the basis for the structure

of a GNN is shown in Figure 3.3.

The input layer to the net is simply the input graph, with feature vectors

{xi} taken as embeddings {h(0)
i }. The output layer is dependent on the type

of neural net in use.

3.2.3 Message Passing

Message passing, then, is the core mechanism used to propagate information

across the graph to collate at each node. This concept was developed as

an interaction network for physics in [23]. The number of hidden layers

(referred to from now as the number of message passing steps) in the GNN

dictate what information is gathered from what distance node to update the

embedding; the greater the number of message passing steps, the greater the

reach across the graph.

Take, as an example, Figure 3.3: in the first hidden layer, node v0 will

collate information from itself and v2; v2 will collate information from itself,

23

3.2. GRAPH NEURAL NETWORKS

Figure 3.3: The directed graph from Figure 3.2, and an example of the

connections between adjacent layers in a GNN architecture. Dashed red

arrows show self connections; solid green arrows show neighbour connections.

Figure inspired by [22].

v3, and v1. Thus, in the second layer, v0 will receive again information from

v2, but this will now contain information from v1 and v3. In that way, in only

two message passing steps, information from the entire graph has informed

the embedding of node v0.

24

Chapter 4

ATLAS GNN Tracking

Here the ACORN track reconstruction framework, developed for charged

particle track reconstruction in the ITk detector at ATLAS, will be laid

out. The following algorithms aim to reconstruct all non-electron particles

produced in the primary vertex of top quark pair production, with transverse

momentum pT > 1 GeV, produced at transverse radius r < 260 mm and

|η| < 4, that leave at least 3 hits. From here on particles meeting these

conditions will be referred to as target particles.

4.1 ACORN Pipeline

For each event, a graph is built. Each space point (or hit) is taken as a node,

with attached features; edges are constructed between nodes such that an

edge connecting two nodes forms a doublet of hits. Pair-wise features can

also be associated with each edge. An edge connecting two nodes represents

the possibility that the two nodes are successive hits from the same particle;

all edges can thus be categorised as true, if that is indeed the case, or fake,

if not. By ranking the probability each edge is true using some edge-scoring

algorithm and then in some way selecting edges with high scores, the graph

can be segmented into components of connected nodes: these are taken as

the track candidates. The GNN-based pipeline for track reconstruction is

shown in Figure 4.1.

26

4.1. ACORN PIPELINE

Figure 4.1: Schematic overview of the GNN-based track finding pipeline.

Taken from [24].

4.1.1 Graph Construction

An event with pileup ⟨µ⟩ = 200 has O (105) space points; a fully connected

graph would haveO (1010) edges, with the vast majority of edges representing

non-physical connections and thus redundant. When building the graph, the

choice of which edges to construct is the premier question. To reconstruct all

tracks of target particles, all edges connecting successive hits of target parti-

cles, true target edges, must be built, whereas all other edges are preferably

avoided due to time and GPU-memory constraints; additional fake edges can

also obscure the tracks we wish to reconstruct.

These requirements are characterised by two performance metrics: edge-

wise efficiency, the ratio of true target edges to all true target connections,

and edge-wise purity, the ratio of true target edges to all edges present in

the graph. An efficiency close to 100% is required to avoid broken track

candidates; purity demands thus take a lesser priority.

There are two approaches to graph construction commonly used for track

finding: a data-driven approach, the module map, which applies geometric

heuristics to determine which space points are likely to belong to the same

track (and thus should be connected), and the approach used in this thesis:

the metric learning approach.

Metric Learning

Metric learning, [25], is a machine-learning technique that learns a distance

function d̃(xi, xj) that quantifies how similar data points (xi, xj) are in a

feature space. Here, the metric function of the form

d̃(xi, xj) = d (f(xi), f(xj)) (4.1)

27

4.1. ACORN PIPELINE

is learnt, where f : Rn −→ Rm is a multi-layer perceptron that embeds data

points (xi, xj) into a high-dimensional latent space; the distance metric d is

then the euclidean distance within that latent space.

The network is trained using a contrastive hinge loss,

L(xi, xj) = wijyij d̃(xi, xj) + wij (1− yij)max[0,m− d̃(xi, xj)] (4.2)

where yij = 1 if xi and xj are consecutive space points from the same particle

and equals 0 otherwise. The hinge loss thus pulls true pairs (yij = 1) ever

closer together and pushes fake pairs (yij = 0) at least a margin m away.

The weights, wij, allow the model to enhance the impact of certain training

data pairs and mask others.

The trained MLP is used in inference to embed space points into the

latent space. An adaption to the k-Nearest Neighbours (kNN) algorithm

is then used: an m-dimensional sphere of radius r is centred on each hit

and the first k hits within that sphere are connected to it. This thus builds

connections in the graph in event-space.

Filter

The metric learning approach creates graphs with O(107) edges. This is an

order of 10 greater than graphs created with the Module Map approach, so

an additional filtering step to prune fake edges is done, to obtain graphs

with O(106) edges. Graph convolution modules embeds the node input and

undergoes message passing steps to learn graph-wide features before passing

to an MLP that outputs an edge classification score.

The network is trained using a binary cross entropy loss,

L(x, y) =
∑

ln; ln = −wn[yn · log σ(xn) + (1− yn) · log(1− σ(xn))] (4.3)

where yn = 1 for true edges and equals 0 otherwise, and the weights, wn,

allow the model to enhance the impact of certain training edges and mask

others.

4.1.2 Interaction Network

The graph neural network used here takes the trimmed down graph post filter

as it’s input, and follows an encode-process-decode architecture to output

28

4.1. ACORN PIPELINE

Figure 4.2: A schematic overview of one message passing step in the inter-

action network. Figure taken from [26].

an edge-classification score ranking the probability an edge is target true.

Initially, two encoders (one for node features, such as position, and one for

edge features, such as positional differences) embed features into a high-

dimensional latent space.

Within the latent space, message passing steps propagate features around

the graph, as discussed in Section 3.2. Node latent features are passed to

all joining edges; an edge network MLP uses these features to update the

latent representation of that edge via some permutation-invariant aggrega-

tion with the prior edge feature. The updated edge features are then passed

to all connected nodes, where a node network MLP aggregates them with

the prior node feature to update it. This sequence comprises one message

passing step, and is illustrated in Figure 4.2. Iterations of message passing

steps propagate information across the graph, enabling the identification of

complex geometric patterns in tracks.

Finally, the latent edge features from the last message passing step are

decoded into an edge classification score.

The network is trained with the binary cross entropy loss function.

4.1.3 Building Track Candidates

The scored graph must now be segmented into track candidates.

29

4.1. ACORN PIPELINE

ConnectedComponents

The most straightforward method is to apply a score threshold and cut all

edges beneath that score. Each remaining set of connected nodes, or con-

nected components, is taken as a track candidate. This is extremely time

efficient and computationally inexpensive, but merges tracks if the threshold

is too low and splits tracks if the threshold is too high.

CCandWalk

A more complex method combines the connected components algorithm with

a walkthrough algorithm, and requires a directed graph. First, any directed

cycles are removed by pointing all edges outwards (using the hit-position of

the nodes). An initial low score cut is applied to again create sets of connected

components. If each node in a connected component has at most one incoming

and one outgoing edge (i.e. there is a single path), the component is labelled

as a track candidate. If multiple paths exist, a walkthrough algorithm is

used.

A topological sort on the graph ascertains that node i appears before

node j if a connection i −→ j exists (hence the requirement for an a-cylic

graph). This is used to identify nodes without incoming edges: source nodes.

Given one of these source nodes, the walkthrough algorithm commences.

1. The outgoing edge with the highest score is chosen, given it exceeds

some threshold min. The attached node is then added to the track

candidate.

2. If any additional outgoing edges have scores greater than some thresh-

old add (where add > min), a new track candidate is formed using that

edge.

3. The walkthrough continues until no more nodes can be added to the

track candidate(s).

If a connected component has multiple track candidates from the walk-

through algorithm, the ambiguity is solved by simply taking the longest

track candidate. All nodes associated with a track candidate are removed

from the graph; the walkthrough begins with the next source node.

30

4.1. ACORN PIPELINE

Figure 4.3: A schematic showing an example of the CCandWalk algorithm.

Similarly coloured nodes indicate belonging to the same particle; grey spiked

nodes do not belong to any particle track. For simplicity, four edge scores

have been chosen.

31

Chapter 5

Baseline Results

The results presented hereafter are based on simulated pp −→ tt̄ events pro-

duced at centre of mass energy
√
s = 14TeV with a pile-up of ⟨µ⟩ = 200. The

Geant4-based ITk simulation with ITk layout version 23-00-03 (as shown in

Figure 2.4) [27] was used. Evaluations have been performed on Nvidia A6000

GPUs directly running PyTorch in inference mode.

5.1 Simulation Data

To achieve an understanding of the data, histograms illustrating the features

of 5000 sample events are shown. Figures 5.1 shows the distributions of the

hit positions in cylindrical coordinates. As per common practise in high

energy physics, the z-axis is defined along the beam axis. The ϕ distribution

follows a uniform distribution as expected. The detector geometry becomes

evident in the r and z distributions; the lack of hits in bin 0.325 < r[m] <

0.374 reflects the gap between the strip and pixel sub-detectors (see Figure

2.4) where there are no active elements; likewise, the sharp peak in hits

roughly every 200 mm after demonstrate the location of the strip barrel

elements.

Figures 5.2 shows the distributions of the features of the simulated par-

ticles. Here, one can identify the criteria defining the target particles, laid

out in Section 4. Figure 5.2b illustrates the sample is dominated by particles

with pT < 1 GeV, which comprise roughly 87.3% of the sample. Figure ??

shows the number of hits per track; one can see a bump in the number of hits

a target track leaves around 9 to 13 hits, which corresponds to the minimum

33

5.2. BASELINE

(a) (b) (c)

Figure 5.1: Histograms of hit positions in cylindrical coordinates r, ϕ, and z

respectively.

number of points in the barrel region and end cap in the ITk respectively.

Figure 5.2e shows the particle constituents of the data sample. Electrons are

excluded from the target criteria as a simplification.

5.2 Baseline

This section will now present the results of the baseline process: that is, the

method of track finding following exactly Section 4.1. All metrics referred

henceforth in this section will refer to the target: edge-wise efficiency, for

example, will be the ratio of true target edges present in the graph to all true

target edges.

5.2.1 Graph Construction

Metric Learning

A metric learning net was trained on 1000 events for 170 epochs. The net’s

architecture was as follows: five fully connected layers (a 3-dimensional input

layer, 12-dimensional output layer, and three high-dimensional hidden lay-

ers), with a layer normalisation applied after each layer followed by a Tanh

activation. The Adam optimiser is used, with the learning rate gradually

increasing over a period of 5 epochs to reach a maximum of 0.01, and then

decaying. Three node features were inputted: the spacepoint positions in

cylindrical coordinates, (r, ϕ, z).

The number of hidden dimensions of the latent space (i.e. the dimension-

ality of each hidden layer) is a key hyperparameter of the net: the greater

the dimensions, the greater the ability of the net to extract abstract features

34

5.2. BASELINE

(a) (b)

(c) (d)

(e)

Figure 5.2: Histograms of η and transverse momentum (top row), number of

hits and radius of the creation vertex (middle row), and particle type (bottom

row) of particles in data sample.

35

5.2. BASELINE

(a) Edge-wise efficiency vs. hid-

den dimensions

(b) Graph size vs. hidden di-

mensions

(c) Edge-wise purity vs. hidden

dimensions

Figure 5.3: Efficiency, graph size, and purity of 300 graphs as a function of

hidden dimensions of the metric learning nets that built them.

from the data - but the greater the computational requirements. Too many

dimensions and the network can become over-parametrised and performance

will stabilise, or even deteriorate: the “curse of dimensionality” can make

distances between points meaningless. As such, five nets were trained with

[1024, 512, 256, 128, 64] hidden dimensions, but otherwise identical architec-

ture. The same 300 events were sent through each net, with inference radii

chosen such that 99.5% efficient graphs were constructed. Figure 5.3 shows

the edge-wise efficiency (5.3a), the number of edges per graph (hence called

graph size, in 5.3b). and edge-wise purity (5.3c) of the graphs constructed

by each net. Performance of each net can be measured by the number of

superfluous edges built whilst building a constant proportion of target edges:

it can thus be seen that performance is maintained for nets with 1024 and

512 hidden dimensions, but deteriorates for smaller nets. A net with 512

hidden dimensions was thus used.

The network was trained using the loss defined in Eq. 4.2; the weights

were chosen as follows:

• wij = 0: nodes i and j are successive hits for a non-target particle (true

non-target)

• wij = 1: nodes i and j are not successive hits for any particle (fake)

• wij = 3: nodes i and j are successive hits for a target particle (true

target)

This emphasises the contribution of true target edges to the loss and masks

any contribution from true non-target edges. The total loss was then the

36

5.2. BASELINE

(a) Graph construction efficiency vs. η (b) Graph construction efficiency vs. pT

Figure 5.4: Graph construction edge-wise efficiency as a function of η and

pT .

mean of all target contributions summed with the mean of all fake contribu-

tions, such that the vast quantities more of fake connections do not overpower

the true target. A sweep of weights of true target edges was undertaken to

find the optimal value of 3.

The training progress was monitored in real time using the Weights and

Biases framework [28]. Training data was split into a train set, validation

set, and test set following an 8/1/1 ratio; the train set is used to train the

network, the validation set is used to monitor the loss to prevent overfitting

on the train set, and the test set is used for final evaluation of the model.

A metric calculating the edge-wise purity at 99.5% edge-wise efficiency of

the validation set was monitored during training, and training was stopped

when this metric, along with others such as the validation loss, plateaued at

around epoch 170.

100 events were sent through the trained network with an inference radius

of 0.12 on the test dataset to build graphs with a mean efficiency of 0.9955±
0.0009 and a mean purity of (4.08 ± 0.05) × 10−3. The graphs contained

(1.81±0.35)×107 edges. Figures 5.4 shows the graph construction efficiency

as a function of η (Figure 5.4a) and pT (Figure 5.4b). The deterioration

in efficiency at |η| = 1 is because the strip barrel has lower space point

longitudinal resolution than the pixel detector. This can be seen in Figure

2.4.

A short study conducted found that the net struggles to construct the

final few percent of true target edges. Seven sets of 100 graphs were built

37

5.2. BASELINE

Figure 5.5: Graph size against metric learning edge-wise efficiency for seven

sets of graphs built with the same net at varying inference radii.

with inference radii in the interval [0.06, 0.12]: Figure 5.5 shows the size of

the graphs against their edge-wise efficiency. One sees a ballooning of graph

size to gain the final few percent of edges.

Filter

A filter net was trained on 1000 events for 200 epochs, when monitored

metrics plateaued and training was stopped. Thirteen node features were in-

putted (r, ϕ, z, r1cl, ϕ
1
cl, z

1
cl, r

2
cl, ϕ

2
cl, z

2
cl,∠η

1
cl,∠η

2
cl,∠ϕ

1
cl,∠ϕ

2
cl) into three stacked

graph convolutional modules. These are:

• r, ϕ, z: cylindrical coordinates of space points;

• r1,2cl , ϕ
1,2
cl , z

1,2
cl : for strip space points: cylindrical coordinates of the two

strip clusters that form the space point; for pixel space points: a repeat

of the space point coordinates;

• ∠ϕ1,2
cl ,∠η

1,2
cl : the ϕ and η angle respectively of the (for strip space

points first and second) cluster relative to the normal of the module it

is located on.

All modules applied a graph convolution using the GraphSAGE operator

[29], normalised the output with layer normalisation, and then applied a

ReLU activation. The three modules had 256, 512, and 1024 hidden layers

respectively.

38

5.2. BASELINE

Figure 5.6: Cumulative filter efficiency of four sets of 100 graphs, as a function

of graph size. The labels on each point is the score cut applied to prune the

graphs.

The SAGEConv updates the latent node features of node i by aggregating

latent features from all neighbouring nodes j,

x′
i ←− W1xi +W2 · AGG{xj|∀j ∈ N (i)} (5.1)

where W are the learnable weight matrices and AGG here is the mean.

The network was trained using the binary cross-entropy loss in Eq. 4.3;

the weights were chosen as follows:

• wn = 0: for true non-target edges

• wn = 1: for (fake) edges

• wn = 10: for (true target) edges

The 100 graphs built to 99.55% efficiency by the metric learning net

were sent through this filtering net; edges with scores below four different

thresholds were pruned to obtain four sets of graphs with cumulative edge-

wise efficiency between [0.97, 1], as shown in Figure 5.12. As for the metric

learning net, it is evident that the net struggles with the final few percent in

efficiency: the 99.4% efficient graph is more than four times the size of the

97% efficient graph despite containing only ∼ 2000 more target edges.

Figure 5.7 shows the η and pT distributions of all true target edges and

those not present in the post-cut graph for the 0.97 and 0.99 post-filter

efficient graphs. True target edges not in the graph disproportionately occur

at |η| = 1, a reflection of the situation in Figure 5.4a, and explained similarly

39

5.2. BASELINE

(a) Distribution of η of true target edges, and true

target edges not in 97% graph.

(b) Distribution of pT of true target edges, and true

target edges not in 97% graph.

(c) Distribution of η of true target edges, and true

target edges not in 99% graph.

(d) Distribution of pT of true target edges, and true

target edges not in 99% graph.

Figure 5.7: True targets segments in event and missing from 97% and 99%

graphs

by the geometry of the ITk; the filter also has difficulties with edges at low pT
(a problem sustained at higher overall efficiencies) and at high pT (a problem

overcome at higher overall efficiencies). Difficulties at high-pT are due to a

lack of statistics in the data sample: low-pT is presumably reflective of the

inherent challenges in connecting tracks with greater curvature.

Figures 5.8 show the edge-wise efficiency of the filter stage as a function of

η (5.8a) and pT (5.8b). It is clear the filter struggles to score correctly target

edges occurring mainly in the barrel region of the ITk and at high transverse

momentum. The degradation in efficiency at high transverse momentum

is explained by the training dataset: high pT tracks comprise only a small

fraction of the input target particles (see Figure 5.2b). The drops in efficiency

at |η| = 1 is a reflection of the situation in Figure 5.4a, and is explained

40

5.2. BASELINE

(a) Filter efficiency vs. η (b) Filter efficiency vs. pT

Figure 5.8: Filter edge-wise efficiency as a function of η and pT for the

four sets of graphs shown in Figure . The legend refers to their cumulative

efficiencies.

similarly by the geometry of the ITk.

5.2.2 GNN

The GNN edge-scoring net was trained on 2000 events for 200 epochs, when

monitored metrics plateaued and training was stopped. The training data

were the 99% efficient graphs post-filter. Twelve node features were inputted:

previous works have used a homogeneous GNN with three input node fea-

tures, the space point cylindrical coordinates (r, ϕ, z) as node features, but

these have performed poorly in the barrel strip region [18], where two clusters

form each space point. An attempt has been made to mitigate this by the

inclusion of the cluster positions, such that 12 node features are now used

are:

• r, ϕ, z: cylindrical coordinates of space points;

• η: the pseudorapidity of the space point

• r1,2cl , ϕ
1,2
cl , z

1,2
cl : for strip space points: cylindrical coordinates of the two

strip clusters that form the space point; for pixel space points: the

single pixel cluster coordinates repeated;

• η1,2cl : the pseudorapidity of the (for strip, first and second) cluster

41

5.2. BASELINE

Edge features inputted are the distance between space points in cylindrical

coordinates, (∆r,∆ϕ,∆z).

The IGNN follows the encode-process-decode architecture described in

Section 4.1.2, with the following architecture:

• The edge and node encoders both use a fully-connected three layer

network (with a 3 and 12 - dimensional input layer respectively, a

64-dimensional hidden layer, and a 64-dimensional output layer) with

a batch normalisation applied after each layer followed by a ReLU

activation

• Eight message passing steps corresponding to eight layers of the inter-

action network are used. Each step uses two fully-connected three-layer

networks, to update the node and edge latent features respectively: the

node block, with a 256-dimensional input layer, and 64-dimensional

hidden and output layers, with batch normalisation and ReLU activa-

tion applied after each layer; and the edge block, with a 384-dimensional

input layer, and 64-dimensional hidden and output layers, with batch

normalisation and ReLU activation applied after each layer

• An edge decoder takes the final 64-dimensional latent features through

a three layer network (with one hidden layer of 64 dimensions) and

outputs an edge score.

The network was trained using the loss defined in Eq. 4.3; the weights

were chosen as follows:

• wij = 0: nodes i and j are successive hits for a non-target particle (true

non-target)

• wij = 0.1: nodes i and j are not successive hits for any particle (fake)

• wij = 1: nodes i and j are successive hits for a target particle (true

target)

as suggested by [18].

Figure 5.9a shows the GNN edge classification performance after training,

evaluated on 0.99 efficient graphs. Background rejection rate is defined as

1/ϵbkg where ϵbkg is the fraction of fake edges passing the threshold. Figure

5.9b shows the score distribution on the same 100 99% efficient graphs: most

42

5.2. BASELINE

(a) GNN classification performance, based on GNN

edge-wise efficiency and GNN edge-wise fake rate.

(b) Score distribution for 100 0.99 efficient graphs

sent through the GNN. Targ- are true target edges;

non- are true non-target edges; fake are fake edges.

Figure 5.10: Output edge-wise efficiency post-GNN classification with a score

cut of s = 0.5 against input edge-wise efficiency.

importantly, we see a ramp up of number of target edges as score increases.

The flat distribution of true non-target edges is as expected, given they are

masked from the GNN loss; the fake edges mostly have low scores as desired.

Peaks at either extreme of the score distribution for all categories speaks to

some edges of all categories having properties that indicate either true target

or fake.

Once trained, the four sets of graphs at [0.97, 0.98, 0.99, 0.994] were sent

through the IGNN net. Figure 5.10 shows the cumulative edge-wise efficiency

against input edge-wise efficiency for a score cut of s = 0.5. The deterioration

in performance for the 0.994 input efficient graph is likely because the GNN

was trained on the 0.99 input efficient graphs and so performs better on the

relatively more sparse graphs.

43

5.2. BASELINE

(a) GNN efficiency in (z, r) plane

(b) GNN masked purity in (z, r) plane

Figure 5.11: Performance of the GNN edge classifier in the (z, r) plane on

the 0.99 efficient graphs with a score cut of s = 0.5.

Figure 5.11 shows the performance of the GNN edge classifier in the (z, r)

plane at a score cut of s = 0.5. Figure 5.11a shows the edge-wise efficiency

across the detector; Figure 5.11b shows the masked purity across the detector.

The masked purity is defined as the total target edges in graph as a fraction

of all edges in graph excluding true non-target edges. This is a useful metric

as building true non-target edges is not necessarily a negative. The efficiency

is high across the detector, but both metrics perform continue to perform

worse in the strip barrel; this is a repeated problem.

5.2.3 Track Reconstruction

Track candidates were built from the four sets of graphs using both the

ConnectedComponents (CC) algorithm and the CCandWalk algorithm.

44

5.2. BASELINE

(a) GNN efficiency against η (b) GNN efficiency against pT

Figure 5.12: GNN edge-wise efficiency with a score cut of s = 0.5 as a

function of η and pT for the four sets of graphs shown in Figure . The legend

refers to their cumulative efficiencies post filter.

A track is specified as matched and the associated particle as recon-

structed if the track contains at least 3 hits and more than half these hits are

shared with the particle, pshared > 0.5, according to criteria laid out in [10].

A particle is duplicated if it has multiple matched tracks; a track is fake

if it has more than three hits but has not been matched to a particle.

Connected Components

The CC algorithm was run with score cuts in 0.1 intervals between [0, 1] on

the four sets of graphs from Figure 5.12. Figure 5.13 shows tracking efficiency

(5.13a), fake rate (5.13b), and duplication rate (5.13c) against score cut of

the resulting track candidates built.

Figure 5.13a shows a maximum tracking efficiency of 0.964 ± 0.007 is

achievable using a score cut of 0.8. It also shows for the larger graphs a

higher score cut achieves a higher tracking efficiency, which is unintuitive.

This is due to the matching criteria that requires the track to share at least

half it’s hits with the associated particle.

To illustrate this, track candidates built from one event with a CC score

cut of 0.5 have been analysed: this produced a track efficiency of 0.947.

Figure 5.14 shows the hit distributions of the matched tracks from this event.

All tracks have at least 3 hits and share more than half of them with an

associated particle.

45

5.2. BASELINE

(a) Track efficiency against score cut (b) Fake rate against score cut

(c) Duplication rate against score cut

Figure 5.13: Track efficiency, fake rate, and duplication rate of the track

candidates formed at various ConnectedComponents score cuts of the four

sets of graphs.

46

5.2. BASELINE

Track candidates were built from the same event but now with a CC

score cut of 0.1, giving a track efficiency of 0.864. The hit distributions of

the particles reconstructed with a CC score cut of 0.5 were taken, and ratios

of shared hits and track hits for those particles in 0.1 and 0.5 calculated.

Figure 5.15a shows the ratio of shared hit distributions: one can see all

particles that were reconstructed for s = 0.5 share at least as many hits with

tracks for s = 0.1. Figure 5.15b shows the ratio of track hit distributions:

one can see tracks with s = 0.1 have far more hits than tracks with s = 0.5.

In essence, a lower score cut “pollutes” a matched track with superfluous

edges so that it no longer shares at least half its hits with the particle.

The increase in duplication rate with greater score cuts seen in Figure

5.13c is a because harsher cuts “break” track candidates. The nature of the

CC algorithm means two track candidates sharing hits is impossible - a hit

can only belong to one connected component. Multiple tracks associated

to one particle are because some edges linking that particle are not making

the cut. Recalling the score distribution in Figure 5.9b, one sees increasing

numbers of true target edges have scores in the region [0.6, 1.0]: CC cuts

greater than 0.6 in particular are likely to cut true target edges and thus

potentially break tracks.

The increase in fake rate at lower score cuts seen in Figure 5.13b is because

at lower cuts more tracks with at least 3 hits are formed - and many of these

are fake.

The variability of these metrics with both score cut and post-filter cu-

mulative edge-wise efficiency is good reason to use the alternative algorithm,

CCandWalk.

CCandWalk

The nature of the CCandWalk algorithm makes it inherently more stable, as

the walkthrough can seek out the most likely true target edge from a wider

range of scores, and will not keep any remaining branching edges that pollute

the track. The downside of the algorithm is it is understandably much slower,

although progress is being made to speed it up.

Quick scans of varying thresholds of 0.1 < min < 0.4 and 0.5 > add > 0.8

found little differentiation in end results. Three thresholds were chosen under

suggestions from [18]: an initial cut of any edges with score below s = 0.01

was made, and then the walkthrough commenced with thresholds min = 0.2

47

5.2. BASELINE

Figure 5.14: Distribution of number of hits of matched tracks (in blue) and

number of hits shared by matched tracks and reconstructed particles (in grey)

for track candidates built from one graph with the CC algorithm using a cut

of s = 0.5.

(a) The ratio of shared hits of particles reconstructed

at a score cut of 0.5

(b) The ratio of track hits of particles reconstructed

at a score cut of 0.5

Figure 5.15

48

5.2. BASELINE

Post-Filter Efficiency Track Efficiency Fake Rate Duplication Rate Graph Size [×105]
0.97 0.960 ± 0.008 0.053 ± 0.006 0.163 ± 0.038 3.75 ± 0.07

0.98 0.977 ± 0.004 0.059 ± 0.008 0.077 ± 0.009 5.63 ± 0.10

0.99 0.983 ± 0.004 0.058 ± 0.005 0.072 ± 0.009 10.2 ± 0.18

0.994 0976 ± 0.006 0.063 ± 0.007 0.126 ± 0.010 15.8 ± 0.30

Table 5.1: Results of track candidates built using CCandWalk from the four

sets of graphs, with their post-filter graph size.

(a) Track efficiency vs. pT . x-values (but not errors)

shifted slightly for ease-of-view. (b) Track efficiency vs η.

Figure 5.16: Track efficiency of the four sets of graphs using the CCandWalk

algorithm.

and add = 0.7.

Track candidates were built using these thresholds from the four sets of

graphs; the results are shown in Table 5.1.

The post-filter 99% efficient graph produced the best track efficiency of

98.3%, with a fake rate and duplication rate of O(10−2). Fitting the tracks

would be expected to reduce the amount of fake tracks. Figures 5.16 shows

the track efficiency of the four sets of graphs against pT (5.16a) and η (5.16b).

Despite the additional node features added to the GNN, there maintains a

clear reduction in track efficiency within the central region (|η| < 2).

Figure 5.17 shows the track efficiency against graph size for the four sets

of graphs.

49

Figure 5.17: Track efficiency vs. post-filter graph size, produced with the

CCandWalk algorithm.

Chapter 6

Iterative Approach

The GNN-based track reconstruction algorithm following the pipeline in Fig-

ure 4.1 on ATLAS ITk simulated data for the HL-LHC shows promising

results. However, the graph input into the edge scoring GNN, the most com-

putationally intensive area of the pipeline, is very large. It contains 1.02×106
edges, which is roughly 95 edges for every true edge, and roughly 940 edges

for every target true edge. There seems, then, to be large room for improve-

ment in reducing the number of superfluous edges and making purer graphs.

Purer, smaller, graphs would pass more quickly through the pipeline (key

for any process in the trigger system); they would require less computational

resources (key in the HL-era); and they may even allow less room for er-

ror in the edge scoring and track building stage of the pipeline, producing

potentially better results.

The large impure graph is partially a result of the rapid increase in graph

size required to gain the last few percent of edge-wise efficiency, seen in both

the metric learning and filter stage, for example in Figure 5.5. Recall Figure

5.7: here, we saw that the last few percent of edges the 99% efficient graph

was still missing occurred disproportionately in the |η| = 1 region (5.7c) and

for edges with low transverse momentum, pT ≈ 1 GeV (5.7d).

So: how can one make these challenging areas easier on the net? Perhaps

it is possible to train nets that specialise in subsets of these distributions and

thus outperform the previous nets. One clear area of potential is to train

nets for certain transverse momentum ranges. The radius of curvature of a

charged particle travelling through a magnetic field is directly proportional

to it’s transverse momentum; as such tracks with high transverse momentum

should have clearly distinguishable features from tracks with low transverse

51

6.1. HIGH MOMENTUM SPECIALISED GRAPHS

(a) Position of hits from particles with pT < 5 GeV,

from 100 events.

(b) Position of hits from particles with pT > 5 GeV,

from 100 events.

Figure 6.1: Distribution of r, z coordinates as a fraction of total hits.

momentum.

Figure 6.1 shows the fraction of total hit positions as a function of cylin-

drical coordinates r and z for particles with pT > 5 and pT < 5 GeV. It

can be seen that particles with greater momentum propagate further into

the detector (r-axis) and less far along the beam axis (z-axis). Figure 6.2

shows the separation of consecutive hits in particle tracks along the z-axis

(along the beam line, 6.2c), the r-axis (transverse to the beam line, 6.2b) and

R =
√
r2 + z2, (6.2a). As expected, particles with greater momentum have

smaller mean separation along the beam line despite slightly greater total

separation.

These are some of the features of nodes that could be used by the network

to distinguish between high and low momentum tracks. So: the idea is plau-

sible. The question to ask, then, is if a network can be trained to distinguish

and build only high (or low) pT tracks – and if they can, if the specialised

nets produce purer and smaller graphs – and thus uses less computational

resources.

6.1 High Momentum Specialised Graphs

An attempt is first made to build graphs aimed at high momentum particles.

Four thresholds for particle momentums were chosen: tracks with momentum

greater than [1.5, 2, 3, and 5] GeV, or [14.3, 6.01, 2.90, 0.91, 0.22]% of target

particles respectively.

52

6.1. HIGH MOMENTUM SPECIALISED GRAPHS

(a) Separation between hits in rz-plane. (b) Separation between hits in r-axis.

(c) Separation between hits in z-axis.

Figure 6.2: Fractional distribution of the separation between consecutive hits

of particles, of particles with pT > 5 GeV and pT < 5 GeV, from 100 events.

53

6.1. HIGH MOMENTUM SPECIALISED GRAPHS

6.1.1 Metric Learning

Four metric learning nets were trained on 1000 events for 170 epochs. Target

particles were defined (as before) as all non-electron particles produced in the

primary vertex of top quark pair production, produced at transverse radius

r < 260 mm and |η| < 4, that leave at least 3 hits, but now with transverse

momentum pT > [1.5, 2, 3, 5] GeV. Training was stopped when monitored

metrics plateaued, around epoch 170.

From here, graphs referred to as pT > X = [1.5, 2, 3, 5] GeV will indicate

graphs aimed at building particles with transverse momentum greater than

1.5, 2, 3, or 5 GeV respectively: it will not mean a cut on all particles with

momentum lower than X. Similarly, unless otherwise indicated, the edge-wise

evaluation metrics efficiency and purity will reference target momentum, i.e.

target edges will be defined as those associated with tracks with momentum

greater than [1.5, 2, 3, 5] GeV.

Architecture

The architecture of the four nets trained was predominantly the same as for

the net in Section 5.2.1: however, a case study was undertaken for reducing

the dimensions of the latent space (the hidden dimensions).

Theoretically, a multi-layer perceptron with a greater number of hidden

dimensions has a greater ability learn complex patterns by extracting in-

creasingly abstract features from the dataset. The logic follows that for a

less complex dataset - for example, one with straighter target tracks - the

net has to capture fewer features, and may thus have similar performance at

fewer hidden dimensions.

The set of target tracks with pT > 3 GeV were taken as a case study, with

seven metric learning nets trained. All followed the same architecture as in

Section 5.2.1 but now with [1024, 512, 256, 128, 64, 32, 16] dimensions of the

latent space respectively. The same 300 events were sent through each net,

with inference radii chosen such that 99.5% efficient graphs were constructed.

Figure 6.3 shows the edge-wise efficiency (6.3a), graph size (6.3b), and edge-

wise purity (6.3c) of the graphs against the hidden dimensions of the nets

that built them. Performance of each net can be measured by the number of

superfluous edges built whilst building a constant proportion of target edges:

it can thus be seen that performance is maintained for nets with 1024 to 64

hidden dimensions, but deteriorates for smaller nets.

54

6.1. HIGH MOMENTUM SPECIALISED GRAPHS

(a) Edge-wise efficiency vs. hid-

den dimensions

(b) Graph size vs. hidden di-

mensions

(c) Edge-wise purity vs. hidden

dimensions

Figure 6.3: Efficiency, graph size, and purity of 300 graphs as a function of

hidden dimensions of the metric learning nets that built them.

This is a remarkable result: recall the investigation into hidden dimen-

sions for the metric learning net with target tracks pT > 1 GeV in Section

5.2.1. There, a deterioration in performance was seen for nets with fewer

than 512 hidden dimensions. Every time the number of hidden dimensions

is doubled the total number of network parameters are quadrupled, so the

smallest well-performing pT > 3 network, with 64 hidden dimensions, has 64

times less network parameters than the pT > 1 network. This means the

computational and memory requirements are vastly reduced for the graph

construction stage. It also has implications for further along the pipeline:

the IGNN apparatus includes multiple MLPs, the edge and node encoders

and decoders. If the latent space these MLPs encode into (or decode from)

could similarly have reduced dimensionality without loss of performance,

then computational requirements would plummet. Indeed, in every aspect of

network architecture, the question can be asked: is the depth that is required

for the net to capture the complexity of low-momentum tracks needed if one

aims only for high-momentum tracks?

This investigation was not taken further within this thesis, and the nets

aimed at pT > [1.5, 2, 5] GeV tracks used 1024 hidden dimensions. However,

it stands to reason similar reductions in hidden dimensions should be plau-

sible, and this is something to be confirmed in the future. The net with 64

hidden dimensions was used for pT > 3.

For each metric learning net trained for particles with pT > [1.5, 2, 3, 5]

GeV, 100 events were sent through and graphs built; inference radii were cho-

sen to build graphs with a mean edge-wise efficiency of 99.5%. The following

Table 6.1 shows the edge-wise efficiency, graph size, and purity of these four

sets of graphs, and the 0.99% 1 GeV set of graphs which from now on will

55

6.1. HIGH MOMENTUM SPECIALISED GRAPHS

X [GeV] Edge-wise Efficiency Graph Size [×107] Purity [×10−3]

1 0.9951 ± 0.0009 1.81 ± 0.35 4.08 ± 0.45

1.5 0.9950 ± 0.0016 1.24 ± 0.23 5.26 ± 0.57

2 0.9951 ± 0.0017 1.13 ± 0.21 5.55 ± 0.58

3 0.9949 ± 0.0031 0.965 ± 0.18 6.11 ± 0.63

5 0.9951 ± 0.0071 0.944 ± 0.18 5.97 ± 0.62

Table 6.1: Results from 100 events passed through metric learning nets.

be used as the baseline in comparison.

Figure 6.4 shows the edge-wise efficiency of four sets of graphs against

transverse momentum (6.4a) and pseudorapidity (6.4b). The edge-wise ef-

ficiency in Figure 6.4a calculates the edge-wise efficiency by defining true

edges as those associated with particles with nhits ≥ 3, |η| < 4, r < 260 mm

(as usual), but for all transverse momenta, to enable the study of behaviour

at low-pT .

Every non-target edge built, even if true, increases the graph size and

obscures the true target tracks, and thus preferably should be avoided; low

efficiencies outside of the momentum limits for each graph indicate fewer

non-target edges. The perfect scenario for each graph would be 100% edge-

wise efficiency for pT > X and 0% edge-wise efficiency for pT < X: this is, of

course, a lofty goal. However, the “step off” in efficiency seen in 6.4a is a clear

success. For each graph, an edge-wise efficiency of 99.5% has been achieved

for pT > X GeV. Below that threshold, the edge-wise efficiency begins to

decrease, such that the greater the threshold, the lower the efficiency for

pT < 1 GeV.

The variation of edge-wise efficiency with η in Figure 6.4b largely follows

that of the baseline, with ever greater deviations as the definition of target

particle tightens. For graphs pT > 5 GeV, it is largely ignored. This is

explained by the lack of hits matching this momentum criteria: Figure 6.5

shows the distribution of particle hits as a function of η ∈ [−4, 4], with the

same binning as Figure 6.4b. Each bin has a mean of less than 10 hits; the

fluctuations seen in 6.4b are statistical fluctuations.

The reduction in efficiency at low transverse momentum shown in Fig-

ure 6.4 should indicate smaller graph sizes for graphs with greater target

momentum: Figure 6.6, which shows graph size against number of target

segments (segments meaning all edges whether or not in graph), agrees with

56

6.1. HIGH MOMENTUM SPECIALISED GRAPHS

(a) Metric learning efficiency vs. pT (b) Metric learning efficiency vs. η.

Figure 6.4: Metric learning edge-wise efficiency as a function of η and pT for

the four sets of graphs, pT > [1.5, 2, 3, 5]

.

Figure 6.5: Distribution of particle hits against η ∈ [−4, 4].

57

6.2. ITERATIVE APPROACH

Figure 6.6: Metric learning graph size plotted against the number of segments

meeting the changing target definition.

those expectations. As the boundary for target pT increases, the number of

segments that meet that target decreases, and with it the graph size. The

graph size decreases with tightening target criteria at a reducing rate, reach-

ing a plateau with the pT > 3 graph roughly the same size as the pT > 5

graph. This is likely due a lack of statistics for the pT > 5 graphs.

It has been clearly illustrated that it is possible to train metric learning

nets to recognise a threshold in transverse momentum and construct, with

precedence, edges that exceed that threshold. This is the vital step in con-

structing a momentum-specialised pipeline, as all other stages act on the

graph built here, and are reliant on the edges that do (or do not) exist here.

6.2 Iterative Approach

Section 6.1 has illustrated that it is well possible to train specialised nets

to construct high pT edges with precedence. Thus, an iterative approach to

track finding is devised. Is it possible to build track candidates from the

small, high-momentum graphs, remove the associated data (namely the hits)

from each event and then build another set of graphs - this time aimed at

the remaining target particles, with pT > 1 GeV? If the second set of graphs

are also small, and can produce enough track candidates to reconstruct the

vast majority of target particles, this approach may be computationally less

demanding for similar performance. A sketch of the process is shown in

Figure 6.7: we separate it out into Stage One, the first pass through the

pipeline to build high momentum candidates, and Stage Two, the second

58

6.2. ITERATIVE APPROACH

Figure 6.7: The suggested process: 1. Build edges associated with high pT

tracks. 2. Construct track candidates. 3. Remove associated hits. 4. Build

remaining graph. 5. Construct track candidates.

pass through the pipeline to build the remaining candidates.

6.2.1 Stage One

Graph Construction: Filter

The initial pT > X graphs have been constructed, using the nets trained in

Section 6.1.1. However, the graphs are still O7 edges large, and a filtering

step is required.

Training a filter to recognise a momentum threshold for edges proved

challenging. Initially, a filter was trained on 1000 graphs built to 99.5%

efficiency with the pT > 2 metric learning net, to score highly edges likewise

with pT > 2 (hence called filter A). This performed poorly: erratic behaviour

increased during training, with monitored metrics fluctuating more and more.

This is often an indication of overtraining, and here shows that the dataset,

with the reduced graph size, is perhaps too small.

Another strategy was attempted: 1000 graphs were built to 99.5% effi-

ciency for pT > 1 (using the metric learning net trained for the baseline in

Section 5.2.1). These were used to train a filter to score highly edges with

59

6.2. ITERATIVE APPROACH

Figure 6.8: Filter edge-wise efficiency against graph size for 100 graphs post

varying score cuts in interval [0.07, 0.12]. Graphs were constructed to 99.5%

efficiency for pT > 2 and then sent through filters A, B, and the filter trained

on 1 GeV graphs in Section 5.2.1. .

pT > 2 (filter B). Monitoring metrics during training showed much more

stable behaviour. Both filters had the same architecture as laid out in 5.2.1.

100 events built with the pT > 2 metric learning net were sent through both

filters, as well as the filter trained for the baseline, and performance was

measured at a variety of score cuts. Filter B performed considerably better

than Filter A and also better than the baseline filter, as shown in Figure 6.8,

which shows isolated filter edge-wise efficiency against graph size.

A filter for pT > 1.5 graphs was trained following filter B’s method, and

proved successful. Attempting to train a filter for graphs pT > 3 faced greater

challenges. Similar strategies as those for Filters A and B were attempted

but now to recognise the threshold pT > 3; monitoring whilst training showed

great fluctuations in metrics, and the final performance was poor. This may

be due to the lack of target edges at this momentum, and for this reason, and

due to the fact training filters is the most time-expensive part of this pipeline

(taking at least a week), a filter for 5 GeV was unattempted. Instead, the

filter B trained for pT > 2 GeV was used on both sets of graphs: the logic

followed that if low-momentum edges were not built initially by the metric

learning net, then they could not pass the post-filter score cut regardless.

Four sets of 100 graphs built to 99.5% efficiency for target pT > [1.5, 2, 3, 5]

were sent through the filtering net; edges with low scores were pruned. Fig-

ures 6.9 shows the sets of graphs pruned to 99% cumulative edge-wise ef-

60

6.2. ITERATIVE APPROACH

(a) Filter efficiency vs. pT (b) Cumulative post-filter efficiency vs. pT

Figure 6.9: The isolated filter and cumulative post-filter edge-wise efficiency

as a function of pT for the four sets of graphs and the baseline.

ficiency post filter, alongside the baseline 99% 1 GeV graphs. Figure 6.9a

shows the isolated filter efficiency: the desired “step off” at pT < X is seen

for the X > 2, 3 GeV graphs. Figure 6.9 shows the cumulative post-filter

edge-wise efficiency, with performance as expected. The step off seen in the

metric learning net has been strengthened for the pT > [2, 3] graphs due to

the success of the filter.

Figure 6.10 shows the isolated filter edge-wise efficiency as a function of

pseudorapidity for the graphs with target pT > [1, 1.5, 2] GeV. One can see

the degradation of edge-wise efficiency seen in the central region (|η| < 2) is

mitigated for the graphs with greater target pT . This perhaps a reflection

of the statistics: particles with large transverse momentum are found more

frequently in the central region than the forward region, as can be seen in

Figure 6.11. Conversely, efficiencies drop as |η| approaches 4, where there

is a reduction in tracks with high pT (see Figure 6.5). It appears that the

change in statistics has shifted the net’s challenging areas from low |η| to
high |η|. Plots for pT > [3, 5] are shown in the Appendix.

In the baseline, it was found that a cumulative efficiency of 99% post-

filter was required for maximum track efficiency. Here, this expectation does

not necessarily follow: if only 95% of high pT tracks are reconstructed in

the first pass of the pipeline, the remaining 5% of high pT tracks may be

reconstructed in the second pass, alongside the low pT tracks. As, for 1 GeV,

the graphs that facilitated 96% of tracks to be reconstructed were 0.4 the

size of the graphs that allowed 98.2% of tracks to be built, building graphs

61

6.2. ITERATIVE APPROACH

Figure 6.10: Isolated filter efficiency against η of 100 graphs, with cumulative

edge-wise efficiency of 99%.

Figure 6.11: The momentum distribution of tracks in the central (|η| < 2)

and forward (|η| > 2) regions of the ITk.

62

6.2. ITERATIVE APPROACH

(a) Filter efficiency vs. graph size for graphs pT >

1.5 GeV.

(b) Filter efficiency vs. graph size for graphs pT > 2

GeV.

(c) Filter efficiency vs. graph size for graphs pT > 3

GeV.

(d) Filter efficiency vs. graph size for graphs pT > 5

GeV.

Figure 6.12: Isolated filter edge-wise efficiency against graph size at varying

post-filter score cuts for the four sets of graphs.

with lower cumulative post-filter efficiencies is worth investigating.

Figure 6.12 shows the graph sizes and filter edge-wise efficiencies after

pruning edges below varying scores in the interval [0.06, 0.12]. Figure 6.13a

shows pT > [1.5, 2, 3] perform similarly: similar target efficiencies are being

achieved for similar graph sizes. As the definition of target is dependent on

the graph, a 95% target efficiency for pT > 1.5 in essence means more edges

with pT > 1 GeV have been constructed than for a 95% efficient pT > 3

graph. Again, we see a clear deterioration in 5 GeV.

Figure 6.13b shows the graph size of the sets of graphs at 99.5% effi-

ciency after metric learning and 99% efficiency after a post-filter cut. It can

be seen that (with the exception of pT > 5) the stricter the target criteria,

the smaller the graph. However, the scale of the reduction in graph size

63

6.2. ITERATIVE APPROACH

(a) All Figures 6.12 plotted side by side for compar-

ison.

(b) Graph sizes of the four sets of graphs and base-

line post filter against post metric learning.

Figure 6.13

after metric learning, shown in Figure 6.6, is not sustained post-filter. This

is unsurprising considering the difficulties of training the high-momentum

filters, and suggests that greater gains may be possible if a better filter train-

ing strategy was found. It is also perhaps worth emphasising at this point

the logic mentioned above: namely that due to the two stage process a lower

post-filter cumulative efficiency than for the baseline might prove acceptable.

GNN

A GNN edge-scoring net was trained on 2000 graphs for 230 epochs, when

monitored metrics plateaued and training was stopped. The training graphs

were pT > 2 graphs, with a post-filter threshold cut to give 98.5% cumulative

edge-wise efficiency. The IGNN follows the same architecture as described in

5.2.2.

Figure 6.14 shows the GNN edge classification performance after train-

ing with the performance of the baseline GNN from 5.2.2 for comparison.

We see the pT > 2 net consistently outperforming the baseline, until rapid

convergence at high signal efficiency.

Figure 6.15 shows the GNN edge classification performance, evaluated on

the four sets of the graphs pT > [1.5, 2, 3, 5] at 99% input edge-wise efficiency.

As expected, the GNN performs best on the pT > 2 graphs, but performs

well on pT > [1.5, 3] graphs. Performance on pT > 5 is unacceptable due to

insufficient statistics.

Varying post-filter score cuts were taken for the four sets of graphs to

64

6.2. ITERATIVE APPROACH

Figure 6.14: GNN classification performance, based on GNN edge-wise effi-

ciency and GNN edge-wise fake rate.

Figure 6.15: GNN classification performance, based on GNN edge-wise ef-

ficiency and GNN edge-wise fake rate, on the four sets of input graphs

pT > [1.5, 2, 3, 5] at 99% target edge-wise efficiency. GNN trained on pT > 2

98.5% graphs. Marker shows edge classification score at s = 0.5.

65

6.2. ITERATIVE APPROACH

(a) GNN efficiency vs. cumulative filter efficiency

(b) GNN efficiency vs. cumulative filter efficiency,

zoomed.

Figure 6.16: GNN edge-wise efficiency at a cut of s = 0.5 against post-filter

cumulative edge-wise efficiency for the four sets of graphs pT > [1.5, 2, 3, 5],

at varying filter score cuts.

give cumulative edge-wise efficiencies within the interval [0.8, 1]. Figure

6.16 shows these efficiencies against the isolated GNN edge-wise efficiency,

calculated with a post-GNN score cut of s = 0.5, with Figure 6.16b zoomed

in to the region of interest, the high-efficiency interval. The reduction in

GNN efficiency for highest filter efficiency for the pT > 2 GeV graphs is

unsurprising, as the GNN was trained on the 98.5% graphs. The reduction

in GNN efficiency for the most efficient post-filter pT > 3 GeV graphs is

more puzzling: perhaps it reflects a limit on the graph impurity the GNN

can effectively sift through.

Track Reconstruction

The ConnectedComponents algorithm for track reconstruction is henceforth

deemed too variable and set aside. Track candidates were built using the

CCandWalk algorithm from each set of pT > [1.5, 2, 3, 5] graphs with highest

post-GNN edge-wise efficiency (see Figure 6.16). A track is matched and the

associated particle is reconstructed according to the same criteria laid out in

5.2.3.

Table 6.2 shows, for target particles with pT > 1 GeV, the final track

efficiency, fake rate, and duplication rate, alongside the post-filter cut graph

size. Figure 6.17 shows the track efficiency against pT . One can see the

66

6.2. ITERATIVE APPROACH

Figure 6.17: Track efficiency against pT for the sets of graphs. x-values (but

not errors) shifted slightly to view data points.

X
Track Efficiency

Fake Rate Duplication Rate Graph Size [×105]
pT > 1 GeV pT > X GeV

1 0.983 ± 0.004 - 0.058 ± 0.005 0.072 ± 0.009 10.2 ± 1.86

1.5 0.979 ± 0.004 0.977 ± 0.007 0.062 ± 0.006 0.097 ± 0.011 9.12 ± 1.71

2 0.637 ± 0.016 0.979 ± 0.008 0.062 ± 0.008 0.130 ± 0.024 6.97 ± 1.11

3 0.608 ± 0.016 0.980 ± 0.019 0.049 ± 0.008 0.104 ± 0.019 5.87 ± 1.13

5 0.715 ± 0.019 0.912 ± 0.076 0.024 ± 0.005 0.155 ± 0.023 7.59 ± 1.37

Table 6.2: Results from building track candidates using CCandWalk algo-

rithm for pT > X graphs.

step off in efficiency for pT > [2, 3] GeV graphs has been carried through to

the final stage: these graphs also perform better at the highest pT than the

baseline. It is also seen that the pT > 1.5 graph performs very similarly to

the baseline graph at low pT , which suggests the difference in trajectories

between particles with pT = 1 GeV and pT = 1.5 GeV may be too similar.

It has been demonstrated that it is highly possible to choose a threshold of

minimum pT and develop a track reconstruction pipeline that targets it, and

that this can produce similar target track efficiencies with not only smaller

graphs but also slimmer networks. However, the objective is to reconstruct

particles with pT > 1 GeV: this will be met in the following Section.

67

6.2. ITERATIVE APPROACH

Figure 6.18: Track efficiency, pT > 1 GeV target tracks, vs. post-filter graph

size

Iteratively

The process (as shown in Figure 6.7) now should proceed to Stage 2. Two

reasons indicate a high track efficiency in Stage 1 is not necessarily the best

way forward for Stage 2: firstly, the large increase in graph size for the last

few percent of efficiency gained, (as seen in, for example, Figures 5.5, 6.13a);

secondly, the continual struggle the pT > 5 GeV graphs showed with limited

target statistics. It is also for this reason that the 5 GeV graphs have at this

point been discontinued.

In light of this, for each X, track candidates were built from a variety of

smaller graphs with lower edge-wise efficiencies for each of the three pT >

[1.5, 2, 3] sets. Stage 1 track efficiency against graph size is shown in Figure

6.18. As the objective is to reduce graph size, there is no point in taking

graphs larger than the baseline. A variety of graphs from Stage 1 were

chosen to proceed to Stage 2: these are shown in Table 6.3.

68

6.2. ITERATIVE APPROACH

Label X
Track Efficiency

Duplication Rate Fake Rate Graph Size [×105]
pT > 1 GeV pT > X GeV

A 1.5 0.784 ± 0.064 0.811 ± 0.070 0.461 ± 0.037 0.069 ± 0.015 2.10 ± 0.38

B 1.5 0.965 ± 0.006 0.972 ± 0.008 0.143 ± 0.024 0.059 ± 0.007 4.11 ± 0.76

C 2 0.346 ± 0.015 0.869 ± 0.024 0.219 ± 0.029 0.036 ± 0.008 1.58 ± 0.29

D 2 0.602 ± 0.018 0.977 ± 0.009 0.129 ± 0.027 0.054 ± 0.008 5.69 ± 1.11

E 3 0.349 ± 0.016 0.903 ± 0.042 0.197 ± 0.029 0.033 ± 0.008 1.55 ± 0.29

F 3 0.498 ± 0.022 0.970 ± 0.022 0.143 ± 0.024 0.043 ± 0.008 3.58 ± 0.69

Table 6.3: Results from Stage 1 of the sets of graphs chosen to continue to

stage 2.

6.2.2 Stage 2

In Stage 2, hits associated with all track candidates built in Stage 1 are

removed from the event. Associated truth information is also removed, such

that the evaluation during Stage 2 does not reflect the absence of particles

that have already been reconstructed. The trimmed down events are then

passed through the pipeline once more to build remaining track candidates.

Nets used were those trained for the baseline, as now the target particles are

the same (i.e. pT > 1 GeV). Indeed, brief studies training metric learning

nets on reduced events showed a slight deterioration in performance, perhaps

due to the reduction in target statistics.

For each interval X:[1.5, 2, 3, 5], two graphs were chosen: one with a high

and one with a low Stage 1 track efficiency, in order to identify a good Stage 1

tracking efficiency and Stage 2 post-filter efficiency for maximum final track

efficiency and minimum combined graph size.

Figure 6.19 shows the hits associated with track candidates built in Stage

1 and thus removed for Stage 2.

The naive expectation would be for a linear increase in hits with track

efficiency; in actuality, tracks with lower pT (that are more likely to be con-

structed in the pT > 1.5 graphs than the the pT > [2, 3]) graphs tend to leave

more hits (as seen in Figure 6.20) - so a greater-than-linear increase in hits

would be expected. The 1.5 GeV set of graphs labelled (i) does not match

this expectation because of the quality of it’s tracks. This set of graphs has

the greatest duplication rate of all the graphs plotted. The criteria for a

reconstructed track, laid out in Section 4, notes that a track and associated

69

6.2. ITERATIVE APPROACH

Figure 6.19: Hits removed vs stage 1 track efficiency. (i) and (ii) labelled for

discussion.

Figure 6.20: Number of hits per tracks for pT > 2 GeV and pT < 2 GeV.

particle must shared at least half the track’s hits - but the particle has no

limit to extra hits. The poor target track efficiency and high duplication

rate both result from a poorly scored graph. The lack of hits for (i) despite

high overall track efficiency, then, is because many hits from a reconstructed

particle are not part of the matched track and are therefore not removed.

This is confirmed by studying the ratio of hits associated with tracks and

hits associated with reconstructed particles: for (i), it is 33.5%, whereas for

(ii), it is 60% (this is for all pT not pT > 1).

Each X = [1.5, 2, 3] will now be discussed briefly, highlighting some

pertinent distributions from Stage 1 and proceeding quickly through Stage

2, before an overall summary of the final results to conclude.

70

6.2. ITERATIVE APPROACH

6.2.3 X = 1.5 GeV

Here the results for the set of graphs with momentum threshold X = 1.5

GeV will be discussed.

Two sets of graphs, A and B (as from Table 6.3) were continued to Stage

2. Figures 6.21a and 6.21b show the Stage 1 pT distribution of the edge-wise

efficiency and track efficiency respectively. One can see the typical drop in

edge-wise efficiency at high-pT seen also in the 1 GeV filters, due to a lack

of statistics here.

The corresponding hits removed are shown in Figure 6.21c. The reduced

events were sent through the metric learning and filter net trained in Section

5.2.1. Graph size against post-filter cumulative efficiency is shown in Figure

6.21d, with post-filter score cuts of [0.07, 0.08, 0.09, 0.10, 0.11] made for each

set of graphs. One can see greater post-filter efficiencies at smaller graph sizes

for A over B: perhaps surprising, given that B contains fewer hits. The true

target edges graphs B must contain for high edge-wise efficiency are those

not part of Stage 1 track candidates, only 3.5% of target tracks. Graphs A,

on the other hand, must contain edges associated with the 21.6% of target

tracks not reconstructed in Stage 1. A common theme so far has been nets

struggling when statistics are too low: recall the initial plateau in reduction

of graph size for nets training on pT > 5, Figure 6.6. Entering Stage 2,

only 0.1% of nodes in B are from target particles; in contrast, 0.8% are from

target particles in A. Of course, the final Stage 2 track efficiency and thus

the edge-wise efficiency here must be greater for graphs A than B in order

to achieve an acceptable combined track efficiency.

Post-filter score cuts were chosen such that the combined graph size of

Stages 1 and 2 was smaller than the baseline, 1.02×106. These are identified

by the X markers in Figure 6.21d.

These graphs were sent through the edge-scoring IGNN trained in 5.2.2,

and then tracks were built using the CCandWalk algorithm. Figure 6.21

shows Stage 2 track efficiency (6.21e) and combined track efficiency (6.21f)

against transverse momentum. A summary of results is shown in Table 6.4.

6.2.4 X = 2 GeV

Two sets of graphs, C and D (as from Table 6.3), were continued to Stage

2. Figure 6.22a shows the Stage 1 post-filter edge-wise efficiency and Figure

6.22b the track efficiency of both sets as a function of pT .

71

6.2. ITERATIVE APPROACH

(a) Isolated filter edge-wise efficiency vs. pT (b) Stage 1 track efficiency vs. pT

(c) Hits removed per event for Stage 2 of graphs X

= 1.5.

(d) Graph size against post-filter cumula-

tive efficiency at varying score cuts of sets

of graphs A and B in Stage 2.

(e) Stage 2 track efficiency vs. pT (f) Combined track efficiency vs. pT

Figure 6.21: A summary of graphs A and B through Stage 1 and 2.

72

6.2. ITERATIVE APPROACH

(a) Isolated filter edge-wise efficiency vs. pT (b) Stage 1 track efficiency vs. pT

(c) Hits removed per event.

(d) Stage 2 graph size against post-filter cumulative

efficiency at varying score cuts.

(e) Stage 2 track efficiency vs. pT . x-values (but

not errors) shifted for ease of view.

(f) Combined track efficiency vs. pT . x-values (but

not errors) shifted for ease of view.

Figure 6.22: A summary for graphs C and D through Stage 1 and 2.

73

6.2. ITERATIVE APPROACH

Label Combined Track Efficiency Combined Graph Size [×105]
A 0.984 7.88

B.1 0.973 5.71

B.2 0.987 9.81

Table 6.4: Final results for sets of graphs X = 1.5 GeV

The corresponding hits removed from each set are shown in Figure 6.22c.

These reduced events were sent through the metric learning and filter net

trained in 5.2.1. Graph size against post-filter cumulative efficiency is shown

in Figure 6.22d, with post-filter score cuts of [0.07, 0.08, 0.09, 0.10] made for

each set of graphs.

Cuts identified by the X marker in Figure 6.22d were chosen to con-

tinue through the pipeline by considering how many tracks were left to build

and how large a graph was acceptable: thus three sets of graphs continued

through the pipeline. A summary of these is in Table 6.5.

These were sent through the edge-scoring IGNN trained in Section 5.2.2,

and then tracks were built using the CCandWalk algorithm. The Stage 2

track efficiency and combined track efficiency as a function of pT are shown

in Figures 6.22e and 6.22f respectively; a summary of results is shown in

Table 6.5

One can see the large error bars for graphs stemming from C in Stage 2.

In general, ...

Label Combined Track Efficiency Combined Graph Size [×105]
C.1 0.955 4.58

C.2 0.984 7.98

D.1 0.964 8.46

D.2 0.991 11.71

D.3 0.986 13.38

Table 6.5: Final results, X = 2

6.2.5 3 GeV

The two sets of graphs, E and F as from Table 6.3, were continued to Stage 2;

Figures 6.23 and 6.23b shows the post-filter edge-wise and track efficiency in

74

6.3. OVERALL

Label Combined Track Efficiency Combined Graph Size [×105]
E.1 0.933 5.10

E.2 0.988 8.41

F 0.989 9.77

Table 6.6: Summary of X = 3 GeV graphs.

Stage 1 respectively, with corresponding hits removed shown in Figure 6.23c.

These reduced events were sent through the metric learning and filter net

trained in 5.2.1. Stage 2 graph size against cumulative post-filter edge-wise

efficiency is shown in Figure 6.23d, with post-filter score cuts in the interval

[0.07, 0.10] made for each set of graphs. Graphs indicated by the X marker

were scored by the IGNN and then tracks were built using the CCandWalk

algorithm. Figures 6.23e and 6.23f show the Stage 2 and combined track

efficiency as a function of pT respectively; a summary of results is shown in

Table 6.6.

6.3 Overall

Table 6.7 shows all results together for quick reference. For all X, routes

have been found that have culminated in greater track efficiencies and smaller

graphs than the baseline; however, this is often at the cost of very large dupli-

cation rates (and slightly higher fake rates). pT > 3 produces the route with

highest combined track efficiency, 0.989 ± 0.003; this route has a combined

graph size smaller than the baseline.

Figure 6.24 shows the graph sizes of all graphs with final track efficiencies

better than 0.983, the baseline. Graphs to the left of the grey bar also have

smaller combined graph sizes.

The desired route should have, in both Stage 1 and Stage 2, high track

efficiencies within a pT interval and low track efficiencies outside of it. Mid-

range track efficiencies indicate a graph that is ambiguously scored: this

leaves room for the CCandWalk algorithm to be misled, or for track candi-

dates to be broken.

75

6.3. OVERALL

(a) Isolated filter edge-wise efficiency vs. pT (b) Stage 1 track efficiency vs. pT

(c) Hits removed per event. (d) Caption

(e) Stage 2 track efficiency vs. pT (f) Combined track efficiency vs. pT

Figure 6.23: X = 3

76

6.3. OVERALL

X Track Efficiency Graph Size [×105] Duplication Rate Fake Rate

1 0.983 10.2 0.072 ± 0.009 0.058 ± 0.005

1.5 0.984 7.88 0.398 ± 0.06 0.086 ± 0.018

1.5 0.973 5.71 0.121 ± 0.09 0.106 ± 0.025

1.5 0.987 9.81 0.123 ± 0.08 0.103 ± 0.013

2 0.955 4.58 0.258 ± 0.066 0.070 ± 0.011

2 0.984 7.98 0.185 ± 0.031 0.067 ± 0.011

2 0.964 8.46 0.265 ± 0.045 0.085 ± 0.014

2 0.991 11.71 0.130 ± 0.030 0.065 ± 0.012

2 0.986 13.38 0.158 ± 0.030 0.076 ± 0.011

3 0.933 5.10 0.232 ± 0.038 0.035 ± 0.009

3 0.988 8.41 0.130 ± 0.020 0.066 ± 0.006

3 0.989 9.77 0.174 ± 0.018 0.074 ± 0.010

Table 6.7: Overall summary of combined results

Figure 6.24: The graph sizes of all sets of graphs with final track efficiencies

greater than or equal to 0.982.

77

Chapter 7

Conclusions and Outlook

The objective of this Master’s thesis was to assess the capacity of graph neural

networks to act as a method of track finding within the Event Filter, and

to investigate a potential path of memory-footprint reduction. The high-

luminosity era of the LHC necessitates an upgrade to the ATLAS TDAQ

system that must take advantage of new innovations to meet requirements;

graph neural networks are a powerful tool that appear inherently suited to

the task and take advantage of highly parallel computing hardware.

The general capacity of graph neural networks to act as a method of

track finding has been assessed in Chapter 5. A track efficiency of 98.3

% is achieved using the baseline method; this requires a graph containing

1.02 × 106 edges. Particles not reconstructed are primarily those with high

transverse momentum and from the barrel region of the ITk. A theme of the

GNN pipeline’s ability to reconstruct tracks within the ATLAS ITk is poor

performance within the strip barrel. A future avenue to mitigate this might

be to train individual networks for the strip and pixel sub-detectors; this may

allow the network to learn the differing clustering features to greater effect.

The baseline track efficiency is competitive but uses a large, impure graph.

The ability of a GNN-based track finding pipeline to specialise to tracks with

transverse momentums greater than a threshold is assessed, to investigate

potential routes that result in smaller graphs. Metric learning nets, in par-

ticular, are very suited to this task, with a step off in edge-wise efficiency

below the pT threshold resulting in a sharp reduction in graph size. There is

some difficulty in encouraging the filtering nets to preferentially score high-

pT edges: this slightly mitigates the scale of the reduction in graph size.

The IGNN edge scoring net performs well and facilitates a final track effi-

78

ciency that is high over the pT threshold and low elsewhere, particularly for

pT > [2, 3] GeV.

The iterative process of building Stage 1 track candidates, removal of

associated hits, and building of Stage 2 track candidates, can produce a

final track efficiency of 0.989 ± 0.003, for a combined set of graphs that are

smaller than the single set of graphs used to build 0.983 of tracks. In this

way, the approach can be deemed a success: however, it is at the expense of

a greater duplication rate. This is primarily the result of broken tracks due

to ambiguously-scored graphs: an avenue for exploration in the future would

be a post-pipeline algorithm that could potentially stitch these tracks back

together.

Throughout this thesis, a repeating theme has been poor performance

at high-pT due to a lack of statistics. This could be addressed by using a

sample with a greater number of high-pT particles. The step off in edge-wise

efficiency seen below the specified pT threshold is gradual: the pT > 1.5 GeV

graphs reconstruct almost as many tracks in the 1 > pT > 1.5 GeV region as

the pT > 1 GeV graphs do. For this reason, it is beneficial to use a higher

threshold - but very quickly, training problems due to lack of statistics are

encountered - for example, throughout the pT > 5 GeV graphs. It would be

interesting to investigate a well-trained pipeline at a higher threshold than 3

GeV.

Finally, to truly verify whether this approach is feasible for the Event

Filter, it must be compared to the state-of-the-art method, the combinatorial

Kalman Filter. For this, one must implement the iterative approach into a

tracking framework such as Athena.

79

Bibliography

[1] Particle data group. https://pdg.lbl.gov/2024/tables/contentstables.html.

[2] P. Bryant L. Evans. Lhc machine. JINST, 3, 2008.

[3] The ATLAS Collaboration. The cern accelerator complex, layout in 2022.

https://cds.cern.ch/record/2800984, 2022.

[4] Emma Ward. Lhc and hl-lhc timeline for atlas website.

http://cds.cern.ch/record/2652466, 2018.

[5] The ATLAS Collaboration. Technical proposal for a general purpose pp

experiment at the large hadron collider at cern. 1994.

[6] The ATLAS Collaboration. The atlas experiment at the cern large hadron

collider. 2008.

[7] The ATLAS Collaboration. The atlas experiment at the cern large hadron

collider. JINST, 3, 2008.

[8] The ATLAS Collaboration. The atlas trigger system for lhc run 3 and trigger

performance in 2022. JINST, 19, 2022.

[9] The ATLAS Collaboration. Technical design report for the phase-ii upgrade

of the atlas tdaq system.

[10] The ATLAS Collaboration. Atlas inner tracker pixel detector: Technical

design report. ATLAS-TDR-030, 2017.

[11] The ATLAS Collaboration. Technical design report for the atlas inner tracker

strip detector. ATLAS-TDR-025, 2017.

81

BIBLIOGRAPHY

[12] The ATLAS Collaboration. Technical design report for the phase-ii upgrade

of the atlas trigger and data acquisition system - event filter tracking amend-

ment. 2022.

[13] The ATLAS Collaboration. Expected tracking and related performance with

the updated atlas inner tracker layout at the high-luminosity lhc, 2021.

[14] The ATLAS Collaboration. Atlas run 3 charged particle track seed finding

performance. ATLAS-TDR-025, 2023.

[15] The ATLAS Collaboration. Atlas software and computing hl-lhc roadmap.

[16] J. Vlimant J. Shlomi, P. Battaglia. Graph neural networks in particle physics.

2020.

[17] S. Farrell et al. Novel deep learning methods for track reconstruction. Con-

necting the Dots, 2018.

[18] The ATLAS Collaboration. Atlas itk track reconstruction with a gnn-based

pipeline. ATL-ITK-PROC-2022-006, 2022.

[19] The ATLAS Collaboration. Physics performance of the atlas gnn4itk track

reconstruction chain. The European Physical Journal Conferences, 295, 2023.

[20] B. Denby. Neural networks and cellular automata in experimental high energy

physics. Computer Physics Communications, 49:429–448, 1988.

[21] J. Ba D. Kingma. Adam: A method for stochastic optimization.

arXiv:1412.6980, 2014.

[22] Charu C. Aggarwal. Neural Networks and Deep Learning. Springer, Cham,

Switzerland, 2018.

[23] P. Battglia et. al. Interaction networks for learning about objects, relations

and physics. arXiv:1612.00222, 2016.

[24] The ATLAS Collaboration. Track finding performance plots for a graph

neural network pipeline on atlas itk simulated data, 2022.

[25] F. Karray B. Ghojogh, A. Ghodsi and M. Crowley. Spectral, probabilistic,

and deep metric learning: Tutorial and survey. 2022.

82

BIBLIOGRAPHY

[26] S. Dittmeier. Track reconstruction for the atlas phase-ii event filter using

gnns on fpgas., 2024.

[27] The ATLAS Collaboration. Expected tracking and related performance with

the updated atlas inner tracker layout at the high-luminosity lhc. ATL-

PHYS-PUB-2021-024, 2021.

[28] Weights and biases. : https://wandb.ai/site.

[29] j. Leskovec W. Hamilton, R. Ying. Inductive representation learning on large

graphs. arXiv:1706.02216, 2017.

83

	Introduction
	LHC and ATLAS
	The Standard Model of Particle Physics
	Particle Content

	The Large Hadron Collider
	The HL-LHC Timeline

	The ATLAS Experiment
	The ATLAS Detector
	ATLAS Phase-II Upgrade
	Tracking in the EF

	Machine Learning
	Neural Networks
	The modern neural network
	Multi-Layer Perceptrons
	Training
	Optimizers
	Regularisation and Normalisation

	Graph Neural Networks
	Graphs
	The General Framework
	Message Passing

	ATLAS GNN Tracking
	ACORN Pipeline
	Graph Construction
	Interaction Network
	Building Track Candidates

	Baseline Results
	Simulation Data
	Baseline
	Graph Construction
	GNN
	Track Reconstruction

	Iterative Approach
	High Momentum Specialised Graphs
	Metric Learning

	Iterative Approach
	Stage One
	Stage 2
	X = 1.5 GeV
	X = 2 GeV
	3 GeV

	Overall

	Conclusions and Outlook

